(54) Title: EXTERNAL PREPARATION FOR CURING LESIONED TISSUES

(54) Patent's name: 外用被覆剤 病変組織治療用外用薬剤

(57) Abstract

An external preparation efficacious in curing lesioned tissues of particularly the rectum or anus. The preparation comprises an active ingredient of tannic acid and aluminum potassium sulfate and a base ingredient and examples of the applicable dosage forms include ointments, creams and suppositories.
（57）要約

特に直腸や肛門の病変組織を治療するのに有効な病変組織治療用外用薬剤が提供される。

病変組織治療用外用薬剤は、タンニン酸と硫酸アルミニウムカリウムとからなる薬効成分と、外用薬剤基剤成分とから構成されていて、適用される剤型としては、例えば、軟膏、クリーム剤、座薬などの外用薬剤が挙げられる。
明細書

病変組織治療用外用薬剤

技術分野
本発明は、病変組織治療用外用薬剤に関するものであり、更に詳細には、特に直腸や肛門の病変組織を治療するのに有効な病変組織治療用外用薬剤に関するものである。

背景技術
直腸や肛門の病変組織としては、例えば、直腸下部または肛門の粘膜下にある痔静脈叢の瘤状拡張に起因する痔核などの病変組織が挙げられる。痔患者の多くは、常に血便、痔痛、内痔脱出、外痔の炎症、粘液血便などによって健康を害していて、また仕事にも支障を来している。

肛門直腸の疾病には10余種類あるといわれている。まず、疾病の原因に基づいて、有菌性と無菌性とに分けられる。次に、疾病のメカニズムによって特異性と不特異性とに分けられる。また、病理変化的部位によって、粘膜区（無痛区）と肛管皮膚区（有痛区）の病理変化に区分される。さらに、病理損害に基づいて、有菌性あるいは無菌性炎症がもたらす充血、滲出、浮腫等に分けられる。また、肛管の機能性と器質性疾患に基づき直腸肛管狭小によって引き起こされる囊膿まり、便秘と肛管弛緩による内痔脱出、粘膜脱出、粘液の外部漏出に分けられる。したがって、直腸や肛門の病変組織を治療する際には、上記のような肛門直腸の疾病の種類を考慮しなければならない。

痔核などの直腸下部や肛門の病変組織の治療方法としては、種々の方法が採用されている。その病状が軽度のものは、温浴や、軟膏等の塗布や座薬挿入などによる治療方法が、また重症のものでは、痔核結節への注射療法や痔核摘出などの外科手術による治療方法が採用されている。しかしながら、痔核摘出による外科手術以外の治療方法は、いずれも痔核を根本から治療するものではなく、あくまでも対症療法にすぎない。また、外科手術による治療方法は、特に術後に耐え難い苦痛を与えるので、痔に苦しむ患者はできることならこのような外科手術による治療方法は避けたいのは当然である。その上、苦痛を伴わないで痔の治療ができるのであれば、痔疾を患っている患者にとって極めて大きな恩恵である。痔核等の直腸下部や肛門の病変組織を外科手術的に摘除するのではなく、非手術的に治療
する方法に使用される薬剤としては、軟膏等の外用剤や座薬などの外用薬剤がある。軟膏等の外用剤は患部が肛門の外部に露出している痔等に適用され、座薬は特に患部が直腸下部や肛門内部に存在する痔等に適用されている。しかしながら、痔等の病変組織治療用として販売されている軟膏や座薬の種類は非常に少なく、通常使用されているのは僅かに3ないし4種類しかない。その内の主なものはいずれも伝統的な中国医学の処方によっている。その軟膏の基本成分は九草粉（キクの花粉）であって、タルク、月長石（礫砂）、龍骨（動物骨の化石）粉、ベイモ、竜脳、バーミリオンを含んでいる。この軟膏の薬理作用は主に軽度の止血と収敏作用であり、制菌、消炎および止痛作用は認められない。しかしながら、この軟膏で最も問題なのは水銀が含有されていることである。この軟膏から水銀を除去し、その成分を加減して、その上香させを添加したものが座薬として通常使用されている。この座薬も中国医学の伝統的な肛腸の外用薬として広範に使用されてきたが、この座薬の成分として使用されている薬香が国家の規制によって医薬品として使用できなくなっている。また、かかる座薬については、信頼できる実験データと臨床データが不足しているのも問題である。

痔核等の直腸下部や肛門の病変組織を外科手術的に摘除するのではなく、しかも根本から治療する方法として、薬物でその病変組織の患部に注射によって投与し、その病変組織の患部を硬化させて、その硬化させた細胞が正常細胞から自然に脱落させる治療方法が提案されている。このような薬物療法に使用される薬物としては、中国名“消痔靈”（XIAOZHLING）が提案されている。この注射剤の組成は、タンニン、ミョウバン（硫酸アルミニウムカリウム）、クエン酸ナトリウム、デキストラン、グリセリンおよびトリクロロプロピルアルコールを含む水溶液からなっている。しかしながら、この注射剤には、トリクロロプロピルアルコールが含まれていることからして注射剤としては好ましくない。

そこで、この注射剤を改良してより好ましい組成を有する病変組織治療用硬化剤である注射剤が提案されている。本特許出願人の出願による特開平4-225920号には、タンニン酸と、ミョウバン（硫酸アルミニウムカリウム）と、クエン酸ナトリウムと、亜硫酸水素ナトリウムと、デキストランと、グリセリンと、安定化剤として植物生薬の抽出物を含有する硬化剤が記載されている。しかし、この硬化剤にしても、安定化剤として植物生薬の抽出物を含有していることから、品質の一定した注射剤を常時調製するのが困難であることも問題である。

したがって、本発明者らは、上記基本組成を有する硬化剤の品質が一定かつ製剤安定性が優れた注射剤を得るべく種々検討し、鋭意研究した結果、植物生薬の抽出物を安定化剤と
して添加しなくとも、タンニン酸と、ミョウバン（硫酸アルミニウムカリウム）との配合順序を工夫することによって、製剤としての安定性が優れかつ品質が常に一定した硬化剤としての注射剤が得られることを見出した。この注射剤は、基本的には、タンニン酸と、硫酸アルミニウムカリウムと、クエン酸ナトリウムと、亜硫酸水素ナトリウムからなっている。
国際特許出願公開番号WO94/06443およびこの関連特許公開公報には、この注射剤についての詳細が記載されている。

この病変組織治療用硬化剤は注射剤であることから、治療に際しては当然のことながらある程度の苦痛を伴うのは明らかである。また、治療には医師による処置が不可欠であることのも病患者にとって苦痛でありかつ不便である。そこで、特に軽症の痔患者にとっては、自身自身によって在宅でも簡便な方法で使用できる病変組織治療用薬剤が長い間要望されてきた。

また、痔症の痔疾患の患者にとって、外科的処置によって病変組織を摘出した後の処置も極めて苦痛である。痔疾患部位は非常に細菌で汚染され易いところであるが、また常時清潔に保っておくのが非常にも困難なところもある。加えて、痔疾患部位が特に肛門である場合には、排便時や手術部位が汚れた場合に手術部位に激痛が生じかつその痛みが継続することになる。したがって、細菌からの汚染を防止するとともに、手術部位の痛みを緩和することができ、かつ、在宅でも簡便に適用できる薬剤が長い間要望されてきた。

かかる要望に応えることができる1つの方法としては、例えば、病変組織治療用硬化剤を外用薬剤として肛門ならびに、もしくは直腸に投与する方法がある。かかる外用薬剤としては、例えば、軟膏などの外用剤、または座薬などが挙げられる。かかる外用薬剤としての外用剤にしても、座薬にしても種々の剤形があり、例えば、外用剤としては、軟膏、クリーム、ローションなどがあり、また座薬としては、例えば、カカオ脂、ウィップソールなどの固形脂に、薬物を溶解分散させた剤形の座薬、マクロゴールなどの親水性基剤に薬物を溶解分散させた剤形の座薬、中長鎖脂肪酸トリグリセリド、植物油などの液状油に薬物を溶解分散させ、ゼラチン皮膜で被覆してカプセルとした剤形のゼラチンカプセル座薬などが知られている。

薬物を例えば座薬などの外用薬剤として経腸投与することは、いずれの剤形であっても、種々の利点がある。例えば、注射による投与では副作用の可能性がある場合でも、かかる経腸投与にすればかかる副作用が回避される場合が多い。つまり、薬物によっては、注射などによる経皮投与では、例えば、筋肉の拘縮などの副作用を引き起こす恐れがある場合でも、例えば座薬として直腸投与にすれば、かかる副作用を回避することができる場合も多い。
また、経腸などの投与形態は他の投与形態に比べて投与が比較的簡単で、かつ、確実に、更に投与時の制限が少ないという利点もある。薬物などの場合は術後での投与も比較的容易にかつ確実に行うことができる。また、直腸などからの投与には、注射による投与の場合のような疼痛がないという利点もある。

