
United States Patent

US007 178051B2

(12) (10) Patent No.: US 7,178,051 B2
Barr et al. (45) Date of Patent: Feb. 13, 2007

(54) METHOD FOR SYNCHRONOUS SUPPORT 5.999,979 A * 12/1999 Vellanki et al. 709,232
OF FAULTTOLERANT AND ADAPTIVE 6, 157.991 A * 12/2000 Arnon 711 161
COMMUNICATION 6, 175.933 B1 * 1/2001 Cadden 714/15

6,330,278 B1* 12/2001 Masters et al. 375,223
75 6,396,805 B2 * 5/2002 Romrell 370,216
(75) Inventors: ???????????? |{???? ???????aria CA (US); 6,526.049 B1 * 2/2003 Murata 370,389

vakumar'yingar)apuram. 6,901.474 B2 * 5/2005 Lym et al. 710,305
Santa Clara, CA (US); Peter Strarup 6,934,249 B1* 8/2005 Bertin et al. 370.218
Jensen, Mountain View, CA (US); 7.073.090 B2* 7/2006 Yanai et al. 714/7
Shahriar Vaghar, San Jose, CA (US) 2001/0002900 A 1 * 6/2001 Romrel 1 370,216

2001, 0046259 A1* 11, 2001 Abrishami 375.222
(73) Assignee: Sun Microsystems, Inc., Santa Clara, 2003/0182419 A1* 9, 2003 Barr et al. 709/224

CA (US) 20040153701 A1 * 82004 Pickell 714.f4

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Victor C. Zandy, Barton P. Miller, Reliable network connections,
U.S.C. 154(b) by 633 days. Proceedings of the 8th annual international conference on Mobile

computing and networking, pp. 95-106, Sep. 23-28, 2002, Atlanta,
(21) Appl. No.: 10/378,005 Georgia, USA.*

(22) Filed: Feb. 27, 2003 * cited by examiner
O O Primary Examiner Bryce P. Bonzo

(65) Prior Publication Data (74) Attorney, Agent, or Firm—Martine Penilla &
US 2004/O193942 A1 Sep. 30, 2004 Gencarella, LLP

(51) Int. Cl. (57) ABSTRACT
G06F II/00 (2006.01)

(52) U.S. Cl. .…. 714.f4 An invention is provided for fault-tolerant and adaptive
(58) Field of Classification Search 714/4, communication in a distributed computing environment.

714f6 The invention includes detecting an interruption in a digital
See application file for complete search history. connection on a network between two endpoints. Upon

detection, a connection state value indicating a number of
(56) References Cited data elements processed by the application is obtained. The

U.S. PATENT DOCUMENTS connection state value is then exchanged with the opposite
endpoint over the network. In this manner, remaining data

4,617,657 A * 10/1986 Drynan et al. 370,394 elements of the transaction can be received sequentially over
5,623,599 A 4/1997 ShOmler 714/18 the network from the opposite endpoint. In particular, the
5,751,719 A 5, 1998 Chen et al. 370/473 remaining data elements begin with a data element at a point
5,752,251 A * 5/1998 Cripps 707/2O2 indicated by the connection state value plus one
5,754,754 A * 5/1998 Dudley et al. T14f18 y p
5.825.752 A º 10/1998 Fujimori et al. ... 370,260
5,835,721 A * 11/1998 Donahue et al. TO9,224 18 Claims, 8 Drawing Sheets

?°
CEN SERWER

OGCAL CONNECTION 12

APPLICATION - - - - - - - - - - as e APPCAON

" f ?III - ?????R ???????????????????????????????

CONTROL 114a 114b 114a 114b 114c 114d | CONTROL
AYER E AYER

208 .? - b ??? ?= ?? = =? = =?? ????? ????? ???? 208

CONTROL CONNECTION 2

COM COM
STACK STACK

06a Q63

COMM COMM
HIW HW

g 108
--

US 7,178,051 B2 Sheet 1 of 8 Feb. 13, 2007 U.S. Patent

Z? ? NO|10ENNOO TV/O|3)OT

HEAHESLNE. ITO
00||__^

US 7,178,051 B2 Sheet 2 of 8 Feb. 13, 2007 U.S. Patent

NOHLOBIN NOO TOH1NOO

{{EAVT TOHLNOKO

HEAVf7| TOHLNO O 8-HEIA8=|ESLNE. ITO
00?__^

US 7,178,051 B2 Sheet 3 of 8 Feb. 13, 2007 U.S. Patent

012

??? HEAVTI TOHINOO

EIEAVTI TOH1NOO JLNEVITKO

US 7,178,051 B2 Sheet 4 of 8 Feb. 13, 2007 U.S. Patent

NOI LOENNOO TOH1NOO
S S S S S S S S S S S S S???

HEAVT TOHLNO O

{{EAVT TOH1NOO

|???? ?|| ||——— "?———+ ?|-|| ?NOI LOENNOO TVO|9OT HEIABLES_LNEHTO

U.S. Patent Feb. 13, 2007 Sheet 5 of 8 US 7,178,051 B2

APPLICATION

502 APPLICATION PROGRAMMING
INTEPPA??

506

CONNECTION RECONNECT
MONTOR PPOTOO?

504

FIG. 5

U.S. Patent Feb. 13, 2007 Sheet 6 of 8 US 7,178,051 B2

600 1.
Start 602

Establish Logical Connection 604

Transmit Data Elements 606

608

Connection
Interrupted No

Yes

Reestablish Connection Using
Control Layer 610

FIG. 6

U.S. Patent Feb. 13, 2007 Sheet 7 of 8 US 7,178,051 B2

700 1.

