

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2005-504999
(P2005-504999A)

(43) 公表日 平成17年2月17日(2005.2.17)

(51) Int.C1.⁷GO2B 3/00
GO2B 1/04

F 1

GO2B 3/00
GO2B 1/04

テーマコード(参考)

Z

審査請求 有 予備審査請求 有 (全 50 頁)

(21) 出願番号	特願2003-532279 (P2003-532279)	(71) 出願人	591193347 ポラロイド コーポレイション アメリカ合衆国 マサチューセッツ O2 451, ウォルサム, メイン ストリー ト 1265
(86) (22) 出願日	平成14年9月26日 (2002.9.26)	(74) 代理人	100078282 弁理士 山本 秀策
(85) 翻訳文提出日	平成16年3月29日 (2004.3.29)	(74) 代理人	100062409 弁理士 安村 高明
(86) 國際出願番号	PCT/US2002/030653	(74) 代理人	100113413 弁理士 森下 夏樹
(87) 國際公開番号	WO2003/028987	(72) 発明者	ゲテンズ, ナンシー ジェイ. アメリカ合衆国 マサチューセッツ O2 468, ワバン, ウッドワード スト リート 390
(87) 國際公開日	平成15年4月10日 (2003.4.10)		
(31) 優先権主張番号	09/966,179		
(32) 優先日	平成13年9月28日 (2001.9.28)		
(33) 優先権主張國	米国(US)		
(81) 指定國	EP(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), CA, CN, J P		

(54) 【発明の名称】成形されたプラスチックレンズおよびその製造方法

(57) 【要約】

実質的に集光力を有さないレンズを形成する方法が記載される。この方法は、インサイチュ重合を介して、不均一な厚さの、光学的に透明な高い引抜き耐性のポリマー材料の層(51)をレンズの凸面上に形成する工程を包含する。本発明の方法により提供されるレンズは、そのレンズの中心領域に最大厚さを有し、そしてその厚さが、このレンズの周辺部に向かって半径方向に漸減することを特徴とする。成形したかまたは湾曲された、実質的に集光力を有さないプラスチックレンズが、インサイチュ重合を介して、光学的に透明な高い引抜き耐性のポリマー材料の層をレンズの凸面に形成することにより、本発明に従って提供され得る。

【特許請求の範囲】

【請求項 1】

プラスチックレンズを形成する方法であって、該レンズは、一方の側で凸状でありかつ他方の側で凹状であり、そして該レンズの中心領域において該レンズの最大厚さを有し、そして該レンズの周辺部に向かって半径方向に厚さが漸減しており、

該方法は、以下の工程：

少なくとも1層の熱可塑性材料を含む、実質的に均一な厚さのレンズプランクを提供する工程；

該レンズプランクに凸面および凹面をそれぞれ形成するために、対向した凸状プラテンと凸状プラテンとの間に該レンズプランクを配置する工程であって、該凸状プラテンは、モノマーまたはオリゴマーを含む一定量の重合可能な組成物を、その形成表面上に保持しており、そしてここで該凸状プラテンの曲率半径および該凹状プラテンの曲率半径が、それぞれ、

【数 1】

$$r_1 + r_2 = t \left(\frac{n-1}{n} \right)$$

の関係に対応する、工程；

該凹状プラテンおよび凸状プラテンを、該プラテンの間にある該レンズプランクと一緒に加熱およびプレスする工程であって、該加熱およびプレスが、該レンズプランクを変形させ、そして該重合可能な組成物の重合を生じて、該変形されたレンズプランクの凸面に不均一な厚さの層を与えるのに十分であり、該不均一な厚さの層は、その中心領域に最大の厚さを有し、そして該層の周辺部に向かって半径方向に厚さが漸減しており、それにより、一方の側で凹状でありかつ他方の側で凸状である成形されたレンズが形成され、該レンズは、その中心領域において最大の厚さを有し、かつ該レンズの周辺部に向かって半径方向に厚さが漸減している、工程；ならびに

該成形されたレンズを該プラテンの間から取り外す工程、

を包含する、方法。

【請求項 2】

前記レンズプランクが、熱可塑性材料の第1層と第2層との間に配置され、かつ該第1層および第2層に接着されている光偏光材料の層を含む、請求項1に記載の方法。

【請求項 3】

前記熱可塑性材料の第1層が、酢酸酪酸セルロースまたは三酢酸セルロースを含み、そして前記熱可塑性材料の第2層が、ポリカーボネートを含み、そしてここで該第2層が、前記レンズの前記凹面を形成する、請求項2に記載の方法。

【請求項 4】

請求項2に記載の方法であって、前記熱可塑性材料の第1層が、酢酸酪酸セルロースまたは三酢酸セルロースを含み、そして前記熱可塑性材料の第2層が、ポリカーボネートの着色層および高い引抜き耐性の材料の外側層を有するポリカーボネートの透明層を含み、そしてここで該ポリカーボネートの透明層が、前記レンズの前記凹面を形成する、方法。

【請求項 5】

前記光偏光層が、前記レンズの凹面よりも該レンズの凸面に対してより近くに位置付けられる、請求項4に記載の方法。

【請求項 6】

前記重合可能な組成物がテトラエチレングリコールジメタクリレートおよびジペンタエリスリトールペンタアクリレートの混合物を含む、請求項1に記載の方法。

【請求項 7】

一方の側で凸状でありかつ他方の側で凹状であり、実質的に集光力を有さない成形された

10

20

30

40

50

プラスチックレンズであって、該レンズは、熱可塑性ポリマー材料の第1の実質的に均一な厚さの層および不均一な厚さでかつ高い引抜き耐性を有する熱可塑性ポリマー材料の第2の層を含み、該第2の層は、その中心領域において最大の厚さを有し、そしてその周辺部に向かって半径方向に厚さが漸減しており、そしてここで該第1の実質的に均一な厚さの層は、該レンズの該凹状の側を形成し、そして該第2層は、該レンズの該凸状の側を形成する、成形されたプラスチックレンズ。

【請求項8】

前記レンズの前記第1層に位置付けられた光偏光材料の層をさらに含む、請求項7に記載の成形されたプラスチックレンズ。

【請求項9】

前記熱可塑性材料の第1層が、三酢酸セルロースまたは酢酸酪酸セルロースを含み、そして前記熱可塑性材料の第2層が、ポリカーボネートを含み、そして前記光偏光層が、該三酢酸セルロースまたは酢酸酪酸セルロースの層と該ポリカーボネート層との間に位置付けられており、そして該ポリカーボネート層が、前記レンズの前記凹状の側を形成する、請求項8に記載の成形されたプラスチックレンズ。

【請求項10】

前記レンズの前記ポリカーボネート層が、ポリカーボネートの着色層および高い引抜き耐性の材料を有する外側を有するポリカーボネートの透明層を含み、該高い引抜き耐性の材料が、該レンズの前記凹面を形成する、請求項9に記載の成形されたプラスチックレンズ。

【請求項11】

前記光偏光層が、前記レンズの前記凹状の側よりも、前記凸状の側に対してより近くに位置付けられる、請求項10に記載の成形されたプラスチックレンズ。

【発明の詳細な説明】

【技術分野】

【0001】

(発明の背景)

本出願は、成形されたプラスチックレンズおよびそれらの製造方法に関する。より詳細には、本出願は、実質的に集光力(optical power)を有さず、高い衝撃耐性特性および耐磨耗性を有するプラスチックレンズ、ならびにこのようなレンズを形成するための方法に関し、この方法において、レンズの高い引抜き耐性の凸面が、この方法の間にインサイチュで形成される。

【背景技術】

【0002】

レンズとして有用な湾曲した光偏光性積層体であって、一対の基材シートの間に配置された分子配向した光偏光性材料の層を含む光偏光性積層体が周知である。成形された光偏光性部材の各側に光学品質のポリマー材料の層を含む、光偏光性複合レンズを製造することが公知である。米国特許第3,940,304号は、光学品質のポリマー材料層を鋳型においてインサイチュで重合することを含む技術を記載する。光学品質のモノマー材料は、光偏光性材料の両面を覆うように成形型中に挿入され、そして加熱されて、モノマー材料の重合が引き起こされ、それにより光偏光性複合ポリマーレンズ構造体が形成される。

【0003】

さらに、実質的に集光力を有さないレンズを、複合レンズブランクを鋳型で成形することにより製造することが公知である。例えば、米国特許第5,434,707号は、実質的に集光力を有さない成形プラスチックレンズを形成するための方法を教示し、このレンズは、一対の熱可塑性基材シートの間に配置された光偏光性層の積層体を含む。この方法によれば、複合レンズブランクは、加熱された湾曲したプラテンを有する鋳型中に挿入され、そして熱可塑性基材シートが変形されそして流動性を付与されるように加熱およびプレスにかけられ、結果として、実質的に集光力を有さない複合レンズが生成される。この方法は、所定の曲率半径を有するレンズ形成プラテンを必要とし、この所定の曲率半径を有

10

20

30

40

50

するレンズ形成プラテンにより、加熱およびプレス条件下で、不均一な厚さのプラスチックレンズ（すなわち、中心領域で最も厚く、そしてその周辺部に向かって半径方向に厚さが減少するレンズ）の製造を可能にする。この‘707号特許により教示される方法は、実質的に集光力を有さずかつ良好な耐久性を有する成形されたプラスチックレンズを提供するが、これは、全ての状況について完全に満足できるものではない。

【0004】

技術水準が進歩するにつれて、新しい性能要件を満たし得る新しいプラスチックレンズを提供し、そして先行技術の材料の望ましくない特性のいくつかを低減するか排除しようとする努力がなされている。例えば、スポーツ競技のような種々の用途のための、実質的に集光力を有さない高い衝撃耐性のプラスチックレンズに対する要求が継続して存在している。単に、高い衝撃耐性のプラスチック材料から作られたレンズプランクを鋳型で成形することにより高い衝撃耐性のプラスチックレンズを作製することは、完全に満足できるものではない。なぜなら、このような高衝撃耐性の材料は、代表的に、高い光学的応力(optic stress)特性を示し、そしてレンズを成形するのに必要な加熱および圧力の条件下でひび割れを生じる傾向があるからである。従って、実質的に集光力を有さずそして高い衝撃強度を有し、そして眼鏡における用途に適切である、成形されたレンズを作製するための方法を得ることが有利である。実質的に集光力を有さず、かつ高い引張り耐性の凸状表面を有する成形されたレンズもまた有利である。

10

20

30

40

【発明の開示】

【課題を解決するための手段】

【0005】

(発明の要旨)