更に、座薬などの経腸投与には、薬物の吸収率を高くすることができる場合が多いという利点もある。つまり、直腸内は、胃などとは異なり、酸や酵素がほとんど存在していないので、薬物が分解されることが少ない。また、かかる経腸投与の場合には、食事の前後もしくは食間とおの投与時間についての投与制限はなく、また子供や乳幼児などのように注射などによる投与が困難な場合でも、疼痛を与えないことから投与し易いという利点もある。更に、経腸投与の場合には、特に注射による投与の場合に比べて、薬物の吸収速度が緩やかであり、薬効を持続させることができるという利点もある。

発明の開示

したがって、本発明は、痔疾等の疾病に起因する肛門・直腸の病変組織治療用硬化剤であって、軟膏等の外用剤ならびに座薬などの剤型からなる病変組織治療用外用薬剤を提供することを目的としている。本発明に係る病変組織治療用外用薬剤は、痔症の痔等に基づく病変組織を治療するのに有効ばかりでなく、直腸、肛門の手術後に起こる合併症に照らして、主に術後の括約筋の収縮によって引き起こされる疼痛を防止し、制菌、消炎をし、腫れを引、痛みを止め、肉芽組織の正常でかつ早急な癒合を促し、傷口の癒合を促進するのに有効である。

また、本発明に係る病変組織治療用硬化剤である外用薬剤は、定められた方法ならびに処方で患者自身によって在家でも簡便に適用することができる極めて有用な肛門ならびに、もしくは直腸の病変組織治療外用薬剤である。

本発明に係る病変組織治療用外用薬剤は、薬効成分と、外用薬剤用基剤成分からなり、薬効成分としてはタンニン酸と硫酸アルミニウムカリウムとが含有されている。

本明細書において、特記なき限り本明細書の文脈から明らかな場合には、本発明に係る病変組織治療用外用薬剤の主成分であるタンニン酸と硫酸アルミニウムカリウムとを一括して単に「薬効成分化合物」という場合がある。

本発明に係る病変組織治療用外用薬剤において、タンニン酸は、それ自体で割合強い収斂作用があり、粘膜の充血、出血を軽減する働きを有している。また、タンニン酸は、グラム
陰性菌とグラム陽性菌に対して制菌作用と殺菌作用を有している。また、硫酸アルミニウムカリウムは、水溶液の状態または水溶の態で、アルミニウムイオンを放出し、相当強い止血、収斂作用を及ぼすことができるとともに、傷口の肉芽の正常な発育を促進する働きがある。したがって、本発明におけるように、タンニン酸と硫酸アルミニウムカリウムとを適当に配合することにより、痔などに起因する炎症および滲出に対して抗炎、抗滲出作用を及ぼして、消炎をしおよび腫れを引き止血作用を及ぼすことができる。

本発明に係る病変組織治療用外用薬剤において、外用薬剤の剤型としては、例えば軟膏、クリーム剤、ローション剤、エアゾール剤などの外用剤ならびに座薬などが挙げられる。また、外用薬剤基剤成分も、その製剤の剤形に応じて、適宜選択して使用するのが好ましい。したがって、本発明に係る外用薬剤の組成も、外用薬剤の剤形に応じて、適宜に調製することが好ましい。

本発明に係る病変組織治療用硬化剤において、その外用薬剤に含まれる薬効成分化合物は、いずれの剤型においても、その薬効成分化合物に対して相溶性を示す基剤成分である液状または固体状溶剤に溶解状態で含有されている。その薬効成分化合物の一つである硫酸アルミニウムカリウムは、水には容易に可溶であるが、エタノールなどにはほとんど溶解しない。他方、もう一つの薬効成分であるタンニン酸は、水、エタノール、アセトン等に容易に溶解する。なお、硫酸アルミニウムカリウムとタンニン酸とを配合する場合に、特に両者を液状で配合する場合には、その配合の仕方に十分配慮しなければならない。特に注意すべきことは、硫酸アルミニウムカリウムを水に溶解すると、硫酸アルミニウムカリウムからアルミニウムイオンが分解して水溶液中に存在するが、このアルミニウムイオンがタンニン酸と結合して水溶液中で沈殿を生成し、タンニン酸の効果が失われてしまうという問題を生ずるからである。また、薬効成分化合物を有機固体中に溶解させるには、有機固体を熱融融し、この溶融中に薬効成分化合物を添加混合するか、または薬効成分化合物を有機固体とを混合して、この混合物を熟融融すればよい。本発明に係る外用薬剤における薬効成分化合物は、常温において、液状または溶液状の形態で外用薬剤中に存在させるのが好ましい。

本発明に係る病変組織治療用硬化剤において使用される薬効成分化合物の配合量は、薬効成分化合物の種類、外用薬剤の剤型、適用対象患者の性別、年齢、疾病の状態等によって種々変えるのが好ましい。本発明の薬効成分化合物のうち硫酸アルミニウムカリウムの配合量は、外用薬剤の剤型が軟膏などの外用剤の場合には、例えば、該外用剤の重量に対して、約0.1％ないし30％、好ましくは約1％ないし20％、更に好ましくは約5％ないし10％の範囲内
に設定することができる。他方、もう一つの成分であるタンニン酸の配合量は、硫酸アルミニウムカリウムに対して、10重量%ないし90重量%、好ましくは30重量%ないし70重量%、更に好ましくは40重量%ないし60重量%の範囲であるのがよい。

本発明に係る病変組織治療用外用薬剤を調製する際の使用される外用薬剤用基剤成分も、その剤型により異なり、その剤型が軟膏などの外用剤の場合には、外用剤基剤成分を使用し、また、その剤型が座薬の場合には、座薬用基剤成分を使用する。

かかる外用薬剤用基剤成分のうち、外用剤基剤成分としては、例えば、薬効成分化合物を可溶化できる液状基剤成分を含む軟膏基剤成分、液剤、乳剤基剤成分などが挙げられる。

そのうち、軟膏基剤成分としては、例えば、液状基剤成分、有機固体、油性物質、界面活性剤などが挙げられる。

液状基剤成分としては、硫酸アルミニウムカリウムを可溶化できる溶剤としての水などでと、タンニン酸を可溶化できる溶剤としての水、エタノール、アセトンなどが含まれる。硫酸アルミニウムカリウムとタンニン酸を含有する溶液を調製する場合には、例えば、硫酸アルミニウムカリウムを水などの溶剤に溶解して得られた溶液と、タンニン酸を水、エタノール、アセトンなどの溶剤に溶解して別個に得られた溶液を混合することなどによって調製することができる。

有機固体としては、ラウリン酸、ミリステリン酸、バルミチン酸、ステアリン酸、イソステアリン酸、ペヘン酸等の脂肪族カルボン酸が挙げられる。

また、油性物質もまた本発明の基剤成分として使用することができる。油性物質としては、例えば、脂肪酸のエステル、芳香族カルボン酸エステル、リン酸エステル、高級脂肪酸トリグリセライド、高級脂肪族アルコール、高級脂肪酸、テルペン、ワセリン、ラノリン、ミツロウ、流動パラフィン、スクワランおよびそれらの混合物が挙げられる。