Establish Logical Connection
On 1st Channel

704

706
Transmit Data Elements

Better
2nd Channel
Available

p

Yes

v
-

Interrupt Logical Connection
On 1st Channel

--- |
Re-map Logical Connection on

2nd Channel

710

712

Reestablish Connection Using
Control Layer 610

FIG. 7

U.S. Patent Feb. 13, 2007 Sheet 8 of 8 US 7,178,051 B2

1. 610
Start 800

Notify Application That Connectivity
Interrupted

Receive Request to Reconnect and
Number of Data Elements Processed By 804

Application

Establish Connectivity With Opposite
Control Layer

Exchange Connection State information
With Opposite Control Layer

Opposite Control Layer Begins ???
Transmitting Data Beginning at (Number 810

of Data Elements Processed) + 1

Pass Control Back to Application Layers 812

802

806

808 ? ????

FIG. 8

US 7,178,051 B2
1.

METHOD FOR SYNCHRONOUS SUPPORT
OF FAULTTOLERANT AND ADAPTIVE

COMMUNICATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 10/377,965, filed Feb. 27, 2003, and entitled “Method
for Asynchronous Support of Fault-Tolerant and Adaptive
Communication,” which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates generally to computer networking,

and more particularly to application and protocol indepen
dent synchronous Support of fault tolerant and adaptive
communication.

2. Description of the Related Art
With the increased use of mobile and remote computing,

distributed processing has become a central element in many
computer processing systems. Distributed processing has
many different forms depending on the nature of the data and
the objectives of the application. For example, one emerging
form of distributed processing is mobile computing, such as
used in telematics.

Telematics refers to systems used for communications,
instrumentation, control, and information technology in the
field of transportation. Over the years, manufacturers of
on-road vehicles, such as automobiles, vans, trucks, buses,
and so on, have utilized computer technology to enhance the
operations of existing features and functions in the vehicles
as well as to provide new features and functions. For
example, programmed controllers, custom-designed proces
sors, embedded Systems, and/or computer modules have
been developed that support or even control various kinds of
mechanical equipment in vehicles. For example, pro
grammed controllers or computer modules have been devel
oped that control or Support various engine functions. Such
as fuel injection, timing, and so on. Programmed controllers
or computer modules have been developed to enhance or
Support operation of transmission systems, Suspension sys
tems, braking systems, and so on. The Sophistication of these
enhancements has advanced as the processing power avail
able for these purposes has increased. It is expected that in
the future more aspects of the mechanical equipment in
vehicles will be controlled or supported by processors or
controllers in order to enhance performance, reliability,
safety, and to reduce emissions.
As can be appreciated, the distributed nature of telematic

functions generally requires a digital distributed communi
cation structure Such as that provided in distributed com
puting environments. However, as with most communica
tion, digital communication is Subject to interruption or
failure. As such, an ability to restart communication after
interruption is important to most distributed applications.

FIG. 1 is a block diagram showing a typical prior art
distributed environment 100. The distributed environment
100 includes a client application 102 executing on a client
device, which is in communication with a server application
104 executing on a server device. Generally, the client
application 102 and server application 104 communicate
using a logical connection 112, which is a logical entity used
by applications to exchange data between two endpoints,
Such as the client application 102 and the server application
104. Although the application programs 102 and 104 func

10

15

25

30

35

40

45

50

55

60

65

2
tion as though the logical connection 112 were a physical
entity, the logical connection 112 requires a communication
channel to actually transmit data.

Software known as the communication stack 106a and
106b is used to map logical connections to communication
channels, which includes the actual communication hard
ware 108a and 108b. The communication stacks 106a and
106b handle data routing, flow control, buffering, error
correction, and other computing issues encountered in real
world communication. Entities, such as the client applica
tion 102 and the server application 104, use one or more
logical connections 112 to communicate with other entities
by sending and receiving data in a sequential fashion over a
period of time. Due to the sequential nature of the commu
nication, data communication typically is stateful, meaning
that the completeness and order of the data transmitted
should be preserved.

However, the flow of data over a connection can be
interrupted for many reasons, such as the failure of the
underlying communication hardware 108a and 108b or
because the connection is rerouted to a more advantageous
communication channel. During Such interruptions data may
be lost, corrupted, or reordered. In order to continue com
munication once the channel has been reestablished, a
method should be in place that restarts data transfer. Unfor
tunately, many prior art systems restart lost connections
from the beginning of the data transaction, thus re-transmit
ting the entire transaction.

For example, in FIG. 1, the server application 104 begins
sending data elements 1114a, 2114b, 3114c, and 41.14d to
the client application 102. However, during the transmission
the logical connection 112 between the server application
104 and the client application 102 is interrupted. As a result,
the client application 102, in this example, received only two
data elements, 1114a and 2 114b, of the four data elements
transmitted. Once the connection is reestablished, the prior
art distributed environment 100 will restart the entire trans
mission beginning again with data element 1 114a, thus
re-transmitting the entire transaction.

If the connection state of the transaction was maintained
when interruption occurred, the transaction can be restated
at the point of the interruption. For example, in FIG. 1, the
server application 104 can begin re-transmitting from data
element 3 114c and continue the remainder of the transac
tion, instead of re-transmitting from the beginning of the
transaction with data element 1 114a. However, prior art
Solutions to obtaining and maintaining connection state
information for restarting after connection interruptions
have been overly burdensome and inconsistent.

For example, some prior art systems have attempted to
make fault tolerant logical connections transparent to the
applications by implementing all the fault tolerant function
ality in the communication stack 106a and 106b. However,
these systems are overly complex, burdensome, and incon
sistent because the communication stack 106a and 106b is
required to perform buffering, keep track of how much data
was sent and received from each endpoint, and keep track of
what data was lost. Since the communication stack 106a and
106b cannot determine what data is actually important to a
particular application, the communication stack 106a and
106b must have the functionality to track all data, and store
all network information regarding the state of the connec
tion.
To avoid such complexity, some prior art distributed

systems shift the burden of fault tolerant communication
entirely to the applications. Unfortunately, different appli
cations can implement fault tolerant schemes in different

US 7,178,051 B2
3

ways, causing inconsistency and requiring greater care in
developing distributed software for existing distributed
applications. Moreover, different applications will require
similar functions because they must be able to handle the
same communication scenario. This causes waste, in terms
of duplication effort, and additional implementation incon
sistencies.

