
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0172563 A1

Stokes

US 2008O172563A1

(43) Pub. Date: Jul. 17, 2008

(54)

(75)

(73)

(21)

(22)

(60)

SYSTEMAND METHOD FOR WORMIDATA
STORAGE

Inventor: Terry Stokes, Redmond, WA (US)

Correspondence Address:
TERRY L. STOKES
9200 REDMOND WOODINVILLE ROAD NE,
APT D323
REDMOND, WA 98052

Assignee: Terry Lee Stokes, Redmond (US)

Appl. No.: 12/014,721

Filed: Jan. 15, 2008

Related U.S. Application Data

Provisional application No. 60/885,129, filed on Jan.
16, 2007.

Publication Classification

(51) Int. Cl.
H04L 9/06 (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl. 713/193; 707/100; 707/E17.044
(57) ABSTRACT

A system and method for Write Once, Read Many (WORM)
compliant storage is disclosed. A storage administrator in
user space is employed as an interface between the kernel
space WORM VFS and the user applications. The storage
administrator accesses the WORM VFS through the operat
ing system's Virtual File System. The WORMVFS comprises
of three layers: a data encryption\compression layer, the
WORM filesystem layer and a logical volume manager. The
data encryption\compression layer preprocesses the data as it
moves between from the user space and the WORM filesys
tem layer. The WORM filesystem layer stores the compressed
and encrypted data on the physical disk drives in a specialized
disk format. The logical Volume manager manages the physi
cal disk drives. A NVRAM journal aids in crash recovery.

Supported Operations
Filesystem Mount/Unmount
Filesystem Statistics
Volume Statistics
File Creation

File Reading
File Deletion (if past retention period)
File Annotation (auditing functions)

Patent Application Publication Jul. 17, 2008 Sheet 1 of 25 US 2008/0172563 A1

Supported Operations

Filesystem Mount/Unmount
Filesystem Statistics
Volume Statistics
File Creation

File Reading
File Deletion (if past retention period)
File Annotation (auditing functions)

F.G. 1A

Patent Application Publication Jul. 17, 2008 Sheet 2 of 25 US 2008/0172563 A1

Unsupported Operations

File Deletion (prior to retention period)
File:Content Modification or Appending
File Attribute Modification

Directory Support (creation, listing, deletion, etc.)
Symbolic Links

FIG. B

Patent Application Publication Jul. 17, 2008 Sheet 3 of 25 US 2008/0172563 A1

2O3 Messaging File Archival 2O3.
Application Application M.

m 204
2O5 S Storage N.

Administrator 201
User Space

Kernel Space 213

Off-BOx Virtual File System (VFS) N-202
WORM N? 206

s Storage 212

NFSISAN Data Encryption\

2O7
Off-Box
WORM
Storage

in
214

SC S C S
g Mirrored Mirrored
Drives Drives Drives

US 2008/0172563 A1 Jul. 17, 2008 Sheet 4 of 25 Patent Application Publication

902 Jejuøo eleq OAN ||||}}}|

/09
e?ecu u

opuOT | || ?

Patent Application Publication Jul. 17, 2008 Sheet 5 of 25 US 2008/0172563 A1

322 N
O002A7B9CDE88BDC340BCD733DAEF41BE

321

US 2008/0172563 A1 Jul. 17, 2008 Sheet 6 of 25 Patent Application Publication

| 90/91/9 90/81/6

| 1691 || 999

- …TE?T??EE?

G€.

FEGGE TÆTT --++++++ gw

eladnoj6\

SLU SS900W

099

Patent Application Publication Jul. 17, 2008 Sheet 7 of 25 US 2008/0172563 A1

340 N Structured File Format

Meta Data

tem
Headers

List of

Related Hashes

File Headers

F.G. 3D

Patent Application Publication Jul. 17, 2008 Sheet 8 of 25 US 2008/0172563 A1

item Header
347 348

term Item | Item
Type Offset Length

FIG.3E

349 346

Patent Application Publication

350

Jul. 17, 2008 Sheet 9 of 25

Meta Data

Version

Type 1.

Flags

Create

Retention
Period

Original Size 1

FIG. 3F

US 2008/0172563 A1

351

352

353.

355

356

357

358

Patent Application Publication Jul. 17, 2008 Sheet 11 of 25 US 2008/0172563 A1

Virtual File System (VFS)

Block ACCumulator

402

C Encryption) (Decryption)
408 H-OH Binary Data

N-Fi e Reader/Writer

Off-box
NFSISAN
Storage.

On-box
WORMFS

Layer
403 404

F.G. 4

Patent Application Publication Jul. 17, 2008 Sheet 12 of 25 US 2008/0172563 A1

501 Data Encryption\
Compression Layer

504

Space
Manager

506
502

Encryption
Unit

Journal
Manager

505 507 Journal

Logical Volume
Manager

FIG. 5A

Patent Application Publication Jul. 17, 2008 Sheet 13 of 25 US 2008/0172563 A1

Journal Entry
511

Operation
Type

- 512

node Entry
location Data

FIG. 5B

513
510

Patent Application Publication Jul. 17, 2008 Sheet 14 of 25 US 2008/0172563 A1

520

521

Journaling
Ring Buffer Current Entry

Patent Application Publication Jul. 17, 2008 Sheet 15 of 25 US 2008/0172563 A1

530

or Eachn
Entry in Ring

Buffer Done.

File
Creation

/Was Entiren Yes
ile Writte C

Delete File. Inode
and Extents and
Put on Free List File

Deletion
Entry?

File Audit
Entry?

Add Audit info
To File node

F.G. 5D

Patent Application Publication Jul. 17, 2008 Sheet 16 of 25 US 2008/0172563 A1

601 Volume Layout

Volume Boot
Block

Pubic Key
Certificate

Filesystem
Super Block

AG
Header

602

603

604

605 607 N.

608

606 N.

FIG. 6A

Patent Application Publication Jul. 17, 2008 Sheet 17 of 25 US 2008/0172563 A1

610 Superblock Format

Filesystem
Statistics

Filesystem
Information 612

Allocation
Groups

Information 61 3.

