发明名称 硅氧烷医疗装置的表面处理

摘要

本专利直接介绍了一种医疗装置如隐形眼镜与医疗移植用品的可更新的表面处理技术。具体而言，本专利介绍的是一种对医疗装置的表面改性的方法。通过在装置表面进行涂覆处理，该方法能够改善装置的生物相容性和亲水性。利用一种具有活性官能团的亲水性聚合物与医疗装置附近或表面的互补官能团进行化学反应，在医疗装置表面形成一层可除去的亲水性聚合物，从而达到表面涂覆的目的。本专利可直接应用于隐形眼镜或其他具有表面涂层的医疗装置的表面处理。
1. 一种用来处理医疗装置表面的方法，其包括：
 (a) 由包含具有反应性官能团的单体单元的材料制备医疗装置，所述官能团选自以下组中：对内酯、羧酸、胺、羟基、环氧基及其组合；
 (b) 制备聚合物链上含有选自以下组中的互补的反应性官能团的亲水反应性聚合物：对内酯、异氰酸酯、酸酐、环氧基、羟基、伯胺或仲胺、或羧酸官能团，以及他们的组合，当其含有羟基或胺基互补反应性官能团时，所述材料含有对内酯反应性官能团；当其含有羧酸互补官能团时，所述材料含有环氧基反应性官能团；
 (c) 使步骤(b)中聚合物链上具有互补反应性官能团的亲水反应性聚合物与步骤(a)中医疗装置表面上或附近的反应性官能团反应，从而在医疗装置上形成生物相容性表面；
 (d) 除去步骤(c)中的生物相容性表面，以及
 (e) 重复步骤(b)和(c)，在所述医疗装置上形成新的生物相容性表面，其具有与步骤(c)的原始生物相容性表面基本相似的性能。

2. 如权利要求1的方法，其中所述医疗装置是硅氧烷隐形眼镜或眼内透镜，且涂层是无色的。

3. 如权利要求1的方法，其中所述医疗装置是硅氧烷水凝胶的、可连续配戴的隐形眼镜。

4. 如权利要求1的方法，其中所述医疗装置是刚性的隐形眼镜。
5. 如权利要求4的方法，其中所述刚性的隐形眼镜是刚性的透气性隐形眼镜。

6. 如权利要求1的方法，其中所述亲水反应性聚合物包括1～100 mol%的具有所述官能团的单体单元。

7. 如权利要求1的方法，其中所述亲水反应性聚合物包括0～99 mol%的由非反应性亲水单体衍生的单体单元。

8. 如权利要求1的方法，其中所述聚合物包括50～95 mol%的由选自以下组中的非反应性亲水单体衍生的单体单元：丙烯酰胺、内酯、聚（亚烷基环氧基）甲基丙烯酸酯、甲基丙烯酸或羟烷基甲基丙烯酸酯，以及5～50 mol%的由选自以下组中的官能反应性单体衍生的单体单元：环氧基、吖内酯和含有单体的酸酐，其中所述烷基或亚烷基具有1～6个碳原子。

9. 如权利要求1的方法，其中（a）中的官能反应性单体是选自以下组中：甲基丙烯酸缩水甘油酯、马来酐、衣衫酸酐、甲基丙烯酸异氰酯。

10. 如权利要求1的方法，其中所述亲水性单体是选自以下组中：二甲基丙烯酰胺、丙烯酰胺、N-乙烯基-吡咯烷酮甲基丙烯酸。

11. 如权利要求1的方法，其中所述亲水反应性聚合物包括0～35 mol%的由疏水性单体衍生的单体单元。
12. 如权利要求 1 的方法，其中所述亲水聚合物包括具有下式的恶唑啉酮：

![恶唑啉酮结构式]

其中 R₂ 和 R₃ 分别为具有 1～14 个碳原子的烷基，具有 3～14 个碳原子的环烷基，具有 5～12 个环原子的芳基，具有 6～26 个碳原子的芳基，以及 0～3 个选自 S, N, 非过氧化的 0 中的杂原子，或者 R₂’ 和 R₃’ 与它们所连接的碳原子一起可以形成含有 4～12 个环原子的碳环，n 是整数 0 或 1。

13. 如权利要求 12 的方法，其中所述聚合物包括含有下式单体的单体混合物的反应产物：

![单体结构式]

其中 R₁’ 和 R₂’ 分别表示氢原子或具有 1～6 个碳原子的低级烷基，R₃’ 和 R₄’ 分别表示具有 1～6 个碳原子的烷基或具有 5～6 个碳原子的环烷基。

14. 如权利要求 13 的方法，其中所述单体是选自以下组中：2-乙烯基-4, 4-二甲基-2-恶唑啉-5-酮、2-异丙烯基-4, 4-二甲基-2-恶唑啉-5-酮、以及 2-乙烯基-4, 4-二甲基-2-恶唑啉-5-酮。
15. 如权利要求 1 的方法，其中所述医疗装置浸泡于包含至少一种无着色物质的亲水反应性聚合物的溶液中。

16. 如权利要求 1 的方法，其中所述除去步骤 (d) 还包括研磨所述生物相容性表面。

17. 如权利要求 16 的方法，其中所述除去步骤 (d) 还包括使用研磨粒子在载体水溶液中研磨所述生物相容性表面。

18. 如权利要求 17 的方法，其中所述研磨粒子包括硅石或氧化铝。
硅氧烷医疗装置的表面处理

相关申请的交叉参考
本申请与 1999 年 5 月递交的第 09/315, 620 号美国专利的主题相关。

技术领域
本专利直接介绍了一种对隐形眼镜、医用移植用品等医疗装置进行表面处理的方法。更进一步地说，本专利介绍了一种可更新的医疗装置表面改性方法，通过隐形眼镜材料中的反应性官能团与聚合物材料的互补反应性官能团反应，在医疗装置表面形成一个亲水性聚合物层，从而改善了医疗装置表面的生物相容性和亲水性。本专利也可直接应用于隐形眼镜或其他具有类似表面涂层的医疗装置。

背景技术
多年来，隐形眼镜一直都是使用含硅氧烷材料制造。一般说来，这种含硅氧烷材料可以分为两大类：水凝胶和非水凝胶。非水凝胶不能吸附大量的水，而水凝胶在平衡状态能够吸附并保持一定量的水。一般情况下，水凝胶的含水量都在 5 重量%以上。更常见的情况是含水 10～80 重量%。不管其含水量如何，水凝胶和非水凝胶硅氧烷隐形眼镜都趋向于具有疏水的、不可润湿的表面。

表面结构和组成决定着固体材料的许多物理性能和最终用途。材料的表面特征会显著地影响到表面性能，如润湿性、摩擦性、粘附性或润滑性等。因此，对于特别重视生物相容性的生物技术的应用来说，改善材料的表面特性具有特别重要的意义。因此，本领域的技术人员都清楚地知道材料的表面特征对材料应用的重要作用，其中他们最关心的是材料的生物相容性。本领域的技术人员也早就认识到必须使隐形眼镜或其他医疗装置的表面具有一定或更好的亲水性。增加隐形眼镜表面的亲水性能够改善眼泪在隐形眼镜表面的湿润性能。这又会进
一步改善配戴隐形眼镜的舒适性。对于连续配戴的隐形眼镜来说，隐形眼镜的表面发挥着尤其重要的作用。进行连续配戴的隐形眼镜的设计，不仅需要考虑配戴的舒适性，还应该考虑如何避免诸如角膜浮肿、发炎或淋巴炎等副反应。多年来，人们一直在寻求适当的方法来改进隐形眼镜的表面，尤其是想方设法开发具有较高透氧性（high-DK）的隐形眼镜表面材料，以便满足连续配戴（过夜）的要求。

为了进一步提高隐形眼镜的生物相容性，许多专利都公开了通过在隐形眼镜表面粘上一层亲水的或具有生物相容性的聚合物链的方法。例如，US 5,652,014 介绍了一种氢化处理基片的方法，随后利用一些聚合物，如 PEO 星型分子或硫酸化的多糖等与该基片反应。这种方法存在着一个问题：因为聚合物分子链很难附着于硅氧烷基片上，从而聚合物分子链的密度较低。

US 5,344,701 介绍了一种通过等离子体在基片附着一层恶唑啉酮或吖内酯单体的方法。该发明在表面参与或合成的催化反应或定位分离领域有一定的用途，包括生物分子、诊断载体与酶膜反应器（enzyme membrane reactor）的亲合分离。显然，通过恶唑啉酮单体中未饱和的烯类双键与等离子体在基片上生成的自由基反应，恶唑啉酮基团附着到了多孔性的基片上。也有可能是这些单体先附着在基片上，然后，在等离子体的作用下，形成交联的涂层。附着在表面上的恶唑啉酮基团可以用于粘附其他生物活性材料如蛋白质，因为恶唑啉酮基团能够与胺、醇或硫醇等反应。Valint 等人的 US 5,364,918 和 Lai 等人的 US 5,352,714 公开了一种用恶唑啉酮单体作为隐形眼镜的内润湿剂的方法，这种润湿剂能够迁移至隐形眼镜的表面。

Pinchuk 等人的 US 5,804,318 公开了一种用润滑涂层降低医疗材料表面摩擦系数的方法。所用的润滑涂层包括亲水性的共聚物，该共聚物的一些单体包含有悬垂的叔胺基官能团。水凝胶涂层通过共价键附着在通过环氧氧化处理的医疗材料的表面。

Goldenberg 等人的 US 4,734,475 公开了由在主链中包括环氧乙烯（环氧基）取代的单体单元的聚合物制造的隐形眼镜的应用。由此隐形眼镜的外表面含有亲水的诱导量的环氧乙烯与水溶性的活性有机化合物，如胺、醇、硫醇、脲、硫脲、亚硫酸盐、亚硫酸氢盐或硫
代硫酸盐的反应产物。

由以上专利可以看出，寻找光学透明的亲水性涂层材料，以便使硅氧烷医疗装置表面具有更加优良的生物相容性是一种理想的做法。在硅氧烷水凝胶隐形眼镜表面引入一层特殊的涂层，以改进隐形眼镜长期配戴时的舒适性，同时又改善隐形眼镜材料表面的亲水润湿性能和氧透过性能，也是一种比较理想的做法。如果这种具有生物相容性的隐形眼镜能够连续配戴，尤其能够连续配戴一个星期以上，同时又不会产生角膜炎等副反应的话，这种涂层就更加理想了。另外，如果这种涂层能够随时地进行再处理，使其恢复到新隐形眼镜的状态，那就再理想不过了。

发明摘要

本发明直接介绍了一种对硅氧烷隐形眼镜和其他硅氧烷医疗装置进行表面处理的方法，其中包括对隐形眼镜进行表面改性，以增加其亲水性和润湿性的一种方法。该表面改性方法包括利用隐形眼镜基片中的反应性官能团与亲水反应性聚合物中的单体单元所含的互补官能团反应，从而把亲水性聚合物粘附到隐形眼镜基片的表面。随后可从隐形眼镜材料基片的表面除去该亲水性聚合物链，之后重新施加以获得似新的表面质量。这里所说的“似新的表面质量”是经过重新表面涂覆处理的隐形眼镜在外观和性能上与第一次涂覆的隐形眼镜相同或相近。

本发明提供了一种用来处理医疗装置表面的方法，其包括：

(a) 由包含具有反应性官能团的单体单元的材料制备医疗装置，所述官能团选自以下组中：吖内酯、羧酸、胺、羟基、环氧基及其组合；

(b) 制备聚合物链上含有选自以下组中的互补的反应性官能团的亲水反应性聚合物：吖内酯、异氰酸酯、酸酐、环氧基、羟基、伯胺或仲胺、或羧酸官能团，以及它们的组合，当其含有羟基或胺基互补反应性官能团时，所述材料含有吖内酯反应性官能团；当其含有羧酸互补官能团时，所述材料含有环氧基反应性官能团；