In view of the foregoing, there is a need for a method for
Supporting fault tolerant and adaptive communication that
promotes consistency and reduced complexity. The method
should allow reestablished connections to restart from the
point where interruption occurred, and should be indepen
dent of the communication protocol, the format of the data
transmitted, and any application policies.

SUMMARY OF THE INVENTION

Broadly speaking, the present invention fills these needs
by providing synchronous Support of fault-tolerant and
adaptive communication. Broadly speaking, embodiments
of the present invention utilize control layers, which provide
fault tolerant connectivity to applications. The control layers
at each endpoint exchange connection state information with
each other that allows connections to restart from the point
where an interruption occurred. In one embodiment, a
method is disclosed for providing fault-tolerant and adaptive
communication in a distributed computing environment.
The method includes detecting an interruption in a digital
connection on a network between two endpoints. The digital
connection is utilized to transmit data elements of a trans
action sequentially from an opposite endpoint to an appli
cation. Upon detection, a connection state value indicating a
number of data elements processed by the application is
obtained. The connection state value is then exchanged with
the opposite endpoint over the network. In this manner,
remaining data elements of the transaction can be received
sequentially over the network from the opposite endpoint. In
particular, the remaining data elements begin with a data
element at a point indicated by the connection state value
plus one. The control layer communication can be in both
directions. For example, the opposite connection state value
indicating a number of data elements processed using the
opposite endpoint can be received so that remaining data
elements can be transmitted sequentially over the network to
the opposite endpoint. As above, the remaining data ele
ments can begin with a data element at a point indicated by
the opposite connection state value plus one.
A computer program embodied on a computer readable

medium for providing fault-tolerant and adaptive commu
nication in a distributed computing environment is disclosed
in an additional embodiment of the present invention. The
computer program includes a connection monitor module
that detects interruptions in digital connections on a network
between two endpoints. As above, the digital connection is
utilized to transmit data elements of a transaction sequen
tially from an opposite endpoint to an application. The
computer program also includes an application program
ming interface that obtains a connection state value indicat
ing a number of data elements processed by the application.
Further included is a reconnect protocol module that
exchanges the connection state value with the opposite
endpoint over the network. In this manner, the computer
program allows remaining data elements of the transaction
to be received sequentially over the network from the
opposite endpoint such that the remaining data elements
begin with a data element at a point indicated by the
connection state value plus one. The computer program can

10

15

25

30

35

40

45

50

55

60

65

4
also be utilized to facilitate changing communication chan
nels during a digital transaction. For example, the connec
tion monitor module can detect a 2" communication chan
nel that is currently more efficient than a current 1”
communication channel. In this case, the connection monitor
module can interrupt the digital connection on the current 1
communication channel and re-map a logical connection to
the 2" communication channel.

In a further embodiment, a distributed environment hav
ing fault-tolerant and adaptive communication is disclosed.
The distributed environment includes a server application in
communication with a server control layer. In addition, a
client application is included that is in communication with
the server application over a logical connection. The logical
connection is utilized to transmit data elements of a trans
action sequentially from the server application to the client
application. Also included is a client control layer having a
control connection with the server control layer. The client
control layer exchanges a client connection state value with
the server control layer using the control connection when
the logical connection is interrupted. As above, the client
connection state value indicates a number of data elements
processed by the client application. In this manner, the
server application can transmit remaining data elements of
the transaction sequentially over the network beginning with
a data element at a point indicated by the client connection
state value plus one. Other aspects and advantages of the
invention will become apparent from the following detailed
description, taken in conjunction with the accompanying
drawings, illustrating by way of example the principles of
the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof,
may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings in which:

FIG. 1 is a block diagram showing a typical prior art
distributed environment;

FIG. 2 is a block diagram showing a distributed comput
ing environment having fault-tolerance Support for a one
way transaction, in accordance with an embodiment of the
present invention;

FIG. 3 is a block diagram showing a distributed comput
ing environment having fault-tolerance Support for a two
way transaction, in accordance with an embodiment of the
present invention;

FIG. 4 is a block diagram showing a distributed comput
ing environment having fault-tolerance Support and com
munication channel Switching capability, in accordance with
an embodiment of the present invention;

FIG. 5 is a block diagram illustrating the interfaces of a
control layer, in accordance with an embodiment of the
present invention;

FIG. 6 is a flowchart showing a method for providing
fault-tolerant and adaptive communication in a distributed
computing environment, in accordance with an embodiment
of the present invention;

FIG. 7 is a flowchart showing a method for providing
fault-tolerant and adaptive communication when Switching
communication channels in a distributed computing envi
ronment, in accordance with an embodiment of the present
invention; and

FIG. 8 is a flowchart showing method for reestablishing
a connection using a control layer, in accordance with an
embodiment of the present invention.

US 7,178,051 B2
5

DETAILLED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

An invention is disclosed for synchronous Support of
fault-tolerant and adaptive communication. Embodiments of
the present invention provide protocol and data format
independent fault-tolerant communication to applications
with minimal Support from applications. Broadly speaking,
embodiments of the present invention insert control layers in
communication with the communication stack, which pro
vide fault tolerant connectivity to applications. The control
layers at each endpoint exchange the connection state infor
mation with each other that allows connections to restart
from the point where an interruption occurred. In the fol
lowing description, numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the
art that the present invention may be practiced without some
or all of these specific details. In other instances, well known
process steps have not been described in detail in order not
to unnecessarily obscure the present invention.