F.G. 6B

Patent Application Publication Jul. 17, 2008 Sheet 18 of 25 US 2008/0172563 A1

AG Header Format
62O

AG
Metadata 621

Free

Extents List? Y-622
Free Y

Inodes List

FIG. 6C

Patent Application Publication Jul. 17, 2008 Sheet 19 of 25 US 2008/0172563 A1

630 Wolume node Format

node Hodr

Prev?next 631
inode Ptrs

632
Extent
PtrS'

633
Audit Info

Audit Ptr 634.
Meta 635.

636
tem

Headers
List of
Related
Hashes

D at

637

638

639

F.G. 6)

Patent Application Publication Jul. 17, 2008 Sheet 20 of 25 US 2008/0172563 A1

Logical File Format

655 y 657 y
650 Volume Inode. Direct Extents Indirect Extents

Extent
PtrS

652

Indirect.Ptrs

- 653

658
656

654
File
Tail

FIG. 6E

Patent Application Publication Jul. 17, 2008 Sheet 21 of 25 US 2008/0172563 A1

701 Logical Volume.
Manager

702

Patent Application Publication Jul. 17, 2008 Sheet 22 of 25 US 2008/0172563 A1

8O1
Read Public Key

Certificate from Disk.

802
Fetch Private Key
Matching Certificate

803
Get Storage

Administrator Key

804.
Read, Decrypt and

Verify Disk Superblock

808
805

1For Each Done Allocation Jouma Rover Group ecovery

809 Update Filesystem
Statistics and Notify

Read and Decrypt
AG Header

Storage Administrator

Create B+ Trees in
Space Manager of

AG's Free nodes and
Extents

End

FIG. 8A

Patent Application Publication Jul. 17, 2008 Sheet 23 of 25 US 2008/0172563 A1

822
810. Open File

for Creation Using Up DB
Storage Administrator We O Storage

Administrator

811 WORM WFS
Create Inode and
Reserve Extent in
Allocation Group

Journal Entry
Written

812

813

Update Inode, 821
AG and Filesystem

Information

ACCumulate
File Data Blocks

Compress Set of
File Data Blocks

Encrypt
Compressed Data

Write Binary Data
To Extent Blocks

Journal Entry
Written

Are Extent
Blocks Ful

Allocate
Another Extent

FIG. 8B

Patent Application Publication Jul. 17, 2008 Sheet 24 of 25 US 2008/0172563 A1

C start D C End D
830 Open File

for Read Using
Storage Administrator

831

RB Storage or File. Info Administrator

832 Read File WORM VFS.
node

833

hile Data isn
Being Read1,

is this the
First Read?

NO

Read Binary Data
from Extent Blocks

Decrypt
Compressed Data

Decompress Set of
File Data Blocks

Return
File Data Blocks.

FIG. 8C

Return
File Metadata

Patent Application Publication

850

851

Remove File
From Index OB

ile Delete Ya
Error?

Return
Deletion Error

Journal Entry
Written

Jul. 17, 2008 Sheet 25 of 25

Query Index DB
for List of Files

Ready for Deletion

or Each
File to be
Deleted

Done

More:

Read File's
Metadata

Check File Against
Deletion Holds Table.

Is There a N
Deletion Hold?

863

Call, Delete
Function in
WORM VFS

Does File Yan Yes
node Exist?

1Has Retention
eriod Lapsed2

Yes
861

Return File node and
Extents to Free List

FIG. 8D

End

US 2008/0172563 A1

Storage
Administrator

WORM WFS

Read File
node 859.

US 2008/0172563 A1

SYSTEMAND METHOD FOR WORMIDATA
STORAGE

REFERENCES CITED

0001 T. Stokes, “Compliance Appliance Product Specifi
cation. 30 pages, January 2004.

0002 T. Stokes, “Compliance Appliance Storage Design.”
47 pages, October 2004.

0003 T. Stokes, “Extraordinary FS Filesystem,” 2 pages,
March 2005.

0004 T. Stokes, “Indexing/Search Design Discussion. 18
pages, June 2005.

FIELD OF THE INVENTION

0005. The present invention relates generally to Write
Once, Read Many (WORM) data storage. More specifically,
the present invention relates to techniques for the Secure
storage and retrieval of electronic data, Such that the elec
tronic data cannot be modified or deleted during its predeter
mined lifetime, after which the electronic data is automati
cally deleted.

BACKGROUND OF THE INVENTION

0006. The use of electronic communications, such as
email, instant messaging, web pages, SMS and Voice over IP
and computer files, such as presentations, spreadsheets and
documents, for business purposes have become prevalent in
today’s business world. Over the years, as electronic commu
nications and computer files have Supplanted the use of paper
documents, it has become more and more important to find a
way to archive copies of electronic data files.
0007. There are many reasons why business communica
tions and documents in general need to be archived in search
able WORM storage. Many government regulations, such as
Sarbanes Oxley, HIPAA, Patriot Act, GLB and SEC, require
that business communications be archived for a number of
years. Evidentiary discovery rules require the production of
business communications pertinent to the issues in a case.
And corporate governance and disaster recovery requires the
archival of important business communications and docu
ments in case the originals are destroyed.
0008. In the past, the archival of business communications
was limited to storing corporate reports and accounting books
to an off-site warehouse. As email came into wide usage, the
archival of emails became a regulatory requirement, but this
was mostly limited to financial institutions. In the last five
years, due to the increased prevalence of electronic commu
nications and the increase in government regulations result
ing from several accounting scandals, nearly all companies
are required to archival Some amount of email, instant mes
sages, business reports and accounting spreadsheets.
0009 Currently, most companies meet government regu
latory and corporate governance requirements by archiving
copies of corporate document files and email backups to
optical WORM storage, such as optical tape or CD-R discs,
and storing the optical WORM storage at a third party ven
dor's location. There are several drawbacks to this approach.
The optical WORM storage archives are not readily available.
It is difficult to find specific archived documents among a set
of optical WORM storage, since there is no consolidated
index, requiring each optical disc or tape to be retrieved,
loaded and searched. To find a specific email can require a
large effort, since backups normally occur on a daily or

