wo 2015/183738 A1 [N 00 0O RO O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2015/183738 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Filing Date:
22 May 2015 (22.05.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/004,406 29 May 2014 (29.05.2014) US
14/470,501 27 August 2014 (27.08.2014) US

Applicant: AB INITIO TECHNOLOGY LLC [US/US];
201 Spring Street, Lexington, Massachusetts 02421 (US).

Inventors: WOLFSON, Harry Michael; 36 Melrose
Street, Arlington, MA 02474 (US). GOULD, Joel; 27 Lee
Terrace, Arlington, Massachusetts 02474 (US). YERA-
CARIS, Anthony; 67 Wildwood Avenue, Newton, Mas-
sachusetts 02460 (US). WAKELING, Tim; 11 Abbot
Street, Andover, Massachusetts 01810 (US).

Agents: FEIGENBAUM, David L. et al.; Fish & Richard-
son P.C., P.O. Box 1022, Minneapolis, Minnesota 55440-
1022 (US).

3 December 2015 (03.12.2015) WIPOIPCT
International Patent Classification: (81)
GO6F 9/50 (2006.01)

International Application Number:
PCT/US2015/032193

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: WORKLOAD AUTOMATION AND DATA LINEAGE ANALYSIS

Job Psi
102

1001
1081

Select us.orter,
us.order_amount from
ne_production

Script Gommand 1
106 l

Database

Predecessors: Script
Command 1
Successors: FTR

112

File Watch

1041

Jab Type: OS
Job Name: Seript Command 1
File Path: cdata

File Name: script1.bat
Run As: batchuser
Status: Pending
Number of Runs: XXXX

Sucessors:
database
filewatch

Seript

Var

Del c\datatinile. dat

Copy ciistagetinfile.dat c:\datetinfile.dat

File: Brazil Feed.dal
Location: server.com

114
FTP ’ L‘ Execute }<

Program Name: TransfarmA exe

<

120 116

Completion

Monitor

¢

118

FIG. 1

(57) Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for workload
automation and job scheduling information. One of the methods includes obtaining job dependency information, the job dependency
information specitying an order of execution of a plurality of jobs. The method also includes obtaining data lineage information that
identifies dependency relationships between data stores and transformation, wherein at least one transformation accepts data from a
first data store and produces data for a second data store. The method also includes creating links between the job dependency in -
formation and the data lineage information. The method also includes determining an impact of a change in a planned execution of
an application of the plurality of applications based on the job dependency information, the created links, and the data lineage in-
formation.

10

15

20

25

WO 2015/183738 PCT/US2015/032193

WORKLOAD AUTOMATION AND DATA LINEAGE ANALYSIS

PRIORITY APPLICATIONS

This application claims priority to U.S. Provisional Application Serial No.
62/004,406, filed on May 29, 2014, entitled “WORKLOAD AUTOMATION AND
DATA LINEAGE ANALYSIS,” and to U.S. Utility Application Serial No. 14/470,501,
filed on August 27, 2014, entitled “WORKLOAD AUTOMATION AND DATA
LINEAGE ANALYSIS,” the entire contents of both of which are hereby incorporated by

reference.

BACKGROUND

Workload automation generally refers to the process of setting up jobs so they can
be run to compiction without human interaction. All input parameter are predefined
through scripts, command line arguments, workflow automation systems, control files, or
job contro! languages. Jobs are scheduled based on available processing resources and
predefined dependencies.

3ata lincage describes a data'’s origing and where it moves and how it changes
over fime. This torm can alse deseribe what happens to data gs 1t goes through diverse
processes, Data Hneage can help with efforts to analvze how information is used and to

track koy bits of mformation that serve a particular purpose.

SUMMARY

In a general aspect 1, a method includes the action of obtaining job dependency
information, the job dependency information specifying an order of execution of a
plurality of jobs. The method also includes the action of obtaining data lineage
information that identifies dependency relationships between data stores and
transformation, wherein at least one transformation accepts data from a first data store
and produces data for a second data store. The method also includes the action of
creating links between the job dependency information and the data lineage information.

The method also includes the action of determining an impact of a change in a planned

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

execution of an application of the plurality of applications based on the job dependency
information, the created links, and the data lincage information.

Other embodiments of this aspect include corresponding computer systems,
apparatus, and computer programs recorded on one or more computer storage devices,
cach configured to perform the action of the methods. A system of one or more
computers can be configured to perform particular actions by virtue of having software,
firmware, hardware, or a combination of them installed on the system that in operation
causes the system to perform the actions. One or more computer programs can be
configured to perform particular actions by virtue of including instructions that, when
executed by data processing apparatus, cause the apparatus to perform the actions.