FIG. 1 was described in terms of the prior art. FIG. 2 is
a block diagram showing a distributed computing environ
ment 200 having fault-tolerance support for a one-way
transaction, in accordance with an embodiment of the
present invention. The distributed environment 200 includes
a client application 202 executing on a client device, which
is in communication with a server application 204 executing
on a server device. As discussed previously, the client
application 202 and server application 204 generally com
municate using a logical connection 112, which is a logical
entity used by applications to exchange data between two
endpoints, such as the client application 202 and the server
application 204. Although the application programs 202 and
204 function as though the logical connection 112 were a
physical entity, the logical connection 112 requires a com
munication channel to actually transmit data.
The communication stacks 106a and 106b map logical

connections to communication channels, which include the
actual communication hardware 108a and 108b. As dis
closed above, the communication stacks 106a and 106b
handle data routing, flow control, buffering, error correction,
and other computing issues encountered in real-world com
munication. Entities, such as the client application 202 and
the server application 204, use one or more logical connec
tions 112 to communicate with other entities by sending and
receiving data in a sequential fashion over a period of time.

Embodiments of the present invention provide synchro
nous support offault-tolerant and adaptive communication
using control layers 206 and 208, which are in communi
cation with the applications 202 and 204 and the commu
nication stacks 106a and 106b. In one embodiment, a client
control layer 206 is placed in communication with the client
application 202 and the client side communication stack
106a, and a server control layer 208 is placed in commu
nication with the server application 204 and the server side
communication stack 106b. In operation, the control layers
206 and 208 facilitate reconnection and transaction restart
ing from the point of interruption.

Broadly speaking, the control layers 206 and 208 obtain
connection state values from the respective applications
202/204 upon detecting an interruption in a digital connec
tion. The connection state values indicate the number of data
elements processed by each application prior to the connec
tion interruption. The data elements can be any discrete
grouping of data, Such as a byte of data, a group of data
bytes, an object, a group of objects, or any other discrete data

5

10

15

25

30

35

40

45

50

55

60

65

6
grouping utilized by an application. The control layers 206
and 208 then exchange the connection state values with each
other. In this manner, remaining data elements of the trans
action can be sent sequentially over the network beginning
with the data element at the point indicated by the connec
tion state values plus one.
More particularly, during normal operation the client

application 202 and server application 204 communicate
with each other by sending data elements 114a–114d to each
other using the logical connection 112. During this time the
control layers 206 and 208 monitor the state of the connec
tion. Upon detecting an interruption in the connection, the
control layers 206 and 208 notify the applications 202 and
204 that an interruption has occurred. Once notified of the
interruption, the applications can make appropriate
responses. In one embodiment, the client application 202
sends a request to the control layer 206 requesting recon
nection. In addition, the client application 202 provides the
control layer 206 with the number of data elements the client
application 202 has processed up to the point of interruption.

For example, in FIG. 2, the server application 204 is
transmitting data elements 1 114a, 2 114b, 3 114c, and 4
114d to the client application 202 using the logical connec
tion 112. During the transmission an interruption occurs in
the connection such that data can no longer be communi
cated over the logical connection 112. Upon detection of the
connection interruption, the control layer 206 notifies the
client application 202 of the interruption. In response, the
client application 202 transmits the connection state value to
the control layer 206 and requests a reconnection.
At this point, the client control layer 206 and the server

control layer 208 establish a control connection 210 that
allows the control layers 206 and 208 to communicate with
each other. In one embodiment, the control layers 206 and
208 utilize the same communication stacks 106a–106b and
communication hardware 108a–108b for digital communi
cation as utilized by the applications 202 and 204. In
additional embodiments, the control connection 210 is
established over a different physical channel that can, in one
embodiment, be specifically utilized for control communi
cation only. Once the control connection 210 is established,
the control layers exchange connection state values. For
example, in FIG. 2, the client control layer 206 transmits the
connection state value for the client application 202 to the
server control layer 208.

In the example of FIG. 2, the client application 202
processed data elements 1 114a and 2 114b prior to the
connection interruption. Hence, the client application 202
did not receive data elements 3 114c and 4 114d of the
current transaction. As a result, upon being notified of the
connection interruption, the client application 202 transmits
a connection State value of two, indicating two data elements
were processed prior to interruption, to the client control
layer 206. Upon establishing the control connection 210, the
client control layer 206 transmits the connection state value,
in this example having a value of two, to the server control
layer 208. The server control layer 208 then provides the
connection state value information to the server application
204. At this point, the client control layer 206 passes control
back to the client application 202 and the server control layer
208 passes control back to the server application 204.

Thereafter, the server application 204 can begin transmit
ting the remaining data elements of the transaction to the
client application 202. In particular, the server application
204 begins transmitting from the data element at a point
indicated by the connection state value plus one. In the
example of FIG. 2, the server application 204 begins retrans

US 7,178,051 B2
7

mitting data starting from the third data element in the
transaction (connection state value of two plus one), which
is data element 3 114c, and continues with the remaining
data element 4 114d. Although the example of FIG. 2
illustrates a one-way transaction, embodiments of the
present invention also Support two-way transactions were
data is being transmitted to both endpoints, as illustrated
next with reference to FIG. 3.

FIG. 3 is a block diagram showing a distributed comput
ing environment 250 having fault-tolerance support for a
two-way transaction, in accordance with an embodiment of
the present invention. The distributed environment 250
includes a client application 202 executing on a client
device, which is in communication with a server application
204 executing on a server device. As discussed previously,
the client application 202 and server application 204 gen
erally communicate using the logical connection 112.