更には、液体状もしくは固体状の界面活性剤も使用することができる。かかる界面活性剤としては、陰イオン性、陽イオン性、非イオン性および両性の各種界面活性剤が挙げられるが、適用部位の皮膚に対する刺激性が低いという点から、非イオン性界面活性剤を使用するのが好ましい。かかる非イオン性界面活性剤としては、エチレングリコール系界面活性剤、ポリヒドロキシ系界面活性剤、高分子系界面活性剤等が挙げられる。エチレングリコール系界面活性剤としては、例えば、高級アルコール系のエチレングリコール系界面活性剤、アルキルフェノール系のエチレングリコール系界面活性剤、脂肪族アミノ基やエチレンオキシド付加物、アルキルフェノールのエチレングリコール系界面活性剤、脂肪族アミドのエチレングリコール系界面活性剤、多価アルコールのエチレン
オキシド付加物、エチレンオキシドもしくはプロピレンオキシドブロック共重合体等が挙げられる。ポリヒドロキシルスリットール脂肪酸エステル、ソルビタントリハル脂肪酸エステル、ショ糖脂肪酸エステル、エタノールアミンの脂肪酸アミドおよび変換がそれぞれのアルキレンオキシド付加物等が挙げられる。本発明に係る変換方法用外用薬剤においては、特に、ポリオキシエチレンソルビタントリハル脂肪酸エステル、ポリオキシプロピレンモノ脂肪酸エステル、ソルビタントリハル脂肪酸エステルポリオキシエチレンアルコールエーテル等が好適に使用される。また、これらの界面活性剤は単独または混合物の形で用いることができる。また、固体状界面活性剤としては、モノミリリン酸グリセリル、モノステアリン酸グリセリル、ジステアリン酸ジグリセリル等のグリセリル脂肪酸エステル、モノステアリン酸テトラグリセリル、トリステアリン酸テトラグリセリル、トリオイオン酸デカグリセリル等のポリグリセリル脂肪酸エステル、モノステアリン酸ポリオキシエチレン(5)グリセリル、モノステアリン酸ポリオキシエチレン(15)グリセリル、モノステアリン酸ポリオキシエチレン(40)グリセリル等のポリオキシエチレングリセリル脂肪酸エステル、モノバールミチン酸ソルビタント、モノステアリン酸ソルビタント、スキャステアリン酸ソルビタント、トリステアリン酸ソルビタント等のソルビタントリハール脂肪酸エステル、トリステアリン酸ポリオキシエチレン(20)ソルビタント等のポリオキシエチレンソルビタント、ヘキスタクリリン酸ポリオキシエチレン(6)ソルビタント等のポリオキシエチレンソルビタント脂肪酸エステル、モノステアリン酸ポリオキシエチレングリコール（4EO）、ジステアリン酸ポリオキシエチレングリコール等のポリオキシエチレングリコール脂肪酸エステル、ポリオキシエチレン（80）硬化ヒマシ油、ポリオキシエチレン（100）硬化ヒマシ油等のポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン(2)セチルエーテル、ポリオキシエチレン(5)ヘニュールエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレン(30)フィトステロール等のポリオキシエチレンフィトステロール、ポリオキシエチレン(25)フィトスタノール等のポリオキシエチレンフィトスタノール、ポリオキシエチレン(20)ポリオキシプロピレン(8)セチルエーテル、ポリオキシエチレン(20)ポリオキシプロピレン(6)デシルテトラデシルエーテル等のポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレン(30)オクチルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン(40)ラノリンアルコール、ポリオキシエチレン(10)ラノリンアルコール等のポリオキシエチレンラノリンアルコール、ポリオキシエチレン(6)ソルビットミツロウ、ポリオキシエチレン(20)ソルビットミツロウ等の
ポリオキシエチレンミツロウ誘導体、ジポリオキシエチレン(8)アルキルエーテルリン酸等のポリオキシエチレンアルキルエーテルリン酸等が挙げられる。

更にまた、外用薬剤用基剤成分としては、例えば、脂肪酸エステル、芳香族カルボン酸エステル、高級脂肪酸トリグリセリド、高級脂肪族アルコールなどが挙げられる。

脂肪酸エステルとしては、常温において固体状のモノカルボン酸エステルおよびポリカルボン酸エステルが含まれる。かかる脂肪酸エステルは、一般に、炭素数4ないし22個、好ましくは炭素数8ないし18個程度の飽和または不飽和の直線状もしくは分岐状のモノまたはポリカルボン酸の炭素数が18個程度までの高級アルコールエステルであるのがよい。このカルボン酸エステルにおけるカルボン酸成分としては、例えば、酢酸、乳酸、オクタン酸、イソオクタン酸、ジェルオクタン酸、ノナノ酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、ベヘニ酸、アゼライン酸、セバシン酸等を例示することができる。一方、アルコール成分としては、例えば、エタノール、プロパノール、イソプロパノール、プタノール、ヘキサノール、デカノール、ミリスチルアルコール、ドデカノール、セチルアルコール、ヘキサディルアルコール、ベヘニルアルコール等を例示することができる。好適な脂肪酸エステルとしては、例えば、酢酸イソプロピルなどの酢酸エステル、乳酸ミリスチル等の乳酸エステル、オクタン酸セチルなどのオクタン酸エステル、イソオクタン酸セチルなどのイソオクタン酸エステル、ジェルオクタン酸ヘキシルデシル等のジェルオクタン酸エステル、ノナノ酸デシルなどのノナノ酸エステル、カプリン酸イソプロピル等のカプリン酸エステル、ラウリン酸ヘキシル等のラウリン酸エステル、ミリスチン酸イソプロピル、ミリスチン酸イソプロピル、ミリスチン酸オクタン酸オクチルデシル、ミリスチン酸ミリスチル等のミリスチン酸エステル、パルミチン酸イソプロピル等のパルミチン酸エステル、ステアリン酸ブチル等のステアリン酸エステル、イソステアリン酸ヘキシルデシル等のイソステアリン酸エステル、オレイン酸デシル、オレイン酸オレイル等のオレイン酸エステル、ベヘニ酸ベヘニルなどのベヘニ酸エステル、アゼライン酸オレイル、アゼライン酸ジエチル、アゼライン酸ジソブチル、アゼライン酸ジイソデシル、アゼライン酸ジオクチル、アゼライン酸ジベンジル、アゼライン酸ジ(2−メトキシエチル)等のアゼライン酸エステル、セバシン酸ジエチル、アゼライン酸ジソプロピル、セライン酸ジオクチル等のセバシン酸エステル等、またはグリセリンもしくはプロピレングリコールのモノ、ジもしくはトリ脂肪酸エステル、例えば、モノカプリル酸グリセリン、ジカプリル酸プロピレングリコ
ール、トリカブリル酸グリセリン等が挙げられる。
芳香族カルボン酸エステルとしては、例えば、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチルなどのフタル酸エステル等が挙げられる。リン酸エステルとしては、例えば、リン酸トリグリセリド、リン酸トリオレイル、リン酸トリオデシル、リン酸トリオクチルなどが挙げられる。
また、本発明においては、前記した多価アルコールの部分エステルやそのアルキレンオキシド付加物も油性物質として用いることができる。
高級脂肪族アルコールとしては、例えば、セタノール、ステアリルアルコール、ベヘニルアルコール、ラノリンアルコール、フアルネノール等が挙げられる。また、高級脂肪酸としては、例えば、オクタン酸、ノナン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、モンタン酸、エラジン酸等が挙げられる。
高級脂肪酸トリグリセライドとしては、常温で液状ないし半固体状のものであって、天然由来の動物脂および植物脂のものを各種用いることができる。これらは一般に油脂と称されるので工業的に広く入手可能であり、例えば、多くの種類の植物油、牛脂、肝油、ラノリン、ラード等が使用できるが、好適には植物油、特にオリーブ油、椿油、大豆油、菜種油、コーン油、ひまし油、サフラーフ油等が使用される。
更には、中国医学において外用薬剤の添加剂または賦形剤として繁用されている香果脂、亀脂等も好適に使用することができる。
本発明の病変組織治療用外用薬剤において、上記油性物質の含有量は特に制約されなく、所望の外用薬剤の種類、状性、剤形等に応じて適当な量を適宜配合すればよい。また、上記界面活性剤を配合する場合も、その配合量は特に制約されず、所望する外用薬剤の種類、状性等に応じて、適当な量を適宜配合すればよい。上記界面活性剤を非エマルジョンタイプの外用薬剤に使用する場合には、その配合量は、全外用薬剤に対して、約5ないし10重量％、好ましくは約2ないし15重量％でであればよい。一方、上記界面活性剤をエマルジョンタイプの外用薬剤に使用する場合には、約1ないし5重量％、好ましくは約1ないし15重量％であればよい。
本発明に係る病変組織治療用外用薬剤のうち、その剤型が軟膏などの外用剤の場合には、必要に応じ、水、充填剤、増粘剤（高分子化合物）、着色剤、芳香剤、乳化安定化剤、止痛剤等を含有することができる。これらはいずれも外用剤の分野で通常繁用されているもので
あってもよく、特に後述するものが好ましい。

本発明の病変組織治療用外用薬剤を非エマルジョンタイプの軟膏状混合物の形態で適用する場合、次の成分組成であることが好ましい。つまり、本発明に係る非エマルジョンタイプの軟膏状混合物の好適な成分組成は、例えば、それぞれの薬効成分化合物が約0.1ないし30重量％、好ましくは約1ないし15重量％、更に好ましくは約5ないし10重量％、油性物質が約10ないし80重量％、好ましくは約20ないし60重量％、界面活性剤が約20ないし80重量％、好ましくは約40ないし70重量％、充填剤が約15重量％、好ましくは約5ないし10重量％、精製水が約10重量％、好ましくは約1ないし5重量％の範囲からなっているのが好ましい。

上記非エマルジョンタイプの軟膏状混合物からなる病変組織治療用外用薬剤において、油性物質としては、固体状油性物質または固体状油性物質と液体状油性物質との混合物が用いられるのが好ましい。本発明の外用薬剤の場合には、常温固体状の界面活性剤および/または油性物質が約20ないし80重量％、好ましくは約40ないし70重量％程度含有されていることが必要である。この場合の固体状油性物質としては、前記した各種の固体状界面活性剤を挙げることができるが、油性物質も挙げることができる。

更に、本発明に係る病変組織治療用外用薬剤のうち、座薬に使用される座薬用基剤成分として、通常用いられる座薬用基剤であればいずれも使用することができる。基剤成分としては、座薬の剤形によってその成分が多少異なるが、例えば、固形基剤、親水性基剤、液状基剤などが挙げられる。

