PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/30323
HO04L 29/06 A2 .

(43) International Publication Date: 25 May 2000 (25.05.00)

(21) International Application Number: PCT/US99/27113 | (81) Designated States: AU, CA, CN, JP, KR, SG, ZA, European

(22) International Filing Date: 15 November 1999 (15.11.99)

(30) Priority Data:
60/108,602 16 November 1998 (16.11.98) US
09/310,294 12 May 1999 (12.05.99) Us
09/311,923 12 May 1999 (12.05.99) Us
09/310,229 12 May 1999 (12.05.99) UsS
09/439,906 12 November 1999 (12.11.99) US

(71) Applicant: INTO NETWORKS, INC. [US/US]; 150 Cam-
bridge Park Drive, Cambridge, MA 02140 (US).

(72) Inventors: SCHMEIDER, Yonah; 295 Harvard Street, Cam-
bridge, MA 02139 (US). ATKINS, Derek; 6 Farrgut Av-
enue, Somerville, MA 02144 (US). EICHIN, Mark, W.;
411A Highland Avenue, #331, Somerville, MA 02144 (US).
ROSTCHECK, David, J.; 9 Brookdale Road, Arlington, MA
02474 (US).

(74) Agent: JOBSE, Bruce, D.; Kudirka & Jobse, LLP, Two Center
Plaza, Boston, MA 02108 (US).

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: METHODS AND APPARATUS FOR SECURE CONTENT DELIVERY OVER BROADBAND ACCESS NETWORKS

?4— 198 142 147 162
197
CONTROLLER 00 144 Vi 8 151
/- 120 r [i/.—
EORY [msxsfre DRIVE Lco ROM DRIVE t\mo DISK nmvﬂ
140 145 150
DISK
12 CONTROLLER {| CONTROWER | | controLLER
8us
| ! Lo
A
[. 438 BUS /
105—\ I J
INTERRUPT -
CONTROLLER OMA VIDEO
CONTROLLER || CONTROLLER INTERFACE
3
N 185 191 ——-—-—j Lse0
°':" 170
105/
157
195

(57) Abstract

A system for secure delivery of on—-demand content over broadband access networks utilizes a pair of servers and security mechanisms
to prevent client processes from accessing and executing content without authorization. A plurality of encrypted titles are stored on a content
server coupled to the network. An access server also coupled to the network contains the network addresses of the titles and various keying
and authorization data necessary to decrypt and execute a title. A client application executing on a user’s local computer system is required
to retrieve the address, keying and authorization data from the access server before retrieving a title from the content server and enabling

execution of the title on a user’s local computer system.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
M

CuU
(o7
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

St
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

5

10

15

20

25

30

WO 00/30323 PCT/US99/27113

METHOD AND APPARATUS FOR SECURE CONTENT DELIVERY
OVER BROADBAND ACCESS NETWORKS

RELATED APPLICATIONS

This application claims priority to U.S. provisional patent application Serial
Number 60/108,602 entitled, METHOD AND APPARATUS FOR SECURE
CONTENT DELIVERY OVER BROADBAND ACCESS NETWORKS, filed November
16, 1998 by Yonah Schmeidler, et al.

In addition, this application claims priority to three commonly-owned U.S.
patent applications, filed by the same inventors, Yonah Schmeidler, et al., including:

Serial No. 09/310,294, Attorney Docket No. A0028/7000, by Yonah
Schmeidler, et al., entitled “METHOD AND APPARATUS FOR SECURE CONTENT
DELIVERY OVER BROADBAND ACCESS NETWORKS” , filed on May 12, 1999;

Serial No. 09/311,923, Attorney Docket No. A0028/7001, by Yonah
Schmeidler, et al., entitled “METHOD AND APPARATUS FOR INSTALLATION
ABSTRACTION IN A SECURE CONTENT DELIVERY SYSTEM”, filed on May 12,
1999;

Serial No. 09/310,299, Attorney Docket No. A0028/7002, by Yonah
Schmeidler, et al., entitled “METHOD AND APPARATUS FOR CONTENT
PROTECTION IN A SECURE CONTENT DELIVERY” , filed on May 12 , 1999: and

Serial No. 09/439,906, Attorney Docket No. A0028/7003, by Yonah
Schmeidler, et al., entitled “METHOD AND APPARATUS FOR ON-DEMAND
DISTRIBUTION OF CONTENT OVER BROADBAND ACCESS NETWORKS” | filed
on November 12, 1999.

The subject matters of the above-identified copending patent applications are
incorporated herein by this reference.

FIELD OF THE INVENTION
This invention relates generally to a method and system for distribution
of data across networks, and, more specifically to a system for delivering executable
software content over broadband access networks in a secure manner that enables
on-demand subscription.

‘SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/30323 PCT/US99/27113

BACKGROUND OF THE INVENTION

The on-demand delivery of software applications and multimedia data types
such as audio, video, animation, etc. has not been practical until recently primarily
due to the rates at which data is transmitted across communication networks. The
rate at which data, formatted into a series of bits, is transmitted is referred to as a bit
per second (bps). Early modems were capable of transmitting information at a rate
of approximately 300 bits per second. Thereafter, the speeds at which modems
were capable of transmitting and receiving data increased. With such increases in
modem speed, the nature of network topologies as well as the types of data
transmitted across networks began to evolve. With modem speeds of 9600 bps and
1200 bps computer networks such as the Internet were primarily an ASCII text
environment with specific protocols and text messaging. Subsequent increases in
modem speed enabled more complex information to be accessed over the Internet
and other computer networks. While ASCI! text paradigm still exist on the World
Wide Web portion of the Internet today, the more recent increased bandwidth
environment has enabled communication of more complex content and multimedia
data types.

More recently, high performance broadband technology and cable modems,
with connectivity speeds in excess of 1million bps, are being deployed and offered
by cable, telephone, cellular and satellite enterprises worldwide. Current broadband
access networks include the cable industry’s shared medium Hybrid Fiber Coax
(HFC) networks and the telephone industry's digital subscriber lines (xDSL).

With the advent of broadband technology and broadband access networks,
complex multimedia data types and software titles, previously only available on
Compact Disc Read Only Memory (CD-ROM) and Digital Versatile Disc (DVD),
hereafter referred to as “title(s),” are now capable of being remotely accessed by
subscribers to broadband access network services.