During normal operation the client application 202 and
server application 204 communicate with each other by
sending data elements 114a–114d and 116a–116d to each
other using the logical connection 112. As discussed above,
the control layers 206 and 208 monitor the state of the
connection during this communication. Upon detecting an
interruption in the connection, the control layers 206 and
208 notify the applications 202 and 204 that an interruption
has occurred. In one embodiment, the client application 202
sends a request to the control layer 206 requesting recon
nection in response to being notified of the interruption. The
client application 202 also provides the control layer 206
with the number of data elements the client application 202
has processed up to the point of interruption. In addition, the
server control layer 208 is provided with the number of data
elements the server application 204 has processed up to the
point of interruption. It should be noted that the server
control layer 208 can obtain the number of data elements
processed in either a synchronous manner as discussed
above, or in an asynchronous manner, wherein the server
application periodically updates the server control layer 208.

For example, in FIG. 3, the server application 204 is
transmitting data elements 1 114a, 2 114b, 3 114c, and 4
114d to the client application 202 using the logical connec
tion 112. In addition, the client application 202 is transmit
ting data elements A116a, B 116b, and C 116c to the server
application 204 also using the logical connection 112. Dur
ing the transmission an interruption occurs in the connection
Such that data can no longer be communicated over the
logical connection 112. Upon detection of the connection
interruption, the control layers 206 and 208 detect the
connection interruption and notify the client application 202
and server application 204. In response, the client applica
tion 202 transmits the connection state value to the control
layer 206 and requests a reconnection.

At this point, the client control layer 206 and the server
control layer 208 establish a control connection 210 that
allows the control layers 206 and 208 to communicate with
each other. The control layers 206 and 208 utilize the same
communication stacks 106a–106b and communication hard
ware 108a–108b for digital communication as utilized by
the applications 202 and 204. Once the control connection
210 is established, the control layers exchange connection
state values. For example, in FIG. 3, the client control layer
206 transmits the connection state value for the client
application 202 to the server control layer 208. As discussed
above, the server control layer 208 can obtain the connection
state value from the server application 204 in either a

10

15

25

30

35

40

45

50

55

60

65

8
synchronous manner or asynchronous manner wherein the
server application periodically updates the server control
layer 208.

In the example of FIG. 3, the client application 202
processed data elements 1 114a and 2 114b prior to the
connection interruption. Hence, the client application 202
did not receive data elements 3 114c and 4 114d of the
current transaction. As a result, upon being notified of the
connection interruption, the client application 202 transmits
a connection State value of two, indicating two data elements
were processed prior to interruption, to the client control
layer 206. In addition, the server application 204 only
processed data element A 116a prior to the connection
interruption. Hence, the server application 204 did not
receive data elements B 116b and C 116c of the current
transaction. As a result, the server control layer 208 obtains
a connection state value of one, either synchronously or
asynchronously, from the server application 204 indicating
one data element was processed prior to interruption.
Upon establishing the control connection 210, the client

control layer 206 transmits its connection state value, in this
example having a value of two, to the server control layer
208. Also, the server control layer 208 transmits its connec
tion state value, in this example having a value of one, to the
client control layer 206. The client control layer 206 then
provides the connection state value information received
from the server control layer 208 to the client application
202. Similarly, the server control layer 208 provides the
connection state value information received from the client
control layer 206 to the server application 204. At this point,
the client control layer 206 passes control back to the client
application 202 and the server control layer 208 passes
control back to the server application 204.

Thereafter, the server application 204 can begin transmit
ting the remaining data elements of the transaction to the
client application 202. In particular, the server application
204 begins transmitting from the data element at a point
indicated by the connection state value received from the
client control layer 206 plus one. In the example of FIG. 3,
the server application 204 begins re-transmitting data start
ing from the third data element in the transaction (connec
tion state value of two plus one), which is data element 3
114c, and continues with the remaining data element 41.14d.
The client application 202 also begins transmitting the
remaining data elements of the transaction to the server
application 204. The client application 202 begins transmit
ting from the data element at a point indicated by the
connection state value received from the server control layer
208 plus one. In the example of FIG. 3, the client application
202 begins re-transmitting data starting from the second data
element in the transaction (connection state value of one
plus one), which is data element B 116b, and continues with
the remaining data element C 116c. In addition to handling
unintentional connection interruptions, embodiments of the
present invention can handle intentional connection inter
ruptions. Such as when a communication channel is changed.

FIG. 4 is a block diagram showing a distributed comput
ing environment 400 having fault-tolerance Support and
communication channel Switching capability, in accordance
with an embodiment of the present invention. The distrib
uted environment 400 includes a client application 202
executing on a client device, which is in communication
with a server application 204 executing on a server device.
As discussed previously, the client application 202 and
server application 204 communicate using a logical connec
tion 112.

US 7,178,051 B2

As mentioned previously, the communication stacks 106a
and 106b map logical connections to communication chan
nels 110a and 110b, which include the actual communica
tion hardware 108a and 108b. The communication stacks
106a and 106b handle data routing, flow control, buffering,
error correction, and other computing issues encountered in
real-world communication. Entities, such as the client appli
cation 202 and the server application 204, use one or more
logical connections 112 to communicate with other entities
by sending and receiving data in a sequential fashion over a
period of time.

However, different communication channels 110a and
110b can perform differently. For example, although a cell
phone based wireless communication channel is widely
available, a cell phone based wireless communication chan
nel generally performs much slower than a local 802.11b
wireless connection. As such, network Software can be
capable of Switching to faster communication channels
when they become available. However, switching to a new
communication channel interrupts any currently established
connection using the previous communication channel.
Advantageously, embodiments of the present invention can
facilitate communication channel Switching, allowing data
transactions to continue from the point of interruption before
the communication channels were changed.