かかる基剤成分としては、例えば、牛脂、豚油、肝油、卵黄油、還元ラード、ラード、ミツロウ、ラノリン、還元ラノリンなどのロウ類などの動物性油脂類；例えば、オリーブ油、椿油、大豆油、菜種油、ゴマ油、コーン油、落花生油、ハッカ油、ひまし油、サフラフーハ油、カカオ脂、ヤシ脂、バーム脂、バーム核脂、ココナッツ油、ユーカリ油、ウィテップゾールなどの高級脂肪酸トリグリセリドを含む植物性油脂類；例えば、ミツロウ、ラノリン、還元ラノリンなどのロウ類、ワセリン、流動パラフィン、スクワレン、スクワランなどの炭化水素類；常温で固体を示す炭素数10個ないし28個の、好ましくは炭素数10個ないし18個の脂肪族カルボン酸、例えば、カプリン酸、ラウリン酸、ミリステン酸、バリミチル酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、リノレン酸、ペヘン酸、モンタン酸、エイジン酸などの中長鎖脂肪族カルボン酸類；例えば、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ペジアルコールなどの炭素数が12個ないし22個の高級脂肪族アルコール類ならびに、例えば、リナロールなどのモノテルペンアルコ
ール、フルネオールなどのセスキテルペンアルコールなどのテルペンアルコールなどの高級アルコール類、常温において固体状の一価脂肪酸エステルおよび多価脂肪酸エステルであって、かつ、一般に、炭素数4〜22個、好ましくは炭素数8〜18個程度の飽和または不飽和の直鎖状もしくは分岐状の一価または多価脂肪酸の炭素数1〜8個程度までの高級アルコールエステルであって、その脂肪酸成分としては、酢酸、乳酸、オクタン酸、イソオクタン酸、ジメチルオクタン酸、ノナン酸、カプロン酸、ラウリン酸、ミリスチン酸、バリミチン酸、ステアリン酸、インステアリン酸、オレイン酸、ベヘン酸、アシジン酸、アゼライン酸、セバシン酸等であり、また、そのアルコール成分としてはエタノール、プロバノール、イソプロバノール、プタノール、ヘキサノール、デカノール、ミリスチルアルコール、ドデカノール、セチルアルコール、ヘキサデシルアルコール、ベヘニルアルコール等である脂肪族カルボン酸エステル、例えば、酢酸イソプロピルなどの酰酸エステル、乳酸ミリスチル等の乳酸エステル、オクタン酸セチルなどのオクタン酸エステル、イソオクタン酸セチルなどのイソオクタン酸エステル、ジメチルオクタン酸ヘキシルデシル等のジメチルオクタン酸エステル、ノナン酸デシルなどのノナン酸エステル、カプロン酸イソプロピル等のカプロン酸エステル、ラウリン酸ヘキシル等のラウリン酸エステル、ミリスチン酸イソプロピル、ミリスチン酸イソプロピル、ミリスチン酸オクチルデシル、ミリスチン酸ミリスチル等のミリスチン酸エステル、パルミチン酸イソプロピル等のパルミチン酸エステル、ステアリン酸プチル等のステアリン酸エステル、イソステアリン酸ヘキシルデシル等のイソステアリン酸エステル、オレイン酸デシル、オレイン酸オレイル等のオレイン酸エステル、ベヘン酸ヘペニルなどのがヘペニ酸エステル、アシジン酸オレイル、アシジン酸ジェチル、アシジン酸ジソブチル、アシジン酸ジソデシル、アシジン酸ジオクチル、アシジン酸ジペンジル、アシジン酸ジ（2メトキシエチル）等のアシジン酸エステル、セバシン酸ジメチル、セバシン酸ジイソプロピル、セバシン酸ジオクチル等のセバシン酸エステルなどの脂肪酸エステル類、トリオレフィン、トリステアリンなどのグリセリン中長鎖カルボン酸エステル類；例えば、フタル酸ジェチル、フタル酸ジブチル、フタル酸ジオクチルなどのフタル酸エステル等などの芳香族カルボン酸エステル類；例えば、リン酸トリオレイル、リン酸トリドデシル、リン酸トリオクチル等のリン酸エステル類；前記した多価アルコールの部分エステルやそのアルキレンオキシド付加物などの油性物質なども挙げることができる。

本発明に係る病変組織治療用外用薬剤のうちその剤型が座薬の場合には、必要に応じ、界
面活性剤、賦形剤、充填剤、増粘剤（高分子化合物）、止痛化剤、保存剤、着色剤、芳香剤、その他の薬剤等を含有することができる。これらのいずれもまたは多くのは、剤型が外用剤である場合、変更製造や変更処方用薬剤に共通して使用することができる。

本発明の変更製造や変更処方用薬剤のうち、その剤型が特に座薬である場合、必要に応じて使用することができる界面活性剤としては、陰イオン性、陽イオン性、非イオン性および両性の各種界面活性剤が挙げられるが、適用部位の皮膚に対する刺激性が低いという点から、非イオン性界面活性剤を使用するのが好ましい。かかる界面活性剤としては、前述した界面活性剤を使用することができる。本発明に係る変更製造や変更処方用薬剤のうち、特に座薬においては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンジコリモノ脂肪酸エステル、ポリオキシプロピレンモノ脂肪酸エステル、ソルビタン脂肪酸エステルポリオキシエチレンアルコールエーテル等が好適に使用される。更に、固体状の界面活性剤も使用することができ、かかる固体状界面活性剤としては、例えば、前述して界面活性剤を挙げることができる。

賦形剤としては、医薬製剤に通常使用されている賦形剤であればいずれも用いることができるが、特にディステカン、グリセリンなどを使用するのが好ましい。更に、中国医学において座薬の添加剤または賦形剤として禁用されている香果脂、亜鉛等も好適に使用することができる。

また、充填剤としては、有機系および無機系の微粉末、例えば、酸化亜鉛、シリカ、アルミナ、チタニア、樹脂粉末、カセ酸塩粉末、クレー粉末、セピオライト粉末、モンモリロナイト粉末、含フッ素マイカ粉末、ヒドロキシプロピルセルロース粉末等が挙げられる。この充填剤の粒子径は、通常、約0.1-20μm、好ましくは約0.5-10μmである。

更に、増粘剤としては、水溶性高分子、例えば、カルボキシピニルポリマー、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、アルギン酸ソーダ、アルギン酸プロピレングリコールエステル、キトサン、ポリビニルアルコール、デンプングリコール酸ナトリウム等が挙げられる。

また、着色剤、芳香剤などにしても、軟膏などの外用剤または座薬などの外用薬剤に慣用されているものであれば、本発明においても使用することができる。

更にまた、前記外用薬剤には、剤型によって異なるが、その適応に従って、各種の薬剤を添加することができる。かかる薬剤としては、例えば、局所麻酔薬、抗生物質、殺菌剤・抗菌剤、ステロイド系抗炎症剤、非ステロイド系抗炎症剤などが挙げられる。止痛化剤としての
局所麻痺薬としては、例えば、リドカイン、塩酸リドカイン、プロカイン、ジブカイン、テトラカインなどが挙げられ、抗生物質としては、例えば、ベンシリン、エリスロマイシン、テトラサイクリン、クロラムフェニコール、塩酸フランジオマイシンなどが挙げられ、抗菌・抗かび剤としては、例えば、ニトロフラン、ナイスタチン、ピロールニトリん、クロトリマゾール、ミコナゾール、イソコンアゾール、エコナゾール、トリフョナゾール、トルナフテンなどが挙げられ、ステロイド系抗炎症剤としては、例えば、プレドニゾロン、パラメタゾン、フルメタゾン、デキサメタゾン、フルメタゾン、ジクロフェナック、アルクロフェナック、オキシフェンブタゾン、フェニルブタゾンなどが挙げられる。

前記外用薬剤は、薬効成分化合物の溶液と、加熱溶融させた油性物質と界面活性剤との混合溶液を混合し、次いで、必要に応じて、充填剤を添加し、均一に混合し、放冷することにより調製することができる。

本発明の病変組織治療用外用薬剤をエマジョンタイプの軟膏状混合物の形態で適用する場合には、次の成分組成であることが好ましい。つまり、いずれの薬効成分化合物が約0.1ないし30重量％、好ましくは約1ないし15重量％、更に好ましくは約5ないし10重量％、油性物質が約60ないし90重量％、好ましくは約75ないし85重量％、界面活性剤が約1ないし20重量％、好ましくは約2ないし10重量％、充填剤が約15重量％まで、好ましくは約5ないし10重量％、精製水が約10重量％、好ましくは約1ないし5重量％の範囲であるのが好ましい。

この場合の上記外用薬剤において、油性物質としては、常温で固体状のものまたは常温で固体状のものと常温で液体状のものの混合物が用いることができる。また、界面活性剤としては、HLB値が8—15、好ましくは9—12のものが好んで用いることができる。