(c) 使步骤(b)中聚合物链上具有互补反应性官能团的亲水反应性聚合物与步骤(a)中医疗装置表面上或附近的反应性官能团反应，从而在医疗装置上形成生物相容性表面；

(d) 除去步骤(c)中的生物相容性表面，以及

(e) 重复步骤(b)和(c)，在所述医疗装置上形成新的生物相容性
表面，其具有与步骤（c）的原始生物相容性表面基本相似的性能。
在本发明的一个实施方案中，所述医疗装置是硅氧烷隐形眼镜或
眼内镜，且涂层是无色的。
在本发明的另一个实施方案中，所述聚合物包括 50～95 mol%的
由选自以下组中的非反应性亲水单体衍生的单体单元：丙烯酰胺、内
酯、聚（亚烷基环己基）甲基丙烯酸酯、甲基丙烯酸或羟烷基甲基丙烯
酸酯，以及 5～50 mol%的由选自以下组中的官能反应性单体衍生的
单体单元：环氧基、吖内酯和含有单体的酸酐，其中所述烷基或亚烷
基具有 1～6 个碳原子。
在本发明的另一个实施方案中，所述（a）中的官能反应性单体
是选自以下组中：甲基丙烯酸缩水甘油酯、马来酐、衣康酸酐、甲基
丙烯酸异氰酯。
在本发明的另一个实施方案中，所述亲水单体是选自以下组
中：二甲基丙烯酰胺、丙烯酸胺、N-乙烯基-吡咯烷酮甲基丙烯酸。
在本发明的另一个实施方案中，所述医疗装置浸泡于包含至少
一种无着色物质的亲水反应性聚合物的溶液中。
在本发明的另一个实施方案中，所述除去步骤（d）还包括研磨所
述生物相容性表面。
在本发明的另一个实施方案中，所述除去步骤（d）还包括使用研
磨粒子在载体水溶液中研磨所述生物相容性表面。
在本发明的另一个实施方案中，所述研磨粒子包括硅石或氧化
铝。
本发明也直接介绍了一种包括由此方法制备的医疗装置，比如，
隐形眼镜、眼内镜、医用导管、移植材料等。
能够根据本发明制备的医疗设备例子还有牙用制品，包括牙齿固
定器、牙齿保护架、助听器、医用或整形外科用的缝合线、或其他医
疗/外科移植用的器械如医用夹子、止血钳、支撑用品等。

附图的简要说明
图 1 所示是下面的实施例 15 描述的隐形眼镜的原子力显微镜
（AFM）表面形貌（50 μm²），以比较根据本发明的隐形眼镜；图 1 的左
侧所示是隐形眼镜的前表面形貌，右侧所示是后表面形貌。
图 2 所示是根据本发明一个实施方案的实施例 14 描述的涂覆的
隐形眼镜的原子力显微镜（AFM）表面形貌（50 μm²）。该隐形眼镜是
用实施例 10 所描述的聚合物涂层的硅氧烷刚性的透气性隐形眼镜，
所述聚合物是二甲基丙烯酰胺与甲基丙烯酸缩水甘油酯的共聚物。
图 3 所示是根据本发明一个实施方案的实施例 15 描述的涂覆的隐形眼镜的原子力显微镜（AFM）表面形貌（50 μm²），该隐形眼镜是用实施例 10 与实施例 12 所描述的共聚物的混合物涂覆的硅氧烷刚性的透气性隐形眼镜。

图 4 所示是实施例 16 描述的隐形眼镜的原子力显微镜（AFM）表面形貌（50 μm²），用于与根据本发明的其他实施方案的其他隐形眼镜相比较，该隐形眼镜是用实施例 11 所描述的聚合物涂覆的硅氧烷水凝胶隐形眼镜。

图 5 所示是根据本发明的一个实施方案的实施例 16 描述的隐形眼镜的原子力显微镜（AFM）表面形貌（50 μm²）。该隐形眼镜是用实施例 11 所描述的聚合物涂覆的硅氧烷刚性的透气性隐形眼镜，所述聚合物是二甲基丙烯酰胺、甲基丙烯酸缩水甘油酯与甲基丙烯酸八氟戊酯的共聚物。

图 6 所示是根据本发明的一个实施方案的实施例 16 描述的隐形眼镜的原子力显微镜（AFM）表面形貌（50 μm²）。该隐形眼镜是用实施例 11 所描述的聚合物涂覆的硅氧烷刚性的透气性隐形眼镜，所述聚合物是二甲基丙烯酰胺、甲基丙烯酸缩水甘油酯与甲基丙烯酸八氟戊酯的共聚物，其用涂覆浓度高于图 5 中隐形眼镜所采用的涂覆浓度。

图 7 所示是实施例 18 描述的 RGP 隐形眼镜材料微珠在表面处理前的原子力显微镜（AFM）表面形貌（50 μm²）。

图 8 所示是实施例 18 第一个亲水性聚合物涂覆步骤之后的 RGP 微珠的原子力显微镜（AFM）表面形貌（50 μm²）。

图 9 所示是研磨除去实施例 18 聚合物涂层后的 RGP 微珠原子力显微镜（AFM）表面形貌（50 μm²）。

图 10 所示是在实施例 18 中重新施加亲水性聚合物表面后的原子力显微镜（AFM）表面形貌（50 μm²）。

本发明详细介绍

如前所述，本发明直接介绍了一种医疗装置的表面处理方法，包括对隐形眼镜、眼内透镜、血管移植进行表面处理，以增加其生物相
容性的方法。本发明对由水凝胶、硅氧烷水凝胶和具有刚性的透气性材料（“RGP”）制成的隐形眼镜的表面处理特别有用。具有刚性的透气性材料和水凝胶是两类十分有名的医用材料。此处我们使用了术语“硅氧烷”，其含意是所说的材料包含有质量百分数不低于 5%的硅氧键（-SiO-）。比较合适的硅氧烷质量百分数是 10～100%。硅氧烷质量百分数在30～90%之间更好。

水凝胶是一种交联的处于平衡状态的水合聚合物。硅氧烷水凝胶通常含有质量百分数在 5%以上的水分。比较常见的硅氧烷水凝胶含有质量百分数在 10～80%的水分。这些硅氧烷水凝胶材料是通过不同单体的混合物聚合得到的。这种混合物至少含有一种含硅氧烷的单体，同时还至少含有一种亲水性单体。其中的含硅氧烷单体或亲水性单体应该能够起到交联剂的作用（交联剂就是具有多个聚合官能团的单体），否则的话，就需要单独在混合物加入交联剂。本技术领域已经认识到了含硅氧烷单体非常适合于制备硅氧烷水凝胶，比如专利 US 4, 136, 250, 4, 153, 641, 4, 740, 533, 5, 034, 461, 5, 070, 215, 5, 260, 000, 5, 310, 779, 5, 358, 995 等。

体积比较庞大的聚硅氧烷基烷基（甲基）丙烯酸就是可行的含硅单体的例子。下面的式（I）给出了一个体积比较庞大的聚硅氧烷基烷基（甲基）丙烯酸单体的分子结构。
其中：X 表示 -O- 或 -NR-

每个 R_{18} 分别表示氢原子或甲基

每个 R_{19} 分别表示低级烷基自由基、苯基自由基或如下结构的基团：

其中每个 R_{19} 分别表示低级烷基、苯基，h 是 1～10。

其他一些体积比较庞大的单体还有甲基丙烯酸氧丙基三(三甲基甲硅烷氧基)硅烷或甲基丙烯酸三(三甲基甲硅烷氧基)甲硅烷基丙酯（有些时候人们把这种单体称作 TRIS)以及三(三甲基甲硅烷氧基) 甲硅烷基丙基乙烯基氨基甲酸酯（有些时候人们把这些单体称作 TRIS-VC）。

这些体积比较庞大的单体能够与硅氧烷大分子单体进行共聚。硅氧烷大分子单体是一端或两端用不饱和基团封端的聚有机硅氧烷。例如，Deichert 等人的专利 US 4,153,641 给出了几种封端用的不饱和官能团，包括丙烯酰氧基、甲基丙烯酰氧基。

另外一类有代表性的含硅氧烷的单体是含硅氧烷的乙烯基碳酸酯或乙烯基氨基甲酸酯，如 1,3-二[(4-乙烯基氧羰氧基) 1-丁基]四甲
基二硅氧烷、3-(三甲基甲硅烷基)丙基乙烯基碳酸酯、3-(乙烯基氧羰
硫基)丙基-[三(三甲基甲硅烷氧基)硅烷]、3-[三(三甲基甲硅烷氧基)
甲硅烷基]丙基乙烯基氨基甲酸酯、3-[三(三甲基甲硅烷氧基)硅烷基]
丙基烯丙基氨基甲酸酯、3-[三(三甲基甲硅烷氧基)甲硅烷基]丙基乙烯
基碳酸酯、叔丁基二甲基甲硅烷氧基乙基乙烯基碳酸酯、三甲基
甲硅烷基乙基乙烯基碳酸酯和三甲基甲硅烷基甲基乙烯基碳酸酯。

另外一类含硅单体包括聚氨基甲酸酯-硅氧烷大分子单体(有时候
也称作预聚物)。这些单体中可能含有像传统的氨基甲酸酯弹性体那
样的硬-软-硬链段。许多文献给出了硅氧烷氨基甲酸酯的例子，如Lai
YU-Chin，“The Role of Bulky Polysiloxanylalkyl Methacrylates in
Polyurethane-Polysiloxane Hydrogels,” Journal of Applied Polymer
5,451,651 也给出了这类单体的例子。本专利参考了这些文献给出的
单体。其他的硅氧烷氨基甲酸酯的例子可用式II和III表示:

(II) E(*D*A*D*G)ₙ*D*A*D*E’；或
(III) E(*D*G*D*A)ₙ*D*G*D*E’；

其中，

D 表示含 6～30 个碳原子的烷基双自由基、烷基环烷基双自由
基、环烷基自由基、芳基自由基、烷基芳基双自由基。

G 表示含 1～40 个碳原子的烷基双自由基、环烷基双自由基、
烷基环烷基双自由基、芳基双自由基或烷基芳基双自由基。其主链
上可能含有醚键、硫键、胺基。

*表示氨基甲酸酯或脲基。

a 至少是 1。

A 表示式IV的二价聚合基。
(IV)

\[
\begin{array}{c}
\text{-(CH}_2\text{)}_m\text{Si-O-Si-(CH}_2\text{)}_n\text{)}
\end{array}
\]

其中，
每个 Rs 独立表示含有 1～10 个碳原子的烷基或氟取代的烷基，
其碳原子之间可能含有醚键；
m'至少是 1；而且，

p 是使聚合链的部分分子量在 400～10,000 的一个数；
每个 E 和 E'分别表示一个式 VI 所示的可以聚合的不饱和的有机基，

(VI)

其中，
R_{23} 是氢原子或甲基；
R_{24} 是氢原子、含有 1～6 个碳原子的烷基或-CO-Y-R_{26} 基，其中，
Y 是-O-, -S-, 或-NH-;
R_{25} 是含有 1～6 个碳原子的二价的亚烷基；
R_{26} 是含有 1～12 个碳原子的烷基；
X 表示-CO-或-OCO-。
Z 表示-O-或-NH-。
Ar 表示含有 6～30 个碳原子的芳基；
w 是 0～6；x 是 0 或 1；y 是 0 或 1；z 是 0 或 1。
比较理想的含硅氧烷的氨基甲酸酯单体可用式VII表示，

(VII)

其中，m至少是1，最好是3或4；a至少是1，最好是1；p是使聚合链的部分分子量在400～10,000的一个数，最好不小于30。R_{27}是除去异氰酸酯基团以后的二异氰酸酯双自由基，如异佛尔酮基二异氰酸酯双自由基。E”是下式所示的基团，