For example, in FIG. 4 the client application 202 and
server application 204 initiate a data transaction using a first
communication 110a. That is, the communication stacks
106a and 106b map the logical connection 112 to commu
nication channel 110a, which can be, for example, a cell
phone based wireless network. During communication, the
client device, for example, can enter an area having a better
communication channel available. For example, if the client
device were a telematics device incorporated into an auto
mobile, the first communication channel 110a could be a cell
phone based wireless network. Subsequently, the automo
bile can enter, for example, a home garage offering 802.11b
wireless network connectivity using a second communica
tion channel 110b. In this case, the communication stacks
can remap the connection to the second communication
channel 110b.
As mentioned above, the remapping of the connection

causes an interruption in the logical connection 112. How
ever, the control layers 206 and 208 monitor the state of the
connection. Thus, upon detecting an interruption in the
connection, the control layers 206 and 208 notify the appli
cations 202 and 204 that an interruption has occurred and the
applications can make appropriate responses. That is, the
client application 202 sends a request to the control layer
206 requesting reconnection and provides the control layer
206 with the number of data elements the client application
202 has processed up to the point of interruption.

For example, in FIG. 4, the server application 204 is
transmitting data elements 1 114a, 2 114b, 3 114c, and 4
114d to the client application 202 using the logical connec
tion 112. Then, the connection is interrupted to change from
communication channel 110a to communication channel
110b. Upon detection of the connection interruption, the
control layer 206 notifies the client application 202, and the
client application 202 transmits the connection state value to
the control layer 206 and requests a reconnection.
When the communication channel change is complete the

client control layer 206 and the server control layer 208
establish a control connection 210 that allows the control
layers 206 and 208 to communicate with each other. At this
point, the control layers exchange connection state values,
for example in FIG. 4, the client application 202 processed

10

15

25

30

35

40

45

50

55

60

65

10
data elements 1 114a and 2 114b prior to the connection
interruption caused by the communication channel change.
Hence, the client application 202 did not receive data
elements 3114c and 4 114d of the current transaction. As a
result, upon being notified of the connection interruption, the
client application 202 transmits a connection state value of
two, indicating two data elements were processed prior to
interruption, to the client control layer 206. Upon establish
ing the control connection 210, the client control layer 206
transmits the connection state value, in this example having
a value of two, to the server control layer 208. The server
control layer 208 then provides the connection state value
information to the server application 204. At this point, the
client control layer 206 passes control back to the client
application 202 and the server control layer 208 passes
control back to the server application 204.
As above, the server application 204 can begin transmit

ting the remaining data elements of the transaction to the
client application 202 beginning from the data element at a
point indicated by the connection state value plus one. In the
example of FIG. 4, the server application 204 begins re
transmitting data starting from the third data element in the
transaction (connection state value of two plus one), which
is data element 3 114c, and continues with the remaining
data element 4 114d.

FIG. 5 is a block diagram illustrating the interfaces of a
control layer, in accordance with an embodiment of the
present invention. As shown in FIG. 5, the control layer 206
communicates with the application 202 using an application
programming interface (API) 502. The control layer 206
communicates with the communication Stack using a con
nection monitor 504 and a reconnect protocol 506.
The connection monitor 504 monitors the status of the

connection and detects any interruption of communication
on the connection. As mentioned above, the connection can
be interrupted for many different reasons, including signal
drops or fades, and communication channel changing. When
the connection monitor 504 detects an interruption in the
connection, the connection monitor 504 notifies the appli
cation 202 of the interruption using the API 502. If the
application 202 was transmitting data to another endpoint,
the application 202 stops transmitting data. Also, if the
application was receiving data from another endpoint, it
stops receiving data and stores its connection State value,
which is the number of data elements of the current data
transaction processed to this point. The application 202 then
indicates it is ready to reestablish communication over the
connection and provides the connection state value to the
control layer 206 using the API 502. The application 202
then waits until the API 502 indicates the connection has
been reestablished.
The connection monitor 504 then monitors the connection

to detect when the connection has been reestablished. Once
the connection is reestablished, the reconnect protocol 506
transmits information to the opposite control layer indicating
that a reconnect is about to occur. In addition, the reconnect
protocol 506 transmits the connection state value to the
opposite control layer. The opposite control layer can
respond with a connection state value of an application at the
opposite endpoint.
The API 502 then notifies the application 202 that the

connection has been reestablished. In addition, if the oppo
site control layer responded with a connection state value of
the endpoint, API 502 provides opposite endpoints connec
tion state value to the application 202. At this point, the
application 202 can continue to perform its work. That is, if
the application 202 was sending data over the connection,

US 7,178,051 B2
11

the application can continue sending data elements to the
opposite endpoint starting from the point indicated by the
connection state value received from the opposite endpoint.
If the application 202 was receiving data over the connec
tion, the application 202 will begin receiving data from the
opposite endpoint starting with the data element immedi
ately following the last data that was processed before the
connection was interrupted.

FIG. 6 is a flowchart showing a method 600 for providing
fault-tolerant and adaptive communication in a distributed
computing environment, in accordance with an embodiment
of the present invention. In an initial operation 602, prepro
cess operations are performed. Preprocess operations can
include mapping a physical communication channel to a
logical connection, executing a client application and a
server application, and other preprocess operations that will
be apparent to those skilled in the art after a careful reading
of the present disclosure.

In operation 604, a logical connection is established
between applications on opposite endpoints of a network. A
typical distributed environment can include, for example, a
client application executing on a client device, which is in
communication with a server application executing on a
server device. The client application and server application
generally communicate using a logical connection, which is
a logical entity used by applications to exchange data
between two endpoints, such as the client application and the
server application. Although the application programs func
tion as though the logical connection were a physical entity,
the logical connection requires a communication channel to
actually transmit data, as discussed in greater detail previ
ously.
The applications then begin transmitting data elements to

each other, in operation 606. Applications generally com
municate over a network by sending a sequential stream of
data elements to the other application. As mentioned above,
the data elements can be any discrete grouping of data, Such
as a byte of data, a group of data bytes, an object, a group
of objects, or any other discrete data grouping utilized by an
application.
A decision is then made as to whether the logical con

nection has been interrupted, in operation 608. A connection
monitor monitors the status of the connection and detects
any interruption of communication on the connection. As
mentioned above, the connection can be interrupted for
many different reasons, including signal drops or fades, and
communication channel changing. If the logical connection
has been interrupted, the method branches to operation 610.
Otherwise, the method 600 continues with another transmit
data elements operation 606.