成形したかまたは湾曲された、実質的に集光力を有さないプラスチックレンズが、インサイチュ重合を介して、光学的に透明な高い引張り耐性のポリマー材料の層をレンズの凸面に形成することにより、本発明に従って提供され得ることが、今や見出されている。本発明の方法は、加熱された湾曲したプラテンを備える鋳型において実施される。モノマーまたはオリゴマーを含む適切な重合可能組成物の適切な量を、一方のプラテンの凹面上に挿入する。実質的に均一な厚さの平らなレンズプランクを、これらのプラテンの間に置き、次いで、これらを一緒に加熱およびプレスする。この重合可能組成物は、これにより成形されたレンズ構造体の凸面を覆うようにされて、そして重合して不均一な厚さの層を形成し、この層は、中心領域で最も厚く、そしてこのレンズの周辺部に向かって半径方向に漸減する厚さ勾配を有する。

【0006】

好ましい実施形態において、利用されるレンズプランクは、複数の熱可塑性基材層の間に光偏光性材料の層を含む複合構造体である。従って、本発明によれば、サングラスに適切なレンズが提供される。

【0007】

このようにして形成された有利な成形プラスチックレンズは、一方の側で凸状でありかつ他方の側で凹状であり、実質的に集光力を有さず、そして凹状の側に実質的に均一な厚さの1つ以上の透明層を含み、そして凸状の側に、高い引張り耐性および不均一な厚さを有する熱可塑性材料の透明層を含み、この層の最大厚さは、このレンズの中心領域にあり、そしてその厚さは、このレンズの周辺部に向かって半径方向に漸減する。従って、本発明の有利なレンズ構造は、全体的に不均一な厚さを有し、そのレンズの最大厚さは中心領域にあり、そしてその厚さは、このレンズの周辺部に向かって半径方向に漸減する。

【0008】

さらに本発明に従って、実質的に集光力を有さない、一方の面が凸状でもう一方の面が凹状であり、その中心領域でその最大厚さを有し、かつその周縁部の厚みが半径方向に向かって徐々に減少している、成形プラスチックレンズを形成するための方法が提供される。この方法は、以下の工程を包含する：

レンズプランクを配置する工程であって、このレンズプランクは、そこに凸状表面および

50

凹状表面をそれぞれ形成するための対向する凹状プラテンと凸状プラテンとの間に、熱可塑性材料の1以上の透明な実質的に均一な厚層を含み、その凹状プラテンの曲率半径(r_1)および凸状表面プラテンの曲率半径(r_2)は、実質的に以下の関係：

$$r_1 + r_2 = t ((n - 1) / n)$$

に各々対応し、式中tは、レンズプランクの厚みを表し、そしてnは、屈折率である、工程；

重合化能な組成物の容量をこの凹状表面プラテンに配置する工程；ならびに、これらの間のレンズプランクと一緒に、プラテンを加熱およびプレスする工程であって、このレンズプランクが、凸状プラテンに対して一方の面を変形および適合され、重合可能な組成物が重合し、そして凹状プラテンに適合される不均一厚の透明層を形成し、従って、レンズの中心領域で最大厚を有しあつそのレンズの周縁部の厚みが半径方向に向かって徐々に減少する層がインサイチュで形成されるように、加熱およびプレスする、工程。10

【0009】

本発明の有利な方法は、高い衝突強度および高いひっかき耐性(scratch-resistance)の凸状表面を有するレンズの製造を可能にする。

【0010】

(好ましい実施形態の説明)

以前に記載したように、本発明は、実質的に集光力を有さない形成プラスチックレンズ、およびこのようないわゆるレンズを製造するための方法に関する。本発明のプラスチックレンズに適用される場合、実質的に集光力を有さないレンズとの言及は、一般に、倍率がないことまたは倍率低下(demagnification)をいう。従って、ヒトの眼によって識別もしくは検出することができないほど集光力が実質的に低い場合、または集光力を有さないレンズについて公開された産業基準の制限の範囲内に集光力がある場合、レンズは、実質的に集光力を有さないとみなされる。本発明に従うこのようないわゆるレンズの製造は、所定の曲率半径表面を有するレンズ形成プラテンの必要条件である実質的な接着性を必要とし、その結果、本発明の方法に従って利用される加熱条件および圧力条件下で、不均一厚を有する形成プラスチックレンズが形成され、その最大厚はレンズ中心領域であり、そしてレンズの周縁部は半径方向に向かって徐々に減少する。従って、本発明のレンズの凹凸状表面を形成するために使用されるそれぞれのプラテンの曲率半径は、本明細書中以後により詳細に記載され、そして実質的に集光力を有さないレンズを提供するために予め決定された、重要な関係に従う。20

【0011】

実質的に集光力を有さない本発明のレンズを製造するための必要条件は、以下のChemical Rubber Company, F-85頁によって公開された、Handbook of Chemistry and Physics 第53版(1972)に開示される、厚レンズの厚み(t)の主焦点(F)に対する数学式(I)に対する参照によって、よりよく理解され得る：

【0012】

【数2】

$$F = \frac{nr_1r_2}{(n-1)[n(r_1+r_2)-t(n-1)]} \quad (I) \span style="float: right;">40$$

式中、 r_1 および r_2 は、レンズの曲率半径を表し、そしてnは、屈折率である。

【0013】

ゼロ集光力のレンズの場合には、Fは、無限大に等しく、これは、以下の場合である：

$$n(r_1 + r_2) = (n - 1)t \quad (II)$$

屈折率(n)が1.5であると仮定した場合、曲率半径(r_1 および r_2)は、以下の式に従うレンズの厚みに関係する：

$$r_1 + r_2 = t / 3 \quad (III) \span style="float: right;">50$$

従って、（レンズの凸状表面を形成するために）曲率半径（ r_1 ）が3.514インチである凹状表面を有するプラテンを使用して、0.001インチ（100ミル）の厚みの複合積層がレンズ内に形成される場合、レンズの凹状表面側を形成するために使用されるプラテンは、3.481インチの曲率半径（ r_2 ）を有する凸状表面を有することが理解される。

【0014】

対照的に、そして当該分野で公知であるように、均一厚（ T ）のレンズの集光力（ P ）は、以下の式：

【0015】

【数3】

$$P = -P_0^2 T \left(\frac{1}{n-1} - \frac{1}{n} \right) \quad (\text{IV})$$

10

によって表され、式中 T は、メートルで表される。屈折率（ n ）が1.5であり、そして公称集光力（ P ）（これは、対向する表面の各々の集光力の積の平方根に等しい）が6である場合、以下である：

【0016】

【数4】

$$P = -36T \left(\frac{1}{1.5-1} - \frac{1}{1.5} \right) \quad (\text{V})$$

20

および

$$P = -48T \quad (\text{VI})$$

式VIから、以下であると算出され得る：

$$P = -0.00122t \quad (\text{VII})$$

30

ここで、厚み（ t ）は、ミルで表される。（ジオプターにおける）異なる厚みのレンズの集光力は、式VIIを使用して容易に算出され得、そして均一な、異なる厚みのレンズの集光力の例は、以下の表Iに記載され、ここで、焦点距離は、メートルで表される。

【0017】

【表1】

表 I

t(ミル)	P(ジオプター)	焦点長さ
30	- 0.0366	- 27.3
45	- 0.0549	- 18.2
60	- 0.0732	- 13.66
75	- 0.0915	- 10.93
90	- 0.1098	- 9.11
100	- 0.1220	- 8.20

式 V I I のインスペクションおよび表 1 のデータから、均一の厚みのレンズ厚が増加すると集光力が増加することが、理解される。従って、レンズ厚が、改善された剛性および耐久性のような所望の特性の実現のために増加される場合、それに付随したレンズ集光力の 20 望ましくない増加が生じる。

【 0 0 1 8 】

実質的に集光力を有さずかつ不均一厚を有する本発明のレンズの製造のために使用される 30 プラテンのレンズ形成表面についての必要条件は、均一厚のレンズを形成するために有用なプラテンの曲率半径を考慮することによって、よりよく理解され得る。例えば、対向する凹凸状表面および均一厚を有する「オニオン」レンズは、オニオンスライスの同心環に類似し得る。同一でかつ均一厚の各オニオングループは、凹凸半径によって規定される。これらの半径は、各スライスで異なる値を有する。各スライスについてのそれぞれの半径はまた、このオニオン表面の外側方向へのリングの進行とともに変化し得る。透明のプラスチック基板材料は、このようなリングとの類似性によって、均一厚のレンズに成形され得、そしてプラテンに対する曲率半径の必要条件は、オニオンの幾何学との類似性によって容易に決定され得る。しかし、このようなレンズは、以前に記載されるように、厚みの増加した集光力を有する。

【 0 0 1 9 】

高いひっかき耐性の熱可塑性材料の凸状表面を有するプラスチックレンズは、所定の異なる曲率半径のプラテンおよび熱可塑性基板材料を使用して、インサイチュ重合による不均一厚の層の形成と組み合わせて、熱条件および圧力条件を決定する (shape) ことによって、本発明に従って製造され得、これは、集光力の発生を打ち消して、その代わりに全体的な不均一厚を有しかつ実質的に集光力を有さない、レンズの形成を促進する。曲率半径の特定の必要条件およびその材料に関する必要条件および本発明のレンズの製造を可能にする成形条件は、本明細書中以後に詳細に記載されている。

【 0 0 2 0 】

以前に記載されるように、本発明の方法は、一般に、実質的に集光力を有さない、不均一厚の成形プラスチックレンズの形成に関し、ここで、不均一厚の層が、インサイチュ重合によって形成される。従って、一般に、本発明に従うレンズを形成するために使用されるレンズプランクは、実質的に均一な厚みの層または適切な熱可塑性材料の層を含む、平面構造であり得る。本発明の方法は、本発明の好ましい実施形態に関して、以下にさらに詳細に記載されており、ここで、本発明に従うレンズを形成するために使用されるレンズプランクは、熱可塑性材料層の間に光偏光材料の層を含む複合構造である。

【 0 0 2 1 】

10

20

30

40

50

ここで図1を参照すると、層の積層構造10(すなわち、シート12、14、16および18)が示されており、これらによって、本発明に従うプラスチック光偏光レンズが形成され得る。層(すなわち、シート12)は、本発明の好ましい成形レンズの光偏光機能を提供する、分子的に配向された光偏光材料を含む。代表的には、光偏光層12は、約0.1~約3ミル(約0.0025~約0.076mm)、そして好ましくは、約0.5ミル(約0.0125mm)の範囲内の厚みを有する、分子的に配向された線状の二変色性材料を含む。