Jul. 17, 2008

weekly basis and each backup needs to be restored to an email
server before it can be searched.
0010. Another drawback to the “copy everything to optical
WORM storage' is the inability to delete documents and
emails after their retention period has lapsed. Information
stored in these archives could potentially be used against a
company in the event of a lawsuit, so it is important to delete
the archived material as soon as government regulatory and
corporate governance retention requirements are met. While
an optical WORM storage media can be physically destroyed
at the end of the retention period, a manual process must be in
place to implement this. Plus, since an individual file cannot
be deleted on the optical WORM storage media, the entire
disc or tape must be retained until the retention period of
every electronic data file has passed, forcing files to be saved
that could have been deleted.
0011 Finally, the electronic data files on the optical
WORM storage media are typically not encrypted. This
allows anyone with access to the optical WORM storage
media and an optical WORM storage reader to potentially
view confidential corporate information.
0012 Several products have been created to address these
issues. They seek to implement WORM storage on regular
hard disk drives. The two main storage products are EMC's
Centera, which uses Content Addressable Storage (CAS) and
Network Appliance's Netstore, which uses SnapLock. Both
prevent file deletion by using a custom operating system.
Both also employ a custom proprietary filesystem, which
means their hard drives are unreadable in general purpose
operating systems.
0013 The drawback to these storage products is they were
created for general purpose network storage, abet with
WORM characteristics. Since third-party user applications
access via NFS or SAN, the products need to provide a full set
of filesystem operations. The underlying hard disk data is not
completely encrypted. And there is no automatic deletion
mechanism when electronic data files reach the end of their
retention period.

SUMMARY OF THE INVENTION

0014. The present invention implements systems and
methods to provide Write Once, Read Many (WORM) com
pliant storage. The system comprises a set of interconnecting
components: user space applications, the storage administra
tor, the virtual file system, optional off-box network storage,
the WORMVFS and on-box storage. The WORMVFS com
prises three layers: the data encryption\compression layer, the
WORM filesystem layer and the logical volume manager.
The storage administrator, its index database and the appli
cations that access it. Such as messaging applications and file
archival applications, reside in user space. All other compo
nents of the invention reside in kernel space. User space
applications store and access electronic data files using the
storage administrator. Since there is no disk directory struc
ture, the storage administrator maintains an index database
with a cross-reference between file identification and file
location. The file identification is a value known to the user
space applications, such as document name or email headers.
The file location contains information used to locate the on
box inode or off-box file. For on-box files, the location
includes the filesystem ID, the allocation group ID and the
inode ID. In the preferred embodiment, the storage adminis
trator accesses files using the virtual file system interface
(VFS) implemented in most UNIX operating systems. The

US 2008/0172563 A1

operating system's VFS layer forwards the file or filesystem
operation to the data encryption\compression layer of the
WORM VFS by calling the layer's registered callback func
tion for the operation. If the file or filesystem operation is not
supported, the call returns with an error. Otherwise, operation
is verified as coming from the storage administrator using the
key the WORM VFS received when the filesystem was
mounted (FIG. 8A), which is included in the operation's data.
The data encryption\compression layer handles any data pro
cessing needed and determines where the file is located. If
off-box, the data encryption\compression layer accesses the
appropriate off-box WORM storage mounted locally using an
NFS or SAN connection. If on-box, the data
encryption\compression layer forwards the processed data
and operation data to the WORM filesystem layer. The
WORM filesystem layer records the operation in the non
volatile RAM backed journal. The WORM filesystem layer
then performs the requested operation and returns the opera
tion's result back up the chain to the storage administrator and
finally to the user space application. The WORM filesystem
layer lies on top of the logical Volume manager. The logical
Volume manager is used to group a set of physical disks into
a logical Volume. The set of physical disks that a logical
volume comprises is transparent to the WORM filesystem
layer, it only knows about the logical Volume. The logical
Volume manager maintains each logical Volume and notifies
the storage administrator about any important events, such as
disk failures or disk full, so that human operators can be
alerted. In the preferred embodiment, the logical volume
manager is implemented using Vinum, a UNIX operating
system component and employs mirrored drives, but alterna
tive embodiments could implement the logical Volume man
ager as a VFS layer or embedded within the kernel and use
non-mirrored drives or storage arrays.

BRIEF DESCRIPTION OF DRAWINGS

0015 FIG. 1A shows a list of supported file and filesystem
operations.
0016 FIG. 1B shows a list of unsupported file and filesys
tem operations.
0017 FIG. 2 shows the components of the preferred
embodiment of the present invention.
0018 FIG. 3A shows an example of a storage network
containing the invention.
0019 FIG. 3B shows an example of data hashing for stor
age location.
0020 FIG. 3C shows an example of a network storage
information table of the preferred embodiment of the present
invention.
0021 FIG. 3D shows the structured message format of the
preferred embodiment of the present invention.
0022 FIG. 3E shows the format of a single item header
contained in the Item Headers portion of the structured mes
sage format of the preferred embodiment.
0023 FIG.3F shows an example of the Meta Data portion
of the structured message format of the preferred embodi
ment.

0024 FIG. 3G shows an example of a Deletion Holds
Table of the preferred embodiment of the present invention.
0025 FIG. 4 shows the components of the Data
Encryption\Compression Layer of the preferred embodiment
of the present invention.
0026 FIG. 5A shows the components of the WORM FS
Layer of the preferred embodiment of the present invention.

Jul. 17, 2008

0027 FIG. 5B shows the format of a single journal entry
contained in the Journaling Ring Buffer of the preferred
embodiment.
(0028 FIG.5C illustrates the Journaling Ring Buffer of the
preferred embodiment.
0029 FIG.5D is a block diagram illustrating a method of
the present invention for recovery using the Journaling Ring
Buffer entries.
0030 FIG. 6A shows the disk layout of the WORM file
system of the preferred embodiment of the present invention.
0031 FIG. 6B shows the format of the Superblock portion
of the WORM filesystem of the preferred embodiment of the
present invention.
0032 FIG.6C shows the format of the AG Header for each
Allocation Group in the WORM filesystem of the preferred
embodiment of the present invention.
0033 FIG. 6D shows the format of each disk inode in the
WORM filesystem of the preferred embodiment of the
present invention.
0034 FIG. 6E shows the logical file layout of the WORM
filesystem of the preferred embodiment of the present inven
tion.
0035 FIG.7 shows the components of the Logical Volume
Manager of the preferred embodiment of the present inven
tion.
0036 FIG. 8A is a block diagram illustrating a method of
the present invention for mounting the WORMFS.
0037 FIG. 8B is a block diagram illustrating a method of
the present invention for creating a file within the WORMFS.
0038 FIG. 8C is a block diagram illustrating a method of
the present invention for reading a file from the WORMFS.
0039 FIG. 8D is a block diagram illustrating a method of
the present invention for deleting a file within the WORMFS.