The methods include an aspect 2 according to aspect 1, where obtaining job
dependency information may include obtaining the scheduling information from a work
load repository associated with a workload automation system, transforming the
scheduling information, and storing the scheduling information in a data store, the data
store storing the data lineage. The methods include an aspect 3 according to aspects 1 or
2, wherein creating links includes identifying data sources referenced by the data lineage
information and the job dependency information. The methods include an aspect 4
according to aspects 1, 2, or 3, wherein identifying the data sources includes identifying a
data source referenced by the same name in the data lineage information and the job
dependency information. The methods include an aspect 5 according to aspects 1, 2, 3,
or 4, wherein identifying the data source includes identifying a data source using a
uniform resource locator. The methods include an aspect 6 according to aspects 1, 2, 3,
4, or 5, wherein identifying the data sources includes identifying a relational database
table using a database, table space, and a table name. The methods include an aspect 7
according to aspects 1, 2, 3, 4, 5, or 6, wherein creating links includes identifying
executable programs referenced by the job dependency information and the data lincage
information. The methods include an aspect 8 according to aspects 1, 2, 3,4, 5, 6, or 7,
wherein identifying the executable programs includes identifying an executable program
based at least in part on parameters provided to the executable program. The methods
include an aspect 9 according to aspects 1, 2, 3, 4, 5, 6, 7, or 8, wherein identifying the

executable programs includes identifying an executable program based on the location of

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

the executable program on a persistent data store. The methods include an aspect 10
according to aspects 1, 2, 3,4, 5, 6, 7, 8, or 9, wherein determining the impact includes
receiving a query the query identifying job scheduling data, identifying a link between
the job scheduling data and data lineage information, and identifying an impact to the
data lineage information based on the scheduling data.

Particular embodiments of the subject matter described in this specification can be
implemented so as to realize one or more of the following advantages. A holistic view of
the data processing system can be examined. Data lincage information that describes
data dependencies can be combined with workflow automation information that describes
scheduling dependencies. The impact of a change in either the data lineage or the job
scheduling information can be determined. This may help the developer or administrator
of technical processes to monitor and adjust workflows in a more efficient and less
disruptive manner. Overall, process failures, resource consumption, and data processing

duration can thereby each be reduced.

DESCRIPTION OF DRAWINGS

FIG. 1 is an exemplary scheduling diagram.

FIG. 2 is an exemplary data lincage diagram.

FIG. 3 is an exemplary system for integrating scheduling and data lineage
information.

FIG. 4 shows an example of a data processing system in which the data analysis
techniques can be used.

FIG. 5 is a flowchart of an exemplary process for identifying the impact of
changes to scheduling information.

FIG. 6 illustrates an example of interrelated dependency information and data

lineage information.

DESCRIPTION
Job dependency information and data lineage information can be combined to
provide a holistic view of the state of the enterprise. Traditionally, job dependency

information and data lineage information is fragmented across different information

10

15

20

25

WO 2015/183738 PCT/US2015/032193

systems and databases. Job dependency information describes an order that is established
between the execution of different jobs or tasks. Data lincage information describes how
data sources and sinks are related across the enterprise. A user may wish to answer
questions; such as if a particular job is going to be late or which reports or data sinks are
going to be affected. The system described herein integrates these disparate data sources.

Job dependency information may be obtained from workload automation or job
scheduling programs. Workload automation or job scheduling programs coordinate
varied sets of workload types with complex dependencies. In general, job dependency
information defines the order in which different tasks are to be executed. Application
scheduling typically does not take data dependency into account; it is not, per se, data
aware. Application scheduling merely dictates an order in which different tasks may
execute. This ordering may be based on data dependency, but may also be based on
resource allocation, total execution time, and optimized for other efficiencies. The tasks
in a workload automation system may include data flow graphs, java programs, file
transfer commands, business suite software integration, web service access, messaging,
or any other executable process. A user may wish to determine the impact of a change to
the schedule if, for example, a job is late. Workload automation systems are limited in
their capacity to view details that are defined within the system.

In contrast, data lineage information identifies the order in which data is
processed by the system. In general data lineage information describes a data life cycle
that includes the data's origins and where the data moves or how it is transformed during
the data processing applications. Data lincage information describes what happens to
data as it is transformed by diverse processes. In general, analysis of data lineage
information is used to identify how information is used and to track key pieces of
information that serve a particular purpose. By integrating job dependency information
into a data lineage repository a more robust view of a processes and data can be
developed.

By integrating job dependency information into a data lineage repository, a more

robust view of a processes and data can be developed.

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

Job dependency information can be extracted from a workload automation tool
and data lincage information can be extracted from a data lineage tool. The information
can be combined together and stored in a common repository for subsequent access.