本発明に係る病変組織治療用外用薬剤は、薬効成分化合物またはその溶液と、油性物質および/もしくは界面活性剤を別々に調製して、必要に応じて、両者を混合して適用することもできる。例えば、薬効成分化合物またはその溶液を約60℃以上に加温して、これを油性物質および/または界面活性剤の溶液中に徐々に添加し、必要に応じ充填剤を混合し、得られた混合物を放冷することによって、上記外用薬剤を調製することができる。
本発明に係る病変組織治療用外用薬剤をエマルジョンタイプのクリーム状混合物の形態で適用する場合、様々な成分組成を有することが好ましい。つまり、上記外用薬剤は、例えば、薬効成分化合物が約0.1ないし20重量%、好ましくは約3ないし10重量%、有機溶媒が約1ないし40重量%、好ましくは約2ないし20重量%、油性物質が約2ないし50重量%、好ましくは約10ないし40重量%、界面活性剤が約10ないし35重量%、好ましくは約15ないし30重量%、増粘剤（水溶性高分子）が約0.1ないし5重量%、好ましくは約0.2ないし2重量%、精製水が約30ないし75重量%、好ましくは約40ないし60重量%、充填剤が約10重量%まで、好ましくは約1ないし5重量%の範囲内で含有されているとよい。

更に詳細には、上記外用薬剤を製造するには、上記薬効成分化合物と、精製水または有機溶媒を混合し加温して水溶液を作る。一方、上記油性物質と界面活性剤を加熱して混合して溶融混合物を作る。この溶融混合物に精製水を徐々に添加した。この得られた混合物に別に得られた薬効成分化合物の水溶液を加温下において、攪拌しながらを徐々に添加した。この混合物に増粘剤を添加して混合した。この混合物に必要に応じて充填剤を添加混合して冷却する。このように外用薬剤を調製すれば、油/水型および水/油型のエマルジョンタイプの外用薬剤が得ることができる。油/水型の場合には、界面活性剤としては、HLB9－18を有する界面活性剤を使用するのが好ましく、一方、水/油型の場合、HLB2－8を有する界面活性剤を使用するのが好ましい。この場合に使用できる油性物質としては常温で固体状のものまたは常温で固体状のものと常温で液体状のものとの混合物が用いられる。増粘剤としては、水溶性高分子、例えば、カルボキシピリアルポリマー、メチルセルロース、ヒドロキシリテルセルロース、カルボキシメチルセルロース、アルギン酸ソーダ、アルギン酸プロピレングリコールエステル、キトサン、ポリビニルアルコール、デンプングリコール酸ナトリウム等が挙げられる。

上述したクリーム状外用薬剤を好適に製造する方法としては、例えば、薬効成分化合物を精製水または有機溶媒に溶解させた溶液からなる溶液を、固体状油性物質と固体状界面活性剤を加熱溶融して得られる混合物に添加混合し、更にこの混合物に、薬効成分化合物の溶液を添加混合する方法が挙げられる。この混合工程においては、例えば、常温で固体状の油性物質と常温で固体状の界面活性剤を加熱溶融する温度を、それらの物質の融点以上の温度に保持し、それらの物質が固体として析出しないように注意するのが好ましい。

次いで、得られた混合液に水および増粘剤を添加混合し、必要に応じて充填剤を添加混合して冷却する。この場合、増粘剤は水の添加後に添加するのが好ましい。しかし、この方法
にげんでいられるものではなく、増粘剤および必要に応じて添加される充填剤を水にあらかじめ溶解しておいてその水溶液として添加することもできる。なお、この水にはその他の水溶性物質、例えば、尿素や多価アルコールをあらかじめ溶解させておくこともできる。この場合の尿素の添加量は、全外用薬剤に対して、約5ないし20重量%、好ましくは約5ないし10重量%の範囲内で設定するのが好ましい。また、水は例えばリン酸緩衝液等によってpHを4.5ないし5.5の範囲に予め調節しておくのがよい。

前記のようにして得られたクリーム状の混合物からなる外用薬剤は、薬効成分化合物の水溶液または有機溶剤との溶液を2回に分けて油性物質と界面活性剤の溶融混合液中に添加し、第1回目の添加では攪拌せずにまたはゆっくりとした攪拌しながら添加混和し、第2回目の添加では激しく攪拌しながら添加混和すると、得られる製品の各成分は均一に混合されるようになり、それによって得られる製剤はその保存安定性が著しくすぐれたものになる。

本発明に係る病変組織治療用外用薬剤を溶液タイプのローションの形態で適用する場合、その外用薬剤は次のような成分組成を有しているのが好ましい。その外用薬剤の成分組成は、例えば、薬効成分化合物が約0.1ないし20重量%、好ましくは約3ないし10重量%、有機溶媒が約2ないし40重量%、好ましくは約10ないし30重量%、液状油性物質が約30重量%まで、好ましくは約20重量%まで、界面活性剤が約20重量%まで、好ましくは約7重量%まで、水が約80重量%まで、好ましくは約60重量%、増粘剤が約0.05ないし5重量%、好ましくは約0.2ないし1重量%からなっているのが好ましい。

前記外用薬剤は、薬効成分化合物を有機液体に溶解させて溶液とし、この溶液に対し、必要に応じて、液状油性物質、界面活性剤、溶媒および、または増粘剤を適宜添加することによって得ることができる。このローションタイプのものは、そのまま液体ローションとして適用し得る他、化気化ガス等の噴射剤とともにエアゾール缶に充填し、エアゾール型のローションとして使用することもできる。

本発明に係る外用薬剤は、剤型によって、1日数回、例えば1ないし3回、患部に直接塗布するか、もしくは噴霧するかして適用することができる。なお、適用回数は適用する疾患の重篤度または剤型により適宜増減することができる。

本発明の外用薬剤は、それに含まれる薬効成分化合物が安全性の高いものであり、しかも有機液体または有機固体中に溶解しているため、起炎性を示さず、すぐれた皮膚吸収性ないし粘膜吸収性を有し、高い治療効果を示すものである。
発明を実施するための最良の態様

実施例

次に、本発明を実施例によりさらに詳細に説明する。

実施例１

タンニン酸100 g、亜硫酸水素ナトリウム 20 gおよびグリセリン 100 ml を混合して、得られた混合物を加熱後、乳鉢に入れて磨り潰して粉末にした。

これとは別に、硫酸アルミニウムカリウム 20 g、リドカイン 20 g、亜麻 20 gを乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものを集めた。

このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この得られた混合物を溶融した後、ワセリンを全量が1000 g になるまで添加して軟膏を得た。この軟膏をチューブに充填して保存した。

実施例２

タンニン酸 100 g、亜硫酸水素ナトリウム 20 g およびグリセリン 10 ml を混合して、得られた混合物を加熱後、乳鉢に入れて磨り潰して粉末にした。

これとは別に、硫酸アルミニウムカリウム 20 g、プロカイン 20 g、亜麻 20 gを乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものを集めた。

このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この得られた混合物を溶融した後、ワセリンを全量が1000 g になるまで添加して軟膏を得た。この軟膏をチューブに充填して保存した。

実施例３

タンニン酸 100 g、亜硫酸水素ナトリウム 20 g およびグリセリン 100 ml を混合して、得られた混合物を加熱後、乳鉢に入れて磨り潰して粉末にした。

これとは別に、硫酸アルミニウムカリウム 20 g、ベニシリン 1 g、亜麻 20 gを乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものを集めた。

このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この得られた混合物を溶融した後、ワセリンを全量が1000 g になるまで添加して軟膏を得た。この軟膏をチューブに充填して保存した。

実施例４

タンニン酸 100 g、亜硫酸水素ナトリウム 20 g およびグリセリン 100 ml を混合して、得られた混合物を加熱後、乳鉢に入れて磨り潰して粉末にした。
これとは別に、硫酸アルミニウムカリウム 20 g、プレドニゾロン 20 g、亜硝酸20 gを乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものをを集めた。
このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この得られた混合物を溶融した後、ワセリンを全量が 1000 g になるまで添加して軟膏を得た。この軟膏をチューブに充填して保存した。

実施例 5
タンニン酸 100 g、亜硝酸水素ナトリウム 20 g およびグリセリン 100 ml を混合して、得られた混合物を加熱後、乳鉢に入れて磨り潰して粉末にした。
これとは別に、硫酸アルミニウムカリウム 20 g、イププロフェン 10g、亜硝酸20 gを乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものをを集めた。
このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この得られた混合物を溶融した後、ワセリンを全量が 1000 g になるまで添加して軟膏を得た。この軟膏をチューブに充填して保存した。