DETAILED DESCRIPTION OF THE INVENTION

0040. The present invention will be illustrated below in
conjunction with an exemplary storage network. It should be
understood, however, that the invention is not limited to use
with any particular type of network storage, network interface
card, file server or any other type of network or computer
hardware. It should also be understood that while the term
“electronic data' is used in the description, the invention is
not limited to either electronic communications or computer
files. In alternative embodiments, the invention could archive
web pages, telephone recordings or binary data objects.
Moreover while the preferred embodiment takes the form of
a WORM storage appliance, the invention can also be deliv
ered as one or more software products as alternative embodi
mentS.

0041. The present invention has several characteristics
that inherently make its storage WORM compliant. One char
acteristic relates to its file and filesystem operations Support.
FIG. 1A shows the file and filesystem operations supported
by the invention. FIG. 1B shows the file and filesystem opera
tions specifically not supported by the invention. Note that no
directory operations or file modification (after creation)
operations are Supported in the invention. All of the Supported
operations are available only through the storage administra
tor 204, which requires authorization for all file and filesys
tem operations.
0042 FIG. 2 shows the internal components of the pre
ferred embodiment of the present invention. The storage
administrator 204, its index database 205 and the applications
that access it, Such as messaging applications and file archival

US 2008/0172563 A1

applications 203, reside in user space 201. In alternative
embodiments, the storage administrator 204 and index data
base 205 can reside in kernel space 202, accessible through
system calls. All other components of the invention reside in
kernel space 202. The preferred embodiment of the present
invention implements the kernel space 202 components using
kernel loadable modules, but alternative embodiments could
embed the functionality within the kernel code, modify exist
ing filesystem code or implement user space applications 203.
0043. User space applications 203 store and access elec
tronic data files using the storage administrator 204. Since
there is no disk directory structure, the storage administrator
204 maintains an index database 205 with a cross-reference
between file identification and file location. The file identifi
cation is a value known to the user space 201 applications,
Such as document name or email headers. The file location
contains information used to locate the on-box inode or off
box file. For on-box files, the location includes the filesystem
ID, the allocation group ID and the inode ID.
0044. In the preferred embodiment, the storage adminis

trator 204 accesses files using the virtual file system interface
(VFS) 206 implemented in most UNIX operating systems.
The operating system's VFS 206 layer forwards the file or
filesystem operation to the data encryption\compression
layer 208 of the WORM VFS 207 by calling the layer's
registered callback function for the operation. If the file or
filesystem operation is not supported, the call returns with an
error. Otherwise, operation is verified as coming from the
storage administrator 204 using the key the WORMVFS 207
received when the filesystem was mounted (FIG. 8A), which
is included in the operation's data.
0045. The data encryption\compression layer 208 handles
any data processing needed and determines where the file is
located. If off-box, the data encryption\compression layer
208 accesses the appropriate off-box WORM storage 213
mounted locally using an NFS or SAN 212 connection. If
on-box, the data encryption\compression layer 208 forwards
the processed data and operation data to the WORM filesys
tem layer 209. The WORM filesystem layer 209 records the
operation in the non-volatile RAM backed journal 210. The
WORM filesystem layer 209 then performs the requested
operation and returns the operation's result back up the chain
to the storage administrator 204 and finally to the user space
application 203.
0046. The WORM filesystem layer 209 lies on top of the
logical Volume manager 211. The logical Volume manager
211 is used to group a set of physical disks 214 into a logical
volume. The set of physical disks 214 that a logical volume
comprises is transparent to the WORM filesystem layer 209,
it only knows about the logical Volume. The logical Volume
manager 211 maintains each logical Volume and notifies the
storage administrator 204 about any important events, such as
disk failures or disk full, so that human operators can be
alerted. In the preferred embodiment, the logical volume
manager 211 is implemented using Vinum, a UNIX operating
system component and employs mirrored drives, but alterna
tive embodiments could implement the logical Volume man
ager 211 as a VFS layer or embedded within the kernel and
use non-mirrored drives or storage arrays.
0047. The diagrams and illustrative examples in FIG. 3A,
FIG. 3B, FIG. 3C, FIG. 3D, FIG. 3E, FIG. 3F and FIG. 3G
describe the operation of the preferred embodiment of the
storage administrator 204 component of the present inven
tion. It should be understood, however, that the invention is

Jul. 17, 2008

not limited to use within storage networks. For example,
alternative embodiments could employ the WORM storage
appliance outside a storage network, using only internal disk
storage or use disk arrays.
0048 FIG. 3A shows an example of a storage network
containing the invention (WORM storage appliance) and
multiple storage locations. The diagram shows three data
centers, in London 301, Boston 308 and New York 305. The
WORM storage appliance 306 is located on the New York
network. The London data center 301 has one storage net
work 302. The Boston data center 308 has one storage net
work 307. The New York data center 305 has two storage
networks, 303 and 304. Each storage network can contain a
mixture of NFS storage, SAN storage and WORM storage
appliances. All of the storage networks are accessible to the
WORM storage appliance 306 via the Internet 309. The
WORM storage appliance 306 also has internal WORM stor
age available, as described in FIG. 2.
0049 FIG. 3B shows an example of data hashing for stor
age location. This method is used to determine where to store
the electronic data file so that only one copy is saved, which
reduces the amount of storage used by a company. A hash 322
of the complete electronic data file 321 is created using a
standard algorithm such as MD5 or SHA. The hash 322 of the
electronic data file 321 is used to determine the storage loca
tion, much like hashes are used to sort items into buckets 323.
In this example, the electronic data file 321 would be placed
into the “0002 bucket 324 using the first four values of the
hash 322.
0050 FIG. 3C shows an example of a network storage
information table 330 of the preferred embodiment of the
present invention. This table is used to determine where an
electronic data file is to be stored, where to later look for the
electronic data file and whether the IT administrator should
be notified of storage problems. The table is made up of rows,
which represent a storage unit, and columns, which represent
the attributes of a storage unit.
0051. The network storage information table 330 includes
eight columns of information. The first column, start date
331, specifies the date of the first electronic data file in the
storage unit. The ID start 332 and ID stop 333 columns
specify the range of hashes that can be stored in the storage
unit, usingaportion of the computed hash. This range must be
unique and not overlap with the hash range of any other
storage unit for writable storage units. All hash ranges must
be present in the network storage information table 330, so
that for any computed hash of an electronic data file, it can be
written to one and only storage unit, to prevent duplicate
copies of electronic data files.
0.052 The location 334 and storage partition 335 columns
are used to identify the physical location of a storage unit. As
seen in FIG. 3A, the location 334 corresponds to a storage
network, for example the first row shows a location of Lon
don1302. The storage partition 335 corresponds to a portion
of that storage network. Using location 334 and storage par
tition 335, the available storage networks can be broken up
into a grid of storage units.
0053. The state column 336 holds the current state of the
storage unit. Typical states include offline, ready, read only
and full. The free MB column 337 shows the amount of free
space available. Column 338 shows the current access time in
ms, used in staging electronic data file retrievals.
0054 Rows 339 show examples of read only storage units.
These storage units are no longer used for new electronic data