FIG. 1 is an exemplary scheduling diagram 100 for job “Psi.” The scheduling
diagram 100 is an example of a scheduling operation in a workload automation system.
The scheduling diagram illustrates the job dependencies between the jobs. In most
implementations, more complex diagrams with larger interrelationships between
components are present. The current scheduling diagram 100 is used for exemplary
purposes. Jobs are defined in a hierarchical order with predecessor jobs being required to
complete before successor jobs can begin. In this diagram, jobs are connected by
directed arrows. The arrows point from predecessor jobs to successor jobs. For example,
the “Script Command 17 job 102 must complete before the “Database” job 106 or the
“File Watch” job 110 can begin. Similarly, the “Database” job 106 and the “File Watch”
job 110 must complete before the “FTP” job 112 may begin. The “Execute” job 114 may
begin after the “File Watch” job 110 completes. Finally, the “Completion Monitor” job
116 can execute only after the “FTP” job 112 and the “Execute” job 114 complete.

The workload automation system collects information about the different jobs.
For example, the “Script Command 17 job 102 has attributes 104 that define and describe
the job. In this example, the attributes 104 include a job type, indicating the kind of job
to be executed; job name, providing a name of the job; file path, defining the location of
the script; file name, indicating the name of the script to be executed; run as, indicating
the name of the user who should execute the script; status, indicating the current state of
the job (for example pending, executing, completed, failed); successors, indicating jobs
that can only execute after the current job is completed; and script, which defines the
steps to be executed.

Other types of jobs may include different attributes. For example, the “Database”
job 106 has attributes 108. These attributes include, but are not limited to, a SQL
command (here “select us.order, us.order amount from ne_production”); a list of
predecessor jobs (here Script Command 1); and a list of successor jobs (here FTP).

Similarly the “Execute” job 114 may include a parameter 118 that identifies the
name of the program to be executed for example “TransformA.exe.” The “FTP” job 112

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

may include parameters 120 that identify the file and destination of the file transfer
operation. For example, the parameters 120 identify that the Brazil Feed.dat file is to be
transferred to server.com. The parameters identified herein are exemplary only. Other
parameters may be defined and included by the job scheduling information.

The workload automation system may schedule job Psi with respect to other jobs,
not shown. For example, job Psi may be scheduled to take place after job Zeta (or some
other job, not shown). A workload automation system may determine the schedule
between jobs based on resource management, reporting dependencies, available time,
priority, or other constraints.

FIG. 2 is an exemplary data lincage diagram 200. Data lincage is generally
defined as a data life cycle that includes the data's origins and where it moves and how it
is transformed and processed. This term can also describe what happens to data as it goes
through diverse processes. Data lineage can help with efforts to analyze how information
is used and to track key bits of information that serve a particular purpose. In general, a
data lincage diagram is a diagram that illustrates relationships between data sources, data
sinks, and transforms. Each transform can include one or more data sources (e.g., input
data) and produces data for one or more data sinks (e.g., output data). Each data source,
data sink, and transform in the data lincage information will be collectively referred to
herein as data lineage elements.

In this example, a data source “U.S. Feed” 202 provides data to a “Transform A”
204 transform. The Transform A 204 performs operations on the data provided by the
“U.S. Feed” 202 and stores the result in the “Intermediate Dataset 17 206 data store.
Data sources “Mexico Feed” 208 and “Brazil Feed” 214 provide data to a “Transform C”
210 transform. The “Transform C” 210 transform performs operations on the data
provided by the “Mexico Feed” 208 and the “Brazil Feed” 214 and stores the result in an
“Intermediate Dataset 2” 212 data store. The data sources may be, for example, flat files,
relational databases, object databases, or any other mechanism for storing data in a
computer system. For example, the “Brazil Feed” 214 may be a file such as “Brazil
Feed.dat”. Transforms may be an executable program that can manipulate data. For

example, a java program executed within a virtual machine, an executable, a data flow

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

graph, etc. For example, the “Transform A” 204 transform may be an executable named
“TransformA.exe.”

The “Intermediate Dataset 17 206 data store and the “Intermediate Dataset 27 212
data store provide data to the “Transform B” 216 transform. The “Transform B” 216
transform uses the data provided from the “Intermediate Dataset 1 206 and the
“Intermediate dataset 2”” 212 stores the result in “Output Report” 218 data store.

Information stored in the data lincage can identify how different pieces of data
affect other pieces of data. For example, the “U.S. Feed” data source may include orders
and an amount per order. “Transform A” 204 may aggregate the data based on region;
for example, by orders placed in New England, the Atlantic States, the South, The Mid-
West, the Plains States, etc. The data linecage information could identity that the amount
field from the “U.S. Feed” 202 is aggregated into a “Regional Total” field in the
“Intermediate Dataset 1 206.