In operation 610, the connection is reestablished using the
control layer. Broadly speaking, the control layers obtain
connection state values, indicating the number of data ele
ments processed each application, from the respective appli
cations upon detecting an interruption in a digital connec
tion. The control layers then exchange the connection state
values with each other. In this manner, remaining data
elements of the transaction can be sent sequentially over the
network from the opposite endpoint beginning with the data
element at the point indicated by the connection state values
plus one. Connection reestablishment will be described in
greater detail with reference to FIG. 8 below.

Advantageously, using the embodiments of the present
invention, applications at both endpoints of a connection are
able to reestablish communication at the precise point where
the interruption occurred. In addition, the applications only

5

10

15

25

30

40

45

50

55

60

65

12
need to resend the minimal amount of data required, regard
less of the underlying communication mechanism and pro
tocols.

FIG. 7 is a flowchart showing a method 700 for providing
fault-tolerant and adaptive communication when Switching
communication channels in a distributed computing envi
ronment, in accordance with an embodiment of the present
invention. In an initial operation 702, preprocess operations
are performed. Preprocess operations can include mapping a
physical communication channel to a first logical connec
tion, executing a client application and a server application,
and other preprocess operations that will be apparent to
those skilled in the art after a careful reading of the present
disclosure.

In operation 704, a logical connection is established
between applications on opposite endpoints of a network
using a first communication channel. As mentioned previ
ously, the communication stacks map logical connections to
communication channels. The communication stacks handle
data routing, flow control, buffering, error correction, and
other computing issues encountered in real-world commu
nication. Entities, such as the client application and the
server application, use one or more logical connections to
communicate with other entities by sending and receiving
data in a sequential fashion over a period of time.
The applications then begin transmitting data elements to

each other, in operation 706. Applications generally com
municate over a network by sending a sequential stream of
data elements to the other application. As mentioned above,
the data elements can be any discrete grouping of data, Such
as a byte of data, a group of data bytes, an object, a group
of objects, or any other discrete data grouping utilized by an
application.
A decision is then made as to whether a better commu

nication channel is available, in operation 708. Different
communication channels can perform differently. For
example, although cellphone based wireless communication
channel are widely available, a cell phone based wireless
communication channel generally performs much slower
than a local 802.11b wireless connection. As such, network
Software can be capable of Switching to faster communica
tion channels when they become available. As will be
discussed Subsequently, from the application's point of view
the logical connection appears to be interrupted when
Switching to a new communication channel even though the
connection or underlying channel remain open and uninter
rupted from the point of view of the control layer. Advan
tageously, embodiments of the present invention can facili
tate communication channel Switching, allowing data
transactions to continue from the point of interruption before
the communication channels were changed. If a better,
second communication channel is available, the method 700
branches to operation 710. Otherwise, the method 700
continues to transmit data elements in operation 706.

In operation 710, the logical connection on the first
communication channel is interrupted. During communica
tion, the client device can enter an area having a better
communication channel available. For example, if the client
device is a telematics device incorporated into an automo
bile, the first communication channel could be a cell phone
based wireless network. Subsequently, the automobile can
enter, for example, a home garage offering 802.11b wireless
network connectivity using a second communication chan
nel. In this case, the logical connection is interrupted on the
first communication channel to allow the connection to be
changed to the second communication channel, as described
neXt.

US 7,178,051 B2
13

The logical connection is re-mapped to the better, second
communication channel, in operation 712, and the connec
tion is reestablished using the control layer in operation 610.
As mentioned above, the control layers obtain connection
state values, indicating the number of data elements pro
cessed each application, from the respective applications.
The control layers then exchange the connection state values
with each other once the connection is re-mapped to the
second communication channel. In this manner, remaining
data elements of the transaction can be sent sequentially
over the network from the opposite endpoint beginning with
the data element at the point indicated by the connection
state values plus one.

FIG. 8 is a flowchart showing method 610 for reestab
lishing a connection using a control layer, in accordance
with an embodiment of the present invention. In an initial
operation 800, preprocess operations are performed. Prepro
cess operations can include detecting a connection interrup
tion, re-mapping a logical connection to another communi
cation channel, and other preprocess operations that will be
apparent to those skilled in the art after a careful reading of
the present disclosure.

In operation 802, the application is notified that connec
tivity is interrupted. Embodiments of the present invention
utilize a connection monitor to monitor the status of the
connection and detects any interruption of communication
on the connection. When the connection monitor detects an
interruption in the connection, the connection monitor noti
fies the application of the interruption using the API. If the
application was transmitting data to another endpoint, the
application stops transmitting data. Also, if the application
was receiving data from another endpoint, it stops receiving
data and stores its connection state value, as described in
operation 804.
A connection state value and a request to reconnect are

received, in operation 804. The connection state value
indicates the number of data elements processed by the
application at the time the interruption occurred in the digital
connection. As mentioned previously, the data elements can
be any discrete grouping of data, Such as a byte of data, a
group of data bytes, an object, a group of objects, or any
other discrete data grouping utilized by an application.

In operation 806, connectivity is reestablished with the
opposite control layer. In particular, the two client control
layers establish a control connection that allows the control
layers to communicate with each other. The control layers
utilize the same communication stacks and communication
hardware for digital communication as utilized by the appli
cations.
Once the control connection is established, the control

layers exchange connection state values, in operation 808.
As mentioned above, connection state values are values
indicating the number of data elements processed by each
application up to the point of interruption in a digital
connection. The data elements, as previously discussed, can
be any discrete grouping of data, Such as a byte of data, a
group of data bytes, an object, a group of objects, or any
other discrete data grouping utilized by an application.