実施例 6
タンニン酸 100 g、亜硝酸水素ナトリウム 20 g およびグリセリン 100 ml を混合して、得られた混合物を加熱後、乳鉢に入れて磨り潰して粉末にした。
これとは別に、硫酸アルミニウムカリウム 30 g および亜硝酸 30 gを乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものをを集めた。
このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この得られた混合物を溶融した後、ワセリンを全量が 1000 g になるまで添加して軟膏を得た。この軟膏をチューブに充填して保存した。

実施例 7
タンニン酸 100 g、亜硝酸水素ナトリウム 20 g およびグリセリン 100 ml からなる混合物を加熱後、乳鉢で磨り潰して粉末にした。同様に、硫酸アルミニウムカリウム 20g、リドカイン 20 g、亜硝酸20 gを乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものをを集めた。これらの粉末を合わせて均一になるまで十分に混合した。
この粉末混合物を、ペヘニアルコール 30 g、炭酸プロピレン 30 g、オリーブ油 100 g、アジピン酸ジブチル 10 g、ミリステレン酸イソプロピル 30 g、ミリステレン酸イソトリデシル 30 g、バラミチン酸セチル 40 g、ステアリン酸 30 g、ステアリン酸ポリオキシエチレン(5)グリセリル 30 g、モノステアリン酸ポリオキシエチレングリコール 30 g、オキシエチレン
(2)セチルエーテル 10 g からなる混合物に添加し、得られた混合物を 82 ℃以上に加温し溶解して均一な溶液を得た。
更に、ジイソプロパノールアミン 20 g、イソブレングリコール 50 g、パラアミノ安息香酸プロピルエステル 1 g、パラアミノ安息香酸メチルエステル 1 g からなる混合液を約 450 ml の精製水に加え、80 ℃に加温して均一に分散させて分散液を得た。この分散液を 80 ℃で激しく攪拌しながら、上記溶液を少しずつ添加して乳化液を得た。添加完了後、加温を停止し、室温で攪拌しながら 60〜55 ℃になるまで放冷した。続いて、精製水を加えて全体を 1 kg とした。得られた粗製物を室温で放置して脱泡させた後、クリーム用容器に充填した。
実施例 8
タンニン酸 100 g、亜硫酸水素ナトリウム 20 g およびグリセリン 100 ml からなる混合物を加熱後、乳鉢で磨り潰して粉末にした。同様に、硫酸アルミニウムカリウム 20 g、リドカイン 20 g、亜鉛 20 g を乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものを集めた。これらの粉末を合わせて均一になるまで混合した。
この粉末を、オリーブ油 100 g、鯨油 50 g、ベヘニアルコール 30 g、ミリスチン酸イソプロピル 30 g、ミリスチン酸イソトリデシル 30 g、ステアリン酸ポリオキシエチレンポリオキシエチレン 30 g、モノステアリン酸ポリエチレングリコール 30 g、ポリオキシエチレン(2)セチルエーテル 10 g からなる混合物に添加した後、この混合物を 82 ℃以上に加温し溶解して均一な溶液を得た。
更に、ジイソプロパノールアミン 20 g、ステアリン酸 30 g、パラアミノ安息香酸プロピルエステル 1 g、パラアミノ安息香酸メチルエステル 1 g、イソブレングリコール 50 g からなる混合液を作成し、この混合液を約 450 ml の精製水に加えた。得られた混合液を 80 ℃に加温して均一に分散させて分散液を得た。この分散液を 80 ℃に維持し、激しく攪拌しながら上記溶液を少しずつこの分散液に添加して乳化させて乳化液を得た。添加終了後、加温を停止して、室温で攪拌しながら 60〜55 ℃に冷却した。次いで、この乳化液に精製水を加えて全体を 1 kg とした。これを放置して、脱泡後クリーム用容器に充填してクリームを得た。
実施例 9
タンニン酸 50 g、亜硫酸水素ナトリウム 50 g、グリセリン 100 ml からなる混合物を加熱後、乳鉢で磨り潰して粉末にした。他方、硫酸アルミニウムカリウム 20 g、リドカイン 20 g、ワセリン 200 g を乳鉢で磨り潰して粉末とした、篩に掛けて一定の粒度の粉末を集めた。
これらの粉末を合わせて均一に混合した。
この混合物に、オリーブ油 100 g、ベヘニアルコール 30 g、炭酸プロピレン30 g、アジピン酸ジブチル 10 g、ミリスチン酸イソプロピル 30 g、ミリスチン酸イソトリデシル 30 g、パルミチン酸セチル 40 g、ステアリン酸 30 g、ステアリン酸ポリオキシエチレン(5)グリセリル 30 g、モノステアリン酸ポリエチレングリコール 30 g、ポリオキシエチレン(2)セチルエーテル 10 g からなる混合物を添加し、82 ℃以上に加温し溶解して溶液を得た。
更に、ジイソプロパノールアミン 20 g、イソブレングリコール 50 g、パラアミノ安息香酸プロピルエステル 1 g、パラアミノ安息香酸メチルエステル 1 g を混合し、得られた混合物を約450 ml の精製水に添加した。この混合物を80 ℃に加温して均一に分散した分散液を得た。この分散液を80 ℃に維持し、激しく攪拌しながら溶液を少しずつ加えて乳化させた。乳化終了後、加温を停止し、室温で攪拌しながら60〜55 ℃に冷やした。次いで、この乳化液に精製水を加え、全体を 1 kgとした。この乳化液を放置して、脱泡後にクリーム用容器に充填してクリームを得た。
実施例 1
タンニン酸 200 g、亜硫酸水素ナトリウム 70 g、グリセリン 200 ml からなる混合物を加熱後、乳鉢で磨り潰して粉末にした。他方、硫酸アルミニウムカリウム30 g、リドカイン 20 g、ワセリン 200 g を乳鉢で磨り潰して粉末とし、筋に掛けて一定の粒度の粉末を集めた。
これらの粉末を均一に混合した。
この混合物を、セタノール 40 g、スクワレン 60 g、ポリエチレングリコール—400 50 g、ミリスチン酸イソプロピル 60 g、ステアリン酸ポリオキシエチレン(5)グリセリル 120 g、モノステアリン酸ソルビタン 20 g、ポリオキシエチレン(2)セチルエーテル 20 g からなる混合物に添加し、得られた混合物を82 ℃以上に加温して均一な溶液にし、この温度に保温した。
これとは別個に、プロピレングリコール 30 g、ブチレングリコール 20 g、ジイソプロパノールアミン 20 g、カルボキシビニルポリマー 10 g、パラアミノ安息香酸メチルエステル 1 g、パラアミノ安息香酸プロピルエステル 1 g、塩酸テトラサイクリン 20 g を均一に混合して、得られた混合物を精製水400 ml に加えた後、80 ℃に加温して溶解した。
上述したように82 ℃以上に保温した溶液に、別個に調製された溶液を激しく攪拌しながら少しずつ添加し、油中水型の乳化物を得た。添加完了後、加温を停止し、室温で攪拌しながら60〜55 ℃に冷やし、精製水を加えて全体の重量を 1 kg とした。この乳化液を放置して
脱泡させた後、クリーム用容器に充填してクリームを調製した。

実施例1．1

タンニン酸 100 g、亜硫酸水素ナトリウム 20 g およびグリセリーン 100 ml を混合して、
得られた混合物を加熱後、乳鉱に入れて研磨しして粉末にした。これとは別に、硫酸アルミ
ニウムカリウム 20 g、リドカイン 20 g、亜鉛 20 gを乳鉱で研磨しして粉末とし、砕に掛けて
一定の粒度のものを集めた。このようにして得られた両方の粉末を合わせて均一になるま
で十分に混合した。

この混合物に、ペンソールアルコール 30 g、ステアリン酸 30 g、イソステアリン酸 60
g、ミリスタリン酸イソプロピル 20 g、ミリスタリン酸イソトリデシル 20 g、パルミチン酸セチ
ル 30 g、ステアリン酸ポリオキシエチレン(5)グリセリール 30 g、モノステアリン酸ポリオキシエ
チレングリコール 30 g、ポリオキシエチレン(2)セチルエーテル 10 g、オリーブ油 80 gから
なる混合物を添加し、得られた混合物を82
℃以上に加温し溶解して均一な溶液を得た。

別に、ジソプロパノールアミン 20 g、イソプレングリコール 50 g、パラアミノ安息香
酸プロピルエステル 1 g、パラアミノ安息香酸メチルエステル 1 g を混合して、この混合物
を約450 mlの精製水に添加した。得られた混合物を80 ℃に加温して均一な分散液を得た。

この分散液を80 ℃に維持しながら、この分散液を激しく摂拌しながら上記溶液を少しずつ添
加して乳化液を得た。添加完了後、加温を停止し、室温で摂拌しながら60〜55 ℃に放冷した
後、精製水を加えて乳化液の総重量を 1 kg とした。この乳化液を室温に放置して脱泡させ
た後、クリーム用容器に充填してクリームを得た。