There are, however, factors other than data rates that also have made on-
demand delivery of titles impractical. One such obstacle preventing on-demand
delivery of content including software and multimedia titles to date has been the

requirement to have the title loaded onto the subscriber’s local computer system in

10

15

20

25

30

WO 00/30323 PCT/US99/27113

order to execute the title. Further, the widespread copying or “pirating” of title
content, and the associated security risks associated with distribution of fully enabled
copies of titles, has made on-demand distribution unattractive to software publishers
and content libraries.

Accordingly, a need exists for a method and system for on-demand delivery of
executable software content, which does not require installation of the ‘content on the
subscriber’s local computer system.

An additional need exists for a method and system to deliver content to
subscriber’s in an on-demand basis which provides security to protect the value of
the content and which prevents unauthorized use and copying thereof.

An additional need exists for a method and system in which content may be
delivered across broadband access network in a manner which meets the latency

requirements of the content being executed.

SUMMARY OF THE INVENTION

The Secure Content Delivery Platform (SCDP) of the present invention
delivers high-bandwidth executable content, on-demand, over broadband access
networks. Using the SCDP platform, broadband subscribers, e.g. subscribers to
cable modem and xDSL services, have access to titles across the broadband
networks.

Users select a title to run from a virtual storefront, for example on the World
Wide Web, which contains a virtual catalog of available titles. Upon selection of the
title, the user negotiates for an actual purchase of the title. Negotiation includes user
registration with a third party electronic commerce system (eCommerce), provision of
user billing information, and selection of one of the purchase types offered with the
selected title. Examples of possible purchase types may include 1) a time-limited
demo of the title, 2) a single payment for a single use” of a title, 3) a single payment
which allows unlimited “uses” of a title over some specified time period e.g., week,
month, etc.

Upon completion of the purchase negotiation, SCDP client software running
on the user’'s PC obtains an authorization token and keying material from a

Conditional Access Server (CAS). The token authorizes the client process to run the

10

15

20

25

30

WO 00/30323 PCT/US99/27113

selected title from a network file server accessible across the broadband network.
The data retrieved from the file server is encrypted. The SCDP client process uses
the keying material provided by the conditional access server to decrypt the data
from the file server. With the present invention, titles run on the user’'s PC, but the
title is not downloaded, in its entirety, onto the PC. A title is formatted into an
electronic package that contains the title’s files in a compressed and encrypted form,
referred to hereafter as a briq. The briq is actually a portable, self-contained file
system, containing all of the files necessary to run a particular title. Brigs are stored
on a network file server, referred to hereafter as a RAFT server, accessible across a
broadband network. The SCDP client treats the briq like a local file system on the
user's PC. When running a title, the operating system, e.g. Windows, makes read
requests to this local file system. The SCDP client, which, in the illustrative
embodiment, includes a Windows Virtual Device Driver (VxD), services these
requests by retrieving the requested blocks of briq data from the RAFT server. After
retrieving the requested block of data, the VxD decompresses and decrypts the briqg
data, and passes the data onto the operating system on the user's PC.

In accordance with one aspect of the present invention, the software title is
never “installed” on the target system. The SCDP client software creates an
installation abstraction, maintaining the illusion for the operating system that the title
currently executing is installed on the host PC. Thus, when execution of the title is
terminated, there is no remaining evidence the title ran on the system. No files
associated with the title are left on the PC’s hard-drive, and no operating system
state information e.g., registry variables associated with the title, remains. Users of
titles have the option of saving certain state information that would be desirable to
maintain across plays; e.g., the “level” achieved in a game, etc. Such state
information may be saved in write-through file described hereinafter.

In accordance with another aspect of the present invention, the SCDP client
software uses an inventive proprietary Random Access File Transport (RAFT)
protocol to retrieve briq data across broadband network. The protocol provides
SCDP clients with read-only access to files and directories stored on RAFT servers.
Because the briq is treated like a local file system, the RAFT client does not need to

be visible as an operating system drive and does not need to interface with the

10

15

20

25

30

WO 00/30323 PCT/US99/27113

operating system’s file system manager, the Windows Installable File System (IFS)
Manager in the illustrative embodiment. As a result, the RAFT client file system
driver, a VxD in the illustrative embodiment, is smaller and simpler than a remote or
network file system driver. In addition, the RAFT protocol supports dynamic
bandwidth restrictions ,e.g.; “bandwidth throttling”, and access control through the
use of RAFT authorization tokens.

In accordance with another aspect of the present invention, the SCDP
employs a variety of security mechanisms to protect content from unauthorized
access and replay. Authorization tokens and decryption keys are obtained from a
conditional access server. Network communication between an SCDP client and
CAS is protected via a secure remote procedure call (RPC) interface. Once a
secure channel is established between SCDP client and CAS, the SCDP client
requests a RAFT authorization token and keying material for the selected title. The
authorization token is a signed message from the CAS indicating that the requesting
user can have access to a specified brig, on a specific RAFT file server, for the
length of time spelled out in the negotiated payment type.

While the RAFT authorization token gives an SCDP client access to a title's
brig, the SCDP client must still unpack, e.g. decompress and decrypt, the briq to gain
access to the title’s file data. The CAS provides the user with the keying material
necessary to decrypt briq data, however, the CAS does not directly provide the
SCDP client with keying material. Instead, the CAS hides keying material from the
user by embedding the keys in obfuscated bytecode that implements the decryption
algorithm. Rather than delivering isolated keying material to the SCDP client, the
CAS delivers obfuscated bytecode, referred to hereafter as an activator. The SCDP
client’s virtual device driver decrypts briq data by running the activator on a
bytecode interpreter. Code obfuscation makes the activator difficult to reverse
engineer, requiring a hacker to spend significant time and resources to extract the
keying material from the activator, at a cost typically greater than the value of the
content being protected. With the contemplated invention, activators are unique per
client, per briq, per execution, i.e., each activator obtained from the CAS is different
and usable for one time only thereby preventing the leveraging of a single, costly

reverse engineering effort out to multiple users.