【0022】

光偏光層12としての使用のための好ましい材料は、二色性色素(例えば、ヨウ素)を用いて公知の方法に従って染色された約5ミルの厚みの延伸されたかまたは配向されたポリ(ビニルアルコール)の層である。このような偏光材料はまた、好ましくは、改善された安定性のためにホウ酸塩処理される。このタイプの適切な偏光層は、米国再発行特許第23,297号、および米国特許第4,166,871号に記載される方法を使用して調製され得る。別の好ましい偏光材料は、ポリビニレン光偏光種を含む延伸ポリ(ビニルアルコール)シートであり、これは、公知の方法に従って塩酸蒸気処理によって提供され得る。好ましくは、このような偏光材料は、改善された安定性のためにホウ酸塩処理される。このタイプの適切な光偏光材料は、米国特許第2,445,555号に記載される方法によって調製され得る。しかし、他の光偏光材料が使用され得、そしてそれらの作製のための方法は、米国特許第2,237,567号、米国特許第2,527,400号および米国特許第2,554,850号に見出され得る。

【0023】

光偏光材の作製において、1つ以上の支持体、またはキャリア、シートは、光偏光材料の耐久性および取り扱い特性を改善するために使用され得る。酢酸セルロース、三酢酸セルロース、酢酸酪酸セルロース(CAB)、または他のポリマー材料の支持シートが、この目的のために使用され得る。気泡、ヘーツまたは他の視覚的な欠陥を形成することなしに所望の結合を促進するために接着剤が使用され得る。適切な接着剤は、当該分野において公知である。

【0024】

層14および16は、熱可塑性材料を含み、これは、本発明のレンズのための所望の曲率に成型または成形され得る。光学素子の作製に有用であることが公知の透明熱可塑性樹脂は、層14および16のために使用され得る。代表的な適切な熱可塑性材料としては、ポリ(メタクリル酸メチル)、ポリスチレン、ポリカルボネートおよびセルロース熱可塑性材料(例えば、硝酸セルロース、酢酸セルロース、三酢酸セルロース、酢酸プロピオン酸セルロース、酢酸酪酸セルロースおよびエチルセルロース)が挙げられる。一般的に、適切な材料は、透明であり、そして良好な耐久性および成型性を示す材料である。さらに、層14および16の樹脂材料が、低い複屈折を示し、そしてそれらが、良好な耐熱性および耐湿性を示すことが有益である。層14および16の樹脂材料は、先に記載された樹脂材料から選択され得るが、他の材料が使用され得る。層14および16を構成する樹脂材料の成型性または加工性は、必要とされる成型またはレンズ成形の温度および圧力の条件がこのような層の間に閉じ込められる光偏光材の物理的および光学的特性に影響し得る範囲で、考慮されなければならないことが理解される。従って、層14および16は、光偏光層12に対して、分解または他の有害かつ望ましくない影響なしに、本発明に従って、湾曲したレンズに成型可能な熱可塑性材料を含む。

【0025】

一般的に、ポリ(メタクリル酸メチル)樹脂は、ポリ(メタクリル酸メチル)および上記材料のうちの他のものの良好な耐久性、透明性および加工性ならびに有益な性質および制限(光学素子の作製に対するそれらの適合性に関する範囲)を示し、これは、公知であり、そして例えば、米国特許第4,986,641号および同第5,043,405号に記載される。メタクリル酸メチルのホモポリマーおよび他のメタクリレートポリマー(例えば、メタクリル酸ノルボルニル)が使用され得、これは、メタクリル酸メチル由来および

10

20

30

40

50

他の重合可能モノマー由来の繰り返し単位を含むメタクリルコポリマーであり得る。このようなホモポリマーおよびコポリマーの例は、上記米国特許第4,985,648号および同第5,043,405号に見出され得る。

【0026】

層14および16に好ましい材料は、酢酸酪酸セルロースおよびポリカーボネートである。酢酸酪酸セルロースは、低い応力係数を有するので、層14における使用に好ましい。ポリカーボネートは、その高い耐衝撃特性に起因して、層16に好まし材料である。特に好ましい実施形態において、層14は、酢酸酪酸セルロースの約0.005インチ(0.127mm)の厚みの層を含み、そして層16は、着色ポリカーボネートの約0.015~0.030インチ(0.381~0.762mm)の厚みの層を含む。着色は、コントラスト特性および審美的特性を提供するために、層16内に可視性色素を組み込むことによって提供され得る。必要に応じて、そして好ましくは、レンズプランクは、約0.015~0.030インチ(0.381~0.762mm)の厚みの透明ポリカーボネート層18を備える。この好ましい実施形態において、レンズの凹面は、好ましくは、ポリカーボネートが、代表的に容易に引っかき傷ができるので、ハードコート、または高い引っ掻き抵抗性層を含む。層18としてハードコート層を有する透明なポリカーボネート層を使用することが好ましい。

【0027】

層14、16、および18は、各々、1つ以上の層を備え得る。良好な結果は、それぞれの層14、16および18の各々のために1つの層を使用して得られ得る。一般的に、層16および任意の層18(存在する場合)が、層14の厚みより厚い厚みを有することが好ましい。厚みの差によって、光偏光材料12が、レンズの凹面よりも凸面により近くに、レンズ50内(図7)に位置付けられ得る。光が、偏光の吸収を妨害するための光偏光材料に当たる前に、光が通過しなければならない材料が最も少ない可能性になるように、光偏光材料の12層が、レンズの凸面にできるだけ近くに配置されることが有利である。別の方針において、光偏光材料に当たる前に光が通過する材料は、任意の実質的な複屈折を有すべきである。さらに、他の層の厚みよりも実質的に厚い厚みの1つ以上の層の使用は、より大きな程度の加工性、例えば、温度および圧力、光偏光材12の物理的完全性および光学的特性に対して有害な影響なしに、レンズ成形操作において使用され得る条件を提供する。任意の層18は、層16と同じ厚みであり得るか、または異なる厚みであり得る。

【0028】

本発明の特に好ましい成形されたレンズにおいて、層14は、酢酸酪酸セルロースの約0.005インチ(0.127mm)の厚みの層を含み、層16は、着色ポリカーボネートの約0.015インチ(0.381mm)の厚みの層を含み、そして層18は、外面にハードコート層(すなわち、高い引っ掻き抵抗性材料の層)を有する透明なポリカーボネートの約0.030インチ(0.762)の厚みの層を含む。

【0029】

先に記載されるように、レンズプランクの層は、接着剤によって互いに接着され得る。種々の接着剤が、この目的のために使用され得るが、但し、これらは、実質的に透明であり、気泡および他の受容可能でない可視的欠損のない、ヘーズのない積層を提供する。それぞれの層14、16および存在する場合、18は、望ましい場合、それらの公知の所定の効果のために種々の添加剤を含み得る。安定化剤(例えば、紫外線光吸収剤、抗酸化剤、離型剤、潤滑剤、表面活性剤およびエラストマー)が存在し得る。色素(例えば、灰色、黄色、青色または他の着色色素)がまた、所望の密度または色のレンズを得るために使用され得る。層16、または層18(存在する場合)は、摩耗抵抗性層、またはコーティングを含み得、引っ掻き傷および摩耗に対してレンズの凹面の抵抗性を改善する。このような層は、例えば、熱硬化性架橋ポリマー性材料を含み得る。

【0030】

図1に示され、図6に示されるような光偏光レンズ構造50を作製し得る積層複合構造1

10

20

30

40

50

0は、種々の様式で作製および使用され得る。例えば、図1に示される構造を有する単位プランクが形成され得、次いで所望のレンズに成型または成形され得、各々のプランクが、四角、丸、橢円または他の形状のプレカット成分12、14、16および18の積層によって作製される。このようなプランクは、本発明に従って、熱および圧力下で、レンズに形成され得、その縁部は、眼鏡フレームへの配置に適合させるのに適切な公知の方法で磨かれ得る。好ましくは、有限または終わりのない長さの複合構造が、熱可塑性シート材料のウェブまたはピースが光偏光層の反対側に接着される連続的または半連続的方法によって形成され得る。次いで、個々のプランクが、ノコギリ、ナイフ、レーザーなどのような切断装置を使用して積層構造から切断され得る。このような切断操作は、圧力形成装置のような装置においてその成形の前に、任意の時間で実施され得る。

10

【0031】

個々のプランクは、成形の前に所望のように前処理され得る。例えば、使用される特定の形成装置に適切な所定の寸法のレンズプランクが加熱され、そして形成装置へすぐに配置され得るか、または実質的な冷却後に配置され得る。

【0032】

実質的に集光力を有さないレンズが形成される本発明の方法は、ここで、図2～図5と組み合わせて記載される。

【0033】

形成プロセスは、図2に示されるタイプの装置によってであり得る。この装置は、凹面プラテン24、凸面プラテン26、これらのプラテンを互いに圧力付与関係に駆動し、そして圧力付与関係から外すための手段、および各々の圧力付与間隔の間にプラテンを交互に加熱および冷却するための手段を備える。

20

【0034】

凹面プラテン24は、平滑な凹面形成表面30を有するガラス部材28、適切な駆動手段に作動可能に接続されたシャフト32、流体チャンバ33、流体入口カップリング34および流体出口カップリング36を備える。

【0035】

凸面プラテン26は、凸面形成表面40を有するガラス部材38、固定支持手段42、流体チャンバ43、流体入口カップリング44および流体出口カップリング46を備える。

30

【0036】

先に考察されるように、それぞれの凹面形成表面30および凸面形成表面40は、異なる曲率半径を有し、これは、式IIによって示される関係に実質的に対応する。

【0037】

駆動手段は、プラテン24をプラテン26との圧力付与関係へとおよび圧力付与関係から外れるように移動させるためにプラテン24に作動可能に接続される、液圧ピストンおよびシリンダーの配置47を備える。

【0038】

両方のプラテンのための加熱および冷却の手段は、三方向弁手段49、加熱流体導管51、冷却流体導管53および流体入口55（プラテン24および26のそれぞれの流体入口カップリング34および44の各々に三方向弁の1つを接続する）を備える。

40

【0039】

ここで、図3を参照して、積層レンズプランク構造22は、相対的に薄いシート14が、凹面プラテン24に面し、それによって、凹面プラテンの相対的に近くに光偏光層12を配置するように、凹面プラテン24に配置される。また、プラテン24の平滑な凹面形成表面30には、モノマーまたはオリゴマーおよび重合開始剤を含む、ある容積の重合可能組成物57が配置される。一般的に、重合可能組成物57の容積は、レンズプランク22の表面に十分な適用を得るための要件によって決定され、そしてレンズ湾曲およびサイズの関数である。代表的に、約0.1～約0.8mlの重合可能組成物の容積が十分である。先に考察されるように、成型装置によって適用される熱および圧力の条件下で、重合可能組成物57は、実質的に集光力を有さないレンズを提供するように、レンズの凸面に不