另外一类有代表性的含硅氧烷的单体包括氟化单体。如US 4,954,587和5,079,319所介绍，这类单体已经用于制备氟硅氧烷水凝胶，以便减少由这种水凝胶制备的隐形眼镜表面沉积物的积累。据US 5,387,662和5,321,108介绍，使用具有氟取代侧基如-(CF_{2})_{H}的含硅氧烷单体能够改善亲水性单体单元和含硅氧烷单体单元之间的相容性。

本发明任选的实施方案中，硅氧烷水凝胶含有5～50%、最好10～25%重量比的一个或多个硅氧烷大分子；5～75%、最好30～60%重量比的一个或多个硅氧烷基烷基(甲基)丙烯酸单体；10～50%、最好20～40%重量比的亲水性单体。亲水性单体包括但不限于：
不饱和双键的含内氨酸单体，如 N-乙烯基吡咯烷酮；甲基丙烯酸及丙烯酸；丙烯酸取代的醇，如 2-羟乙基甲基丙烯酸酯、2-羟乙基丙烯酸酯；或丙烯酰胺，如甲基丙烯酰胺与 N，N 二甲基丙烯酰胺；或 US 5,070,215 介绍的乙烯基碳酸酯或乙烯基氨基甲酸酯单体，以及 US 4,910,277 介绍的恶唑酮。其他一些亲水性单体如 N，N 二甲基丙烯酰胺(DMA)、2-羟乙基甲基丙烯酸酯(HEMA)、甲基丙烯酸甘油酯、2-羟乙基甲基丙烯酰胺、聚乙二醇、单甲基丙烯酸酯、甲基丙烯酸和丙烯酸在本发明中也非常有用。在这方面本领域的技术人员显然还能找出其他一些合适的亲水性单体。

上面给出的硅氧烷材料仅仅是一项实施例。利用本发明能够改善表性性能的其他一些基片材料也已经出现在了许多不同的出版物中，而且人们正在努力开发的应用于隐形眼镜或其他医疗装置的材料也可以用本发明介绍的方法进行表面处理。

如上所述，本发明直接介绍了一种对医疗装置进行表面改性的一种方法，如可以在隐形眼镜的表面涂上一层可除去的亲水性聚合物，以改善其表面性能。“可除去的涂层”表示在基片材料和亲水性聚合物之间形成一定的化学键，从而避免对基片材料的损伤。

本发明介绍的亲水性聚合物分子链可以通过物理的或化学的方法从基片上除去，例如可以通过磨擦的方法。比较合适的机械方法包括高剪切流体处理法，如高速流体喷射，或者用流体化的磨擦性固体来除去涂层。亲水性聚合物表面涂层也可以用打磨或抛光的方法除去。

本发明介绍了一种比较理想的从隐形眼镜上除去聚合物表面涂层的机械方法，其采用能够从市场上买到的擦洗剂来摩擦隐形眼镜，这种商业化的擦洗剂是含有如硅石或氧化铝，以及一种或几种阴离子表面活性剂(如烷基醚磺酸酯)、非离子表面活性剂（如乙氧基烷基酚)与阳离子表面活性剂(如季胺盐)。比较理想的擦洗剂包括 Boston
和 Boston advanced 牌的擦洗剂，这些擦洗剂可从如下地址买到：Bausch & Lomb, Rochester, NY, 14604。

氧化法是除去亲水性聚合物表面涂层的比较合适的一种化学方法，例如氧化性等离子体、臭氧化或电晕放电。其他的化学方法包括化学水解、水解断裂或酶催化消除法等。

亲水性聚合物链通过亲水反应性聚合物（包括低聚物）与医疗装置的表面反应粘附到医疗装置的表面。这些亲水反应性聚合物包含有可能参与开环反应的官能团或异氰酸酯官能团，这些官能团能够与医疗装置表面的互补官能团反应。亲水性聚合物链也可以通过含有羟基或胺（初级或二级）基团的亲水反应性聚合物（包括低聚物）与硅氧烷材料中的互补的肟内酰胺官能团反应，把亲水性聚合物粘附到材料的表面。还可以通过含有羧基的亲水性聚合物中的羧基与硅氧烷材料中的互补官能团环氧化反应，把亲水性聚合物粘附到材料的表面。换句话说，就是利用医疗装置表面的化学官能团与亲水性聚合物形成共价键，把亲水性聚合物粘附到医疗装置基片的表面。

亲水性聚合物可以是均聚物，也可以是含有异氰酸酯或任选的开环的反应性官能团的单体单元的共聚物。尽管这些反应性单体也可以是亲水性的，但是，亲水反应性聚合物也可以是反应性单体与一种或几种非反应性亲水单体单元的共聚产物。亲水性聚合物中也可以含有极少量的疏水性单体，可参与开环反应的单体有肟内酰胺官能团、环氧官能团和酸酐官能团。

当然，也可以采用亲水反应性聚合物的混合物。例如，亲水性聚合物粘附到医疗材料表面也可能是如下聚合物的混合物反应的结果：（a) 第一种亲水反应性聚合物，其亲水聚合物上的单体单元具有反应性官能团，该官能团与所述医疗装置表面上的反应性官能团互补，以及另外，（b) 第二种亲水反应性聚合物，其具有与第一种亲水反应性聚合物反应的补充的反应性官能团。我们发现，含有环氧
官能团的聚合物与含有酸官能团的聚合物的混合物，同时或者按一定顺序应用于无机材料的表面涂覆处理时，能够提供相对较厚的涂层。利用反应性聚合物的混合物提供了对基片材料的表面化学结构进一步调节的方法。

比较理想亲水反应性聚合物含有 1～100 摩尔%的反应性单体单元，5～50 摩尔%时更好一些，10～40 摩尔%时最好。聚合物中可以含有 0～99 摩尔%的非反应性亲水单体单元，50～95 摩尔%时更好一些，60～90 摩尔%时最好(反应性单体参与反应以后也可能具有亲水性。但是，从定义上讲这种单体不同于所说的非反应性的亲水单体)。亲水反应性聚合物重均分子量的范围在 200～1,000,000 之间比较合适，更理想的范围是 1,000～500,000，最好是在 5,000～100,000 之间。

亲水性单体也可能质子惰性的，如丙烯酰胺(N，N-二甲基丙烯酰胺，DMA)、内酰胺如 N-乙烯基吡咯烷酮、以及聚(亚烷基氧化物)如甲氧基聚氧乙烯基甲基丙烯酸酯。亲水性单体也可能是亲质子的如甲基丙烯酸或羟烷基(甲基)丙烯酸酯，如羟乙基(甲基)丙烯酸酯。亲水性单体也可以包括阴离子表面活性剂，如丙烯酰胺 2-甲基丙基磺酸钠(AMPS)。还可以是一些两性离子表面活性剂，如 N,N-二甲基-N-甲基丙烯酰氧基乙基-N-(3-硫代丙基)内铵盐(SPE)与 N,N-二甲基-N-甲基丙烯酰胺基丙基-N-(3-硫代丙基)内铵盐(SPP)。

疏水性单体的用量可任选高达 35 摩尔%，优选 0～20 摩尔%，最好是在 0～10 摩尔%。例如，疏水性单体可以是烷基甲基丙烯酸酯、氟代烷基甲基丙烯酸酯、长链丙烯酰胺如辛基丙烯酰胺等。

如上所述，亲水反应性聚合物可包括选自以下官能单体的反应性单体单元：吖内酯官能单体、环氧官能单体、酰胺官能单体。例如用于涂覆隐形眼镜的环氧官能亲水反应性聚合物可能是含有甲基丙烯酸缩水甘油酯单体单元的共聚物，其将与包括羧酸基团的隐形
眼镜基片反应。酸酐官能亲水反应性聚合物的合适例子包括由诸如马来酐和衣康酸酐的单体单元衍生的单体单元。

通常，亲水反应性聚合物的环氧官能反应基团或酸酐官能反应基团与基片中的羧基（-COOH）、醇（-OH）、胺（-NH₂）基团或硫基（-SH）反应，所述基片例如由包括作为由甲基丙烯酸（MAA）、羟烷基甲基丙烯酸酯如羟乙基甲基丙烯酸酯（HEMA）、氨基烷基甲基丙烯酸酯如氨基丙基甲基丙烯酸酯制得，其均为常用或可购得的。当为醇时，如化学工作者所知，可使用催化剂如 4-乙基氨基吡啶，以加速室温下的反应。通过使用水解至酸的吖内酯单体单元，也可在基片产生酸基团。这些酸基团能与亲水反应性聚合物中的环氧或酸酐基团反应。例如，在此基片中，Valint 等人的美国专利第 5,364,918 号在这里全部作为参考。

通常，亲水反应性聚合物中的吖内酯或异氰酸酯官能团可类似地与聚合物基片中的胺或醇反应，醇的反应优选有催化剂存在。另外，亲水反应性聚合物中的羧酸、胺与水解的吖内酯可与基片中的环氧基团反应，例如与在这里全部作为参考的 Goldenberg 等人的美国专利第 4,734,475 号所描述的单体反应。

在本发明的优选实施方案中，预制的（不可聚合的）亲水聚合物，其含有由至少一种选自以下单体衍生的重复单元：开环单体、含异氰酸酯单体、含胺单体、含羟基单体、或含羧基单体，该亲水聚合物与医疗装置如隐形眼镜基片表面上的反应基团反应。典型地，该亲水反应性聚合物沿聚合物链附着在基片的一处或多处上。当如环氧、异氰酸酯或开环单体单元附着后，亲水反应性聚合物中的任何未反应的官能团可水解为非反应部分。

用于包括亲水反应性聚合物的合适的亲水非反应性单体通常包括水溶的常用的乙烯基单体，如 2-羟乙基-；2-与 3-羟丙基；2,3-二羟丙基；聚乙氧基乙基；及聚乙氧基丙基丙烯酸酯、甲基丙烯酸酯、丙烯酰胺与甲基丙烯酰胺；丙烯酰胺、甲基丙烯酰胺、N-甲基丙烯
酰胺、N-甲基甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二甲基甲基丙烯酰胺、N,N-二甲基与N,N-二乙基氨基乙基丙烯酸酯及甲基丙烯酸酯及相应的丙烯酰胺及甲基丙烯酰胺；2-与4-乙烯基吡啶；4-与2-甲基-5-乙烯基吡啶；N-甲基-4-乙烯基哌啶；2-甲基-1-乙烯基咪唑；N,N-二甲基丙基胺；二甲基氨基乙基乙烯基醚及N-乙烯基吡咯烷酮。

有用的非反应性单体通常包括水溶的常用乙烯基单体如以下结构的丙烯酸酯和甲基丙烯酸酯：

\[
\begin{align*}
R_3 \\
\text{H}_2\text{C} &= \text{C} \quad \text{COOR}_3
\end{align*}
\]

其中，R₂氢或甲基，且R₃是氢或是具有高达10个碳原子的脂肪烃，该脂肪烃是被一种或多种水溶基团取代的，如被羧基、羟基、氨基、低级烷基氨基、低级二烷基氨基，具有2至约100个重复单元的聚环氧乙烷基团取代，或被一种或多种硫酸酯、磷酸酯、环酸酯、膦酸酯、羧基氨基、磺酸氨基、膦酸氨基基团，或它们的混合物取代；

R₃优选是低聚物或聚合物如聚乙二醇、聚丙二醇、聚（乙-丙）二醇、聚（羟乙基甲基丙烯酰胺）、聚（二甲基丙烯酰胺）、聚（丙烯酸）、聚（甲基丙烯酸）、聚砜、聚（乙烯基醚）、聚丙烯酰胺、聚（丙烯酰胺-丙烯酸）、聚（苯乙烯磺酸）钠盐、聚（环氧乙烷）、聚（环氧乙烯-环氧丙烯）、聚（乙二酸）、聚（乳酸）、聚（乙烯基吡咯烷酮）、纤维素、多糖、其混合物、以及其共聚物；