10

15

20

25

30

WO 00/30323 » PCT/US99/27113

In accordance with the present invention, both the RAFT authentication
tokens and activators have a limited lifetime. Authorization tokens include an
expiration time, after which they are no longer valid. A running activator, at a certain
point, initiates an exchange with the CAS to refresh itself. If the exchange is
unsuccessful, the activator »becomes inoperable and the title inoperable. The
refreshing of activators is referred to hereinafter as activator keepalives. The
keepalive mechanism results in the delivery of an update to the currently running
activator, which may include new keys, data, or even code. Authorization token
refresh accompanies activator refresh. A new authorization token, along with the
decryption keying data, is embedded within the new activator. At startup, the
refreshed activator delivers a new RAFT authentication token to the RAFT VxD
within the SCDP client.

SCDP system is media independent and will operate across any broadband
networking technology, including HFC networks and the telephone industry’s digital
subscriber lines, provided sufficient bandwidth exists between the user and network
file servers to satisfy the latency requirements of the currently executing CD title.
The SCDP system may also be implemented using 10 Mbps and 100Mbps Ethernet
Local Area Networks, for example within enterprise networks to deliver executable

content over intranets as well.

According to a first embodiment of the invention, a method for securely
delivering content over a network comprises the steps of: (a) storing at least one title
on a content server operatively coupled to the network, the title stored in
unexecutable form; (b) storing on an access server operatively coupled to the
network a location identifier of the title and data necessary to process the titie into
executable form; (c) requiring a client process operatively coupled to the network to
obtain the location identifier of the title from the access server prior to retrieving at
least a portion of the title from the content server; and (d) requiring a client process
to obtain from the access server the data necessary to process the portion of the title
into executable form.

According to a second embodiment of the invention, an apparatus for secure
delivery of over a network comprises: (a) a content server operatively coupled to the

network and having at least one title stored therein unexecutable form; (b) an access

6

10

15

20

25

30

WO 00/30323 PCT/US99/27113

server operatively coupled to the network and having stored therein a location
identifier of the title and data necessary to process the title into executable form: and
(c) a client system operatively coupled to the network and containing program logic
configured to obtain from the access server the location identifier of the title and the
data necessary to process fhe portion of the title into executable form.

According to a third embodiment of the invention, an apparatus for secure
delivery of title content over a network comprises: (A) a content server system
connectable to the network, the content server system comprising: (A.1)
authentication logic, responsive to a token received from a client process, the token
containing data identifying a time period and configured to determine whether the
client process is authorized to access a title at a specific time, and (A.2) access
logic, responsive to the token received from the client process, the token containing
data uniquely identifying one of the titles stored in the memory, for enabling access
to the memory and the title uniquely identified by the token; (B) an access server
system connectable to the network, the access server system comprising: (B.1)
conversion logic, responsive to a unique identifier of a title supplied by a client
process and configured to convert the unique identifier of the title into a location
identifier indicating an address on the network where the title may be accessed, and
(B.2) activator generation logic responsive to a request from a client process and
configured to generate an activator in response thereto; and (C) a client system
connectable to the network, the client system comprising: (C.1) program logic
configured to obtain from the access server a token, an activator and a location
identifier of the content server at which an identified title can be accessed, (C.2)

program logic configured to retrieve at least a portion of the title from the
content server, and (C.3) program logic configured to execute the portion of the title
retrieved from the content server.

According to a fourth embodiment of the invention, a method for executing an
application on a local computer system without the application being installed on the
local computer system, the method comprises: (a) accessing a network mountable
file system and set of registry entries related to the application; (b) mounting the
network file system; (c) storing the registry ei:tries on the local computer system; (c)

retrieving at least a portion of the application from a remote source; (d) executing the

10

15

20

25

30

WO 00/30323 PCT/US99/27113

application under the control of an operating system on the local computer system;
(e) intercepting requests from the operating system; and (f) redirecting selected of
the intercepted requests to the registry entries stored on the local computer system.

According to a fifth embodiment of the invention, an apparatus for executing
an application without installing the application on the computer system comprises:
program logic configured to mount a network file system and store in the memory a
plurality of registry entries related to the application; program logic configured to
execute at least a portion of the application retrieved from a remote source; and
program logic, responsive to requests from the operating system, and configured to
intercept requests from the operating system and redirect selected of the intercepted
requests to the set of registry entries.

According to a sixth embodiment of the invention, a method for enabling on-
demand delivery of a title comprises: (a) obtaining from the access server a token,
an activator and a network address of a source at which an identified title can be
accessed; (b) transmitting the token to the source, the token data defining an
interval of time in which the source may be accessed,; (c) retrieving at least a portion
of the title from the source; (d) executing the portion of the title received from the
source; and (e) obtaining from the access server a refreshed token.

According to a seventh embodiment of the invention, a method for enabling
requesting processes to access a title comprises: (a) authenticating a launch string
from a requesting process; (b) converting a unique identifier of a title received from a
requesting process to a location identifier indicating an address on the computer
network where the title may be accessed; (c) generating an activator; and (d)
forwarding the activator to the requesting process over the computer network.

According to a eighth embodiment of the invention, in a server apparatus
comprising a processor, memory and a network interface, the server apparatus
connectable to one or more client processes a computer network, a method
comprises: (a) receiving a token from a client process through the network interface,
the token containing data identifying a time period and data uniquely identifying a
title; (b) determining whether the client process is authorized to access the title at a

specific time; (c) if the client is authorized in step (b), accessing the memory and a

10

15

20

25

30

WO 00/30323 PCT/US99/27113

title uniquely identified by the token; and (d) supplying to the client at least a portion
of the title identified by the token.

According to a ninth embodiment of the invention, a the method for selectively
enabling delivery of a title over a computer network to one or more requestor
processes comprises: (a) providing, under predetermined conditions, a requestor
process with access to selected portions of a title, the title being stored at an
address on the computer network in unexecutable form; (b) providing the requestor
process with data useful in processing the title from unexecutable form to executable
form; and (c) allowing execution of selected portions of the title on the computer
system while preventing the title from being installed on the computer.

According to a tenth embodiment of the invention, a method for delivering
titles over a computer network to one or more requestor processes comprises: (a)
receiving from a requestor process data identifying a title; (b) providing the requestor
process with data identifying a location on the computer network where the title
executables may be accessed and authorization data necessary to access the title;
and (c) receiving payment information from the requestor process.