There is some information that can only be derived by combining scheduling data
with data lineage data. For example, if the “database job” 106 of FIG. 1 generates the
“U.S. Feed” 202 of FIG. 2, then if the job 106 is late or fails to execute, then the output
report 218 will be late or incorrect. Without viewing both data lineage information and
the job scheduling information these relationships cannot be derived. Further the
relationships can become more complex, because, referring to the above example, if “Job
Zeta” (described above as preceding job Psi) is late, then the output report 218 may be
late or incorrect.

FIG. 3 is an exemplary system for integrating scheduling and data lineage
information. Data from scheduling repositories 302a-b can be imported into a data
lineage repository 306. The scheduling repositories 302a-b can be data repositories
associated with workload automation systems, for example CONTOL-M, TIVOLI, TWS
AUTOSYS, CA-7, etc... Data for each of the workload automation systems may be
stored in a different format. Transformation components 304a-b can be used to transform
the data stored in the Scheduling Repositories 302a-b into a common data format for
storage in the combined repository 306. In some implementations, the transformation
components may be, for example, dataflow graphs executing in a dataflow graph

computational environment.

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

Data from data lineage repository 314 can also be stored in the combined
repository. The data lineage information may be transformed by transformation
component 316 before it is inserted into the repository. For example, the data types of
the data may be converted from one type to another in order to conform to an expected
data format of the repository. Additionally, the data structure may be altered, including,
for example, simplifying the data lineage data structure, in order to efficiently integrate
the data with the job scheduling information.

Job scheduling information can be collected and integrated into the combined
vepository. The job scheduling information can be modificd into a format acceptable to
the combined repository. For example, the format of particular fields of data may be
changed. Relationships between different data objects may be altered into functionally
identical or different forms. Integrating the job scheduling information can include
wdentifying old or out of date information from previous loads of the workload scheduling
data and overwriting or archiving it. Job dependency information and data lincage
information is combined and linked together. The job dependency information may be
Huked to data hneage information based on attributes or parameters associated with the
information. For example, a job and a data Hincage clement may reference the same
exceutable {e.g., “TransformA.cxe” as described above). The executable can be
identified based on a fully gqualified identifier. The fully qualified identifier may include
a complete path, that is, the computer and location on persistent storage, such as 4 hard
drive, may be identified. The fully qualified identifier may inclode any parameters that
are provided to the executable. Simtlarly, a job and the data lincage element maay
reference the same data store. For exaraple, in the figures above, the FTP job 112 of FIG.
1 and the Brazil Feed data source 214 reference the “Brazi Feed.dat” file. The data
sources may be identified based oun a fully qualified identifier. For example, the fully
qualified identificr may be a complete path or uniform resource locator (URL) that
wdentifies a flat file or information that wdentifics a server, database, table space, and table
name in a relational database. The process can create a link between the job dependency
information and the data lincage mformation when these or other common clements are

identified.

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

In some implementations, the job scheduling information can be integrated into
the combined repository 306 at regular intervals {(e.g., weekly, daily, hourly, ete.). In
some implementations, changes to the job scheduling information may trigger an
mtegration process that integrates the information in near real tirne. For example, a
database trigger may start an integration process when a change is detected.
Alternatively, a callback mechanism in the job scheduling system rnay cause the
integration process to stat.

The combined repository 306 preferably is a scalable object-oriented database
system designed to support the development and execution of graph-based applications
and the interchange of metadata between the graph-based applications and other systems
(e.g., other operating systems). The combined repository 306 is a storage system for all
kinds of metadata, including documentation, record formats (e.g., fields and data types of
records in a table), transform functions, graphs, jobs, and monitoring information.

The combined repository 306 can also store data objects that represent actual data
to be processed by a computing system.

The combination of data lineage information and job dependency information
stored in the combined repository 306 can be used to generate reports and information not
otherwise available. Combining these two sources of data together enables a holistic
view of the jobs not otherwise available. For example, the combination of data can be
used to provide an answer to the question “if a job is late what does that mean for any
given data set?” The job may not directly affect dataset 1, but may indirectly affect it
because of scheduling directives in the workload automation systems.

An auditing and reporting system 308 can raise alerts when particular datasets are
going to be affected. For example, a business may wish to raise an alert when a
particular data set is going to be inaccurate.

An information processing system 310 can present a user 312 with a graphical
user interface and can allow a user to drill down and view the particulars of the
scheduling information and/or the data lineage, including navigating between the job
scheduling information and the data lineage information based on the links described

above.