下式的丙烯酰胺和甲基丙烯酰胺：

\[
\begin{align*}
\text{H}_2\text{C} & = \text{C} \quad \text{CONHR}_3 \\
& \text{R}_2
\end{align*}
\]
其中，R_2 和 R_3 的限定如上；
下式的丙烯酰胺和甲基丙烯酰胺：

$$\begin{array}{c}
H_2C=\overset{\text{CON}}{\text{C}}\overset{\text{CON}}{\text{R}_4}_2 \\
\downarrow \\
R_2
\end{array}$$

其中 R_4 是含有 1～3 个碳原子的低级烷基，R_2 限定如上；
下式的衣康酸酯：

$$\begin{array}{c}
\text{CH}_2=\overset{\text{COO}}{\text{C}}\overset{\text{COO}}{\text{R}_3} \\
\downarrow \\
\text{COOR}_3
\end{array}$$

其中 R_3 限定如上；
下式的马来酸酯和富马酸酯：

$$R_3\text{OOCH}=\text{CHOOR}_3$$

其中 R_3 限定如上；
下式的乙烯基醚：

$$H_2C=\text{CH-O-R}_3$$

其中 R_3 限定如上；
下式的脂肪族乙烯基化合物：

$$R_2\text{CH}=\text{CHR}_3$$

其中 R_2 限定如上，R_3 与以前定义的原子团相同，只是 R_3 不能是氢原子；
乙烯基取代的杂环如乙烯基吡啶、哌啶及咪唑，以及 N-乙烯基内酰胺如 N-乙烯基-2-吡咯烷酮。
比较有用的水溶性单体包括丙烯酸及甲基丙烯酸、衣糠酸、巴豆酸、富马酸与马来酸、以及其低级羟烷基单酯与二酯如2-羟乙基富马酸酯与马来酸酯、丙烯酸钠及甲基丙烯酸钠、2-甲基丙烯酰氧基氧乙基磺酸和烯丙基磺酸。

亲水反应性聚合物中包含有一些疏水性单体，有助于在溶液中形成微分散的聚合物聚集体，这类聚合物溶液的浊度较高就可以说明这一点。由涂覆的医疗装置的原子力显微镜图像，也能观察到此聚集体。

合适的疏水性共聚单体包括常见的不溶于水的乙烯基单体，如下式的丙烯酸酯或甲基丙烯酸酯。

\[
\begin{align*}
\text{R}_2 \\
\text{H}_2\text{C}=\text{C}-\text{COOR}_3
\end{align*}
\]

其中，其中R₂与以前定义的原子团相同。R₃是具有多达20个碳原子的直链或支链脂肪烃、环烷烃或芳香烃，其可为未取代的，或由一个或几个以下基团取代的：含有多达12个碳原子的烷氧基、烷酰氧基或烷基、或卤素尤其是氯原子或氟原子、2-100单元的C₂-\text{C}_₃聚亚烷氧基、或含低聚物如聚乙烯、聚(甲基丙烯酸甲酯)、聚(甲基丙烯酸乙酯)或聚(甲基丙烯酸缩水甘油酯)、其混合物、以及其共聚物；

下式的丙烯酰胺和甲基丙烯酰胺：

\[
\begin{align*}
\text{R}_3 \\
\text{H}_2\text{C}=\text{C}-\text{CONHR}_3
\end{align*}
\]

其中R₂和R₃的定义如上；

下式的乙烯基醚：

\[
\text{H}_2\text{C}=\text{CH-O-R}_3
\]
其中 R_3 的定义如上
下式的乙烯基酯:

$$H_2C=\text{CH-OCO-R}_3$$

其中 R_3 的定义如上
下式的衣糠酸酯:

$$\text{CH}_2=\text{CCH}_2\text{COOR}_3$$

其中 R_3 的定义如上
下式的马来酸酯和富马酸酯:

$$R_3\text{OOC-HC=CH-OOOR}_3$$

其中 R_3 的定义如上
下式的乙烯基取代的烃:

$$R_2\text{CH=CHR}_3$$

其中 R_2 和 R_3 的定义如上
有用的或合适的疏水性单体还有如下一些：甲基、乙基、丙基、异丙基、丁基、乙氧基乙基、苯基、苯基、环己基、六氟异丙基、正辛基丙烯酸酯、正辛基甲基丙烯酸酯，以及相应的丙烯酰胺和甲基丙烯酰胺；二甲基富马酸酯、二甲基衣糠酸酯、二甲基马来酸酯、二乙基富马酸酯、甲基乙烯基醚、乙氧基乙基乙烯基醚、醋酸乙烯
酯、丙酸乙烯酯、苯甲酸乙烯酯、丙烯腈、苯乙烯、α－甲基苯乙烯、1－己烯、氯乙烯、甲基乙烯基酮、硬脂酸乙烯酯、2－己烯、甲基丙烯酸2－乙基己酯。

亲水反应性聚合物由相应的单体(此处所说的单体也包括大分子单体)，通过本领域的技术人员常用的聚合方法聚合得到的。典型地，亲水反应性聚合物可由如下方法制备：(1)将单体混合；(2)加入聚合引发剂；(3)将单体和引发剂的混合物利用紫外光等光源进行辐照处理，和/或升高温度并处理该混合物。典型的聚合引发剂有自由基引发剂，如过氧化乙酰、月桂酰过氧化物、癸酰过氧化物、copryyl过氧化物、苯甲酰过氧化物、叔丁基过氧酰新戊酸酯、过碳酸钠、叔丁基peroctoate、偶氮二异丁氰(AIBN)。二乙基苯基乙酮类的紫外线自由基引发剂也可用于这种聚合。固化过程当然也取决于所使用的引发剂的种类和单体混合物的物理特征，如粘度。不管如何聚合，所用引发剂一般都是单体混合物的0.001～2重量%。通常，加入自由基形成剂以使上述单体的混合物升温。

制备亲水反应性聚合物的聚合反应可以使用溶剂，也可以不使用溶剂。原则上讲，凡是能够溶解单体的所有溶剂都可用于这种聚合反应。例如如水；醇如低级链烷醇，如乙醇、甲醇；羧酸胺，如二甲基甲酰胺；偶极的质子惰性溶剂，如二甲亚砜或甲乙酮；酮，如丙酮、环己酮；烃，如甲苯；醚，如THF、二甲氧基乙烷或二氧化碳；卤代烃，如三氯乙烷；以及合适溶剂的混合物，如水和醇的混合物，如水/甲醇或水/乙醇混合物。

在本发明介绍的一种方法中，隐形眼镜或其他医疗装置可以通过浸泡在亲水反应性聚合物的溶液里，与聚合物进行反应。例如，隐形眼镜可以在亲水反应性聚合物或共聚物适当介质的溶液里放置或浸泡适当的时间，所用的介质可以是质子惰性溶剂，如乙腈。如上所述，本发明的实施方案中包括把亲水反应性聚合物粘附
到医疗装置的表面。这种聚合物包括含有异氰酸酯的单体单元或开
环单体单元。在本发明的实施方案中，开环反应的单体含有如下所
示的吖内酯基团。

其中，R^3 和 R^4 分别表示含有 1～14 个碳原子的烷基、含有 3～14
个碳原子的环烷基、含有 5～12 个环原子的芳基、含有 6～26 个碳
原子的芳基、0～3 个从 S、N、O 中选择的非过氧化的杂原子、或 R^3
和 R^4 与它们所连接的碳原子放在一起形成的含有 4～12 个环原子的
碳环。N 是整数 0 或 1。Vlaint 等人的 US 5,177,165 也提到了本专利
使用的一些单体。

这种反应性官能团的环状结构很容易与要处理的基片材料表面
的互补官能团发生亲核开环反应。例如，吖内酯官能团可与前面提
到的基片表面的伯胺、羟基或巯基反应，从而在聚合物链的一个或
多个位置亲水反应性聚合物与基片形成共价键。大多数基片材料的
表面粘附处理都能在基片表面形成一些聚合物环，其中每个环含有
一个两端粘附至基片的亲水性分子链。

制备亲水反应性聚合物的吖内酯官能团单体，可以是前面给出
的官能团结构与吖内酯粘附点不饱和烃上的乙烯基官能团组合成的
任何单体、预聚物或低聚体。优选亲水反应性聚合物中的吖内酯官
能团由 2-链烯吖内酯单体提供。2-链烯吖内酯是公知的单体，如
Heilman 等人的 US 4,304,705、5,081,197 和 5,901,489 介绍的内容在
这里作为参考。合适的 2-链烯吖内酯单体包括：

2-乙烯基-1,3-恶唑啉-5-酮、
2-乙烯基-4-甲基-1,3-恶唑啉-5-酮、
2-异丙烯基-1,3-恶唑啉-5-酮、
2-异丙烯基-4-甲基-1,3-恶唑啉-5-酮、
2-乙烯基-4,4-二甲基-1,3-恶唑啉-5-酮、
2-异丙烯基-4,4-二甲基-1,3-恶唑啉-5-酮、
2-乙烯基-4-甲基-乙基-1,3-恶唑啉-5-酮、
2-异丙烯基-4-甲基-4-丁基-1,3-恶唑啉-5-酮、
2-乙烯基-4,4-二丁基-1,3-恶唑啉-5-酮、
2-异丙烯基-4-甲基-4-十二烷基-1,3-恶唑啉-5-酮、
2-异丙烯基-4,4-二苯基-1,3-恶唑啉-5-酮、
2-异丙烯基-4,4-环戊基-1,3-恶唑啉-5-酮、
2-异丙烯基-4,4-环丁基-1,3-恶唑啉-5-酮、
2-乙烯基-4,4-二乙基-1,3-恶唑啉-5-酮、
2-乙烯基-4-甲基-4-壬基-1,3-恶唑啉-5-酮、
2-异丙烯基-甲基-4-苯基-1,3-恶唑啉-5-酮、
2-异丙烯基-4-甲基-4-苯基-1,3-恶唑啉-5-酮、以及
2-乙烯基-4,4-环丁基-1,3-恶唑啉-5-酮、

更理想的情况下，肟内酯单体是如下式的化合物:

其中，R¹和 R²分别表示氢原子或含有 1～6 个碳原子的低级烷基；R³和 R⁴分别表示 1～6 个碳原子的烷基或者 5～6 个碳原子的环烷基。例如特别包括 2-异丙烯基-4,4-二甲基-2-恶唑啉-5-酮(IPDMO)、2-乙烯基-4,4-二甲基-2-恶唑啉-5-酮(VDMO)、螺-4’-(2’-异丙烯基-2’-恶唑啉-5’-酮)环己烷(IPCO)、环己烷-螺-4’-(2’-乙烯基-2’-恶唑啉-5’-
酮)(VCO), 以及 2-(1-异烯基)-4,4-二甲基-恶唑啉-5-酮(PDMO)等。

这些化合物可按如下反应顺序制备:

第一步是氨基酸的 Shotten-Bauman 酰化反应。利用丙烯酰氯或甲基丙烯酰氯引入聚合官能团。第二步是氯甲酸酯参与的闭环反应，从而得到理想的恶唑啉酮。得到的产物可用常规的有机化学方法进行分离和提纯。

如上所述，吖内酯类化合物可与亲水性和/或疏水性单体共聚，生成亲水反应性聚合物。在亲水反应性聚合物粘附到理想的基片材料上以后，所有未反应的恶唑啉酮基团都必须水解，以便把恶唑啉酮官能团转化成氨基酸。通常情况下，水解反应按下式进行:

\[R^1 \text{和 } R^2 \text{之间的碳－碳双键没有断裂，但是，在进行共聚反应制} \]
备共聚物时可能发生反应。

用于与吖内酯官能团共聚以生成用于涂覆医疗装置的亲水反应性聚合物的共聚单体包括上面提到的，优选二甲基丙烯酰胺、N—乙烯基吡咯烷酮。欧洲专利公开第 0,392,735 号，其公开内容及参考给出了其他一些共聚单体。为了使共聚物具有亲水性，优选二甲基丙烯酰胺作为共聚单体。