Thereafter, the opposite control layer can begin transmit
ting data elements, beginning at the received connection
state value plus one, in operation 810. Also, control is passed
back to the application layers, in operation 812, and post
process operations are performed in operation 814. Post
process operations can include, for example, transmitting
additional data elements, changing communication chan
nels, and other post process operations that will be apparent
to those skilled in the art after a careful reading of the present

10

15

25

30

35

40

45

50

55

60

65

14
disclosure. Thus, embodiments of the present invention
advantageously allow applications at both endpoints of a
connection to reestablish communication at the precise point
where the interruption occurred, regardless of the underlying
communication mechanism and protocols. In addition, the
applications only need to resend the minimal amount of data
required.

Although the foregoing invention has been described in
Some detail for purposes of clarity of understanding, it will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. Accord
ingly, the present embodiments are to be considered as
illustrative and not restrictive, and the invention is not to be
limited to the details given herein, but may be modified
within the scope and equivalents of the appended claims.
What is claimed is:
1. A method for providing fault-tolerant and adaptive

communication in a distributed computing environment,
comprising:

detecting an interruption in a digital connection on a
network between two endpoints, the digital connection
being utilized to transmit data elements of a transaction
sequentially from an opposite endpoint to an applica
tion running at one end point;

obtaining a connection state value indicating a number of
data elements processed by the application;

establishing a control connection on the network between
the two endpoints upon the interruption in the digital
connection;

exchanging the connection state value with the opposite
endpoint using the control connection on the network;

detecting a 2" communication channel, the 2" commu
nication channel providing an alternate option of com
munication between the two endpoints that is different
from a current 1 communication channel; and

receiving remaining data elements of the transaction
sequentially over the network from the opposite end
point, wherein the remaining data elements begin with
a data element at a point indicated by the connection
state value plus one.

2. A method as recited in claim 1, further comprising the
operations of

receiving an opposite connection state value indicating a
number of data elements processed using the opposite
endpoint; and

transmitting remaining data elements sequentially over
the network to the opposite endpoint, wherein the
remaining data elements begin with a data element at a
point indicated by the opposite connection state value
plus one.

3. A method as recited in claim 1, further comprising the
operation of notifying the application that an interruption
has occurred.

4. A method as recited in claim 1, further comprising the
operation of receiving a request to reconnect from the
application, wherein the application provides the connection
state value.

5. A method as recited in claim 4, further comprising the
operation of passing control back to the application after
exchanging state information with the opposite endpoint.

6. A method as recited in claim 1, wherein an endpoint is
a client application and the opposite endpoint is a server
application.

7. A method as recited in claim 1, further comprising the
operation of re-mapping a logical connection to the 2"
communication channel.

US 7,178,051 B2
15

8. A computer program embodied on a computer readable
medium for providing fault-tolerant and adaptive commu
nication in a distributed computing environment, compris
ing:

a connection monitor module that detects:
an interruption in a digital connection on a network

between two endpoints, the digital connection being
utilized to transmit data elements of a transaction
sequentially from an opposite endpoint to an appli
cation;

a 2" communication channel, the 2" communication
channel providing an alternate option of communi
cation between the two end points that is different
from a 1' communication channel;

an application programming interface that obtains a con
nection state value indicating a number of data ele
ments processed by the application; and

a reconnect protocol module that exchanges the connec
tion state value with the opposite endpoint using a
control communication over the network, wherein the
control communication is established between the two
endpoints upon detecting an interruption in the digital
connection, wherein remaining data elements of the
transaction are received sequentially over the network
from the opposite endpoint, and wherein the remaining
data elements begin with a data element at a point
indicated by the connection state value plus one.

9. A computer program as recited in claim 8, wherein the
reconnect protocol module further receives an opposite
connection state value indicating a number of data elements
processed using the opposite endpoint.

10. A computer program as recited in claim 9, wherein the
application transmits remaining data elements sequentially
over the network to the opposite endpoint, and wherein the
remaining data elements begin with a data element at a point
indicated by the opposite connection state value plus one.

11. A computer program as recited in claim 8, wherein the
application programming interface notifies the application
that an interruption has occurred.

12. A computer program as recited in claim 8, wherein the
application programming receives a request to reconnect
from the application, and wherein the application provides
the connection state value.

10

15

25

30

35

40

16
13. A computer program as recited in claim 8, wherein an

endpoint is a client application and the opposite endpoint is
a server application.

14. A computer program as recited in claim 8, wherein the
connection monitor module interrupts the digital connection
on the current 1 communication channel and re-maps a
logical connection to the 2" communication channel.

15. A distributed environment having fault-tolerant and
adaptive communication, comprising:

a server application in communication with a server
control layer,

a client application having logical connection with the
server application, the logical connection being utilized
to transmit data elements of a transaction sequentially
from the server application to the client application;
and

a client control layer establishing a control connection
with the server control layer upon detection of an
interruption in the logical connection, wherein the
client control layer exchanges a client connection state
value with the server control layer using the control
connection when the logical connection is interrupted,
the client connection state value indicating a number of
data elements processed by the client application.

16. A distributed environment as recited in claim 15,
wherein the server application transmits remaining data
elements of the transaction sequentially over the network
beginning with a data element at a point indicated by the
client connection state value plus one.

17. A distributed environment as recited in claim 16,
wherein the server control layer exchanges a server connec
tion state value with the client control layer using the control
connection upon detecting an interruption in the logical
connection, the server connection state value indicating a
number of data elements processed using the server appli
cation.

18. A distributed environment as recited in claim 17,
wherein the client application transmits remaining data
elements sequentially over the network to the server appli
cation beginning with a data element at a point indicated by
the server connection state value plus one.

? ? ? ? ?