US 2008/0172563 A1

files. This is needed to allow changes to the storage grid.
While using a storage network such as SAN allows the addi
tion of additional storage without modifying the actual net
work configuration, there are times when a modification of
the storage grid is desired, such as when adding remote Stor
age networks or modifying the balance of the storage. After
modifying the network storage information table 330 to
reflect the new storage grid, new electronic data files will go
to the desired storage unit, but old electronic data files will
hash to the wrong storage unit. One solution is to move all the
old electronic data files to the storage unit it hashes in a secure
manner. The preferred embodiment of the invention simply
leaves the old electronic data files on the original storage unit,
but list the storage unit in the network storage information
table 330 as read only. File retrieval will then search each
storage unit, whose ID range matches the electronic data file
that describes its location, using the start date column 331 as
a hint.

0055. It should be understood that each instance of the
present invention within the storage network will contain a
duplicate copy of the network storage information table 330
within its storage administrator 204. Included within the net
work storage information table 330 will be the on-box
WORM VFS volumes, each of which will have a unique
location 334 and storage partition 335 pair.
0056. Whenever an electronic data file is received by the
storage administrator 204, it first hashes the file's contents to
determine which network storage unit to archive the file to. If
the selected location is controlled by the storage administra
tor 204, it then converts the electronic data file into a struc
tured file; otherwise it transmits the electronic data file to the
WORM storage appliance that controls the selected location.
The purpose of converting the electronic data file into a struc
tured format is to allow searches and holds to be based on well
defined parts of the electronic data instead of solely on infor
mation about the file. For example, deletion holds can be
performed based on the recipient of emails or the authors of
Word documents.

0057 FIG. 3D generally illustrates the structured message
format 340 produced by the storage administrator 204. At the
beginning of the structure is Meta Data 341 that describes the
electronic data file. FIG. 3F shows a granular view of the
contents of the Meta Data 350 section. Among other things, it
contains the structure format version 351, the file type 352, a
set of flags 353 to signal special characteristics of the file,
such as violations, the time the file was created 354, the
retention period 355, the original size of the file 356 before
compression and the number of related files (attachments,
jpegs, etc.) 357. The Meta Data 350 section may contain
additional information 358.

0058. In FIG. 3D, after the Meta Data 341 section is the
item headers 342 section. The item headers 342 describe
where to find file parts (headers and body) in the structured
file 340. FIG.3E shows the format of each Item Header entry
346. Each consists of an Item Type 347, followed by the Item
Offset 348 and an Item Length 349. There is a unique item
type 347 for each type of header and body element. The Item
Offset 348 is the distance from the beginning of the structured
message the item type is located. A special item type is used
to signal the end of the item headers.
0059. After the item headers 342 section is the List of
Related Hashes 343 unless the file has no related files, as
indicted by the number of related files 357 in the Meta Data

Jul. 17, 2008

350 section of FIG. 3F. After the List of Related Hashes 343
is the File Headers 344 section and at the end of the structured
file 340 is the File Body 345.
0060. After the unstructured electronic data file is con
verted into a structured electronic data file, it is transferred to
the WORMVFS, which in turn either writes the file to off-box
network attached storage or the on-box WORM storage.
0061. At regular intervals, a process is run within the stor
age administrator 204 to delete electronic data files that have
passed their retention period. Each electronic data file has an
absolute retention period embedded in its file when created.
The electronic data file cannot be deleted during this retention
period, but an electronic data file cannot be prevented from
deleting off even past its retention period. This might be
necessary if a regulatory investigation or legal action requires
a hold on file deletions.
0062 FIG. 3G shows an example of a deletion holds table
360 of the preferred embodiment of the present invention.
The deletion holds table 360 is stored within the storage
administrator 204 and is modified by IT administrators to
place or remove deletion holds. Examples of holds are illus
trated by rows 362,363, 364, 365 and 366. As the storage
administrator 204 searches its index database 205 for files
available for deletion, it will try to match each file with the
conditions 361 for each row in the deletion holds table 360.
This may require reading in the electronic data file's metadata
to determine if the rule matches. FIG. 8D describes the dele
tion process in more detail.
0063 FIG. 4 shows the components of the data
encryption\compression layer 402 of the preferred embodi
ment of the present invention. The operating system's virtual
file system (VFS) 401 layer forwards all storage administra
tor 204 file and filesystem operations to the data
encryption\compression layer 402. All operations except file
reads and writes are passed on to the appropriate storage
location, either off-box NFS/SAN 403 or on-box WORMFS
404, after authenticating the caller was the storage adminis
trator 204. The data encryption\compression layer 402 pro
cesses file reads and writes before passing the data onwards.
0064. Since most electronic data files are expected to be
fairly small, it is possible to accumulate all the blocks of the
files (delayed allocation) before they are passed on to the
lower layer. Even for large files, the data can be broken to
extents appropriate for the file type. This allows for more
efficient writes and reads, since a large part or the entire file
can be contiguous. Since archived data is normally retrieved
in its entirety or just its Metadata (if performing a search), the
filesystem is optimized to retrieve either the electronic data
file's inode or its entire contents.
0065. The block accumulator 405 is responsible for accu
mulating blocks of write data until the file is closed or an
extent is filled. The blocks are then run through compression
406 and encryption 407 before being written to either off-box
NFS/SAN 403 or on-box WORM FS 404 by the file
reader\writer 408. In alike manner, blocks of data is read from
either off-box NFS/SAN 403 or on-box WORM FS 404 by
the file reader\writer 408, passed through decryption 409 and
decompression 410 and then accumulated by the block accu
mulator 405 before being passed to the storage administrator
204 via the VFS 401 layer. Block diagrams illustrating meth
ods of the present invention for file reading and writing are
included as FIG. 8B and FIG. 8C.
0066 FIG. 5A shows the components of the WORM FS
layer 502 of the preferred embodiment of the present inven