本发明发现，尽管效果可能不如含吖内酯官能团的单体那么理想，但是，含有至少一个自由基聚合位的吖内酯官能预聚物和低聚体也可以用于提供亲水反应性聚合物的吖内酯官能团。例如，利用自由基合法，含吖内酯官能团单体可与任选的 US 4,378,411 和 4,695,608 介绍的共聚单体进行共聚合，制备含有吖内酯官能低聚物。US 4,485,236 和 5,081,197, EP 0,392,735 都介绍了吖内酯官能预聚物和低聚体的非限制性例，在此都被用来参考。

本发明的另一个实施方案中，亲水反应性聚合物中的开环反应基团是环氧官能团。尽管也可以使用其他含环氧官能团类单体，但优选含有环氧乙烷单体，如甲基丙烯酸缩水甘油酯、烯丙基缩水甘油醚、4-乙烯基-1-环己烯基-1,2 环氧化物等。

利用亲水反应性聚合物进行表面涂覆处理的医疗装置可按常规的方法进行制备。例如，本发明使用的隐形眼镜可以使用多种常规技术制备，以便得到具有理想的前、后表面的隐形眼镜。US 3,408,429 和 3,660,545 介绍了一种旋转制造法；US 4,113,224 和 4,197,266 介绍
了一种优选的静态浇注成形法。为了使隐形眼镜具有理想的最终形态，单体混合物在固化以后，通常还需要进行一定的机械处理。例如 US 4,555,732 就介绍了一种这样的制备方法，其把过量的单体混合物浇注到模具中进行旋转成型处理，得到具有后表面、相对厚一些的隐形眼镜。然后，对后表面进行切削处理，得到具有理想厚度的后面表。最后，再对隐形眼镜的其他表面进行切削处理，以便得到具有理想形状的隐形眼镜。

在得到具有理想形状的隐形眼镜以后，需要先除去隐形眼镜中残余的溶剂，然后再处理隐形眼镜的棱角。这是因为一般情况下，最初的单体混合物中都加有一定量的有机稀释剂。加入有机溶剂能够最大程度地抑制单体混合物聚合得到的聚合产物的相分离，并能够降低反应性聚合产物的玻璃转变温度，从而提高固化效率，最终得到均一的聚合物制品。单体混合物溶液的均匀性以及得到的聚合物的均匀性对硅氧烷水凝胶的性能具有特别重要的影响，这主要是因为含硅氧键的单体特别容易与亲水性共聚单体分离，从而无法得到理想的聚合物。常用的有机稀释剂有，2-羟基癸烷、2-甲基癸烷、含有 C₆~C₁₀ 直链或支链的一元醇，如正己醇、正壬醇都是比较理想的选择。Vanderlaan 等人的美国专利第 6,020,445 号公开了合适的醇，这里作为参考。其他有用的溶剂包括二醇如乙二醇；多元醇如甘油；醚如二乙二醇单乙醚；酮类，如甲乙酮；酯类，如庚酸甲酯；烃类如甲苯。比较理想的稀释剂应该很容易蒸发，以便能够在接近常压的情况下，利用蒸发的方法除去固化好的聚合物中残余的有机稀释剂。一般情况下，稀释剂的用量是单体混合物的 5~60 重量 %，最好是在 10~50 重量%之间。

固化好的隐形眼镜需要除去残余的溶剂，其可以在常压或接近常压或在真空下的条件下进行。必要的时候，通过提高温度，可加快有机稀释剂的蒸发速度，从而缩短除去稀释剂所需要的时间。所
需要的时间、温度和压力取决于有机溶剂的蒸发速度以及所使用的单体组成，本领域的技术人员可以很容易地确定。根据本发明的优选实施方案，除去步骤中的温度，优选至少 50°C，例如 60～80°C。同时，可以在惰性气体保护下或在真空下，利用一排炉子进行线性加热，以便提高除去残余有机溶剂的速度。在固化好的已经除去有机溶剂的隐形眼镜中，有机溶剂的含量不应该高于 20 重量%，优选不高于 5 重量%或更少。

除去有机稀释剂以后，就可以把隐形眼镜从模具中取出来或者进行其他机械加工了。例如，可以对隐形眼镜的棱或表面进行抛光处理。一般情况下，这些机械加工需要在隐形眼镜从模具中取出之前进行。比较好的一种处理工序是隐形眼镜在模具中进行除去有机溶剂处理，然后利用真空镀子取出隐形眼镜。尔后，再用机械摄子把隐形眼镜移入另外一套真空摄子中，并利用旋转着的平面来处理隐形眼镜的表面或棱角。最后，翻转隐形眼镜，以便处理其他面和棱角。

在进行了上述机械处理或从模具中取出后，就可以按照本发明介绍的上述方法进行表面处理了，包括粘附亲水反应性聚合物。

在表面处理步骤之后，隐形眼镜可能还需要抽提以除去残余的有机溶剂。通常情况下，在隐形眼镜的制造过程中，有些单体并没有完全参与聚合反应。这些聚合不彻底的聚合材料可能会影响隐形眼镜的透明性，或者对眼睛造成伤害。所述的这些残余物包括前面没有完全除去的有机溶剂、单体混合物中没有参与聚合反应的单体、聚合过程中生成的低聚体副产物，以及制备隐形眼镜时在模具中加入的添加剂。

从上述隐形眼镜聚合材料中抽除残余物质的常规方法是先用醇提取几个小时(目的是除去疏水性残余物)，然后再用水提取几个小时(目的是除去亲水性残余物)。在配戴隐形眼镜之前，应该先抽除这些残余的醇类物质，只有这样使用起来才能更舒服、更安全。可
残余的醇类物质，只有这样使用起来才能更舒服、更安全。可以用热水浸泡法来除去醇类残余物。残余物应该尽可能地除去得彻底一
些，因为这些残余物会影响隐形眼镜的寿命。另外，这些残余物还
会影响隐形眼镜的舒适性和其他性能，如残余物会影响隐形眼镜的
透明性和均一性。因此，在选择提取溶剂的时候应该十分慎重，绝
对不能选择哪些可能会影响隐形眼镜透明性的提取溶剂。通过观
可以很容易地看出隐形眼镜透明性的好坏。

在除去提取溶剂后，隐形眼镜需要进行水化处理。隐形眼镜可
以用水或缓冲盐水等进行处理。在隐形眼镜水化处理好以后(隐形眼
镜一般膨胀 10～20%或更多)，涂层仍能够完好无损地粘附在隐形眼
镜的表面。这种涂层具有良好的持久性和亲水性，而且很难从隐形
眼镜脱落。

水化处理后，隐形眼镜需要进行外形检查。一般由训练有素的
专业人士对隐形眼镜进行严格的检查，如检查隐形眼镜的透明性或
是否存在孔洞、微粒、气泡、塑料气孔、裂缝或裂纹等。通常情况
下，都是在放大 10 倍的条件下对隐形眼镜的质量进行检查。在隐形
眼镜通过了外形检查以后，就可以对隐形眼镜进行包装了。一般是
将隐形眼镜保存在药水瓶、塑料包装瓶或其他无菌容器内进行销售。
最后，包装好的隐形眼镜需要进行灭菌处理。一般情况下，可以采
用常规的高压消毒器中进行消毒。最好是在一定压力下进行周期性
的消毒。专业人士一般采用空气流循环消毒。优选在 100～200℃，
热压处理 10～120 分钟。经过消毒处理以后，再检查一下隐形眼镜
的尺寸，就可以存入仓库进行销售了。

本发明使用的刚性的透气性（RGP）材料包括由根据如下专利
的含硅氧烷单体制备的材料：US 4,152,508、4,330,383、4,686,267、
4,826,889、4,826,936、4,861,850、4,996,275、及 5,346,976。在此，
这些专利作为参考。这些 RGP 材料作为本发明的基片前，一般不需
要溶剂的除去或抽提步骤。

下面给出的事实例进一步说明了本发明的目的和优势，但这些实施例中所用的特定材料和用量、以及其他实验条件和细节不能认为是不适当的限制本发明。

实施例 1

此例公开了一种有代表性的用做以下实施例中涂覆基片的硅氧烷水凝胶镜片材料，材料的配方如表 1 所示。

表 1

<table>
<thead>
<tr>
<th>组分</th>
<th>重量百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIS-VC</td>
<td>55</td>
</tr>
<tr>
<td>NVP</td>
<td>30</td>
</tr>
<tr>
<td>V₂D₂₅</td>
<td>15</td>
</tr>
<tr>
<td>VINAL</td>
<td>1</td>
</tr>
<tr>
<td>正壬醇</td>
<td>15</td>
</tr>
<tr>
<td>Darocur</td>
<td>0.2</td>
</tr>
<tr>
<td>染色剂</td>
<td>0.05</td>
</tr>
</tbody>
</table>

以上组分分别为：

TRIS-VC 三（三甲基甲硅烷氧基）甲硅烷基丙基乙烯基氨基甲酸酯
NVP N-乙烯基吡咯烷酮
V₂D₂₅ 如前述美国专利第 5,534,604 号描述的含硅氧烷的乙烯基碳酸酯
VINAL N-乙烯基氧羰基丙氨酸
实施例 2

本实施例说明了一种根据本发明的隐形眼镜表面改性之前的隐形眼镜制备方法。按上述实施例 1 的配方制成的硅氧烷水凝胶镜片由聚丙烯模具浇铸成型。在惰性气体氨气气氛中，将 45 μl 的该配方物质注入一个洁净的聚丙烯半边为凹型的模具，用另一半聚丙烯凸型模具盖上。模具的两边加压 70 psi，混合物用紫外光（6-11mW/cm²，紫外光谱计测定）处理约 15 分钟。模具再暴露于紫外光下 5 分钟。去掉上边那一半模具，在一个强制通风的炉子中使镜片在 60℃下保持 3 小时，以便去处正壬醇。随后，镜片边缘在 60 g 力的作用下以 2300 rpm 球状抛光 10 秒钟。

实施例 3

本实施例说明了亲水反应性共聚物的合成，其中包括按照以下表 2 的成分配比的 80：20 重量百分比的单体（DMA/VDMO）。

<table>
<thead>
<tr>
<th>试剂</th>
<th>量 (g)</th>
<th>量 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>二甲基丙烯酰胺（DMA）</td>
<td>16g</td>
<td>0.1614</td>
</tr>
<tr>
<td>乙烯基-4,4-二甲基-2-恶唑啉-5-酮(VDMO)</td>
<td>4g</td>
<td>0.0288</td>
</tr>
<tr>
<td>VAZO-64 引发剂</td>
<td>0.031g</td>
<td>0.1%</td>
</tr>
<tr>
<td>甲苯</td>
<td>200ml</td>
<td>-</td>
</tr>
</tbody>
</table>

将除了 VAZO-64 以外的所有组分放进 500 毫升的圆底烧瓶中，该烧瓶带有磁性搅拌器、冷凝器、氮气覆盖和热控制器。上述溶液用氮气除去空气 30 分钟。加入 VAZO-64 后，溶液加热至 60℃保持 50 小时。反应完成后（用 FTIR-傅立叶变换红外光谱仪监测），将溶
液缓慢加入 2500 毫升的乙醚中沉淀出聚合物。混合物搅拌 10 分钟，
沉降 10 分钟，然后过滤。沉淀物在 30-35℃真空条件下干燥过夜。
以聚苯乙烯标准为基准，测得的聚合物的分子量为 Mn=19448，
Mw=43548，Pd=2.25。（Pd 指聚合物分布性）。