50

均一な厚みの層を形成する。

【0040】

本発明の方法に従って、不均一な厚さの、光学的に透明な、耐久性の、引っ搔き耐性の、高衝撃耐性のポリマー・フィルムを提供する、任意の適切なモノマーまたはオリゴマーが、使用され得る。代表的な適切なモノマー・材料またはオリゴマー・材料としては、例えば、アクリレート、メタクリレート、ウレタン、アミンおよび無機材料（例えば、ポリシロキサン）が挙げられる。重合可能な組成物は、単一のモノマーを含有しても、オリゴマーを含有しても、これらの混合物を含有してもよい。任意の適切な重合開始剤が使用され得る。重合可能な組成物はまた、それらの公知または予め決定された効果を提供するために、他の添加剤を含有し得る。例えば、ニトロセルロースまたは酢酸酪酸セルロースのようなエラストマーを含有して、重合可能な組成物から形成される不均一な厚さの層の亀裂を抑制することが好ましい。本発明に従う使用のために特に好ましい重合可能な組成物は、テトラエチレングリコールメタクリレートおよびジペンタエリスリトールペンタアクリレートモノマーの混合物を含有する。この重合可能な組成物は、好ましくは、ヒドロキノンのような抑制剤を含有する。

【0041】

モノマー・材料またはオリゴマー・材料の重合は、任意の適切な重合技術（例えば、フリーラジカル重合、カチオン重合、紫外線重合および熱硬化重合）によって実施され得る。フリーラジカル重合を使用することが好ましい。

【0042】

本発明の方法に従って、次いで、凹状プラテンおよび凸状プラテンが、図4に示されるような圧力を付与する関係にされて、熱および圧力の組み合わせの影響下で、成形された構造に、積層レンズプランク構造22を形成し（すなわち、成形し）、そして重合可能な組成物から不均一な厚さの層を形成し、これによって、実質的に集光力を有さない、成形されたレンズ50（図6）を形成する。不均一な厚さの層は、層の中心領域で最大の厚さを有し、従って、レンズの中心領域において最大の厚さを同様に有するレンズ50を提供することによって特徴付けられる。

【0043】

任意の特定の例において付与される圧力の量は、レンズプランク（例えば、レンズプランク22）の構造の特定の性質（特に、レンズプランク構造体における熱可塑性材料の性質）、ならびに形成表面30および40の温度と共に変動する。酢酸酪酸セルロースのシートとポリカーボネートのシートとの間に積層された、上に記載された好ましい型の軽量の偏光子を備える複合材料構造体の場合には、約250～約8001b/in²（1724～5516キロパスカル）の範囲の圧力が、適切に使用され得る。好ましい圧力は、4251b/in²（2930kPa）である。

【0044】

記載されるように、積層構造体22に圧力が付与される間に、プラテンは、プラテン24および26のそれぞれのチャンバ33および43に熱水を通すことによって、加熱される。表面30および40は、偏光子層12ならびに熱可塑性層14および16、ならびに存在する場合には層18の変形を引き起こすため、ならびに層16、または存在する場合には層18の表面の、プラテン26の形成表面40への順応、および層14の表面の、本発明に従ってインサイチュで形成された高衝撃耐性のポリマー・材料の不均一な厚さの層への順応、そして不均一な厚さの層の外側表面の、プラテン24の形成表面30への順応を引き起こすために十分に、連続的に加熱される。従って、熱および圧力の付与は、プランクの1つの表面がプラテン26の形成表面40に順応し、そして本発明に従ってインサイチュで形成された、不均一な厚さの高衝撃耐性のポリマー・材料の層の外側表面が、プラテン24の形成表面30に順応し、そしてレンズプランクの他の表面を、不均一な厚さの層の内側表面に順応させるように、レンズプランク22の変形を引き起こすために十分である。

【0045】

10

20

30

40

50

高衝撃耐性の材料の不均一な厚さの層の形成を伴う、レンズプランクの変形および重合可能な組成物の重合を引き起こすために十分な条件の使用は、本発明に従って製造されるレンズが、全体的に不均一な厚さを有することを保証する。

【0046】

本発明の方法は、比較的厚く、従って、望ましくは、このような厚さに付随する耐久性を有するレンズの製造のために使用され得る。厚さが広く変動するレンズが、本発明に従って製造され得る。この方法は、均一な厚さである場合に認容不可能な集光力を示す、比較的厚いレンズの製造に特に適切である。この方法は、約50ミル(1.27mm)以上、例えば、約50~150ミル(1.27~3.81mm)の範囲の厚さの、集光力を実質的に有さないレンズの製造に特に有用である。

10

【0047】

本発明によるレンズの製造において、形成されるべきレンズの凸側の予め決定された曲率に対応する形成表面30を有するプラテン24を利用することが、好都合である。形成表面30に対して形成される層51(図6)の凸状表面は、レンズ50(図6)の外側表面として働くことが理解される。凸状のレンズ表面を形成するための形成表面30についての、1つの好ましい曲率半径は、3.514インチである。

【0048】

実質的に集光力を有さないレンズに必要とされる曲率半径を計算するために適切な、式IIを使用し、そして形成表面30の曲率半径(r_1)が3.514インチであると仮定して、対向するレンズ表面(およびプラテン)の曲率半径が、任意の公称厚さのレンズの製造に対して決定され得る。

20

【0049】

表IIは、本発明の方法に従って製造され得る種々のレンズについての、凸状および凹状の形成表面の曲率半径、中心の厚さ、縁部の厚さ、ジオプターおよび集光力を示す。

【0050】

【表2】

表 II

凸面半径 (インチ)	凹面半径 (インチ)	中心の厚さ (インチ)	縁部の厚さ* (インチ)	ジオプター	集光力 (ジオプター)
3.514	3.494	0.060	0.057	6	-0.001
3.514	3.486	0.075	0.071	6	-0.001
2.633	2.613	0.060	0.053	8	-0.001
2.633	2.605	0.075	0.067	8	-0.001

30

* 縁部は、レンズの中心から1.5インチである。

40

本発明に従うレンズの製造の間に、レンズプランクの変形を引き起こし、そして重合可能な組成物の重合を引き起こすために十分な、温度および圧力の条件は、完成したレンズを、プラテンの形成表面の曲率半径に一致させる。レンズプランクの変形および重合可能な組成物の重合を引き起こして、不均一な厚さの層を形成するために必要とされる温度は、重合可能な材料の化学組成によって変動する。酢酸酪酸セルロースのシートおよびポリカーボネートのシートを使用する場合、成型温度は約150°F~約200°Fである。好ましい成型温度は、170°Fで70秒間の加熱である。

【0051】

50

プラテンの形成表面の温度は、先に記載されたように、加熱された水および冷却された水の通過によって制御され得る。これらのプラテンは、好ましくは、予熱され（すなわち、これらの間にレンズプランクを配置する前）、そして所望の形状のレンズを形成するために十分な加熱サイクルにわたって、必要とされる形成温度に加熱される。例えば、プラテンの形成表面は、酢酸酪酸セルロースおよびポリカーボネート材料の場合には、約 170 °F で約 20 秒間予熱され得、その後、レンズプランクを鋳型に入れ、そして加熱の間、約 70 秒間、この鋳型を閉じる。次いで、鋳型表面が、プラテンを通しての熱水の通過によって、所望の形成温度に加熱され、そしてこの温度が、所望のレンズ形成のために十分な時間（例えば、約 70 秒間）維持される。その後、形成表面 30 および 40 の温度が、冷却流体（例えば、比較的冷たい水）をプラテンのチャンバ 33 および 43 に通すことによって、低下される。この冷却流体は、例えば、約 50 秒間にわたってプラテンを通過され、その後、プレスが開かれる。

10

20

30

【0052】

熱水は、導管 51 を通してプラテンに供給され、そして比較的冷たい水は、導管 53 を通して供給される。加熱サイクルの間、弁 49 は、導管 51 と入口 55 との間の接続通路を開き、そして導管 53 を閉じる。逆に、冷却サイクルの間、弁 49 は、導管 53 と入口 55 との間の接続通路を開き、そして導管 51 を閉じる。加熱サイクルから冷却サイクルへの移行は、弁 49 を開いて、熱水が冷水によって完全に置き換わるまで冷水を熱水と混合することによって、実施される。冷却サイクルから加熱サイクルへの移行は、この操作を逆にすることによって実施される。

【0053】

冷却操作の後、プラテン 24 および 26 は分離されて、成形されたレンズに対する圧力を解放し、そして図 5 に示されるように、このレンズの取り外しを可能にする。この成形されたレンズは、一方の形成表面に接着しているかもしれない、この場合は、空気ノズル 48 によって供給される圧縮空気の流れによって、取り外され得る。

【0054】

図 6 は、成形された光偏光レンズ 50 を示し、これは、凸状プラテン 26 によって形成された面が凹状であり、そして凹状プラテン 24 によって形成された面が凸状である。不均一な厚さの層 51 が見え、これは、高引っ掻き耐性を有し、そしてレンズ 50 の凸状表面を形成する。

30

【0055】

図 2 に示される装置を使用し、そして本明細書中で上記された圧力および温度の条件を使用して、実質的に集光力を有さない、成形されたレンズ（これは、高引っ掻き耐性および高衝撃耐性の材料の凸状表面を有する）が、有利に提供され得る。しかし、他の装置が使用され得、そしてプロセス条件（例えば、加熱サイクルおよび冷却サイクル）における変動が、レンズプランクおよび重合可能な組成物に存在する特定の材料に依存して、使用され得ることが、明らかである。

【0056】

本発明は、その種々の好ましい実施形態に関して詳細に記載されたが、本発明は、それらに限定されず、むしろ、当業者は、バリエーションおよび改変が本発明においてなされ得ることを認識し、これらは、本発明の意図および添付の特許請求の範囲の範囲内である。

40

【図面の簡単な説明】

【0057】

本発明ならびにその他の目的およびさらなる特徴のよりよい理解のために、添付の図面とともに種々の好ましい実施形態の以下の詳細な説明に対して参照がなされる。

【図 1】図 1 は、レンズプランクの好ましい実施形態の、部分的に概略した側面断面図であり、これは、実質的に集光力を有さない本発明に従うプラスチックレンズの製造に使用され得る。

【図 2】図 2 は、本発明の方法を実施するのに適切なプレス形成装置の 1 つの型の部分的に概略した斜視図である。

50

【図3】図3は、本発明の方法の1工程の実施を示した、図2に例示される装置の部分的に概略した側面断面図である。

【図4】図4は、本発明の方法の加熱工程およびプレス工程の実施を示した、図2に例示される装置の部分的に概略した側面断面図である。

【図5】図5は、本発明の方法に従うレンズ取り外し工程を示した、図2に例示される装置の部分的に概略した側面断面図である。

【図6】図6は、実質的に集光力を有さない本発明の形成プラスチックレンズの好ましい実施形態の部分的に概略した側面断面図である。

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
10 April 2003 (10.04.2003)

PCT

(10) International Publication Number
WO 03/028987 A2

(51) International Patent Classification: B29D 11/00 (74) Agent: MACCARONE, Gaetano, D.; Polaroid Corporation, 784 Memorial Drive, Cambridge, MA 02139 (US).