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

FIG. 4 shows an example of a data processing system 400 in which the data
analysis techniques can be used. The system 400 includes a data source 402 that may
include one or more sources of data, such as storage devices or connections to online data
streams, including, for example, data repositories of workload automation system. Each
data store may store or provide data in any of a variety of formats (e.g., database tables,
spreadsheet files, flat text files, or a native format used by a mainframe). An execution
environment 404 includes a pre-processing module 406 and an execution module 412.
The execution environment 404 may be hosted, for example, on one or more general-
purpose computers under the control of a suitable operating system, such as a version of
the UNIX operating system. For example, the execution environment 404 can include a
multiple-node parallel computing environment including a configuration of computer
systems using multiple central processing units (CPUs) or processor cores, either local
(e.g., multiprocessor systems such as symmetric multi-processing (SMP) computers), or
locally distributed (e.g., multiple processors coupled as clusters or massively parallel
processing (MPP) systems), or remote, or remotely distributed (e.g., multiple processors
coupled via a local area network (LAN) and/or wide-area network (WAN)), or any
combination thereof.

The transformation module 406 reads data from the data sources 402, transforms
the data into a canonical format and stores the information in data storage 416. Storage
devices providing the data source 402 may be local to the execution environment 404 (for
example, being stored on a storage medium connected to a computer hosting the
execution environment 404 (e.g., hard drive 408)), or may be remote to the execution
environment 404 (for example, being hosted on a remote system (e.g., mainframe 410) in
communication with a computer hosting the execution environment 404, over a remote
connection (e.g., provided by a cloud computing infrastructure)).

The analysis module 412 uses the stored information generated by the
transformation module 406 combined with the data lineage information to perform
analysis of the combined data in a manner that is not otherwise possible. For example, a
change in a schedule of a job may impact data stores beyond those directly affected by
the job. Jobs can affect other jobs and each of those jobs can affect data sources. In

some scenarios, changes to a data source can, in turn, affect additional jobs. The stored

-10-

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

information may be stored in a data storage system 416. The data storage system 416 is
also accessible to an analysis system 418 interacting with a user 420. The user 420 is
able to perform a drill down analysis of the combined data.

The analysis system 418 and execution environment 404 are, in some
implementations, designed using a system for executing computation applications as
dataflow graphs that include vertices (representing data processing components or
datasets) connected by directed links (representing flows of work elements, i.¢., data)
between the vertices. For example, such an environment is described in more detail in
U.S. Publication No. 2007/0011668, titled “Managing Parameters for Graph-Based
Applications,” incorporated herein by reference. A system for executing such graph-
based computations is described in U.S. Patent 5,966,072, titled “EXECUTING
COMPUTATIONS EXPRESSED AS GRAPHS,” incorporated herein by reference.
Dataflow graphs made in accordance with this system provide methods for getting
information into and out of individual processes represented by graph components, for
moving information between the processes, and for defining a running order for the
processes. This system includes algorithms that choose inter-process communication
methods from any available methods (for example, communication paths according to the
links of the graph can use TCP/IP or UNIX domain sockets, or use shared memory to
pass data between the processes).

The transformation module 406 can receive data from a variety of types of
systems that may embody the data source 402, including different forms of database
systems. The data may be organized as records having values for respective fields (also
called “attributes” or “columns”), including possibly null values. When reading data
from a data source, the transformation module 406 typically starts with some initial
format information that describes records in that data source. In some circumstances, the
record structure of the data source may not be known initially and may instead be
determined after analysis of the data source or the data. The initial information about
records can include, for example, the number of bits that represent a distinct value, the
order of fields within a record, and the type of value (e.g., string, signed/unsigned

integer) represented by the bits.

-11-

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

FIG. 5 is a flowchart of an exemplary process 500 for identifying the impact of
changes to scheduling information. The process may be performed by a computer system
performing the process.

Data lineage information can be obtained 502. The data lincage information may
be obtained from a data store as described above. The data lineage information can
identify dependency relationships between data stores and transformation. The
transformation can accept data from one data store and produces data for another data
store.

Job dependency information can be obtained 504. The job dependency
information can be obtained through the processes discussed above. The job dependency
information can specify an order of execution of a plurality of jobs.

Links between at least some of the elements of the job dependency information
and the data lineage information can be identified. The links may be direct (for example,
the job may cause the transformation to execute 506). The links may also be indirect (for
example, the job may cause a dataflow graph to execute, where the dataflow graph
includes a transformation). The links may be determined based on the files and data
stores that are referenced by the job scheduling information and the data lincage
information.

An impact of a change in a planned execution of an application of the plurality of
applications on a data store can be determined 508. The impact may be determined based
on the job dependency information, the links, and the data linecage information. For
example, a user may submit a query that identifies at least one job, an executable
program, or a data store. For example, a user may wish to determine the impact if a
particular job, executable program, or data source is unavailable or if a particular job fails
or fails to execute on time. Alternatively or additionally, a workload automation system
may identify that a job has failed or failed to complete on time. A job may fail, for
example, when an error occurs during processing that cannot be handled by the job itself.
A job may also fail, for example, when a period of time passes.