实施例 4

本实施例说明了 N,N-二甲基丙烯酰胺预聚物的合成方法。这种
预聚物可用于制备根据本发明反应性亲水聚合物所用的大单体。该
预聚物按下列反应步骤制成。

将试剂 DMA（200 克，2.0 摩尔）、巯基乙醇（3.2 克，0.041 摩
尔）、AIBN（3.3 克，0.02 摩尔的 Vazo-64）和四氢呋喃（1000 毫升）
放于一个两个圆底烧瓶中，该烧瓶带有磁性搅拌器、冷凝器、热控
制器及氮气入口。向溶液中充入氮气一个半小时。然后，在氮气保
护下升温至 60℃，并维持 72 小时。将从反应混合物加入 20 升乙醚
中，聚合物就会沉淀出来（分离出 171.4 g 聚合物）。SEC（尺寸排
阻色谱法）分析样品得出：Mn=3711、Mw=7493、Pd=2.02。

实施例 5

本实施例说明了使用实施例 4 的预聚物合成一种 DMA 大单体的
方法。该大单体用于制造下面实施例 6 和实施例 8 中的亲水反应性
聚合物。该大单体按下列反应步骤制成：
将实施例4中的预聚物（150克，0.03摩尔）、甲基丙烯酸异氰酸乙酯（IEM，5.6克，0.036摩尔）、二丁基锡二月桂酸酯（0.23克，3.6×10^{-5}摩尔）、四氢呋喃（THF，1000毫升）和2,6-二叔丁基-4-甲基苯酚（BHT，0.002克，9×10^{-6}摩尔）在氮气保护下混合。混合物加热至35℃，充分搅拌7小时。停止加热，混合物在氮气保护下搅拌过夜。加入几毫升甲醇和残留的IEM反应。混合物在大量（16升）乙醚中沉淀可得到大单体。固体在真空下干燥（生成115克）。以聚苯乙烯为基准，聚合物的SEC分析得出以下结果：Mn=2249，Mw=2994，Pd=1.33。

实施例6

本实施例说明了一种可用于形成本发明的涂层的DMA/DMA-大单体/VDMO聚合物的制备方法。将二甲基丙烯酰胺（DMA）16克（0.1614摩尔）、乙烯基-4,4-二甲基-2-恶唑啉-5-酮（VDMO）2克（0.0144摩尔）、在实施例5中制备的二甲基丙烯酰胺大单体（DMA-mac）2克（0.0004摩尔）、以及200毫升甲苯放于500毫升的圆底烧瓶中，烧瓶带有磁性搅拌器，冷凝器，氮气覆盖和温度控制器。上述溶液用氮气除去空气30分钟。加入0.029克（0.1摩尔%）Vazo-64后，溶液加热至60℃保持50小时。反应完成后（用FTIR检测），将溶液缓慢加入2500毫升的乙醚中以沉淀出聚合物。添加结束后，混合物搅拌10分钟，沉淀10分钟，然后过滤。沉淀物在30-35℃真空条件下干燥过夜。干燥的聚合物用来制备用于凝胶渗透色谱法分析的样品，装入瓶中并贮存于干燥器中。

实施例7

本实施例说明了一种可用于涂覆根据本发明的硅氧烷基片的DMA/PEOMA/VDMO聚合物的制备方法。将二甲基丙烯酰胺
（DMA）12 克（0.1211 摩尔）、乙烯基-4,4-二甲基-2-恶唑啉-5-酮 4 克（0.0288 摩尔）、及 4 克（0.0036 摩尔）单体 MW 为 1000 的 PEO 甲基丙烯酸酯（PEOMA）、以及 200 毫升甲苯放于 500 毫升的圆底烧瓶中，烧瓶带有磁性搅拌器、冷凝器、氮气覆盖和温度控制器。上述溶液用氮气除去空气 30 分钟。加入 0.025 克（0.1 摩尔%）Vazo-64 后，溶液加热至 60℃保持 50 小时。反应完成后（用 FTIR 监测），将溶液缓慢加入 2500 毫升的的乙醚中以沉淀出聚合物。加入后，混合物搅拌 10 分钟，沉淀 10 分钟，然后过滤。沉淀物在 30-35℃真空条件下干燥过夜。干燥的聚合物用来制备用于凝胶渗透色谱法分析的样品，装入瓶中并贮存于干燥器中。

实施例 8

本实施例说明了一种亲水反应性聚合物的合成，该聚合物具有刷形或支链结构，DMA 链悬挂在聚合物的主轴上。该聚合物由 DMA 大单体、甲基丙烯酸缩水甘油酯和 DMA 单体按下述方法制成。在反应烧瓶中加入蒸馏过的 N,N-二甲基丙烯酰胺（DMA，32 克，0.32 摩尔）、实施例 5 中制成的 DMA 大单体 4 克（0.0008 摩尔）、蒸馏过的甲基丙烯酸缩水甘油酯（GM，4.1 克，0.029 摩尔）、Vazo-64（AIBN，0.06 克，0.00037 摩尔）和甲苯（500 毫升）。反应容器带有磁性搅拌器、冷凝器、热控制器和一个氮气入口。向溶液中通氮气 15 分钟以除去溶解的氧气。在氮气保护下反应烧瓶升温至 60℃维持 20 小时。然后反应混合物缓慢加入 4 升乙醚中，同时进行良好的机械搅拌。在反应性聚合物沉淀后，真空过滤收集聚合产物。固体放在 30℃的真空炉子中过夜以除掉醚，得到 33.2 克反应性聚合物（83%的产率）。该反应性聚合物在使用前储存在干燥器中。
实施例9

本实施例说明了用于涂覆根据本发明的硅氧烷基片的乙烯基吡咯烷酮-共-4-乙烯环己基-1,2-环氧化聚合物（NVP-共-VCH）的合成。该聚合物按下述反应图示制备:

在一个1升的反应烧瓶中加入蒸馏过的N-乙烯基吡咯烷酮（NVP, 53.79克, 0.48摩尔）、4-乙烯环己基-1,2-环氧化物（VCHE, 10.43克, 0.084摩尔）、Vazo-64（AIBN, 0.05克, 0.0003摩尔）和THF（600毫升）。反应容器带有磁性搅拌器、冷凝器、热控制器和一个氮气入口。向溶液中通氮气15分钟以除去溶解的氧气。在氮气保护下烧瓶升温至60℃维持20小时。然后反应混合物缓慢加入6升乙醚中，同时进行良好的机械搅拌。在反应性聚合物沉淀后，真空过滤收集聚合产物。固体放在30℃的真空炉子中过夜以除掉醚，得到21克反应性聚合物（32%的产率）。该亲水反应性聚合物在使用前储存在干燥器中。

实施例10

本实施例说明了一种DMA/GMA的亲水反应性（线性）共聚物DMA/GMA的合成方法。该共聚物用于以下实施例13、14和15中，按下述反应图示制备:
在一个 1 升的反应烧瓶中加入蒸馏过的 N,N-二甲基丙烯酰胺（DMA，48 克，0.48 摩尔）、蒸馏过的甲基丙烯酸缩水甘油酯（GM，12 克，0.08 摩尔）、Vazo-64（AIBN，0.096 克，0.0006 摩尔）和甲苯（600 毫升）。反应容器带有磁性搅拌器、冷凝器、温度控制器和一个氮气入口。向溶液中通氮气 15 分钟以除去溶解的氧气。在氮气保护下烧瓶升温至 60℃ 维持 20 小时。然后反应混合物缓慢加入 6 升乙醚中，同时进行良好的机械搅拌。在反应性聚合物沉淀后，真空过滤收集聚合产物。产物放在 30℃的真空炉子中过夜以除掉醚，得到 50.1 克反应性聚合物 (83%的产率)。该亲水反应性聚合物在使用前储存在干燥器中。
实施例 11

本实施例说明了一种 DMA/OFPMA/GMA 的水溶性反应性聚合物 DMA/OFPMA/GMA 的合成方法，按下述反应图示制备:

![反应图示](image)

在一个 500 毫升的反应烧瓶中加入蒸馏过的 N,N-二甲基丙烯酰胺 (DMA, 16 克, 0.16 摩尔)、1H,1H,5H-八氟戊基甲基丙烯酸酯 (OFPMA, 1 克, 0.003 摩尔)、蒸馏过的甲基丙烯酸缩水甘油酯 (GM, 4 克, 0.028 摩尔)、Vazo-64 (AIBN, 0.03 克, 0.00018 摩尔) 和甲苯 (300 毫升)。反应容器带有磁性搅拌器、冷凝器、热控制器和一个氮气入口。向溶液中通氮气 15 分钟以除去溶解的氧气。在氮气保护下烧瓶升温至 60℃维持 20 小时。然后反应混合物缓慢加入 3 升乙醚中，同时进行良好的机械搅拌。在反应性聚合物沉淀后，真空过滤收集聚合产物。固体放在 30℃的真空炉子中过夜以除掉醚，得到
19.3 克反应性聚合物（92%的产率）。该反应性聚合物在使用前储存在干燥器中。

实施例12

本实施例说明了一种 DMA/MAA 的亲水反应性聚合物 DMA/MAA 的合成方法，按下述反应图示制备：

![反应图示](image)

在一个 500 毫升的反应烧瓶中加入蒸馏过的 N,N-二甲基丙烯酰胺 (DMA, 16 克, 0.16 摩尔)、甲基丙烯酸 (MAA, 4 克, 0.05 摩尔)、Vazo-64 (AIBN, 0.033 克, 0.0002 摩尔) 和无水 2-丙醇（300 毫升）。该反应容器带有磁性搅拌器、冷凝器、热控制器和氮气入口。向溶液中通氮气 15 分钟以除去溶解的氧气。在氮气保护下烧瓶升温至 60℃维持 72 小时。然后反应混合物缓慢加入 3 升乙醚中，同时进行良好的机械搅拌。在反应性聚合物沉淀后，真空过滤收集聚合产
物。产物放在 30°C 的真空烘子中过夜以除掉醚，得到 9.5 克反应性聚合物（48%的产率）。该反应性聚合物在使用前储存在干燥器中。

实施例 13

本实施例说明了 Balafilcon A 隐形眼镜（PureVison 牌镜片，可由 Bausch & Lomb, Inc., Rochester, NY 购买）的表面处理方法。该镜片由实施例 1 中的材料制成，其表面处理采用了上述实施例 10 中制成的亲水反应性聚合物。这种表面处理方法的步骤如下：

准备好实施例 10 中反应性聚合物的溶液（每 1000 毫升水中 10 克）。镜片用 2-丙醇在 4 小时中浸取 3 次，然后在 1 小时内用水浸取 3 次。将镜片（36 个样品）放进反应性聚合物溶液中，加入一滴甲基二乙醇胺催化该反应。将镜片在高压釜内放置 30 分钟。

实施例 14

本实施例说明了如下所示按照此发明的一个 RGP 镜片的表面处理方法。该材料是 Boston XO(hexafcon A) 镜片，可从 Bausch & Lomb, Inc. 购买。
准备好例 10 中反应性聚合物的溶液（每 100 毫升水中 5 克）。将镜片（20 个样品）放进该反应性聚合物溶液中，加入两滴三乙醇胺并加热至 55℃并保持一小时。将表面涂覆过的镜片用纯净水冲洗两次，然后干燥。未经处理的镜片表面上的水滴呈珠状存在。而在经过完全处理的镜片上的水滴会湿润镜片的表面。

在 Bausch & Lomb Inc.的表面科学实验室测定了涂层的 X 射线光电子能谱（XPS）。Physical Electronics [PHI] Model 5600XPS 用来测定表面特性。此设备使用一个单色铝阳极，在 300 瓦、15kV、20 毫安下操作。该设备基压为 2.0×10^{-10} 托，操作时压力是 5.0×10^{-8} 托。此设备使用了半球分析器。该设备具有使用 PHI8503A 软件（版本 4.0）的 Apollo 工作站。在取样角度 45° 时该设备的取样深度实际测量为 74Å。

使用一台低分辨率的测量谱图（0—1100eV）识别每个样品表面（10—100Å）的元素。表面元素的组成由高分辨率谱图在测得的元素基础上确定。这些元素包括氧、氮、碳、硅和氟。为了定量计算
元素含量，先把光电子峰的面积与仪器转换函数和感兴趣轨道的交叉部分关联起来，然后，通过积分计算出光电子峰的面积，从而可得出元素组成。带有涂层的镜片的 XPS 数据和控制条件如下表 3 所示：