According to an eleventh embodiment of the invention, computer program
product for use with a computer system operatively coupled over a computer
network to one or more requestor processes, the computer program product
comprising a computer usable medium having program code stored thereon
comprising: (a) program code configured to receive from a requestor process
coupled to the network data identifying a selected title; (b) program code configured
to receive payment information from the requestor process; (c) program code
configured to enable the requestor process to access selected portions of the title for
downloading; and (d) program code configured to allow execution of the title on a

computer system while preventing installation of the title thereon.

BRIEF DESCRIPTION OF THE DRAWINGS
The above and other features, objects and advantages of the invention will be
better understood by referring to the following detailed description in conjunction with

the accompanying drawing in which:

10

15

20

25

30

WO 00/30323 PCT/US99/27113

Figure 1 is a block diagram of a computer system suitable for use with the
present invention; 7

Figure 2A is a conceptual block diagram of a broadband network in which the
secure content delivery system of the present invention may be implemented;

Figure 2B is a conceptual block diagram illustrating the elements of the
inventive system and the interaction with other network elements in accordance with
the present invention;

Figure 3A is a conceptual block diagram of the SCDP client in accordance
with the present invention;

Figure 3B is a conceptual block diagram of the launcher module of the SCDP
client of Figure 3A,

Figure 3C is a conceptual block diagram of the ARFS VxD module of the
SCDP client of Figure 3A;

Figure 3D is a conceptual block diagram of the RAFT VxD module of the
SCDP client of Figure 3D;
Figures 4A-B collectively form a flowchart illustrating the process of
subscribing to content and launching a title in accordance with the present invention;
Figures 5A-C collectively form a flow chart illustrating the process steps
performed by the SCDP client in accordance with the present invention;

Figures 6 is a flowchart illustrating the process executed by the SCDP client
components in accordance with the present invention;

Figure 7A is a conceptual diagram of CAS server of Fig. 2 in accordance with
the present invention;

Figure 7B is a flowchart illustrating the process executed by the CAS server in
accordance with the present invention;

Figure 8 is a conceptual diagram of RAFT token in accordance with the
present invention;

Figure 9 is a conceptual diagram of Launch String in accordance with the
present invention;

Figure 10 is a conceptual diagram of the RAFT server of Fig. 2 in accordance

with the present invention;

10

10

15

20

25

30

WO 00/30323 PCT/US99/27113

Figure 11 is a conceptual diagram of a RAFT packet header in accordance
with the present invention;

Figure 12 is a conceptual diagram of a briq data package in accordance with
the present invention;

Figure 13 is a conceptual block diagram of an activator in accordance with the
present invention; and

Figure 14 is a conceptual block diagram of an eCommerce service in

accordance with the present invention.

DETAILED DESCRIPTION

Figure 1 illustrates the system architecture for a computer system 100 such
as a Sun SparcStation 5 workstation, commercially available from Sun Microsystems
of Palo Alto, CA, or an IBM RS/6000 workstaion or IBM Aptiva PC, both
commercially available from International Business Machines Corp. of Armonk, NY,
on which the invention may be implemented. The exemplary computer system of
Figure 1 is for descriptive purposes only. Although the description may refer to
terms commonly used in describing particular computer systems, the description and
concepts equally apply to other systems, including systems having architectures
dissimilar to Figure 1.

Computer system 100 includes a central processing unit (CPU) 105, which
may be implemented with a conventional microprocessor, a random access memory
(RAM) 110 for temporary storage of information, and a read only memory (ROM) 115
for permanent storage of information. A memory controller 120 is provided for
controlling RAM 110.

A bus 130 interconnects the components of computer system 100. A bus
controller 125 is provided for controlling bus 130. An interrupt controller 135 is used
for receiving and processing various interrupt signals from the system components.

Mass storage may be provided by diskette 142, CD ROM 147, or hard drive
152. Data and software may be exchanged with computer system 100 via
removable media such as diskette 142 and CD ROM 147. Diskette 142 is insertable
into diskette drive 141 which is, in turn, connected to bus 30 by a controller 140.
Similarly, CD ROM 147 is insertable into CD ROM drive 146 which is, in turn,

11

10

15

20

25

30

WO 00/30323 PCT/US99/27113

connected to bus 130 by controller 145. Hard disk 152 is part of a fixed disk drive
151 which is connected to bus 130 by controller 150.

User input to computer system 100 may be provided by a number of devices.
For example, a keyboard 156 and mouse 157 are connected to bus 130 by controller
155. An audio transducer 196, which may act as both a microphone and a speaker,
is connected to bus 130 by audio controller 197, as illustrated. It will be obvious to
those reasonably skilled in the art that other input devices, such as a pen and/or
tabloid may be connected to bus 130 and an appropriate controlier and software, as
required. DMA controller 160 is provided for performing direct memory access to
RAM 110. A visual display is generated by video controller 165 which controls video
display 170. Computer system 100 also includes a communications adapter 190
which allows the system to be interconnected to a local area network (LAN) or a
wide area network (WAN), schematically illustrated by bus 191 and network 195.

Operation of computer system 100 is generally controlied and coordinated by
operating system software, such Windows 95 or Windows NT®, commercially
available from Microsoft Corp., Redmond, WA. The operating system controls
allocation of system resources and performs tasks such as processing scheduling,
memory management, networking, and |/O services, among things. In particular, an
operating system resident in system memory and running on CPU 105 coordinates
the operation of the other elements of computer system 100. The present invention
may be implemented with any number of commercially available operating systems
including OS/2®, UNIX®, Linux and Solaris®, among others. One or more browsers
applications such as Netscape Navigator, version 2.0 and thereafter commercially
available from Netscape Communications Corporation. and Internet Explorer,
version 1.0 and thereafter, commercially available from Microsoft Corporation,

Redmond, Washington, may execute under the control of the operating system .