The process can identify all of the jobs that are dependent on the identified job,
executable program, or data store. The process can identify links between the identified

job and dependent jobs and data lincage elements. A data lincage element can be a data

- 12-

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

clement that describes a relationship or a portion of a relationship between data sources,
data sinks, and data transformations. The data lincage elements that are linked to the
identified job and dependent job can be used to determine data linecage elements that are
dependent on the job. That is, all of the data lincage elements that are accessed
subsequent to the data lineage elements can be identified by the links.

The process can be recursively applied. For example, once the data lincage
clements are identified, additional links may relate the data lincage elements back to the
additional jobs. The additional job may in turn link back to additional data lincage
elements.

For example, FIG. 6 illustrates a simplified example of dependency information
that may be determined based on the combination of job dependency information and
data lineage information. A job 600 includes two sub-jobs: (1) a generated daily sales.dat
job 602 and (2) a FTP daily sales.dat job 604. The daily sales file.dat is used by a data
flow graph 606 as identified by the data lincage information. In this example, the FTP
daily dales.dat job is linked to the daily sales.dat data source 608 as illustrated by the
dotted line 610. The input file.dat 608 is aggregated with other data, not shown, by the
aggregate transform 612. The aggregate transform 612 creates the data source
quarterly.dat 614. Another job 616 includes a file watch quarterly.dat job 618 that
watches for the creation of the quarterly.dat file. Based on this relationship, the
quarterly.dat data source and the file watch quarterly.dat job 618 are linked in the
combined repository, as represented by the dotted line 620. The generate 10-K
information job 622 uses the quarterly.dat file to generate 10-K information for the SEC.

By using the combined schedule dependency information and the data lincage
information and linking back to additional schedule dependency information, the system
can determine that a problem generating the daily sales.dat file can result in a delay with
generating the 10-K, even though the generate daily sales job and the generate 10-K
information job are not linked by the job dependency information.

The data integration and analysis approach described above can be implemented
using a computing system executing suitable software. For example, the software may
include procedures in one or more computer programs that execute on one or more

programmed or programmable computing systems (which may be of various

- 13-

10

15

20

25

30

WO 2015/183738 PCT/US2015/032193

architectures, such as distributed, client/server, or grid), each including at least one
processor, at least one data storage system (including volatile and/or non-volatile memory
and/or storage elements), at least one user interface (for receiving input using at least one
input device or port, and for providing output using at least one output device or port).
The software may include one or more modules of a larger program, for example, that
provides services related to the design, configuration, and execution of dataflow graphs.
The modules of the program (e.g., clements of a dataflow graph) can be implemented as
data structures or other organized data conforming to a data model stored in a data
repository.

The software may be provided on a tangible, non-transitory medium, such as a
CD-ROM or other computer-readable medium (e.g., readable by a general or special
purpose computing system or device), or delivered (e.g., encoded in a propagated signal)
over a communication medium of a network to a tangible, non-transitory medium of a
computing system where it is executed. Some or all of the processing may be performed
on a special purpose computer, or using special-purpose hardware, such as coprocessor or
field-programmable gate arrays (FPGAs) or dedicated, application-specific integrated
circuits (ASICs). The processing may be implemented in a distributed manner in which
different parts of the computation specified by the software are performed by different
computing elements. Each such computer program is preferably stored on or
downloaded to a computer-readable storage medium (e.g., solid state memory or media,
or magnetic or optical media) of a storage device accessible by a general or special
purpose programmable computer, for configuring and operating the computer when the
storage device medium is read by the computer to perform the processing described
herein. The inventive system may also be considered to be implemented as a tangible,
non-transitory medium, configured with a computer program, where the medium so
configured causes a computer to operate in a specific and predefined manner to perform
one or more of the processing steps described herein.

A number of embodiments of the invention have been described. Nevertheless, it
is to be understood that the foregoing description is intended to illustrate and not to limit
the scope of the invention, which is defined by the scope of the following claims.

Accordingly, other embodiments are also within the scope of the following claims. For

- 14-

WO 2015/183738 PCT/US2015/032193

example, various modifications may be made without departing from the scope of the
invention. Additionally, some of the steps described above may be order independent,

and thus can be performed in an order different from that described.

-15-

WO 2015/183738 PCT/US2015/032193

What 1s claimed is:

1.

2.

A computer implemented method including:

obtaining, by a computer system, job dependency information, the job
dependency information being indicative of an order of execution
of a plurality of jobs;

obtaining data linecage information that identifies dependency relationships
between data stores and transformation, wherein at least one
transformation accepts data from a first data store and produces
data for a second data store;

creating, by the computer system, links between the job dependency
information and the data lineage information; and

determining an impact of a change in a planned execution of an job of the
plurality of jobs based on the job dependency information, the
created links, and the data lineage information.