(21) International Application Number: PCT/US02/30653

(81) Designated States (national): CA, CN, JP.

(22) International Filing Date: 26 September 2002 (26.09.2002)

(84) Designated States (regional): European patent (AT, BE, BG, CI, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

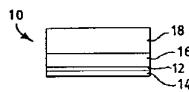
(25) Filing Language: English

Published:

without international search report and to be republished upon receipt of that report

(30) Priority Data: 09/966,179 28 September 2001 (28.09.2001) US

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.


(71) Applicant: POLAROID CORPORATION [US/US]: 784 Memorial Drive, Cambridge, MA 02139 (US).

(72) Inventor: GETTENS, Nancy, J.; 390 Woodward Street, Waban, MA 02468 (US).

WO 03/028987 A2

(54) Title: SHAPED PLASTIC LENSES AND METHOD FOR MAKING THE SAME

(57) Abstract: There is described a method for forming lenses having substantially no optical power. The method includes forming, via in situ polymerization, a layer of non-uniform thickness of an optically clear, high scratch-resistant polymeric material on the convex surface of the lens. The lenses provided by the method are characterized by having maximum thickness in the central region of the lens and gradually diminishing thickness radially towards the periphery of the lens.

WO 03/028987

PCT/US02/30653

SHAPED PLASTIC LENSES AND METHOD FOR MAKING THE SAME**BACKGROUND OF THE INVENTION**

This application relates to shaped plastic lenses and to a method for their manufacture. More particularly, the application relates to plastic lenses having substantially no optical power, high impact-resistant and abrasion-resistant properties 5 and to a method for forming such lenses wherein a high scratch-resistant convex surface of the lens is formed *in situ* during the method.

Curved light-polarizing laminates useful as lenses and comprising a layer of a molecularly-oriented light-polarizing material arranged between a pair of substrate sheets are well known. It is known to manufacture composite light-polarizing lenses, 10 which include a layer of an optical quality polymeric material on each side of a shaped light-polarizing member. U.S. Patent No. 3,940,304 describes a technique, which includes *in situ* polymerization of the optical quality polymeric material layers in a mold. An optical quality monomeric material is inserted into a shaping mold so as to cover both surfaces of the light-polarizing member and heat is applied to cause 15 polymerization of the monomeric material to occur thereby resulting in the formation of a composite polymeric light-polarizing lens structure.

Further, it is known to make lenses, which have substantially, no optical power by shaping a composite lens, blank in a mold. For example, U.S. Patent No. 5,434,707

WO 03/028987

PCT/US02/30653

teaches a method for forming shaped plastic lenses having substantially no optical power and comprising a laminate of a light-polarizing layer arranged between a pair of thermoplastic substrate sheets. According to the method, the composite lens blank is inserted into a mold which has heated curved platens and subjected to heating and 5 pressing such that the thermoplastic substrate sheets are deformed and rendered flowable with the result that there is produced a composite lens which has substantially no optical power. The method requires lens-forming platens having predetermined radii of curvature which make possible, under the heating and pressing conditions, the production of plastic lenses of non-uniform thickness, that is, lenses which are thickest 10 in the central region and of diminishing thickness radially to the periphery thereof. Although the method taught by the '707 patent provides shaped plastic lenses having substantially no optical power and of good durability, it is not completely satisfactory for all situations.

As the state of the art advances, efforts are made to provide new plastic lenses, 15 which can meet new performance requirements, and to reduce or eliminate some of the undesirable characteristics of the prior art materials. For example, there is a continuing demand for high impact-resistant, plastic lenses, which have substantially no optical power for various uses such as in sporting events. However, simply making high impact-resistant plastic lenses by shaping in a mold a lens blank made of a high impact-resistant plastic material is not completely satisfactory since such high impact-resistant 20 materials typically exhibit high optical stress properties and tend to develop cracks under the heating and pressure conditions required to shape the lens. Thus, it would be advantageous to have a method for making shaped lenses which have substantially no

WO 03/028987

PCT/US02/30653

optical power and high impact strength and which are suitable for use in eyeglasses. It would also be advantageous to have shaped lenses which have substantially no optical power and which possess a high scratch-resistant convex surface.

SUMMARY OF THE INVENTION

5 It has now been found that shaped, or curved, plastic lenses having substantially no optical power can be provided according to the invention by forming, *via in situ* polymerization, a layer of an optically clear, high scratch-resistant polymeric material on the convex surface of the lens. The method of the invention is carried out in a mold, which comprises heated curved platens. An appropriate amount of a suitable 10 polymerizable composition comprising a monomer or an oligomer is inserted onto the concave surface of one platen. A planar lens blank of substantially uniform thickness is interposed between the platens, which are then heated and pressed together. The polymerizable composition is thereby caused to cover the convex surface of the shaped lens structure and polymerize to form a layer of non-uniform thickness which is 15 thickest in the central region and has a thickness gradient diminishing gradually radially towards the periphery of the lens.

In a preferred embodiment the lens blank which is utilized is a composite structure comprising a layer of light-polarizing material between a plurality of thermoplastic substrate layers. There is thus provided according to the invention 20 lenses, which are suitable for use in sunglasses.

The advantageous shaped plastic lens thus formed, convex on one side and concave on the other side, has substantially no optical power and comprises one or

WO 03/028987

PCT/US02/30653

more transparent layers of substantially uniform thickness on the concave side and, on the convex side, a transparent layer of thermoplastic material having high scratch resistance and non-uniform thickness, with the maximum thickness of this layer being in the central region of the lens and the thickness diminishing gradually radially toward the periphery of the lens. Thus, the advantageous lens structure of the invention has an overall non-uniform thickness with the maximum thickness of the lens being in the central region and the thickness diminishing gradually towards the periphery of the lens.

Further in accordance with the invention there is provided a method for forming a shaped plastic lens having substantially no optical power, convex on one side and concave on the other side, and having its maximum thickness in the central region and diminishing gradually in thickness radially towards its periphery, the method comprising the steps of:

10 placing a lens blank comprising one or more transparent substantially uniformly thick layers of thermoplastic material between opposed concave and convex platens for forming, respectively, convex and concave surfaces on the lens blank, the radius of curvature (r_1) of the concave platen and the radius of curvature (r_2) of the convex platen each corresponding substantially to the relationship

$$r_1 + r_2 = t \left(\frac{n-1}{n} \right)$$

15 wherein t represents the thickness of the lens blank and n is the index of refraction;

placing a volume of a polymerizable composition on the concave platen; and

WO 03/028987

PCT/US02/30653

heating and pressing the platens together with the lens blank between them, the heating and pressing being such as to cause the lens blank to deform and to conform one surface to the convex platen and to cause the polymerizable composition to polymerize and form a transparent layer of non-uniform thickness conforming to the 5 concave platen, with the layer thus formed *in situ* having its maximum thickness in the central region of the lens and diminishing gradually in thickness radially towards the periphery of the lens.

The advantageous method of the invention allows the manufacture of lenses which have high impact strength and a high scratch-resistant convex surface.

10

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention, as well as other objects and further features thereof reference is made to the following detailed description of various preferred embodiments thereof taken in conjunction with the accompanying drawings wherein:

15 Fig. 1 is a partially schematic, side cross-sectional view of a preferred embodiment of a lens blank which can be used in the manufacture of a plastic lens according to the invention having substantially no optical power;

Fig. 2 is a partially schematic, perspective view of one type of a press-forming apparatus suitable for carrying out the method of the invention;

20 Fig. 3 is a partially schematic, side cross-sectional view of the apparatus illustrated in Fig. 2 showing the carrying out of one step of the method of the invention;

WO 03/028987

PCT/US02/30653

Fig. 4 is a partially schematic, side cross-sectional view of the apparatus illustrated in Fig. 2 showing the carrying out of a heating and pressing step of the method of the invention;

Fig. 5 is a partially schematic, side cross-sectional view of the apparatus illustrated in Fig. 2 showing a lens-removing step according to the method of the invention; and

Fig. 6 is a partially schematic, side cross-sectional view of a preferred embodiment of a shaped plastic lens according to the invention having substantially no optical power.

10

DESCRIPTION OF THE PREFERRED EMBODIMENTS

As described previously, the present invention is directed to shaped plastic lenses having substantially no optical power and to a method for the production of such lenses. As applied to a plastic lens of the invention, reference to a lens of substantially no optical power refers, in general, to the absence of magnification or demagnification.

15 Thus, a lens will be considered as having substantially no optical power where the power is sufficiently low as not to be discernible or detectable by the human eye or where the power is within the limits of a published industry standard for no power lenses. The production of such lenses according to the invention requires substantial adherence to the requirement of lens-forming platens having predetermined radii of curvature surfaces which result, under the heating and pressure conditions utilized according to the method of the invention, in the formation of shaped plastic lenses 20 which are of non-uniform thickness, with the maximum thickness being in the central

WO 03/028987

PCT/US02/30653

region of the lens and the thickness diminishing gradually radially towards the periphery of the lens. Thus, the radii of curvature of the respective platens used for forming the concave and convex surfaces of the lenses of the invention conform to an important relationship which is described in greater detail hereinafter and which is 5 predetermined to provide lenses of substantially no optical power.

The requirements for producing lenses of the invention having substantially no optical power can be better understood by reference to the mathematical formula (I) for the principal focus (F) of a thick lens of thickness (t) disclosed in the Handbook of Chemistry and Physics 53rd edition, 1972, published by the Chemical Rubber 10 Company, page F-85, as follows:

$$F = \frac{nr_1r_2}{(n-1)[n(r_1+r_2)-t(n-1)]} \quad (I)$$

where r_1 and r_2 represent the radii of curvature of the lens and n is the index of refraction.

In the case of a lens of zero power, F is equal to infinity, in which case:

15 $n(r_1+r_2) = (n-1)t \quad (II)$

Assuming an index of refraction (n) of 1.5, the radii of curvature, (r_1 and r_2) relate to the thickness of the lens according to the formula

$$r_1+r_2 = t/3 \quad (III)$$

Thus, where a composite laminate of a thickness of 0.100 inch (100 mils) is to be 20 formed into a lens using a platen having a concave surface with a radius of curvature

WO 03/028987

PCT/US02/30653

(r₁) of 3.514 inches (in order to form the convex side of the lens) it will be seen that the platen used to form the concave side of the lens will have a convex surface having a radius of curvature (r₂) of 3.481 inches.