SCDP System Overview

Figure 2A illustrates conceptually the main components of a Secure Content
Delivery Platform (SCDP) system 200 in accordance with the present invention, as
well as other elements in a broadband network environment, such environment

being for exemplary purposes only and not to be considered limiting. The elements

12

10

15

20

25

30

WO 00/30323 PCT/US99/27113

illustrated in Fig. 2A are to facilitate and understanding of the invention. Not every
element illustrated in Fig. 2A or described herein is necessary for the implementation
or operation of the invention. As illustrated in Fig. 2A, SCDP system 200 comprises
a Conditional Access Server (CAS) 210, an associated CAS database 212, a
Random Access File Transfer Server (RAFT) 206, a RAFT database 208 and SCDP
client 216. ‘

In addition to CAS Server 210, RAFT Server 206 and SCDP Client 216, the
present invention contemplates use of a virtual store front 215 and eCommerce
Server 202. eCommerce server 202 has an accompanying billing database 204.
Store front 215 has an accompanying database 213. In the illustrative embodiment,
servers 202, 210 and 215 are connected over a private, secure local area network
(LAN), such as a local ethernet network. The LAN is, in turn, is connected to a
global computer network topology, illustrated as Internet cloud 240 in Fig. 2A, by an
Internet service provider (ISP) 230. Any number of commercially available internet
access service providers such as MCl WorldCom, AT&T, America OnLine, etc. may
be used as ISP 230. In the illustrative embodiment, although servers 202, 210 and
215 are illustrated as being connected through a private local area network, it will be
obvious to those skilled in the arts that such servers may be operatively coupled over
other non-private networks, such as the Internet. In addition, eCommerce server
202 may be coupled to a credit processing server of a financial or banking institution
(not shown) to assist in processing of credit card and/or other types of transactions.

Referring again to Fig. 2A, one or more client PCs having an architecture
similar to that of Fig. 1, are connected to the SCDP system 200 over a broadband
access network 203 and cable provider 207. In the illustrative embodiment, a cable
modem (CM) connects to the host PC on which the SCDP client is executing. In turn,
a plurality of cable modems are coupled to a cable node via a high frequency
connection. Typically, as many as 1,000 host PCs may be connected to a cable
node through appropriate cable modems and high frequency connections. Each
cable node is, in turn, connected through a cable modem termination system
(CMTS). A plurality of cable modem termination systems are coupled to a
termination headend. A plurality of interconnected headends comprise the backbone

of the broadband access network. The cable headends are typically located at the

13

10

15

20

25

30

WO 00/30323 PCT/US99/27113

cable company facilities and may include a host data terminal connected to an
Internet Protocol (IP) network through a T1 line or other connection. The T1 line,
may be, in turn, connected to the Internet through an Internet Service Provider (ISP)
230. RAFT server 206 and its accompanying database 208 are coupled to the
broadband access network‘203 between the Internet Service Provider 230 and the
host data termination facility or head end provided by the cable company. In this
manner, the RAFT Server 206, although part of the SCDP System 200, is located
remotely from the CAS 210, eCommerce Server 202, and virtual store front 215.
The cable modem termination system 209 converts high frequency data from a cable
infrastructure into Internet Protocol format using the published Data Over Cable
Service Industry Standard (DOCSIS).

Alternatively, a client PC may be connected to SCDP system 200 via a digital
subscriber line (DSL) service, as illustrated in Fig. 2A. In this configuration, a host
computer on which the SCDP client is executing is coupled to a telephone company
switch via a DSL modem and existing public switch telephone network infrastructure.

The construction of DSL subscriber networks and broadband access networks
are known in the art and are currently used by cable companies and telephone
companies extensively and will not be described in further detail here for the sake of
brevity. Accordingly, not every element of the above described systems is illustrated
in Fig. 2A.

SUBSCRIPTION PROCESS

Figure 2B illustrates conceptually the interaction of the components within the
SCDP system 200. The flowchart of Figs. 4A-B in conjunction with the conceptual
block diagram of Fig. 2B illustrates the procedural steps performed by the SCDP
system 200 during the subscription and launch processes in accordance with the
present invention.

A user equipped with the SCDP client 216 executing on a PC and an HTML
browser e.g., Netscape Navigator or Microsoft Internet Explorer, selects a title from
the virtual storefront 215, as illustrated by step 401. On the storefront 215, each
available title is posted as a digital offer embedded within a Universal Resource
Locator (URL). The digital offer contains information identifying the selected title and

purchase type. Selecting the digital offer directs the subscribers browser to the

14

10

15

20

25

30

WO 00/30323 PCT/US99/27113

HTTP front-end 202A of the eCommerce server 202, as illustrated by step 402. The
user negotiates with the eCommerce server 202 for a purchase based on the
information in the digital offer URL, as illustrated by step 403. The negotiation may
typically involve user registration and the provision of credit information.

The eCommerce server generates a faunch string, containing the information
identifying and authorizing the purchase, including a Universal Resource Name
(URN) uniquely identifying the desired content, as illustrated by step 404A. The
format and description of the URN and launch string are described hereinafter. The
launch string is digitally signed by the CAS 210 and provided to the eCommerce
service 202 for delivery to the SCDP client 216, as illustrated by step 404B.

The launch string is wrapped with a MIME (Multipurpose Internet Malil
Extension) header. When the launch string is received by the SCDP client’s browser
224, the MIME type associated with the launch string is located in a registry entry,
which results in the invocation of the launcher module 220 within the SCDP client
216, as illustrated by step 405. The Launcher 220 establishes a secure RPC
connection with the CAS 210 and requests that CAS provide a URL for the specified
URN, i.e. a URN to URL conversion, as illustrated by step 406A. The URL identifies
the location of the corresponding briq data. The CAS 210 forwards the
corresponding URL to the Launcher 220. Once the Launcher has identified the
location of the corresponding briq data, the Launcher sends a purchase request to
the CAS, the purchase request including the Launch string, as illustrated by step
4068B.

The CAS verifies the launch string’s signature, and then returns a RAFT
authorization token and activator to the Launcher, as illustrated by step 407. The
activator and authorization token are described hereafter in greater detail. The
authorization token may be actually embedded within the activator. Next, the
Launcher launches the title by passing the activator to the ARFSD VxD 218, as
illustrated by step 408. The ARFSD VxD runs the activator which passes the RAFT
authorization token to the RAFT VxD 222. The RAFT VxD opens the URL and reads
the header, as illustrated by step 409. The RAFT VxD sends the initial authorization
token to the RAFT Server, as illustrated by step 410. The RAFT VxD 222 starts

reading content from RAFT server 206, passing the received content back to the

15

10

15

20

25

30

WO 00/30323 PCT/US99/27113

ARFSD VxD 218, as illustrated by step 411. The ARFSD VxD uses the activator to
decrypt and decompress the content in the form of briq data, and perform integrity
checking on the blocks of decrypted data, as illustrated by step 412.