実施例1．2

タンニン酸 200 g、亜硫酸水素ナトリウム 70 g、グリセリール 200 ml からなる混合物を加
熱後、乳鉱で研磨しして粉末にした。他方、硫酸アルミニウムカリウム30 g、リドカイン 2
0 g、ワセリン 200 g を乳鉱で研磨しして粉末とし、砕に掛けて一定の粒度の粉末を集めた。
これらも粉末を均一に混合した。

この粉末混合物に、炭酸プロピレン 10 g、セタノール 40 g、スクレレン 60 g、ミリスタリ
ン酸イソプロピル 60 g、ステアリン酸ポリオキシエチレン(5)グリセリール30 g、モノステアリ
ン酸ポリオキシエチレングリコール(40EO) 30 g、モノステアリン酸ソルビタン20 g を混合して、
得られた混合物を82 ℃以上に加温して溶解し均一な溶液を得た。この溶液の温度を82 ℃に
保温した。
これとは別に、ジイソプロピロノールアミン 20 g、ブロビレングリコール 50 g、カルボキシピニルポリマー 10 g、パラアミノ安息香酸プロピルエステル 1 g、パラアミノ安息香酸メチルエステル 1 g を混合し、得られた混合物を 450 ml の精製水に加え、この混合物を 80 ℃に加温し溶解して均一な溶液を得た。

別に調製した溶液を 80 ℃に保ちながら激しく攪拌しつつ、上記溶液を少しずつ加えて乳化した。添加終了後、加温を停止し、室温で攪拌しながら 60-55 ℃になるまで放冷した後、精製水を加えて全体の重量を 1 kg にした。これを室温に放置して脱泡しの後、クリーム用容器に充填した。

実施例 1-3

タンニン酸 50 g、亜硫酸水素ナトリウム 50 g、グリセリン 100 ml からなる混合物を加熱後、乳鉢で磨り潰して粉末にした。他方、硫酸アルミニウムカリウム 20 g、リドカイン 20 g、ワセリン 200 g を乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度の粉末を集めた。これらの粉末を合わせて均一に混合した。

この粉末混合物に、ステアリルアルコール 50 g、白色ワセリン 300 g、ポリオキシエチレン硬化ヒマシ油 40 g、モノステアリン酸グリセリン 10 g を添加して 83 ℃に加温して溶解し溶液を得た。

更に、ブロビレングリコール 120 g、パラアミノ安息香酸メチルエステル 1 g、パラアミノ安息香酸プロピルエステル 1 g を混合して、得られた混合物を約 350 ml の精製水に添加して加温し溶解して溶液を得た。この溶液を、激しく攪拌しながら 80 ℃に維持した上記溶液に少しずつ添加して油中水型の乳化液を得た。添加終了後、加温を停止し、室温で攪拌しながら 60-55 ℃に放冷した後、精製水を加えて、乳化液全体の重量を 1 kg にした。これを室温に放置して脱泡しの後、クリーム用容器に充填してクリームを調製した。

実施例 1-4

タンニン酸 50 g、亜硫酸水素ナトリウム 50 g、グリセリン 100 ml からなる混合物を加熱後、乳鉢で磨り潰して粉末にした。他方、硫酸アルミニウムカリウム 20 g、リドカイン 20 g、ワセリン 200 g を乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度の粉末を集めた。これらの粉末を合わせて均一に混合した。

この粉末混合物に、ベヘニュアルコール 30 g、炭酸プロピレン 30 g、オリーブ油 100 g、アジピン酸ジブチル 10 g、ミリスチン酸イソプロピル 30 g、ミリスチン酸イソトリデシル 30 g、パルミチン酸セチル 40 g、ステアリン酸 30 g、ステアリン酸ポリオキシエチレン
(5) グリセリン 30 g、モノステアリン酸ポリエチレングリコール 30 g、ポリオキシエチレン
(2) セテルエーテル 10 g からなる混合物を添加して、82 ℃以上に加温して溶解し、均一な
溶液を得た。

更に、ジソプロパノールアミン 20 g、イソブレングリコール 50 g、パラアミノ安息香
酸メチルエステル 1 g、パラアミノ安息香酸プロピルエステル 1 g を均一に混合して、得ら
れた混合物を約 450 ml の精製水に加えた後、80 ℃に加温して均一な分散液を得た。この分
散液を 80 ℃に加温し続けて、これを激しく摂拌しながら上記溶液を少量ずつ加えて乳化した。
上記溶液を添加した後、加温を停止し、室温で摂拌しながら 60～55 ℃に放冷した。次いで、
この乳化液に 60～55 ℃で精製水を加え、乳化液の全体重量を 1 kg にした。これを室温で放置し
て脱泡した後、クリーム用容器に充填した。

実施例 1.5

タンニン酸 100 g、亜硫酸水素ナトリウム 20 g およびグリセリン 100 ml からなる混合物
を加熱後、乳鉢で精製水を用いて粉末にした。同様に、硫酸アルミニウムカリ 20 g、リドカイン
20 g、亜硝酸 20 g を乳鉢で精製水を用いて粉末とし、これらをて一定の粒度のものを混ぜた。こ
これらの粉末を合わせて均一になるまで混合した。

この粉末混合物に、ベヘニルアルコール 30 g、オリーブ油 100 g、鰹汁 50 g、ミリス
チン酸イソプロピル 30 g、ミリスチン酸イソトリデシル 30 g、ステアリン酸ポリオキシエ
チレン(5) グリセリン 30 g、モノステアリン酸ポリエチレングリコール 30 g、ポリオキシエ
チレン(2) セテルエーテル 10 g からなる混合物を添加して均一になるまで混合して、82 ℃
以上に加温し溶解して均一な溶液を得た。

これとは別に、ジソプロパノールアミン 20 g、イソブレングリコール 50 g、ステアリ
ン酸 30 g、パラアミノ安息香酸プロピルエステル 1 g、パラアミノ安息香酸メチルエステル
1 g を均一に混合し、この混合物を約 450 ml の精製水に添加し、80 ℃に加温して均一な分
散液を得た。

この分散液を 80 ℃に維持し、激しく摂拌しながら上記溶液を少量ずつ添加して乳化させた。
添加終了後、加温を停止し、得られた乳化液を 60～55 ℃になるまで室温で摂拌した。次いで、
この乳化液に精製水を加え、全体の重量を 1 kg にした。これを室温で放置して脱泡した後、
クリーム用容器に充填してクリームを調製した。

実施例 1.6

タンニン酸 150 g、亜硫酸水素ナトリウム 80 g、グリセリン 200 ml からなる混合物を加
熱後、乳鉢で磨り潰して粉末にした。他方、硫酸アルミニウムカリウム50 g、リドカイン 30 g、ワセリン 300 g を乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度の粉末を集めた。これらの粉末を合わせて均一に混合した。

この粉末混合物に、オリーブ油 80 g、ベヘニルアルコール 30 g、ポリエチレングリコール（分子量400）10 g、ミリスチン酸モノプロピル 30 g、ミリスチン酸イソトリデシル 30 g、パルミチン酸セチル 70 g、ステアリン酸ポリオキシエチレングリコール（5）グリセリル30 g、モノステアリン酸ポリエチレングリコール 20 g、モノステアリン酸ソルビタン20 g からなる混合物を添加して均一に混合した。得られた混合物を82 ℃ 以上に加温して溶解し均一な溶液を得た。

更に、ジイソプロパノールアミン 20 g、ブチレングリコール 20 g、イソブレングリコール 30 g、カルボキシピロリマー 5 g、ステアリン酸 40 g、バラアミノ安息香酸プロピル 1 g、バラアミノ安息香酸メチル 1 g を混合し、得られた混合物を約500ml の精製水に添加した後80 ℃ に加温して均一な分散液を得た。

この分散液を80 ℃ に維持して、激しく攪拌しながら上記溶液を少しずつ添加して乳化させた。散加温終了後、得られた乳化液の加温を停止し、室温で攪拌しながら60—55 ℃ に冷やした。ついで、この乳化液に精製水を加えて全体の重量を 1 kg にした。これを室温に放置して脱泡させた後、クリーム用容器に充填してクリームを調製した。

実施例 17

タンニン酸 50 g、亜硫酸水素ナトリウム 50 g、グリセリン 100 ml からなる混合物を加熱後、乳鉢で磨り潰して粉末にした。これとは別に、硫酸アルミニウムカリウム 20 g、リドカイン 20 g、ワセリン 200 g を乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度の粉末を集めた。これらの粉末を合わせて均一に混合した。

白色ワセリン 15 g、セタノール 5 g、ステアリルアルコール 5 g、スクワラン3 g、ポリオキシエチレングリコールセチルアルコール 2 g、メチルパラベン 0.2 g を 80 ℃ に加熱し、均一に攪拌しながら溶解する。この溶液と同じ温度に加温した精製水55 g を加え、ホモジナイザーで攪拌して乳化した。この乳化液に、上記のように調製した薬効成分化合物の均一混合物の溶液を約45 ℃ に加温したものに添加して、更に攪拌しクリーム剤を得た。