5 In contrast, and as is known in the art, the optical power (P) of a lens of uniform thickness (T) is represented by the formula

$$P = -P^2 T \left(\frac{1}{n-1} - \frac{1}{n} \right), \quad (\text{IV})$$

where T is expressed in meters. If the index of refraction (n) is 1.5 and the nominal power (P), which is equal to the square root of the product of the powers of each of the opposed surfaces, is six, then

$$10 \quad P = -36T \left(\frac{1}{1.5-1} - \frac{1}{1.5} \right) \quad (\text{V})$$

and

$$P = -48T \quad (\text{VI})$$

It can be calculated from formula VI that

$$P = -0.00122t \quad (\text{VII})$$

15 where the thickness (t) is expressed in mils. The power (in diopters) of lenses of different thickness can be calculated readily, using formula VII and examples of the power of lenses of different uniform thickness are set forth in the following TABLE I wherein focal length is expressed in meters.

WO 03/028987

PCT/US02/30653

TABLE I

	t(mils)	P (diopters)	Focal Length
5	30	- 0.0366	- 27.3
	45	- 0.0549	- 18.2
	60	- 0.0732	- 13.66
	75	- 0.0915	- 10.93
	90	- 0.1098	- 9.11
10	100	- 0.1220	- 8.20

It will be seen from inspection of formula VII and from the data in TABLE I that an increase in the thickness of a lens of uniform thickness results in an increase in power. Thus, where lens thickness is increased for the realization of such desirable attributes as improved rigidity and durability, there is an accompanying and undesirable increase in lens power.

The requirements for the lens-forming surfaces of platens used for the production of lenses of the invention having substantially no power and non-uniform thickness can be better understood by considering the radii of curvature of platens useful for forming lenses of uniform thickness. For example, an "onion" lens having opposed convex and concave sides and uniform thickness can be analogized to concentric rings of an onion slice. Each onion ring of the same and uniform thickness is defined by convex and concave radii. These radii have different values for each slice. The respective radii for each slice also vary with progression of the rings outwardly to the onion surface. Transparent plastic substrate materials, by analogy to

WO 03/028987

PCT/US02/30653

such rings, can be molded into lenses of uniform thickness and the requirements of radii of curvature for platens can be determined readily by analogy to the geometry of an onion. Such lenses, however, have optical power which, as described previously, increases with thickness.

5 Plastic lenses having a convex surface of high scratch-resistant thermoplastic material can be produced according to the invention by using platens of different predetermined radii of curvature and thermoplastic substrate materials and shaping conditions of heat and pressure, in conjunction with forming a layer of non-uniform thickness by *in situ* polymerization, that negate the development of optical power and
10 that promote instead the formation of lenses of non-uniform overall thickness and substantially no optical power. The particular requirements of radii of curvature and the requirements in respect of the materials and shaping conditions that permit the production of lenses of the invention are described in detail hereinafter.

As described previously, the method of the invention relates generally to the
15 formation of shaped plastic lenses of non-uniform thickness having substantially no optical power wherein a layer of non-uniform thickness is formed via *in situ* polymerization. Thus, generally, a lens blank used to form lenses according to the invention can be a planar structure comprising a substantially uniformly thick layer or layers of suitable thermoplastic material(s). The method of the invention will be
20 described further in detail with respect to the preferred embodiment of the invention wherein the lens blank used to form lenses according to the invention is a composite structure comprising a layer of a light-polarizing material between layers of thermoplastic substrate material.

WO 03/028987

PCT/US02/30653

Referring now to Fig. 1, there is shown, a laminated structure 10 of layers, or sheets, 12, 14, 16 and 18 from which a plastic light-polarizing lens according to the invention can be formed. Layer, or sheet, 12 comprises a molecularly oriented light-polarizing material which provides the light-polarizing functionality of the preferred 5 shaped lens of the invention. Typically, light-polarizing layer 12 comprises a linear molecularly oriented dichroic material having a thickness in the range of from about 0.1 to about 3 mils (about 0.0025 to about 0.076 mm) and preferably about 0.5 mils (about 0.0125 mm).

A preferred material for use as light-polarizing layer 12 is a layer of stretched, 10 or oriented, poly(vinyl alcohol) of about five mil thickness stained according to known methods with a dichroic dye such as iodine. Such a polarizing material will also preferably be borated for improved stability. Suitable polarizing layers of this type can be prepared utilizing methods described in Reissue U.S. Patent No. Re. 23,297 and in U.S. Patent No. 4,166,871. Another preferred polarizing material is a stretched 15 poly(vinyl alcohol) sheet containing polyvinylene light-polarizing species such as may be provided by hydrochloric acid vapor processing according to known methods. Preferably, such polarizing material will be borated for improved stability. Suitable light-polarizing materials of this type can be prepared by the method described in U.S. Patent No. 2,445,555. Other light-polarizing materials can, however, be employed and 20 methods for their production can be found in U.S. Patents No's. 2,237,567, 2,527,400 and 2,554,850.

In the production of light polarizers, one or more support, or carrier, sheets can be employed to improve the durability and handling characteristics of the light-

WO 03/028987

PCT/US02/30653

polarizing material. Support sheets of cellulose acetate, cellulose triacetate, cellulose acetate butyrate (CAB), or of other polymeric material can be used for this purpose. An adhesive can be used to promote desired bonding without forming bubbles, haze or other visible defects. Suitable adhesives are known in the art.

5 Layers 14 and 16 comprise thermoplastic material, which can be molded or shaped to the desired curvature for lenses of the invention. Transparent thermoplastic resins known to be useful in the production of optical elements can be used for layers 14 and 16. Typical suitable thermoplastic materials include poly (methyl methacrylate), polystyrene, polycarbonate and cellulosic thermoplastic materials such as cellulose 10 nitrate, cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate and ethyl cellulose. Generally, suitable materials are those which are transparent and which exhibit good durability and moldability. In addition, it will be beneficial that the resinous materials of layers 14 and 16 exhibit low birefringence and that they exhibit good heat resistance and moisture resistance. Layers 14 and 16 15 of resinous material can be selected from the resinous materials previously mentioned, although other materials can be used. It will be apparent that the moldability or processability of the resinous materials comprising layers 14 and 16 has to be taken into consideration insofar as the required molding or lens-shaping conditions of temperature and pressure may influence the physical and optical properties of the light 20 polarizer confined between such layers. Thus, layers 14 and 16 comprise a thermoplastic material moldable into a curved lens according to the invention without degradation or other harmful and undesirable influence on light polarizer layer 12.

In general, poly (methyl methacrylate) resins exhibit good durability, transparency and processability and the beneficial attributes and limitations of poly

WO 03/028987

PCT/US02/30653

(methyl methacrylate) and others of the aforementioned materials, insofar as their adaptability to the production of optical elements is concerned, are known and described, for example, in U.S. Patents No's. 4,986,641 and 5,043,405.

Homopolymers of methyl methacrylate and other methacrylate polymers such as 5 norbornyl methacrylate can be used, as can methacrylic copolymers which include repeating units from methyl methacrylate and from other copolymerizable monomers. Examples of such homopolymers and copolymers can be found in the aforementioned U.S. Patents No's. 4,985,648 and 5,043,405.

Preferred materials for layers 14 and 16 are cellulose acetate butyrate and 10 polycarbonate. Cellulose acetate butyrate is preferred for use in layer 14 because it has a low coefficient of stress. Polycarbonate is a preferred material for layer 16 because of its high impact-resistant properties. In a particularly preferred embodiment layer 14 comprises an approximately 0.005 inch (0.127 mm) thick layer of cellulose acetate butyrate and layer 16 comprises an approximately 0.015 to 0.030 inch 15 (0.381 to 0.762 mm) thick layer of colored polycarbonate. The coloration may be provided by incorporating visible dyes in layer 16 to provide contrast and aesthetic qualities. Optionally, and preferably, the lens blank includes an approximately 0.015 to 0.030 inch (0.381 to 0.762 mm) thick clear polycarbonate layer 18. In this preferred embodiment the concave surface of the lens preferably includes a hardcoat, or 20 a high scratch resistant layer, since polycarbonate typically scratches easily. It is preferred to utilize a clear polycarbonate layer with a hardcoat layer as layer 18.

Layers 14, 16 and 18 can each comprise one or more layers. Good results can be obtained using a single layer for each of respective layers 14, 16 and 18.

WO 03/028987

PCT/US02/30653

Generally, it is preferred that layer 16 and optional layer 18, when present, have a thickness greater than that of layer 14. A differential in thickness permits light polarizing material 12 to be positioned in lens 50 (Fig. 7) more closely to the convex surface of the lens than to the concave surface. It is advantageous to have the layer of 5 light-polarizing material 12 located as close as possible to the convex surface of the lens so that there is the least opportunity for the material through which light must pass before the light strikes the light-polarizing material to interfere with the absorption of polarized light. Said another way, the material through which light passes before striking the light-polarizing material should not have any substantial birefringence. In 10 addition, the employment of one or more layers of a thickness substantially greater than that of the other layer provides a greater latitude of processing, for example, temperature and pressure, conditions which can be employed in the lens-shaping operation without detrimental influence on the physical integrity and optical properties of light-polarizer 12. Optional layer 18 may be the same thickness as layer 16 or 15 may be of different thickness.

In a particularly preferred shaped lens of the invention, layer 14 comprises an approximately 0.005 inch (0.127 mm) thick layer of cellulose acetate butyrate, layer 16 comprises an approximately 0.015 inch (0.381 mm) thick layer of colored polycarbonate and layer 18 an approximately 0.030 inch (0.762) thick layer of clear 20 polycarbonate having a hardcoat layer, i.e., a layer of a high scratch-resistant material, on the outer surface.

As described previously, the layers of the lens bank may be adhered to each other by adhesives. Various adhesives can be employed for this purpose, provided that

WO 03/028987

PCT/US02/30653

they are substantially transparent and provide a haze-free lamination free of bubbles and other unacceptable and visible defects. The respective layers 14, 16 and, when present, 18 can, if desired, include various additives for their known and predetermined effects. Stabilizers such as ultraviolet light absorbers, antioxidants, 5 mold-release agents, lubricating agents, surface active agents and elastomers can be present. Dyes such as gray, yellow, blue or other colored dyes can also be employed to obtain a lens of a desired density or color. Layer 16, or layer 18, when present, can include an abrasion-resistant layer, or coating, to improve the resistance of the concave surface of the lenses to scratching and abrasion. Such a layer can comprise, for 10 example, a thermosetting, cross-linked polymeric material.