Thereafter, the operating system executes the title, via the local filesystem
presented by ARFSD VxD, as illustrated by step 413. Periodically, the activator
requests the launcher 220 to ask the CAS 210 to refresh the activator and the RAFT
authorization token. Upon the first of such requests, the CAS posts the purchase to
the eCommerce server 202 for transaction settlement, as illustrated by step 414.
The lifetime of the first activator may be on the order of minutes. Successful
activator refresh after the first timeout serves as an indication that the title is running
successfully.

Having provided an overview of the system components and their interaction,
a more detailed description of the inventive secure content delivery system 200 and
the processes performed thereby are set forth with reference to Figs. 3A-14 and their

accompanying explanations.

SCDP Client

Referring to Fig. 3A, a conceptual block diagram of the SCDP client 216 in
accordance with the present invention is illustrated. The SCDP client 216 allows
users to run brig-encoded titles on a host PC. As illustrated in Fig. 3A, the SCDP
client comprises Launcher 220, Arepa File System Driver VxD (ARFSD VxD) 218,
and RAFT Client VxD 222. The SCDP client 216 may be implemented as an
application executable on operating system 219, e.g., a Windows (R) application in
the illustration embodiment. Operating system 219 is executable on top of a PC
architecture, such as an IBM PC or other computer architecture, as described with
reference to Fig. 1. In addition to SCDP client 216, a browser 217, typically an
HTML browser such as NetScape Navigator or Microsoft Explorer, may also be
running under the control of operating system 219. Launcher 220, ARFSD VxD218
and RAFT VxD 222 are described in greater detail with reference to Figs. 3B-D,
respectively.

Figure 3B illustrates conceptually a block diagram of the program logic

modules comprising Launcher 220 of SCDP client 216. Specifically, Launcher 220

16

10

15

20

25

30

WO 00/30323 ‘ PCT/US99/27113

comprises a control module 300, a CAS RPC library 302, a ARFSD VxD
communication library 304 and a user interface 306. In the illustrative embodiment,
the Launcher 220 may be implemented as a Windows application containing logic
which coordinates all communication between the SCDP client and the CAS 204.
The Launcher 220 is invoked by the client’'s web browser 217, upon completion of
purchase negotiation with the eCommerce system 202. The eCommerce system
delivers the client web browser a launch string with MIME type associated with the
Launcher. In addition, the Launcher manages all communications with the CAS,
including 1) obtaining from the CAS the address of the RAFT server and the brig
path name corresponding to the selected title; 2) obtaining from the CAS a RAFT
authorization token and activator necessary to retrieve briq data from the RAFT
server and to decrypt the retrieved data; and 3) asking the CAS to refresh the RAFT
authorization token and the activator.

To facilitate communication between the CAS server 206 and the ARFSD
VxD module 218, Launcher 220 includes CAS RPC Library 302, which may be
implemented as a series of objects or program code which generate and receive
communications to/from the CAS server 206 through a remote procedure call (RPC)
library. One such RPC library suitable for use as module 302 is the NobleNet
Secure RPC Product commercially available from Noblenet, Inc. Optionally, a
network transport product, such as those adhering to the Secure Socket Library
(SSL) standard published by Netscape Communications Corporation, may be used
to transport the RPC calls across the network and thereby further enhance the
security of transmissions to/from the SCDP client in the inventive system. A
communication library is also utilized for communications between the launcher
module 220 and the ARFSD VxD module 218 and between ARFSD VxD module 218
and RAFT VxD 222. Such library again includes code or objects necessary to
communicate data between the Launcher 220 and the VxD 218. For example, as
described in greater detail hereinafter, selected information from the briq header
1202 of brig 1200, as illustrated in Fig. 12, is read by the control module 300 and
supplied to VxD 218 through the communication library 304, during execution of a
title.

17

10

15

20

25

30

WO 00/30323 ‘ PCT/US99/27113

Upon invocation of launcher 220, a graphic user interface (GUI) is presented
to a user through user interface 306. In the illustrative embodiment, user interface
306 includes the appropriate program logic and/or objects necessary to interface
with the operating system interface and application program interfaces (APIs)
contained within the Windows operating system in order to render windows, present
graphic information within such windows, and receive commands from a user via a
keyboard, mouse or other pointing device, such user interface being well within the
scope of those reasonably skilled in the art. Through this GUI, the user may set user
preferences, e.g., disk cache size, and be notified of error conditions.

Control module 300 may be implemented with the appropriate code or objects
to carry out the algorithm necessary to launch a title and continue communications
between the SCDP client 200 and the CAS 210 and the RAFT server 206. More
specifically, the algorithms executed by control module 300 are illustrated in greater
detail in Figs. 4A-6 and their accompanying descriptions.

Figure 3C is a conceptual block diagram of the ARFSD VxD 304 of Fig. 3B.
VxD 304 comprises a byte code interpreter 308, a control module 310 and a ARFSD
VxD communication library 312. The ARFSD VxD 304 is a virtual device driver
enables the operating system to read the briq data as a local file system. ARFSD
VxD 304 decompresses and decrypts brig data. In addition, ARFSD VxD maintains
the installation abstraction, e.g., supplying Windows registry information. The
ARFSD VxD implements dynamic registry entries by intercepting all operating
system registry access calls and then simulating registry entries that are associated
with the running title, but not saved on disk.

Activators and the Bytecode Interpreter

As described previously, the activator 228 executes on the bytecode
interpreter 308 embodied in the ARFSD VxD 304. The activator represents a portion
of the SCDP client software which is obtained from the CAS 210, and, which the
ARFSD VxD 304 employs to decrypt brig data. The form and content of the activator
as described in greater detail with reference to Fig. 13. Activators implement a
keepalive mechanism that requires the activators to periodically ask the CAS 210 for

replacement activators. Thus, communication with the CAS must be maintained in

18

10

15

20

25

30

WO 00/30323 PCT/US99/27113

order continue running of a title. in the illustrative embodiment, the keepalive
mechanism within activator 228 may be implemented as a numeric string or as
otherwise described with reference to Fig. 13.