US 2008/0172563 A1

tion. The WORMFSlayer 502 lies below and receives opera
tions from the data encryption\compression layer 501 and
uses physical storage provided by the lower logical volume
manager 503. The WORMFSlayer 502 has four components:
the Space Manager 504, the Encryption Unit 506, the Journal
Manager 507 and the Buffer Cache 505.
0067. The Space Manager 504 manages free extents and
inodes. Free inodes and extents are stored in B+ trees. There
are two extent B+ trees, one sorted by extent size and the other
sorted by block number. Each extent entry contains the allo
cation group number, the block offset within that group and
the number of blocks in the extent. The Space Manager's
information is stored in the allocation group headers and the
free disk inodes between boots.
0068. The Encryption Unit 506 handles encryption and
decryption of inodes (data is encrypted in the data
encryption\compression layer 501).
0069. TheJournal Manager 507 handles the recovery jour
nal. In order to recover from power failures or other system
crashes, each Inode modification is written to a journal before
the transaction is committed. On power up, the journal is
checked to see if a proper shutdown occurred. If not, each
recorded transaction (file create, file delete, audit update, etc.)
is checked to see if it completed successfully. Files created,
but not fully written will be removed.
0070 The journal entries are stored in a ring buffer on
non-volatile memory, preferably battery backed RAM. FIG.
5C shows an example of a journaling ring buffer 520 of the
preferred embodiment of the present invention. FIG. 5B
shows the format of each journal entry 510. Each entry will
store the operation type 511, inode location 512, and the entry
data 513 needed to roll back the transaction. The block dia
gram in FIG.5D describes how the journaling ring buffer 520
is processed during recovery.
(0071. The Buffer Cache 505 stores recently used inodes
and data blocks to improve performance. It does this by
employing a set of B+ trees to store most recently used inodes
and disk blocks in block number order.
0072 FIG.5D is a is a block diagram illustrating a method
of the present invention for recovery using the journaling ring
buffer 520. On startup, each entry in the journaling ring buffer
520, starting at the current entry 521, is processed 530. If its
a file write entry 532, the inode is checked 535 to see if the
entire file was written. If not, the file inode and its related data
extents are released back to the space manager's free list536.
Otherwise the next entry is checked. If it's a file creation entry
531, the inode is checked 535 to see if the entire file was
written. If not, the file inode and its related data extents are
released back to the space manager's free list 536. Otherwise
the next entry is checked. If it's a file delete entry 533, the file
inode and its related data extents are released back to the
space manager's free list 536. If it's a file audit entry 534, the
audit information is added to the file inode 537.
0073. The diagrams and illustrative examples in FIG. 6A,
FIG. 6B, FIG. 6C, FIG. 6D and FIG. 6E describe the layout of
the filesystem of the preferred embodiment of the present
invention. FIG. 6A generally illustrates the volume layout
601 of WORM VFS filesystem (note that this is a logical
Volume, as presented by the underlying logical Volume man
ager 211). At the beginning of each Volume is the Volume boot
block 602. The volume boot block 602 contains a WORM
VFS filesystem identity marker, a unique volume ID and a
volume full status. After the volume boot block 602 is a copy
of the public key certificate 603 used to encrypt the volume's

Jul. 17, 2008

superblock and allocation group lockboxes. Next is the Vol
ume superblock. The rest of the volume is divided into equal
sized allocation groups (AG) 605, 606. Allocation groups
605, 606 are used because each group can be accessed inde
pendently, allowing simultaneous reads and writes. Each
allocation group has its own AG header 607 and sets of inode
and data blocks 608.
0074 FIG. 6B generally illustrates the superblock layout
610 of WORM VFS filesystem. The superblock consists of
filesystem statistics 611 (Such as amount of free space and
number of files), filesystem information 612 (such as the
allocation group sizes and Volume characteristics) and allo
cation group information 613 (such as the location of each
allocation group and its extent size). Two copies of the file
system Superblock are stored contiguously on the Volume, in
case one gets corrupted. There is also an in-core copy to
which updates are made. The filesystem statistics 611 portion
of in-core superblock is written to disk on a regular basis. The
filesystem information 612 and allocation group information
613 are written for new volumes only and are used mostly for
filesystem mounts.
0075 FIG. 6C generally illustrates the layout of each allo
cation group (AG) header 620 of the WORMVFS filesystem.
The AG header 620 consists of AG metadata 621, a free
extents list 622, a free inodes list 623 and a key lockbox 624.
AG metadata 621 contains the location of the rootinode (from
which all other inodes can be found), the number inodes in
use and other AG specific data. The free extents list 622 and
free inodes list 623 is maintained by the Space Manager 504
for each AG, for use between system boots. The lockbox 624
contains session keys used by the Encryption Unit 506 to
encrypt the AG's inodes before volume writes. Like the super
block, there is both an on-disk and in-core copy of each AG
header 620. Updates are written to the in-core AG header,
which is written to disk encrypted, using the public certifi
cate, on a regular basis, but not later than a full traversal of the
journal ring buffer. Modifications to the AG headers are spin
locked to ensure consistency.
0076 FIG. 6D generally illustrates the layout of each
inode 630 of the WORMVFS filesystem. Sections 636, 637,
638 are the same sections from FIG. 3D of the structured file
format 340 passed down from the storage administrator 204.
Eachinode starts with an inode header 631 which contains a
version number and any Volume specific information. Each
inode is part of a linked list of all in use inodes. The linked list
ofused inodes is doubly linked using the previous\next point
ers 632. Next is a block of extent pointers 633 to the file's data.
A Small section holds audit or annotation data 634 (Such as
whether a file has been reviewed for compliance, who last
accessed the file, etc) within the inode. If additional audit data
space is needed, space for an audit block pointer 625 is
included. The rest of the inode 639, after sections 636, 637,
638, is used to either store the entire body of the electronic
data file or the partial block comprising the tail of the file. This
reduces disk usage and increases performance, as Small files
can be completely read by just accessing the inode and larger
files will not be wasting partial data blocks. Since archived
files are usually read in its entirety, reading the tail along with
the inode data also helps performance. Besides the on-disk
inode 630, there will be an in-core copy of the inode while it
is open for create or read.
0077 FIG. 6E shows an example of a logical layout of a

file in the WORM VFS filesystem. The inode 650 format is
the same as that described in FIG. 6D, but some fields are not