The laminate composite structure 10 shown in Fig. 1 and from which a light-polarizing lens structure 50 such as is shown in Fig. 6 can be produced, can be produced and used in various manners. For example, unitary blanks having the structure shown in Fig. 1 can be formed and then molded, or shaped, to a desired lens, 15 each blank being produced by a lamination of pre-cut components 12, 14, 16 and 18, of square, round, elliptical or other shapes. Such blanks can be formed under heat and pressure into a lens according to the invention and the edges thereof can be ground in known manner suitable to adapt them to placement into spectacle frames. Preferably, a composite structure of finite or endless length can be formed by a continuous or semi- 20 continuous method whereby webs or pieces of thermoplastic sheet material are adhered to the opposing sides of a light-polarizing layer. Individual blanks can then be cut from the laminate structure using a cutting apparatus such as a saw, knife, laser, etc. Such a

WO 03/028987

PCT/US02/30653

cutting operation can be carried out at any time prior to the shaping thereof in an apparatus such as a press-forming apparatus.

Individual blanks can be pretreated as desired before shaping. For example, lens blanks of predetermined dimensions suited for the particular forming apparatus 5 employed can be heated and placed immediately or after substantial cooling into the forming apparatus.

The method of the invention by which lenses having substantially no optical power are formed will now be described in connection with Fig's. 2 through 5.

The forming process can be by apparatus of the type shown in Fig. 2. The 10 apparatus includes concave platen 24, convex platen 26, means for driving the platens into and out of pressure-applying relationship with each other and means for alternately heating and cooling the platens during each pressure-applying interval.

Concave platen 24 includes glass member 28 having smooth concave forming surface 30, shaft 32 operatively connected to a suitable drive means, fluid chamber 15 33, fluid inlet coupling 34 and fluid outlet coupling 36.

Convex platen 26 includes glass member 38 having convex forming surface 40, fixed support means 42, fluid chamber 43, fluid inlet coupling 44 and fluid outlet coupling 46.

As discussed previously, the respective concave and convex forming surfaces 20 30 and 40 have different radii of curvature which correspond substantially to the relationship expressed by formula II.

WO 03/028987

PCT/US02/30653

The drive means includes a suitable hydraulic piston and cylinder arrangement
47 operatively connected to platen 24 for moving platen 24 into and out of pressure-
applying relationship with platen 26.

The heating and cooling means for both the platens includes three way valve
5 means 49, heating fluid conduit 51, cooling fluid conduit 53 and fluid inlet 55
connecting one of the three way valves to each of fluid inlet couplings 34 and 44 of
platens 24 and 26 respectively.

Referring now to Fig. 3, laminated lens blank structure 22 is placed in
concave platen 24 so that relatively thin sheet 14 faces concave platen 24 thereby
10 locating light polarizing layer 12 relatively near the concave platen. Also placed on
the smooth concave forming surface 30 of platen 24 is a volume of a polymerizable
composition 57 comprising a monomer or an oligomer and a polymerization initiator.
Generally, the volume of polymerizable composition 57 is determined by the
requirement to obtain sufficient coverage on the surface of lens blank 22 and is a
15 function of the lens curvature and size. Typically, a volume of from about 0.1 to
about 0.8 ml of the polymerizable composition is sufficient. As has been discussed
previously, under the conditions of heat and pressure applied by the molding apparatus,
polymerizable composition 57 forms a layer of non-uniform thickness on the convex
surface of the lens so as to provide a lens having substantially no optical power.

20 Any suitable monomer or oligomer which will provide an optically clear,
durable, scratch resistant, high impact-resistant polymeric film of non-uniform
thickness in accordance with the method of the invention may be used. Typical
suitable monomeric or oligomeric materials include, for example, acrylates,

WO 03/028987

PCT/US02/30653

methacrylates, urethanes, amines and inorganic materials such as, for example, polysiloxanes. The polymerizable composition may include a single monomer or oligomer or a mixture thereof. Any suitable polymerization initiator material may be used. The polymerizable composition may also include other additives to provide their known and predetermined effects. It is preferred to include elastomers such as, for example, nitrocellulose or cellulose acetate butyrate to inhibit cracking of the layer of non-uniform thickness formed from the polymerizable composition. A particularly preferred polymerizable composition for use in accordance with the invention comprises a mixture of tetraethylene glycol methacrylate and dipentaerythritol pentacrylate monomers. The polymerizable composition preferably includes an inhibitor such as hydroquinone.

The polymerization of the monomeric or oligomeric material may be carried out by any suitable polymerization technique such as free radical polymerization, cationic polymerization, ultraviolet polymerization and thermal cure polymerization. It is preferred to employ free radical polymerization.

In accordance with the method of the invention, the concave and convex platens are then brought into pressure-applying relationship as shown in Fig. 4 to form, or shape, the laminated lens blank structure 22, under the combined effects of heat and pressure, into a shaped structure and to form a layer of non-uniform thickness from the polymerizable composition thereby forming a shaped lens 50 (Fig. 6) having substantially no optical power. The layer of non-uniform thickness, is characterized by having maximum thickness in the central region of the layer thus providing a lens 50 also having maximum thickness in the central region of the lens.

WO 03/028987

PCT/US02/30653

The amount of pressure applied in any particular instance will vary with the particular nature of the lens blank structure, such as lens blank 22, especially the nature of the thermoplastic materials in the lens blank structure and with the temperatures of the forming surfaces 30 and 40. In the case of a composite structure 5 comprising a light polarizer of the preferred type described above laminated between sheets of cellulose acetate butyrate and polycarbonate, pressures in the range of from about 250 to about 800 lbs/in² (1724 to 5516 kilopascals) of lens area can be suitably employed. A preferred pressure is about 425 lbs/in² (2930 kPa).

While pressure is applied to the laminated structure 22, as described, the 10 platens are heated by passing hot water through chambers 33 and 43 of platens 24 and 26, respectively. Surfaces 30 and 40 are continually heated sufficiently to cause deformation of the polarizer layer 12 and the thermoplastic layers 14 and 16, and layer 18 when present, and conformation of the surface of layer 16, or layer 18, when present, to the forming surface 40 of platen 26 as well as conformation of the 15 surface of layer 14 to the layer of non-uniform thickness of the high-impact resistant polymeric material formed *in situ* according to the invention and conformation of the outer surface of the layer of non-uniform thickness to the forming surface 30 of platen 24. Thus, the application of heat and pressure is sufficient to cause the deformation of the lens blank 22 such that one surface of the blank conforms to the forming surface 20 40 of platen 26 and the outer surface of the layer of non-uniform thickness of high- impact resistant polymeric material formed *in situ* according to the invention conforms to the forming surface 30 of platen 24 as well as causing the other surface of the lens blank to conform to the inner surface of the layer of non-uniform thickness.

WO 03/028987

PCT/US02/30653

The employment of conditions sufficient to cause deformation of the lens blank and polymerization of the polymerizable composition with the accompanying formation of a layer of non-uniform thickness of high-impact-resistant material assures that the lens produced according to the invention has an overall non-uniform thickness.

5 The method of the invention can be employed for the production of lenses which are relatively thick and which desirably have, therefore, the durability associated with such thickness. Lenses of widely varying thicknesses can be produced according to the invention. The method is particularly suitable for the production of relatively thick lenses which, if of uniform thickness, would exhibit unacceptable optical power.

10 10 The method is particularly useful for the production of substantially no optical power lenses of a thickness of about 50 mils (1.27 mm) or greater, for example, in the range of from about 50 to 150 mils (1.27 to 3.81 mm).

In the production of lenses according to the invention it is convenient to utilize a platen 24 having a forming surface 30 which corresponds to the predetermined curvature of the convex side of the lens to be formed. It is apparent that the convex surface of the layer 51 (Fig. 6) which is formed against forming surface 30 serves as the outer surface of the lens 50 (Fig. 6). One suitable radius of curvature for forming surface 30 for forming a convex lens surface is 3.514 inches.

Using formula III, appropriate for calculating the radii of curvature required for lenses having substantially no optical power, and assuming that the radius of curvature of forming surface 30 (r_1) is 3.514 inches, the radius of curvature of the opposed lens surface (and platen) can be determined for the production of a lens of any nominal thickness.

WO 03/028987

PCT/US02/30653

TABLE II shows, for various lenses which can be produced according to the method of the invention, the radii of curvature for the convex and concave forming surfaces, the center thickness, the edge thickness, the diopter and the optical power.

5 TABLE II

	Convex Radii (inch)	Concave Radii (inch)	Center Thickness (inch)	Edge Thickness* (inch)	Diopter	Optical Power (diopter)
10	3.514	3.494	0.060	0.057	6	-0.001
	3.514	3.486	0.075	0.071	6	-0.001
	2.633	2.613	0.060	0.053	8	-0.001
	2.633	2.605	0.075	0.067	8	-0.001

15 *Edge is 1.5" from the center of the lens.

The conditions of temperature and pressure sufficient to cause deformation of the lens blank and to cause polymerization of the polymerizable composition during production of lenses according to the invention cause the finished lenses to conform to the radii of curvature of the forming surfaces of the platens. The requisite temperature 20 for creating deformation of the lens blank and polymerization of the polymerizable composition to form the layer of non-uniform thickness will vary with the chemical composition of the polymeric materials. Using cellulose acetate butyrate and polycarbonate sheets, molding temperatures of from about 150°F to about 200°F. A preferred molding temperature is heating at 170°F for 70 seconds.

25 The temperatures of the forming surfaces of the platens can be controlled by the passage of heated water and cooled water, as described previously. The platens are preferably preheated i.e., prior to placement of the lens blank therebetween, and are

WO 03/028987

PCT/US02/30653

heated to the requisite forming temperature for a heating cycle sufficient to form the desired shaped lens. For example, the forming surfaces of the platens can be preheated for about 20 seconds to about 170°F in the case of cellulose acetate butyrate and polycarbonate materials prior to placing the lens blank into the mold and closing the 5 mold for about 70 seconds during heating. The mold surfaces are then heated to the requisite forming temperature by the passage of heated water through the platens and the temperature is maintained for a duration, e.g., about 70 seconds, sufficient for the desired lens formation. Thereafter, the temperature of forming surfaces 30 and 40 is reduced by passage of a cooling fluid such as relatively cool water through chambers 10 33 and 43 of the platens. The cooling fluid is passed through the platens for a period, for example, of about 50 seconds before the press is opened.