The method of claim 1, wherein obtaining job dependency information

includes:

obtaining scheduling information from a work load repository associated with
a workload automation system,;

transforming the scheduling information; and

storing the scheduling information in a data store, the data store storing the

data lincage.

The method of claim 1, wherein creating links includes identifying data
sources referenced by the data lineage information and the job dependency

information.
The method of claim 3, wherein identifying the data sources includes

identifying a data source referenced by the same name in the data lincage

information and the job dependency information.

-16-

WO 2015/183738 PCT/US2015/032193

10.

11.

The method of claim 3, wherein identifying the data source includes

identifying a data source using a uniform resource locator.

The method of claim 3, wherein identifying the data sources includes
identifying a relational database table using a database, table space, and a

table name.

The method of claim 1, wherein creating links includes identifying
executable programs referenced by the job dependency information and the

data lineage information.

The method of claim 7, wherein identifying the executable programs
includes identifying an executable program based at least in part on

parameters provided to the executable program.

The method of claim 7, wherein identifying the executable programs
includes identifying an executable program based on the location of the

executable program on a persistent data store.

The method of claim 1, wherein determining the impact includes:

receiving a query the query identifying job scheduling data;

identifying a link between the job scheduling data and data lincage
information; and

identifying an impact to the data linecage information based on the

scheduling data.

A non-transitory computer storage medium encoded with computer
program instructions that when executed by one or more computers cause the
one or more computers to perform operations comprising:

obtaining job dependency information, the Job dependency information

specifying an order of execution of a plurality of jobs;

-17-

WO 2015/183738 PCT/US2015/032193

12.

13.

14.

15.

16.

obtaining data linecage information that identifies dependency relationships
between data stores and transformation, wherein at least one
transformation accepts data from a first data store and produces
data for a second data store;

creating links between the job dependency information and the data
lineage information; and

determining an impact of a change in a planned execution of an
application of the plurality of applications based on the job
dependency information, the created links, and the data lincage

information.

The medium of claim 11, wherein obtaining job dependency information
includes:
obtaining scheduling information from a work load repository associated with
a workload automation system,;
transforming the scheduling information; and
storing the scheduling information in a data store, the data store storing the

data lincage.

The medium of claim 11, wherein creating links includes identifying data
sources referenced by the data lineage information and the job dependency

information.

The medium of claim 13, wherein identifying the data sources includes
identifying a data source referenced by the same name in the data lincage

information and the job dependency information.

The medium of claim 13, wherein identifying the data source includes

identifying a data source using a uniform resource locator.

The medium of claim 13, wherein identifying the data sources includes
identifying a relational database table using a database, table space, and a

table name.

- 18-

WO 2015/183738 PCT/US2015/032193

17.

18.

19.

20.

21.

The medium of claim 11, wherein creating links includes identifying
executable programs referenced by the job dependency information and the

data lineage information.

The medium of claim 17, wherein identifying the executable programs
includes identifying an executable program based at least in part on

parameters provided to the executable program.

The medium of claim 17, wherein identifying the executable programs
includes identifying an executable program based on the location of the

executable program on a persistent data store.

The medium of claim 11, wherein determining the impact includes:

receiving a query the query identifying job scheduling data;

identifying a link between the job scheduling data and data lincage
information; and

identifying an impact to the data linecage information based on the

scheduling data.

A system comprising:
one or more computers and one or more storage devices storing
instructions that are operable, when executed by the one or more computers,
to cause the one or more computers to perform operations comprising:
obtaining job dependency information, the Job dependency information
specifying an order of execution of a plurality of jobs;
obtaining data linecage information that identifies dependency relationships
between data stores and transformation, wherein at least one
transformation accepts data from a first data store and produces
data for a second data store;
creating links between the job dependency information and the data

lineage information; and

-19-

WO 2015/183738 PCT/US2015/032193

22.

23.

24.

25.

26.

27.

determining an impact of a change in a planned execution of an
application of the plurality of applications based on the job
dependency information, the created links, and the data lineage

information.

The system of claim 21, wherein obtaining job dependency information
includes:
obtaining scheduling information from a work load repository associated with
a workload automation system,;
transforming the scheduling information; and
storing the scheduling information in a data store, the data store storing the

data lincage.

The system of claim 21, wherein creating links includes identifying data
sources referenced by the data lineage information and the job dependency

information.

The system of claim 23, wherein identifying the data sources includes
identifying a data source referenced by the same name in the data lincage

information and the job dependency information.

The system of claim 23, wherein identifying the data source includes

identifying a data source using a uniform resource locator.

The system of claim 23, wherein identifying the data sources includes
identifying a relational database table using a database, table space, and a

table name.
The system of claim 21, wherein creating links includes identifying

executable programs referenced by the job dependency information and the

data lineage information.