The activator is implemented as a dynamic bytecode object that can be run
within the ARFSD VxD 304. The CAS generates activators through calling the
activator generation routines which may be resident in an external library, as
previously described with reference to Activator Factory module 710 of Fig. 7. The
RAFT token, discussed above, is packaged with the activator. The activator
eventually will time out, after which the SCDP client 216 must call the CAS and
request a new activator. The life of the activator is determined by the start time and
end time data values contained within the token portion of the activator.

The SCDP system 200 uses activators to protect the release of cryptographic
material to the SCDP client 216. An activator may be implemented as a piece of
obfuscated bytecode that is run inside the ARFS VxD 304 and enables decryption of
a brig. Once the activator is downloaded, it may make further RPCs to the CAS 210
to finalize the delivery of the keying material. Code obfuscation within the activator
may protect against extracting the keys.

The illustrative implementation of activators also utilizes remote execution to
protect keys in the activator. Remote execution makes the activator incomplete, i.e.
gives the activator enough information to continue operation for a limited period of
time and then requires the activator to request further code or data. The bytecode
interpreter 308 within the ARFSD VxD 304 comprises program logic, code or objects
which extract the cryptographic key data from the activator. In the illustrative
embodiment, the activator may have the format and content as described with
reference to Fig.13.

In alternative embodiments, which utilize more sophisticated activator
implementations in which the activator contains obfuscated bytecodes, the bytecode
interpreter 308 within the ARFSD VxD 304 may be implemented with a rich
instruction set, to increase the opportunities for simple obfuscation. Note that there
are no traditional limits of hardware implemented microprocessor instruction sets,
and thus many bits for addressing modes and instruction formats can be used. The

complexity and secrecy of such instruction set allows secure delivery content within

19

10

15

20

25

30

WO 00/30323 PCT/US99/27113

the SCDP system. Since the bytecode runs inside a VxD, the bytecode interpreter
308 may call exported interfaces from other VxDs but does not need to call WIN32
functions from the operating system or handle DLLs.

Byte code interpreter 308, in the illustrative embodiment, is implemented as a
virtual machine having the appropriate code and/or program logic necessary to
interpret and execute the byte codes contained within an activator received from the
CAS 210. Such a virtual machine includes the appropriate routes to interpret the
byte code(s), store any temporary data from the byte code stream, and execute the
processes identified by the byte code(s). The specific implementation of byte code
interpreter 308, therefore, depends on the byte code set executable by the
interpreter. For example, byte code interpreter 308 may implement a number of
specific features in order to accommodate the type of code which activators contain,
including any of the following:

¢ Bitwise Operators -- Shift, rotate, and "extract bits" functions which are useful
for cryptographic and marshalling routines;

¢ Eval -- explicit "call into data" that lets the bytecode interpreter interpret
downloaded or modified bytecodes, thereby avoiding separation of code and
data and corresponding flags and data protection; or

e Interfacing Primitives -- The SCDP client bytecode interpreter calls functions

in other VxD's directly, including argument marshalling and internalizing a

particular predefined set of C types. Both the SCDP client and CAS utilize

Secure Stream Interfacing primitives, € g., hooks to extract connection data,

in particular authentication data, from the stream to which the activator or

technique is attached.

It will be obvious to those skilled in the arts that byte code interpreter 308 may
also be implemented as a physical machine. In the simplest activator
implementation described herein, bytecodes are optional. Accordingly, byte code
interpretor 308 may optional as well.

Communication library 312 is utilized for communications between the
ARFSD VxD module 218 and the RAFT VxD module 222. Such library is similar to
communication library 304 of Fig. 3B and facilitates communications between VxDs
218 and 220.

20

10

15

20

25

30

WO 00/30323 PCT/US99/27113

Control module 310 includes the necessary program logic or code to carry out
the algorithm necessary to perform the installation abstraction, execute a title and
refresh a RAFT token. More specifically, the algorithms executed by control module
310 are illustrated in greater detail in Figs. 4A-6 and their accompanying
explanations. | |

Fig. 3D illustrates conceptually a block diagram of the components comprising
the RAFT VxD 222 of SCDP client 216. Specifically, VxD 222 comprises a RAFT
RPC library 316, caching logic 318 and a control module 320. The RPC library 316
contains the appropriate code and/or objects which implement the client side RPC
layer of the RAFT protocol, described in greater detail herein. Such program logic is
utilized to communicate with the RAFT server 206 utilizing one of the RAFT protocol
messages. Specifically, module 316 contains the logic necessary to append a RAFT
packet header, as described with reference to Fig. 11, to each RAFT protocol
message and to respond with the appropriate of the RAFT protocol messages.
Caching logic 318 contains the appropriate code to perform caching of brigs, or
portions thereof, retrieved from the RAFT server 206 using the RAFT protocol. The
portions of the brigs cached by module 218 may be stored in a portion of temporary
memory on the host PC on which the SCDP client 216 is executing. The particular
caching technique and its associated logic may be implemented in accordance with
any number of a plurality of known caching algorithms, readily within the
understanding of those reasonably skilled in the arts. Control module 320 may be
implemented to include the necessary program logic, code and/or objects to oversee
the previously described functions with respect to modules 316 and 318 and to

execute the method steps described with reference to Figs. 4A-6.

Running a Title

The flowchart of Figs. 5A-C illustrates the procedural steps performed by the
SCDP client 216 during a typical title execution in accordance with the present
invention. As stated previously, when a launch string is received by the SCDP
client’'s browser 224, the Multipurpose Internet Mail Extension (MIME) type
associated with the launch string is located in a registry entry, which results in the

invocation of the Launcher module 220 within the SCDP client 216. Upon

21

10

15

20

25

30

WO 00/30323 PCT/US99/27113

invocation, Launcher 220 extracts the Universal Resource Name (URN) from the
Launch String and requests the CAS 210 to perform a URN to URL conversion, as
illustrated by step 6. The URN of the present invention is a unique identifier of a title

within a brig. The standard URN format is as follows:

urn:arepa://vendor/path/titlename[#version]

In the URN, the path to the title need not correspond exactly to the current
location of the title in the vendor’s storage server. The path is a categorization
convenience, and is not necessary. The title’s version number is optional, and may
be separated from the title name by a pound sign. The vendor name may be
registered with a central authority in order to ensure uniqueness.