US 2008/0172563 A1

shown for to clarify the illustration. As before, the inode starts
with an inode header and inode linked list pointers 651. The
extent pointers 652 are next, followed by other inode fields
653 not detailed for this example. The space at the end of the
inode is used for the file's tail 654 (last few bytes), but could
be used for the entire file's data in other instances. The extent
pointers 652 point to several direct extents 655 that contain
the file's data. Each extent is made up several contiguous data
blocks. The number and size of data blocks are optimized by
volume and the values are stored in the filesystem information
portion of the superblock. If the file runs out of pointers to
direct extents 655, the last extent pointerpoints to a data block
656 instead of an extent. This data block contains a list of
indirect extent pointers 656. Each pointer in this block points
to an indirect extent 657, except for the last pointer, which
will point to an extent which is partially used 658. The inode
header 650 stores the information about how many direct and
indirect extents are used and which blocks in the last extent
are used. Unused blocks in the last extent are returned to the
Space Manager 504, which can subsequently allocate the
blocks to the end of a new file.
0078 FIG. 7 shows an example of the logical volume
manager 701 of the preferred embodiment of the present
invention. The logical Volume manager 701 is designed to
group a set of physical disks 702. 703, 704 into a single
volume. It should be understood that this example is for
illustrative purposes only; there can be any number of disks in
a Volume, there can be any number of volumes in a system and
they don't have to be mirrored. It should also be understood
that the system could comprise of a single physical disk, in
which case the logical volume would be the same as the
physical disk.
0079 Besides grouping physical disks into logical vol
umes, logical Volume manager 701 handles several normal
events, such as disk failures, disk full and disk insertion, so
that human operators can be alerted.
0080. If a disk in the volume has errors or fails completely,
the logical volume manager 701 will notify the operator via
the storage administrator 204 and flag the disk as corrupt. The
operator can then put the disk offline, replace it and put it back
online. The logical volume manager 701 (or RAID) will
mirror the new drive.
0081. When a volume nears its capacity, the logical vol
ume manager 701 will notify the storage administrator 204.
When the Volume is at its maximum capacity (some room is
left for audit messages), the logical volume manager 701 will
flag the Volume as read only, not allowing more electronic
data files to be added to the volume. If no new volumes are
available, the system is signaled to not allow new electronic
data files.
0082. The operator can put online a previously written
volume for analysis. The logical volume manager 701 will
detect this and tell the storage administrator 204 to scan the
inodes and load the metadata into the index database 205.
0083 FIG. 8A is a block diagram illustrating a method of
the present invention for mounting a Volume containing a
WORM VFS filesystem. After the boot block is read, the
volume's public key certificate is read 801 for later encryption
of the Volume's Superblock and allocation group lockboxes as
they are modified. The matching private key certificate is
fetched 802, either from a hardware dongle or other means. A
new storage administrator key is created by the WORMVFS
filesystem using random data generated by the storage admin
istrator 204, encrypted with the public key certificate and

Jul. 17, 2008

passed within the mount function call. This same key is cre
ated by the storage administrator 204. This key is subse
quently included in all file system operations to verify that it
came from the storage administrator. The Superblock is read,
decrypted with the private key certificate and verified 804,
and used to locate each allocation group. Each allocation
group is processed in turn 805. The allocation group's header
is read in and decrypted with the private key certificate 806.
The space manger adds B+trees for the list of free inodes and
free extents 807. When all allocation groups have been pro
cessed, journal recovery is run 808 as described in FIG. 5D.
Finally, the filesystem statistics are updated and the storage
administrator 204 is notified the volume is ready for use 809.
I0084 FIG. 8B is a block diagram illustrating a method of
the present invention for creating a new on-box file within the
WORM VFS filesystem. A user application first calls the
storage administrator 204 to open a new file for creation 810.
The storage administrator 204 performs a VFS call to the
WORMVFS to create a new inode and reserve its first extent
of data blocks 811. A journal entry is written in case of later
recovery 812. In a loop 813 while file data is being written by
the storage administrator 204 via VFS calls, data blocks are
accumulated 814. When enough file data blocks are accumu
lated, they are compressed 815 and encrypted 816. The
encrypted binary data is written to extent blocks 817. Each
extent write generates a journal entry in case of later recovery
818. If all the blocks in the current extent are used 819, a new
extent is allocated 820 and the inode is updated. Once all the
file data is written out, the file inode, the allocation group
header and the filesystem statistics are updated 821. The
storage administrator 204 is notified, which updates the index
database 205 with the file identification and file location 822.

I0085 FIG. 8C is a block diagram illustrating a method of
the present invention for reading an existing on-box file
within the WORM VFS filesystem. A user application first
calls the storage administrator 204 to open an existing file for
read 830. The storage administrator 204 looks up the file
location using the file identification 831. The storage admin
istrator 204 then performs a VFS call to the WORM VFS to
open in the existing file inode for reading 832. After the file is
opened, the storage administrator 204, via VFS calls, starts
reading the file data in a loop 833. If this is the first read 834,
the file's metadata stored in the inode is returned 835. Sub
sequent calls read data from the file's extent blocks 836,
decrypt the data 837, decompress the data 838 and return the
file data blocks 839. Note that sequential reads are only sup
ported, random access is not supported.
I0086 FIG. 8D is a block diagram illustrating a method of
the present invention for deleting an existing on-box file
within the WORM VFS filesystem. At regular intervals, a
process is run within the storage administrator 204 to delete
electronic data files that have passed their retention period.
The storage administrator 204 first queries the index database
205 for a list of files eligible for deletion 850. In a loop 851,
each file in the list is checked to see if a deletion hold matches
it and is then deleted if no deletion hold is in place. To perform
this, the storage administrator 204 reads in the file's metadata
(first read access) 852. It then checks the rules 853 in the
deletion holds table 360 and sees if there is a match 854. If
there is, the file is skipped. If not, a delete call 863 is made to
the WORM VFS via the VFS interface. The WORM VFS
filesystem first checks if the file inode exists 858. If not, an
error is returned 857 to the storage administrator 204. If the
file inode exists, its retention period stored in the inode is

US 2008/0172563 A1

checked 860. If the retention period is not over, an error is
returned 857 to the storage administrator 204. This ensures
files are never deleted before its retention period has passed.
If the retention period has lapsed, the file inode and its related
data extents are released back to the space managers free list
861 and a journal entry is written in case of later recovery 862.
Upon return from the delete call to the WORM VFS, the
storage administrator 204 checks for file deletion errors 856.
If no error occurred, the file identification and file location
record is removed 855 from the index database 205.