-20-

WO 2015/183738 PCT/US2015/032193

28.

29.

30.

31.

The system of claim 27, wherein identifying the executable programs
includes identifying an executable program based at least in part on

parameters provided to the executable program.

The system of claim 27, wherein identifying the executable programs
includes identifying an executable program based on the location of the

executable program on a persistent data store.

The system of claim 21, wherein determining the impact includes:

receiving a query the query identifying job scheduling data;

identifying a link between the job scheduling data and data lincage
information; and

identifying an impact to the data linecage information based on the

scheduling data.

A system comprising:

means for obtaining job dependency information, the Job dependency
information specifying an order of execution of a plurality of jobs;

means for obtaining data lincage information that identifies dependency
relationships between data stores and transformation, wherein at
least one transformation accepts data from a first data store and
produces data for a second data store;

means for creating links between the job dependency information and the
data lineage information; and

means for determining an impact of a change in a planned execution of an
application of the plurality of applications based on the job
dependency information, the created links, and the data lineage

information.

-21-

PCT/US2015/032193

WO 2015/183738

1/6

8Ll

oxoywJojsuel] swepN welboid

l Old

1epajyuneep\:o Jepajyunabels\:o AdoD
1epajunerep\:o 3

Jep
GRS
Uoremaly
aseqelep
'8108890Ng

XXXX :suny Jo JaquinN
Buipuad :snieig

Josnyojeq sy uny
1eq-11duos :awen 2|14

B1ep\:o jyied a4

| puewwo) 1duog :sweN qor
SO :edAL gor

vOl

JOHUO
uope|dwon
9Ll
SIlglc) & | dl4d
143"
45"
Y21em 9fid asegeleq
oLl
901
| puewwo) }duog
0l
Isd qor

0cl

WO0D"JOAISS (UOJEDOT
jep'pagd |ize.d 9li4

dl4 :slosse0ong
| puewwo)
1duog :siosseoepald

‘uononpoud au
WioJ} JUNOWE™ JapJo’sn
‘Joplosn 109[0S

00l

801

WO 2015/183738 PCT/US2015/032193

-
=
]
o
Q
14
=
3
o
i=
3
O

216

Transform B

Intermediate
=
=
=a
=
=
Intermediate
Dataset 2

Dataset 1

206
212

204
210

Transform C

Transform A

200

ke
Q
(0]
T8
”
o

Mexico Feed
Brazil Feed

208

<
-—
N

FIG. 2

PCT/US2015/032193

WO 2015/183738

3/6

_

80¢

¢ Old

Aioyisoday pauiquio)

woIsAg
Bunioday
pue Jpny

(g

0LE

%
=

ﬁ wo)sAg
Buissaooid

uonewloju|

jusuodwon
uonewJsojsues |

e

423

Aojisoday
abesaur] ejeq

.

143>

90¢

1)

jusuodwon
uonewJojsuel |

jusuodwon

uoljewlojsuel | /N
ey0¢

$ Jrnvom $

Aojisodoay
Bulnpsyos

@N

qcoe

Aojisoday
Bulinpsayos

@N

ecoe

PCT/US2015/032193

WO 2015/183738

4/6

v Old

14914 \

_ 0% o s30uN0S
Nrm*_umm_\@@ﬁw_\,_ — 3T1NAON <> v1vda
NOILYWHOANVYL
30%
—_—
Nov\
N7 W3LSAS
SISATVYNY >
Iovyolsviva v ° =TF W

ocy

00¥

WO 2015/183738 PCT/US2015/032193

5/6

500
N

502 —k

Obtain Data Lineage Information

|

Obtain Job Dependency Information

l

506 —k
Creating Links

|

508 L
Determine impact

504 L

FIG. 5

WO 2015/183738

PCT/US2015/032193
6/6
600
602
Generate Daily
Sales.Dat
604
FTP Daily
Sales.Dat
N\
AN ™\ ' ™
08 512 14
S S
=52 =52
Daily Aggregate
Sales.Dat Quarterly.Dat
. 7 \. 7
20 H \
F|Ie Watch

Quarterly.Dat

616
Z\\ 622

Generate 10-K
information

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/032193

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, IBM-TDB

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraph [0010] - paragraph
paragraph [0029] - paragraph
paragraph [0056]
paragraph [0067]
paragraph [0078]
paragraph [0109]

paragraph
paragraph
paragraph

[0071]
[0079]
[0110]

X US 2009/241117 Al (DASGUPTA GARGI B [IN] 1-31
ET AL) 24 September 2009 (2009-09-24)
[0011]
[0032]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

4 August 2015

Date of mailing of the international search report

11/08/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Milasinovic, Goran

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2015/032193
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2009241117 Al 24-09-2009 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report