実施例 18

上記実施例 17 と同様にして、白色ワセリン 15 g、セタノール 5 g、ステアリルアルコール 5 g、ポリオキシエチレングリコールセチルアルコール 2 g、流動パラフィン 2g からなるクリーム
基剤を調製した。この基剤に、上記実施例 17 と同様にして調製した薬効成分化合物の溶液を添加してクリーム剤を得た。

実施例 19

タンニン酸 200 g および亜硫酸水素ナトリウム 40 g を乳鉢で細かく磨り潰して粉末にした。

これとは別に、硫酸アルミニウムカリウム 100 g、リドカイン 40 g および電脳 40 g を乳鉢で磨り潰して粉末とし、箇に掛けて一定の粒度のものを集めた。

このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この混合物を更に細かく粉砕してよく混合した後、これに溶融した香果脂を全量が 2000 g になるように添加し、得られた配合物を摺拌して混合物を十分に溶融した。これをお座薬用型コンテナーに入れて座薬製剤を作製した。なお、座薬製剤 1 個の重量は 2 g とした。その座薬製剤 1 個中には、タンニン酸 0.2 g、硫酸アルミニウムカリウム 0.1 g、リドカイン 0.04g および電脳 0.04g が含まれている。

実施例 20

タンニン酸 100 g および亜硫酸水素ナトリウム 20 g を乳鉢で細かく磨り潰して粉末にした。

これとは別に、硫酸アルミニウムカリウム 50 g、リドカイン 20 g および電脳 20 g を乳鉢で磨り潰して粉末とし、箇に掛けて一定の粒度のものを集めた。

このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この混合物を更に細かく粉砕してよく混合した後、これに溶融したカカオ脂を全量が 1000 g になるように添加し、得られた配合物を摺拌して混合物を十分に溶融した。これを座薬用コンテナーに入れて座薬製剤を作製した。なお、座薬製剤 1 個の重量は 1.5 g とした。その座薬 1 個中には、タンニン酸 0.15 g、硫酸アルミニウムカリウム 0.075 g、リドカイン 0.03 g および電脳 0.03 g が含まれている。

実施例 21

タンニン酸 200g、亜硫酸水素ナトリウム 20 g およびグリセリン 100 ml を混ぜて、得られた混合物を加熱した後、乳鉢に入れて細かく磨り潰して粉末にした。

これとは別に、硫酸アルミニウムカリウム 20 g、リドカイン 40 g、ペニシリン 1 g、電脳 20 g を乳鉢で磨り潰して粉末とし、箇に掛けて一定の粒度のものを集めた。

このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この得ら
れた混合物を溶融した後、ウィテップソールを全量が 1000 g になるまで添加して得られた混合物を均一に混合した。この混合物を、2 g づつ座薬用カプセルに充填した。

実施例 2-2

タンニン酸 100 g および亜硫酸水素ナトリウム 20 g を混合して、得られた混合物を加熱した後、乳鉢に入れて磨り潰して粉末にした。

これとは別に、硫酸アルミニウムカリウム 20 g、塩酸ジブカイン 40 g、プレドニゾロン 20 g、亜硫酸水素ナトリウム 20 g を乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものを集めた。

このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。この得られた混合物を溶融した後、ワセリンを全量が 1000 g になるまで添加して得られた混合物を座薬の形状にして冷却した。

実施例 2-3

タンニン酸 100 g、亜硫酸水素ナトリウム 20 g およびグリセリン 100 ml を混合して、得られた混合物を加熱後、乳鉢に入れて磨り潰して粉末にした。

これとは別に、硫酸アルミニウムカリウム 20 g、ポリオキシエチレンソルビタンモノオレエート 40 g、ラウリン酸ナトリウムならびにラウリン酸トリグリセリド 55 g および塩酸リドカイン 20 g を乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものを集めた。

このようにして得られた両方の粉末を合わせて 70 ℃ に加温しながら均一になるまで十分に混合した後、更にホモジナイザーで均一に分散させた。この得られた混合物を 200 メッシュの篩に掛けて、得られた混合物をカプセルに充填してゼラチンソフトカプセルを得た。このゼラチンソフトカプセルには、上記混合物を 2 g づつ充填した。

実施例 2-4

タンニン酸 100 g および亜硫酸水素ナトリウム 20 g を乳鉢に入れて細かく磨り潰して粉末に均一になるまで混合した。また、硫酸アルミニウムカリウム 30 g、塩酸ジブカイン 20 g および次硝酸ビスマス 20 g を乳鉢で磨り潰して粉末とし、篩に掛けて一定の粒度のものを集めた。このようにして得られた両方の粉末を合わせて均一になるまで十分に混合した。

これとは別に、ウィテップソールを 40 ℃ で溶解させた後、これにカプリル酸ナトリウムを添加して十分に混合して、互いを均一に分散させた。このようにして得られた混合物を、上記に製製した粉末の混合物に添加した。この混合物を座剤用コンテナーに充填した。

実施例 2-5

カプリル酸ナトリウムの代わりにカプリン酸ナトリウムを用いて、実施例 2-4 と同様にし
座剤を作製した。
実施例 26
カプリル酸ナトリウムを代わりにラウリン酸ナトリウムを用いて、実施例 24 と同様にして座剤を作製した。
請求の範囲

1. タンニン酸と硫酸アルミニウムカリウムからなる薬効成分化合物と、外用薬剤基剤成分からなることを特徴とする病変組織治療用外用薬剤。

2. 請求項1に記載の病変組織治調用外用薬剤において、高記薬効成分化合物が、外用薬剤基剤成分に対して、0.1重量％から30重量％までの範囲の割合で含有されていること。

3. 請求項1または2に記載の病変組織治調用外用薬剤において、前記タンニン酸が、前記硫酸アルミニウムカリウムに対して、10重量％ないし90重量％の割合で含有されていること。

4. 請求項1ないし3のいずれか1項に記載の病変組織治調用外用薬剤において、前記外用薬剤用基剤成分が、前記薬効成分化合物を可溶化できる液体基剤、有機固体、油性物質または界面活性剤であること。

5. 請求項1ないし4のいずれか1項に記載の病変組織治調用外用薬剤において、前記外用薬剤が軟膏、クリーム、ローション、スプレーまたは座薬の形態であること。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl^6 A61K31/70, 33/06, 9/06, 9/08, 9/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl^6 A61K31/70, 33/06, 9/06, 9/08, 9/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

[X] Further documents are listed in the continuation of Box C. [] See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search: May 28, 1997 (28.05.97)

Date of mailing of the international search report: June 10, 1997 (10.06.97)

Name and mailing address of the ISA/

Japanese Patent Office

Facsimile No.

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, 4265883, A (Mable R. Cameron), May 5, 1981 (05. 05. 81)</td>
<td>1 - 5</td>
</tr>
<tr>
<td>Y</td>
<td>US, 2613498, A (Frank Crosby), September 23, 1986 (23. 09. 86)</td>
<td>1 - 5</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int.Cl. A61K31/70, 33/06, 9/06, 9/08, 9/12

B. 調査を行った分野
調査を行った最小限資料 (国際特許分類 (IPC))
Int.Cl. A61K31/70, 33/06, 9/06, 9/08, 9/12

最小限資料以外の資料で調査を行った分野に含まれるもの

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>ページ</th>
<th>関連する文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Chem. Abstr., Vol.122, 1995(Columbus,OH,USA), the abstract No.274073, ZUB, Kairen, 'Pharmaceutical lotions for hemorrhoid treatment' & CN, 1092990, A</td>
<td>1-5</td>
</tr>
</tbody>
</table>

C欄の続きにも文献が列挙されている。

*引用文献のカテゴリー
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」先行文献であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確定するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日以前、かつ優先権の主張の基礎となる出願の日の後に公表された文献
「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するものです
「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進步性がないと考えられるもの
「&」同一パテントファミリー文献

国際出願番号 PCT/JP97/00454

国際出願報告

国際調査報告

国際調査報告の送付日 10.06.97

国際調査機関の名称及び住所
日本国特許庁（JPA／JP）
郵便番号100
東京都千代田区霞ヶ関三丁目4番3号

特許庁審査官（権限のある職員）
4C 9284

電話番号 03-3581-1101 内線 3453

様式PCT／ISA／210 (第2ページ) (1992年7月)
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, 4265883, A (Mable R. CAMERON) 05.05.81</td>
<td>1-5</td>
</tr>
<tr>
<td>Y</td>
<td>US, 2613498, A (Frank CROSBY) 23.09.86</td>
<td>1-5</td>
</tr>
<tr>
<td>Y</td>
<td>Chem. Abstr., Vol.122, 1995(Colombus,OH,USA), the abstract No.17028, HUANG, Yuming et al. 'Preparation of hemorrhoid medicines' & CN, 1092655, A</td>
<td>1-5</td>
</tr>
</tbody>
</table>