What is claimed is:
1. A method for storing data in a storage system, compris

ing the steps of
creating a new storage entity within the said storage system
by a user application, comprising the steps of:
allocating an inode in said storage system; and
allocating an initial extent within the allocation group of

said storage system;
whereby said data can be stored in said storage entity and

later retrieved in its entirety; and
accumulating blocks of said data transferred by said user

application until all the said data has been transferred, in
its entirety, from the said user application to the said
storage system; and

compressing the said blocks of said data to create com
pressed data blocks; and

encrypting said compressed data blocks to create
encrypted data blocks; and

writing said encrypted data blocks to first the said initial
extent and to additionally allocated extents within the
said allocation group of said storage system until all said
encrypted data blocks are stored in extents within the
said allocation group of said storage system; and

modifying said inode and said allocation group of said
storage system with meta information about said data
and said extents used within the said allocation group of
said storage system to facilitate later retrieval of said
data; and

writing the said modified inode to the said storage system;
whereby said data is stored in the said storage system, Such

that said data is written to the said storage system in its
entirety or not at all and said data cannot be modified or
deleted after said data is written.

2. A method of claim 1, wherein the said storage system is
implemented as a write once, read many times file system and
each said storage entity is represented as a file.

3. A method of claim 1, wherein a entry is written in a
non-volatile RAM journal after the said inode is created and
after all the said encrypted data blocks in its entirety are
written to extents of said storage system. The said journal
entries are processed on start up of the said storage system to
remove said inodes that were created, but not all said
encrypted data blocks were written to extents within said
Storage System.

4. A method of claim 1, wherein said user applications are
unable to access the said storage system directly, but must
access said storage system through a kernel module, which
provides a secure interface.

5. A method of claim 1, wherein the accumulated said
blocks of said data are parsed according to the format of said
data and the resulting meta information obtained from said
data is written to the said inode.

Jul. 17, 2008

6. A method of claim 5, wherein the said meta information
is stored in a searchable database along with location infor
mation for the said inode, for use in later retrieval.

7. A method of claim 1, wherein the said storage system
employs internal physical disk drives.

8. A method of claim 1, wherein the said storage system
employs external storage accessible through a network inter
face and the said storage system uses file handles in place of
the said inode.

9. A device for storing data in a storage system, compris
1ng:

a server containing at least one processor coupled with
memory and containing one or more physical disk
drives; and

a storage administrator that provides a single, secure inter
face to a WORMVFS for user applications, such that the
said WORM VFS is inaccessible by any other means
except through the said storage administrator;

the said WORM VFS providing compressed, encrypted
and write once, read many times storage of said data,
said WORM VFS comprising of:
a logical Volume manager that groups said physical disk

drives into one or more logical drives; and
a WORM file system layer, that provides a write once,

read many times file system services on each said
logical drive, by using an encrypted physical file sys
tem layout incompatible with well-known file system
formats; and

a data encryption and compression layer that com
presses and encrypts data when transferred from the
said storage administrator to the said WORM file
system layer, and decrypts and decompresses data
transferred from the said WORM file system layer to
the said storage administrator;

wherein said device provides write once storage of said
data in the system, such that said data cannot be modified
or deleted after said data is written to said WORMVFS.

10. A device of claim 9, wherein a said data can be deleted
after a retention period associated with said data expires.

11. A device of claim 9, wherein said data encryption and
compression layer selectively transfers the said data to either
the on-box said WORM file system layer or off-box WORM
storage provided by a third party vendor.

12. A device of claim 9, wherein the said user applications
execute on third party vendor devices and access the said
storage system through a network interface.

13. A device of claim 9, wherein said data comprises a file.
14. A device of claim 9, wherein said WORM VFS is

implemented as a UNIX virtual file system.
15. A device of claim 13 and claim 14, wherein the said

WORM file system layer, comprises of:
a space manager that manages free inodes and extents

within the said WORM file system layer; and
an encryption unit that encrypts and decrypts inodes used

in said WORM file system layer; and
a buffer cache to keep recently used inodes and data blocks

in said WORM file system layer available; and
a journal manager to facilitate recovery from system

crashes by storing journal entries whenever an inode in
said WORM file system layer is allocated for said data,
said data is written to said inode, said data and said inode
is deleted or an audit record relating to said inode is
recorded;

US 2008/0172563 A1

wherein said WORM file system layer provides said write
once, read many times file system services.

16. A device of claim 15, wherein the said space manager
employs B+trees to store the free inodes and extents.

17. A method for selectively deleting a file in a storage
system, comprising the steps of

creating a set of simple conditions comprising of a file part
type, followed by a logical operator, which is followed
by a file part value pattern; and

creating a set of compound conditions comprising of one or
more said simple conditions and one or more Boolean
operators, wherein each said simple condition is fol
lowed by said Boolean operator, which is followed a
second said simple condition; and

creating a set of deletion policy rules, each said deletion
policy rule comprising one said compound condition or
one said simple condition; and

aggregating said set of policy rules into a deletion holds
table; and

Jul. 17, 2008

reading the meta information corresponding to file from
said storage system, comparing said metadata informa
tion to the said compound condition or said simple con
dition of each said policy rule in said deletion holds
table; and

whereby said file is prevented from being deleted if said
meta information matches the said compound condition
or said simple condition of a said policy rule in said
deletion holds table.

18. A method of claim 17, wherein the method is imple
mented as an interface to a write once storage system.

19. A method of claim 17, wherein the said file part types
comprises of the message protocol header types, the file
types, the user information and meta data information types
relating to the said electronic message.

20. A method of claim 17, wherein the said file part value
pattern comprises of a regular expression.

c c c c c