Hot water is supplied to the platens through conduit 51 and the relatively cool water is supplied through conduit 53. During the heating cycle, valve 49 opens a connecting passage between conduit 51 and inlet 55 and closes conduit 53. 15 Oppositely, during the cooling cycle, the valve 49 opens a connecting passage between conduit 53 and inlet 55 and closes conduit 51. The transition from the heating cycle to the cooling cycle is carried out by operating valve 49 to mix cool water with the hot water until the hot water is completely displaced by cool water. Transition from the cooling cycle to the heating cycle is carried out by reversing the 20 operation.

After the cooling operation, platens 24 and 26 are separated to relieve the pressure on the shaped lens and permit its removal, as shown in Fig. 5. The shaped

WO 03/028987

PCT/US02/30653

lens may adhere to one of the forming surfaces in which case it may be removed by a stream of compressed air supplied by air nozzle 48.

Fig. 6 illustrates a shaped light-polarizing lens 50, concave on the side formed by convex platen 26 and convex on the side formed by concave platen 24. There is 5 seen layer 51 of non-uniform thickness which has high scratch resistance and which forms the convex surface of the lens 50.

Using the apparatus shown in Fig. 2, and employing the conditions of pressure and temperature described above herein, shaped lenses of substantially no optical power which have a convex surface of a high scratch-resistant and high impact-resistant 10 material can be advantageously provided. It will be appreciated, however, that other apparatus can be used and variations in process conditions, such as heating and cooling cycles, may be employed, depending upon the particular materials present in the lens blank and the polymerizable composition.

Although the invention has been described in detail with respect to various 15 preferred embodiments thereof, the invention is not limited thereto, but rather those skilled in the art will recognize that variations and modifications may be made therein which are within the spirit of the invention and the scope of the appended claims.

WO 03/028987

PCT/US02/30653

CLAIMS

What is claimed is:

1. A method for forming a plastic lens convex on one side and concave on the other side and having its maximum thickness in the central region of the lens and diminishing gradually in thickness radially towards the periphery of the lens, the method comprising the steps:

5 providing a lens blank of substantially uniform thickness comprising at least one layer of a thermoplastic material;

10 placing said lens blank between opposed concave and convex platens for forming, respectively, convex and concave surfaces on said lens blank, said concave platen holding a volume of a polymerizable composition comprising a monomer or an oligomer on a forming surface thereof, and wherein the radius of curvature of said convex platen and the radius of curvature of said concave platen correspond, respectively, to the relationship;

$$r_1 + r_2 = l \left(\frac{n-1}{n} \right)$$

15 heating and pressing said platens together with said lens blank therebetween, said heating and pressing being sufficient to deform said lens blank and to cause polymerization of said polymerizable composition to take place to provide a layer of non-uniform thickness on the convex surface on said deformed lens blank, said layer of non-uniform thickness having maximum thickness in its central region and diminishing gradually in thickness radially towards the periphery of said layer, whereby there is

WO 03/028987

PCT/US02/30653

20 formed a shaped lens, concave on one side and convex on the other, said lens having its maximum thickness in the central region thereof and diminishing gradually in thickness radially towards the periphery of said lens; and

removing said shaped lens from between said platens.

2. The method as defined in Claim 1 wherein said lens blank comprises a layer of a light polarizing material arranged between and bonded to each of first and second layers of thermoplastic material.

3. The method as defined in Claim 2 wherein said first layer of thermoplastic material comprises cellulose acetate butyrate or cellulose triacetate and said second layer of thermoplastic material comprises polycarbonate, and wherein said 30 second layer forms said concave surface of said lens.

4. The method as defined in Claim 2 wherein said first layer of thermoplastic material comprises cellulose acetate butyrate or cellulose triacetate and said second layer of thermoplastic material comprises a colored layer of polycarbonate and a clear layer of polycarbonate having an outer layer of a high scratch-resistant 35 material, and wherein said clear layer of polycarbonate forms said concave surface of said lens.

5. The method as defined in Claim 4 wherein said light-polarizing layer is positioned closer to said convex surface of said lens than to said concave surface of said lens.

40 6. The method as defined in Claim 1 wherein said polymerizable

WO 03/028987

PCT/US02/30653

composition comprises a mixture of tetraethylene glycol dimethacrylate and dipentaerythritol pentacrylate.

7. A shaped plastic lens convex on one side and concave on the other side and having substantially no optical power comprising a first substantially uniformly thick layer of thermoplastic polymeric material and a second layer of thermoplastic polymeric material of non-uniform thickness and having high scratch resistance, said second layer having maximum thickness in the central region thereof and diminishing gradually in thickness radially toward the periphery thereof, wherein said first substantially uniformly thick layer forms said concave side of the lens and said second layer forms said convex side of the lens.

8. The shaped plastic lens as defined in Claim 7 and further including a layer of a light-polarizing material positioned in said first layer of said lens.

9. The shaped plastic lens as defined in Claim 8 wherein said first layer of thermoplastic material comprises cellulose triacetate or cellulose acetate butyrate and said second layer of thermoplastic material comprises polycarbonate, said light-polarizing layer being positioned between said cellulose triacetate or cellulose acetate butyrate layer and said polycarbonate layer and said polycarbonate layer forming said concave side of said lens.

10. The shaped plastic lens as defined in Claim 9 wherein said polycarbonate layer of said lens comprises a colored layer of polycarbonate and a clear layer of polycarbonate having an outer surface of a high scratch-resistant material, said high scratch-resistant material forming said concave surface of said lens.

WO 03/028987

PCT/US02/30653

11. The shaped plastic lens as defined in Claim 10 wherein said light-polarizing layer is positioned closer to said convex side of said lens than to said
65 concave side of said lens.

WO 03/028987

PCT/US02/30653

FIG. 1

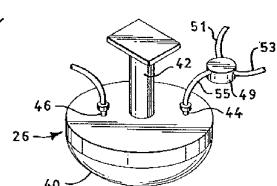
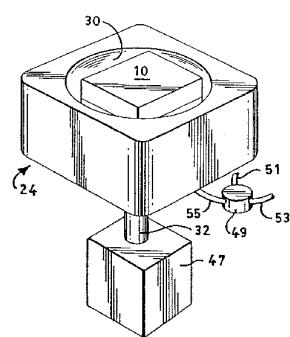



FIG. 2

WO 03/028987

PCT/US02/30653

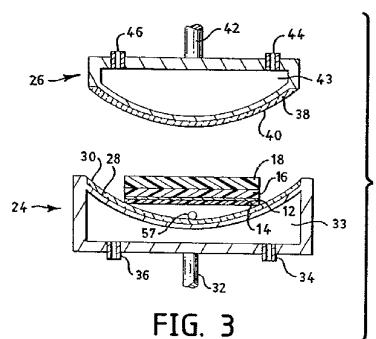


FIG. 3

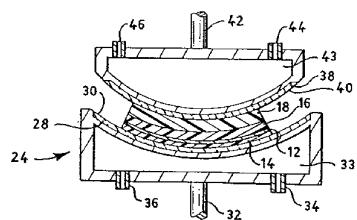


FIG. 4

WO 03/028987

PCT/US02/30653

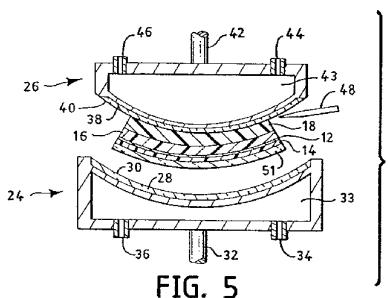


FIG. 5

FIG. 6

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
10 April 2003 (10.04.2003)

PCT

(10) International Publication Number
WO 03/028987 A3

(51) International Patent Classification: B29D 11/00 (74) Agent: MACCARONE, Gaetano, D.; Polaroid Corporation, 784 Memorial Drive, Cambridge, MA 02139 (US).

(21) International Application Number: PCT/US02/30653

(22) International Filing Date:

26 September 2002 (26.09.2002)

(81) Designated States (national): CA, CN, JP.

(25) Filing Language:

English

(84) Designated States (regional): European patent (AT, BE, BG, CI, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

(26) Publication Language:

English

Published:
with international search report(30) Priority Data:
09/966,179 28 September 2001 (28.09.2001) US(88) Date of publication of the international search report:
14 August 2003
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.(71) Applicant: POLAROID CORPORATION (US/US);
784 Memorial Drive, Cambridge, MA 02139 (US).(72) Inventor: GETTENS, Nancy, J.; 390 Woodward Street,
Waban, MA 02468 (US).

WO 03/028987 A3

(54) Title: SHAPED PLASTIC LENSES AND METHOD FOR MAKING THE SAME

(57) Abstract: There is described a method for forming lenses having substantially no optical power. The method includes forming, via in situ polymerization, a layer of non-uniform thickness (51) of an optically clear, high scratch-resistant polymeric material on the convex surface of the lens. The lenses provided by the method are characterized by having maximum thickness in the central region of the lens and gradually diminishing thickness radially towards the periphery of the lens.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		
		International Application No PCT/US 02/30653
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B29D11/00		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 B29D B29C A61F		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 434 707 A (DALZELL WILLIAM H ET AL) 18 July 1995 (1995-07-18) cited in the application abstract -----	1,7
<input type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents :		
* "A" document defining the general state of the art which is not considered to be of particular relevance		
* "E" earlier document but published on or after the international filing date		
* "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		
* "O" document referring to an oral disclosure, use, exhibition or other means		
* "P" document published prior to the international filing date but later than the priority date claimed		
* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
* "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
* "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other standard documents, such combination being obvious to a person skilled in the art		
* "Z" document member of the same patent family		
Date of the actual completion of the International search	Date of mailing of the International search report	
23 April 2003	14 05 2003	
Name and mailing address of the ISA European Patent Office, P.O. 5018 Patentlaan 2 NL-2233 Rijswijk Tel. (+31-70) 340-2340, Tx. 31 651 epo n Fax. (+31-70) 340-5016	Authorized officer Roberts, P	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 02/30653

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 8.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this International application, as follows:

see additional sheet

As a result of the prior review under R. 40.2(e) PCT,
no additional fees are to be refunded.

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

International Application No. PCT/US 02/30653

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-6

Method of making a zero power lens comprising polymerisable material and pressing

2. Claims: 7-11

Zero power lens with a thermoplastic scratch resistant layer

INTERNATIONAL SEARCH REPORT Information on patent family members			International Application No PCT/US 02/30653	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
US 5434707	A 18-07-1995	AU 678612 B2 AU 7835094 A EP 0669009 A1 JP 8503793 T WO 9508133 A1	05-06-1997 03-04-1995 30-08-1995 23-04-1996 23-03-1995	

Form PCT/ISA/210 (patent family annex) (July 1992)