<table>
<thead>
<tr>
<th>样品</th>
<th>O</th>
<th>N</th>
<th>C</th>
<th>Si</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>镜片后</td>
<td>22.3</td>
<td>4.8</td>
<td>54.4</td>
<td>10.3</td>
<td>10.9</td>
</tr>
<tr>
<td>Std dev</td>
<td>19.1</td>
<td>6.7</td>
<td>63.4</td>
<td>2.7</td>
<td>8.1</td>
</tr>
<tr>
<td>镜片前</td>
<td>19.1</td>
<td>6.7</td>
<td>63.4</td>
<td>2.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Std dev</td>
<td>0.6</td>
<td>0.3</td>
<td>1.1</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Boston XO</td>
<td>18.7</td>
<td>0.0</td>
<td>56.1</td>
<td>5.2</td>
<td>20.0</td>
</tr>
<tr>
<td>(前后一样)</td>
<td>0.5</td>
<td>0.0</td>
<td>0.7</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>DMA-共-GMA 反应性</td>
<td>17</td>
<td>12</td>
<td>71</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

实施例 15

本实施例说明了可从 Bausch & Lomb Inc. 购买的 Boston XO 隐型眼镜镜片的另一种表面处理方法，依据以下反应顺序：
制备上述实施例10和实施例12所述的反应性聚合物溶液（每100毫升水中2.5克每一种聚合物）。使用该聚合物混合物的目的是想通过分层效应在镜片上形成更厚一些的聚合物涂层。将镜片（20个样品）放进反应性聚合物溶液中，加入两滴三乙醇胺并加热至55℃一小时。然后将表面涂覆的镜片用纯净水冲洗两次后干燥。未经处理的镜片表面上的水滴呈珠状存在。而在经过处理的镜片上的水滴
会润湿镜片的表面。原子力显微镜（AFM）分析显示由于聚合物的结合，在镜片表面形成了一层致密的聚合物涂层。无聚合物涂层（见图 1）的、具有实施例 14 的聚合物涂层（图 2）的及具有实施例 15 的聚合物涂层（图 3）的 Boston XO 镜片的比较见图 1 至图 3。

在 Bausch & Lomb Inc.的表面科学实验室中得到 X-射线光电子能谱（XPS）数据。用 Physical electronics（PHI）Model 5600XPS 来测定表面特性。此设备使用一个单色铝阳极，在 300 瓦、15kV、20 毫安下操作。设备底压为 2.0×10⁻¹⁰托，操作时压力是 5.0×10⁻⁸托。该设备具有使用 PHI8503A 软件（版本 4.0）的 Apollo 工作站。在取样角度 45° 时该设备的取样深度实际测量为 74Å。

使用一台低分辨率的测量谱图（0—1100eV）识别每个样品表面（10—100Å）的元素。表面元素的组成由高分辨率谱图在测得的元素基础上确定。这些元素包括氧、氮、碳、硅和氟。为了定量计算元素含量，先把光电子峰的面积与仪器转换函数和感兴趣轨道的交叉部分关联起来，然后，通过积分计算出光电子峰的面积，从而可得出元素组成。带有涂层的镜片的 XPS 数据和控制条件如下表 4a 所示:

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>N</th>
<th>C</th>
<th>Si</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>镜片后</td>
<td>18.8</td>
<td>8.0</td>
<td>67.6</td>
<td>3.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Std dev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>镜片前</td>
<td>18.4</td>
<td>4.2</td>
<td>62.8</td>
<td>4.1</td>
<td>10.5</td>
</tr>
<tr>
<td>Std dev</td>
<td>0.5</td>
<td>1.2</td>
<td>1.7</td>
<td>0.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Quantum II控制</td>
<td>18.7</td>
<td>0.0</td>
<td>56.1</td>
<td>5.2</td>
<td>20.0</td>
</tr>
<tr>
<td>（前后一样）</td>
<td>0.5</td>
<td>0.0</td>
<td>0.7</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>DMA-共-GMA 反应性聚合物的理论原子浓度</td>
<td>17</td>
<td>12</td>
<td>71</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
实施例 16

本实施例说明了 Balafilcon A 隐型眼镜（PureVison 牌镜片，可从 Bausch & Lomb Inc., Rochester, NY 购买）的表面处理。该镜片由实施例 1 中的材料制成，其表面处理采用了上述实施例 11 中制成的亲水反应性聚合物，按下述反应图示制备：
制备实施例 11 中反应性聚合物的溶液两份（见下表 4B）。镜片用 2-丙醇浸取 4 小时，然后放在纯净水中 10 分钟。然后换掉水洗，镜片再浸泡 10 分钟。将镜片（30 个样品）分别放进每份反应性聚合物溶液中，加入一滴甲基二乙醇胺催化该反应。将镜片在高压釜内放置 30 分钟。瓶中的溶液用纯净水替换两次，然后将镜片再次高压处理。此过程用于除去不以化学键结合在镜片上亲水性的聚合物。

表 4B

<table>
<thead>
<tr>
<th>样品</th>
<th>聚合物浓度</th>
<th>处理的镜片数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0%（2.5 克/250 毫升水）</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>2.0%（5 克/250 毫升水）</td>
<td>30</td>
</tr>
<tr>
<td>控制</td>
<td>无</td>
<td>30</td>
</tr>
</tbody>
</table>

控制的原子力显微镜 (AFM) 图像见图 4，图 5 和图 6 显示了样品 A 和样品 B 的表面。我们可以在图 5、图 6 中清楚地看到亲水性涂层与控制镜片样品的表面图象的比较。XPS 的元素分析也表明材料表面发生了改变。在 Bausch & Lomb Inc. 的表面科学实验室中得到 X-射线光电子能谱 (XPS) 数据。用 Physical Electronic (PHI) Model 5600XPS 来测定表面特性。此设备使用一个单色铝阳极，在 300 瓦、15kV、20 毫安下操作。设备底压为 2.0×10^{-10} 托，操作时压力是 5.0×10^{-8} 托。该设备具有使用 PHI8503A 软件（版本 4.0）的 Apollo 工作站。在取样角度 45° 时该设备的取样深度实际测量为 74Å。

使用一台低分辨率的测量谱图（0—1100eV）识别每个样品表面（10—100Å）的元素。表面元素的组成由高分辨率谱图在测得的元素基础上确定。这些元素包括氧、氮、碳、硅和氟。为了定量计算元素含量，先把光电子峰的面积与仪器转换函数和感兴趣轨道的交叉部分关联起来，然后，通过积分计算出光电子峰的面积，从而可
得出元素组成。XPS 数据如下表 4C 所示:

<table>
<thead>
<tr>
<th>样品</th>
<th>O1s</th>
<th>N1s</th>
<th>C1s</th>
<th>Si2p</th>
<th>F1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>控制镜片面</td>
<td>平均</td>
<td>17.7</td>
<td>7.2</td>
<td>66.9</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Std dev</td>
<td>0.9</td>
<td>0.2</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>控制镜片面</td>
<td>平均</td>
<td>17.9</td>
<td>7.0</td>
<td>66.9</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>Std dev</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>A 镜片面</td>
<td>平均</td>
<td>17.9</td>
<td>8.9</td>
<td>69.5</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Std dev</td>
<td>0.3</td>
<td>0.2</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>A 镜片面</td>
<td>平均</td>
<td>17.7</td>
<td>9.1</td>
<td>69.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Std dev</td>
<td>0.3</td>
<td>0.3</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>B 镜片面</td>
<td>平均</td>
<td>18.0</td>
<td>8.9</td>
<td>69.9</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Std dev</td>
<td>0.3</td>
<td>0.5</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>B 镜片面</td>
<td>平均</td>
<td>17.8</td>
<td>8.8</td>
<td>70.0</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Std dev</td>
<td>0.2</td>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>DMA-共-OFPMA-共-GMA反应性聚合物的理论原子浓度</td>
<td>17.0</td>
<td>11.0</td>
<td>70.1</td>
<td>0.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

实施例 17

本实施例说明了改进的抑制 Balafilcon A 镜片（Pure Vision 镜片）的脂类沉积的方法。该镜片用此发明中的不同亲水反应性聚合物涂层。样品 E 镜片使用实施例 11 中 DMA/OFPMA/GM 共聚物的 1%溶液涂层，样品 EE 镜片用同样的共聚物的 2%溶液涂层。样品 F 和 FF 镜片分别用实施例 10 中的 DMA/GM 共聚物的 1%和 2%溶液进行涂层。镜片放入反应性亲水性共聚物的含水溶液中，加入一种催化剂并经过热压循环。然后用 HPLC 级水冲洗，放在新鲜的 HPLC 水中，再次热压处理。控制镜片(未经过任何表面处理)放在新鲜的 HPLC 水中并热压处理。一个控制镜片是未经过任何表面处理的 Balafilcon
A 镜片, 另一个控制镜片是市售的经过氧化等离子体处理的 PureVison 镜片。用气相色谱 (GC) 进行脂类分析, 包括 HP Ultra 1 柱和 FID 检测器及氢气气载。按照活体外 (in vitro) 脂类沉积的规定, 每种检测的镜片类型用六个镜片进行沉积实验, 采用十六烷酸甲酯、胆固醇、酯烯和 MOPS 缓冲液的粘蛋白的脂类混合物。粘蛋白作为表面活性剂对脂类起增溶作用。将上述脂类混合物 1.5 毫升加到实验用的镜片上, 将镜片在 37℃搅拌水浴中进行 24 小时的沉积。然后将镜片从水浴中取出, 用 ReNu 牌盐水清洗以除去残留的沉积溶液, 放在玻璃小瓶中萃取。用 1:1 的 CHCl₃/MeOH 进行 3 小时浸取,再用己烷进行 3 小时浸取。将浸出物一起在 GC 色谱上进行分析,同时将沉积混合物中的每种脂类的标准溶液用 1:1 的 CHCl₃/MeOH 处理, 并在 GC 色谱上进行分析, 以确定从镜片上萃取出的脂类浓度。按上述规定, 所进行测试的镜片的体外脂类沉积数据见下表表 5。

表 5

<table>
<thead>
<tr>
<th>样品</th>
<th>平均脂类浓度* (μg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>39.9</td>
</tr>
<tr>
<td>EE</td>
<td>36.7</td>
</tr>
<tr>
<td>F</td>
<td>51.2</td>
</tr>
<tr>
<td>FF</td>
<td>39.6</td>
</tr>
<tr>
<td>等离子体氧化控制镜片</td>
<td>117</td>
</tr>
<tr>
<td>未经表面处理的控制镜片</td>
<td>243.3</td>
</tr>
</tbody>
</table>

*平均脂类浓度表示 6 个镜片的平均值

该结果表明, 按照本发明进行涂覆的镜片可以减少脂类沉积,这对于经常配带的水凝胶型的镜片非常有利。
实施例 18

步骤：

准备反应性聚合物的溶液，N，N-二甲基丙烯酰胺-共-甲基丙烯酸缩水甘油酯（0.4 克/20 毫升的 HPLC 水）和 8 滴三乙醇胺。抛光的基片（4 个样品）用非接触型原子力显微镜成像，然后用 HPLC 级水擦干净。将基片放入 4-5 毫升反应性聚合物溶液中，用扁平的小盒子密封然后加热至 55°C 1 小时。处理后的聚合物基片用 HPLC 水清洗两次，然后干燥。未经过处理的镜片表面上的水滴呈珠状存在。而在经过处理的镜片上的水滴会润湿镜片的表面。

基片用 3-4 滴 Boston Advance 牌隐形眼镜清洗液，一种含有硅胶作为擦洗剂的消毒性表面活性溶液冲洗，然后用 HPLC 级水清洗两次。将聚合物基片干燥，进行 AFM 成像并记录。图像看来与进行涂覆前相似。

重复上述的涂覆步骤，进行 AFM 成像并记录。其图像与带有涂层的镜片图像相似。

实施例 18 的步骤用 3 个新的 RGP 隐型眼镜材料钮（button）重复实验。利用 X 射线光电子能谱（XPS）进行实验的表面分析。XPS 数据见下表。从下表（表 6）可以清楚的看到 N 元素的增加（来自涂层聚合物）和基片中硅元素（Si）及氟元素（F）的相应减少，这表明聚合物涂层的应用、脱除和重新应用。

图 7 为例 18 中在表面处理之前一个 RGP 隐型眼镜材料钮（button）的 AFM 表面形貌图（50 µm²）。

图 8 为例 18 中在经过第一次用亲水性聚合物进行表面处理之后，一个 RGP 钮（button）的 AFM 表面形貌图（50 µm²）。

图 9 为例 18 中脱除聚合物涂层后一个 RGP 钮（button）的 AFM 表面形貌图（50 µm²）。

图 10 为例 18 中对表面重新用亲水性聚合物处理后，一个 RGP
扭（button）的 AFM 表面形貌图（50 μm²）。

表 6 实施例 18 的 XPS 结果

<table>
<thead>
<tr>
<th>样品</th>
<th>O</th>
<th>N</th>
<th>C</th>
<th>Si</th>
<th>F</th>
<th>扭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>涂覆前的扭</td>
<td></td>
<td></td>
<td>57.9</td>
<td>5.7</td>
<td>18.5</td>
<td>扭 1</td>
</tr>
<tr>
<td></td>
<td>18.2</td>
<td>0.0</td>
<td>54.8</td>
<td>5.3</td>
<td>20.7</td>
<td>扭 2</td>
</tr>
<tr>
<td></td>
<td>18.9</td>
<td>0.0</td>
<td>52.7</td>
<td>5.3</td>
<td>23.0</td>
<td>扭 3</td>
</tr>
<tr>
<td></td>
<td>17.5</td>
<td>0.0</td>
<td>55.1</td>
<td>6.0</td>
<td>21.5</td>
<td>扭 4</td>
</tr>
<tr>
<td></td>
<td>18.9</td>
<td>0.0</td>
<td>54.0</td>
<td>6.2</td>
<td>20.9</td>
<td>扭 1</td>
</tr>
<tr>
<td></td>
<td>18.1</td>
<td>0.0</td>
<td>54.3</td>
<td>5.9</td>
<td>21.7</td>
<td>扭 2</td>
</tr>
<tr>
<td>平均</td>
<td>18.3</td>
<td>0.0</td>
<td>54.8</td>
<td>5.7</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>标准偏差</td>
<td>0.6</td>
<td>0.0</td>
<td>1.7</td>
<td>0.4</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>经涂覆的扭</td>
<td></td>
<td></td>
<td>66.7</td>
<td>2.8</td>
<td>5.8</td>
<td>扭 1</td>
</tr>
<tr>
<td></td>
<td>19.7</td>
<td>6.0</td>
<td>66.3</td>
<td>2.5</td>
<td>5.6</td>
<td>扭 2</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>6.3</td>
<td>66.1</td>
<td>2.6</td>
<td>4.8</td>
<td>扭 3</td>
</tr>
<tr>
<td></td>
<td>20.5</td>
<td>5.2</td>
<td>65.1</td>
<td>2.8</td>
<td>6.4</td>
<td>扭 4</td>
</tr>
<tr>
<td></td>
<td>18.6</td>
<td>3.3</td>
<td>76.1</td>
<td>1.3</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.8</td>
<td>4.3</td>
<td>78.9</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>19.3</td>
<td>5.0</td>
<td>69.8</td>
<td>2.0</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>标准偏差</td>
<td>1.4</td>
<td>1.1</td>
<td>6.0</td>
<td>1.1</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>除去涂层的扭</td>
<td>20.4</td>
<td>0.0</td>
<td>59.3</td>
<td>4.7</td>
<td>15.6</td>
<td>扭 1</td>
</tr>
<tr>
<td></td>
<td>21.3</td>
<td>0.0</td>
<td>60.4</td>
<td>5.0</td>
<td>13.4</td>
<td>扭 2</td>
</tr>
<tr>
<td></td>
<td>18.3</td>
<td>0.0</td>
<td>58.6</td>
<td>5.7</td>
<td>17.5</td>
<td>扭 3</td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td>0.0</td>
<td>56.2</td>
<td>6.1</td>
<td>19.2</td>
<td>扭 4</td>
</tr>
<tr>
<td></td>
<td>19.5</td>
<td>0.0</td>
<td>56.6</td>
<td>6.5</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.6</td>
<td>0.0</td>
<td>57.9</td>
<td>5.8</td>
<td>17.7</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>19.4</td>
<td>0.0</td>
<td>58.2</td>
<td>5.6</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>标准偏差</td>
<td>1.2</td>
<td>0.0</td>
<td>1.6</td>
<td>0.7</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>重新涂层后扭</td>
<td>20.6</td>
<td>3.2</td>
<td>74.1</td>
<td>1.4</td>
<td>0.7</td>
<td>扭 1</td>
</tr>
<tr>
<td></td>
<td>20.6</td>
<td>3.7</td>
<td>74.2</td>
<td>0.9</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.6</td>
<td>5.1</td>
<td>67.1</td>
<td>1.9</td>
<td>1.4</td>
<td>扭 2</td>
</tr>
<tr>
<td></td>
<td>19.9</td>
<td>5.6</td>
<td>69.0</td>
<td>2.5</td>
<td>3.0</td>
<td>扭 3</td>
</tr>
<tr>
<td></td>
<td>21.1</td>
<td>3.3</td>
<td>73.3</td>
<td>1.2</td>
<td>1.1</td>
<td>扭 4</td>
</tr>
<tr>
<td></td>
<td>20.5</td>
<td>4.9</td>
<td>65.5</td>
<td>3.6</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>21.2</td>
<td>4.3</td>
<td>70.5</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>标准偏差</td>
<td>1.7</td>
<td>1.0</td>
<td>3.8</td>
<td>1.0</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>
实施例 19

本实施例说明了单体 12-甲基丙烯酰氧基十二烷酸的合成方法，此单体用于反应性聚合物的合成。可参考 Regen 的美国专利第 4,485,045 号，题为“用于制造脂质体的磷脂酰胆碱的合成”的文章。

在 2 升反应烧瓶中加入 12-羟基十二烷酸（99.5 克，0.46 摩尔），无水吡啶 56 毫升和无水四氢呋喃 1000 毫升。混合物在冰浴中冷却至 0℃，将蒸馏过的甲基丙烯酰氯（48 克，0.046 摩尔）在无水四氢呋喃（200 毫升）中的溶液缓慢加入冷反应混合物中并进行良好的搅拌。加入后混合物可置于室温并在搅拌下过夜。溶剂通过烧瓶的蒸馏去处，将剩余物放入 1 升乙醚中。醚溶液用纯净水冲洗，硫酸镁干燥并再次用烧瓶蒸馏，得到 98.5 克粗产品。通过硅胶色谱法，用 1：2 的乙基乙酸和庚烷混合物进一步提纯原料，得到 63% 的产率。

实施例 20

本实施例说明了 N,N-二甲基丙烯酰胺-共-12-甲基丙烯酰氧基十二烷酸(LMAA)的亲水反应性聚合物的合成方法。
在 500 毫升反应烧瓶中加入蒸馏过的 N,N-二甲基丙烯酰胺（DMA, 15.2 克, 0.153 摩尔）、12-甲基丙烯酰氧基十二烷酸（LMAA, 4.8 克, 0.017 摩尔）、Vazo-64（AIBN, 0.032 克, 0.0002 摩尔）和无水四氢呋喃（200 毫升）。反应容器带有磁性搅拌器、冷凝器、热控制器和一个氮气入口。向溶液中通氮气 15 分钟以除去溶解的氧气。在氮气保护下烧瓶升温至 60°C 维持 72 小时。然后反应混合物缓慢加入 2.5 升庚烷中，同时进行良好的机械搅拌。在反应性聚合物沉淀后，真空过滤收集聚合产物。产物放在 30°C的真空炉子中过夜以除掉醚，得到 15 克反应性聚合物（75%的产率）。该反应性聚合物在使用前储存在干燥器中。
实施例21

本实施例说明了 N,N-二甲基丙烯酰胺-共-八氟戊基甲基丙烯酸酯-共-12-甲基丙烯酰氧基十二烷酸的亲水反应性聚合物的合成方法。

\[
\begin{align*}
&\text{(N=N)}_{\text{mon}} + \text{(O=C=O)}_{\text{mon}} + \\
&\text{(O=C=O-CH}_{2}\text{CH}_{11}\text{OH)}_{\text{mon}} \rightarrow \text{Vazo 64} \\
&\text{THF}
\end{align*}
\]

在一个500毫升的反应烧瓶中加入蒸馏过的 N,N-二甲基丙烯酰胺 (DMA，15克，0.151摩尔) 、1H,1H,5H-八氟戊基甲基丙烯酸酯 (OFEMA，0.5克，0.0016摩尔) 、12-甲基丙烯酰氧基十二烷酸 (LMAA，4.5克，0.0158摩尔) 、Vazo-64 (AIBN，0.032克，0.0002摩尔) 和无水四氢呋喃 (200毫升)。反应容器带有磁性搅拌器、冷
凝器、热控制器和一个氮气入口。向溶液中通氮气 15 分钟以除去溶液的氧气。在氮气保护下烧瓶升温至 60℃维持 72 小时。然后反应混合物缓慢加入 2.5 升庚烷中，同时进行良好的机械搅拌。在反应性聚合物沉淀后，真空过滤收集聚合产物。产物放在 30℃的真空炉子中过夜以除掉醚，得到 18.7 克反应性聚合物（94%的产率）。该反应性聚合物在使用前储存在干燥器中。

实施例 22

本实施例说明了 N,N-二甲基丙烯酰胺-共-十二烷基甲基丙烯酸酯-共-甲基丙烯酸缩水甘油酯的亲水反应性聚合物的合成方法。
在一个 1000 毫升的反应烧瓶中加入蒸馏过的 N,N-二甲基丙烯酰胺 (DMA，32 克，0.32 摩尔)、十二烷基甲基丙烯酸酯 (LMA，1.5 克，0.006 摩尔)、甲基丙烯酸缩水甘油酯 (GM，8 克，0.056 摩尔)、Vazo-64 (AIBN，0.06 克，0.00036 摩尔) 和无水四氢呋喃 (600 毫升)。反应容器带有磁性搅拌器、冷凝器、热控制器和一个氮气入口。向溶液中通氮气 15 分钟以除去溶解的氧气。在氮气保护下烧瓶升温至 60℃ 维持 20 小时。然后反应混合物缓慢加入 3 升乙醚中，同时进行良好的机械搅拌。在反应性聚合物沉淀后，真空过滤收集聚合物。产物放在 30℃的真空炉子中过夜以除掉醚，得到 29.2 克反应性聚合物 (70% 的产率)。该反应性聚合物在使用前储存在干燥器中。

可以根据在此所做的工作进行本发明的许多改进和变化。因此可以理解的是，在本权利要求范围之内，本发明比在此处描述的实验要广泛的多。
图1 (对照)
图2
图3
Digital Instruments NanoScope
Scan size 50.00 μm
Scan rate 3.052 Hz
Number of samples 512
Digital Instruments NanoScope
Scan size 50.00 μm
Scan rate 3.331 Hz
Number of samples 256
Image Data Height
Data scale 400.0 nm

图5
Digital Instruments NanoScope
Scan size 50.00 μm
Scan rate 3.391 Hz
Number of samples 512
Image Data Height
Data scale 400.0 nm

View angle
Light angle

X 10.000 μm/div
Y 400.000 nm/div
0 deg

图6
图9

图10