The Universal Resource Locator (URL) identifies the current location of a brig
in a RAFT storage server. The standard URL format is as follows:

raft://hostname/path/brigname.brq

In a URL, the path must correspond exactly to the current location of the briq
in the RAFT storage server.

Figures 5A-C collectively form a flow chart illustrating the process steps
performed by the SCDP client and the modules contained therein during the
subscription and title execution process in accordance with the present invention.
Referring also to the elements of Fig. 2B, a user of the host computer on which the
SCDP client runs utilizes a web browser 224 to select the desired title from virtual
store front 215. The store front 215 returns a digital offer to the web browser, with
the digital offer the user negotiates a purchase with the eCommerce server 202. The
eCommerce server transmits an unsigned launch string back to the web browser
over the network. The launch string is wrapped with a MIME header. When the
launch string is received by the browser, the MIME type associated with the launch
string is located in a file system registry entry resulting in the invocation of launcher
module 220 of the SCDP client, as illustrated by step 502. Launcher module 220
extracts the URN value from the launch string and transmits the URN value to the
CAS server 210, as illustrated in procedural step 504. Communications between the
launcher 220 and the CAS 210 are established through a secure RPC connection.

22

10

15

20

25

30

WO 00/30323 PCT/US99/27113

The CAS 210 provides a URN to URL conversion and transmits the corresponding
URL to the SCDP client. Once the URL is received, as indicated by decisional step
506, the launcher 220 passes a request to read the URL header to ARFSD VxD 218,
which, in turn, passes the request to the RAFT VxD 222. VxD 222 transmits the
request using the RAFT protocol to RAFT server 206. The RAFT server 206 opens
the URL and reads the header information. The header information is then passed
back to the RAFT VxD 222, onto the ARFS VxD 218 and onto launcher 220. This
whole process is represented by procedural step 508 of Figure 5A. Next, launcher
module 220 utilizes the header content to perform application testing requirements of
the host system, as illustrated by procedural step 510.

Following completion of the system testing requirements, the launcher module
220 transmits a request for purchase authorization, via a secure RPC connection, to
CAS 210, as illustrated in procedural step 512. In response to the request for
purchase authorization, CAS 210 generates an activator, including a RAFT token,
which is transmitted through the secure RPC connection to the SCDP client 216.
Upon receipt of the activator, as indicated by decisional step 514, launcher module
220 installs the RAFT token and activator, as indicated by procedural step 516. The
activator is installed in the ARFSD VxD 218, which, in turn, loads the RAFT token
into the RAFT VxD, as illustrated by procedural steps 516 and 518, respectively.

The RAFT VxD 222 then transmits the RAFT token to the RAFT server 206 using
one of the appropriate commands from the RAFT protocol, as illustrated by
procedural step 520. Next, the ARFSD VxD 218, through communications with VxD
222 reads the super block field from the briq located on RAFT server 206, as
illustrated by procedural step 522, and verifies a magic number in the superblock, as
illustrated by procedural step 524. The magic number in the briq may be
implemented as a constant sequence of characters, for example "ARFS."

At that point, launcher module 220 begins to run the title executable file, as
illustrated by procedural step 526. In the illustrative embodiment, the title executable
is in the form of a Windows executable file located in the file system implemented by
ARFSD VxD 218 using the data retrieved via RAFT VxD 222.

RAFT VxD 222 begins to retrieve the title directory and files from RAFT server
206, as illustrated by procedural step 528. The datablocks comprising the directories

23

10

15

20

25

30

WO 00/30323 PCT/US99/27113

and files of a title are retrieved from RAFT server 206 using the RAFT protocol and
the commands described herein. Specifically, the VxD 222 retrieves the data blocks
from the RAFT server 206 in a read-ahead manner and caches the datablocks to
facilitate efficient decryption and execution.

The ARFSD VxD 218 utilizes the activator, particularly the decryption key
data, received from the CAS 210 to decrypt the data blocks retrieved from the RAFT
server 206 and to perform integrity checking, as illustrated in procedural step 530.
As described previously, the activator contains cryptographic information which is
useful in decrypting the data contained within the briq prior to execution thereof. The
ARFSD VxD 218 maintains an installation abstraction for the operating system
creating the illusion that the file system necessary to execute the title is installed on
the local host PC, as illustrated by procedural step 532. The process by which the
VxD 218 maintains the installation abstractions described in greater detail with
reference to Fig. 6.

The RAFT token received from the CAS 210 includes an end time field as
described with reference to Figure 8 and its accompanying description. Prior to
expiration of the activator and RAFT token, the launcher module 220 issues a
request via a secure RPC connection to CAS server 206 for a refreshed
activator/RAFT token pair, as illustrated by decisional step 534 and process step
536. The new activator/RAFT token pair are installed and utilized in a manner

similar to that previously described, as illustrated by process step 538.

Installation Abstraction

In accordance with the present invention, the title is never really “installed” on
the SCDP client host system. The SCDP client software creates an installation
abstraction, maintaining the illusion for the local operating system that the title
currently executing is installed on the host computer. Thus, when execution of the
title is terminated, there is no remaining evidence the title ran on the host client
system. No files associated with the title are left on the host system hard-drive, and
no operating system state information e.g., registry variables associated with the
title, remain. The SCDP client system state after the title exits or the system crashes

is the same as before, except, possibly, for operations performed by other

24

10

15

20

25

30

WO 00/30323 ’ PCT/US99/27113

applications, persistent state, and changes made by the user of the application e.g.,
saved documents or data. The installation abstraction is achieved with a method of
loading the expected application state, before running the application, in such a way
that the state can be unloaded when the application exits without affecting persistent
parameters.

Each brig in accordance with the present invention, and as described with
reference to Fig. 12, includes a file system for one or more specific titles. As
described hereafter, a briq author utilizes a creator utility program to extract selected
files from an application and the application installation directory. The brig author
also extracts other information such as registry entries which may be necessary for
the correct execution of the application. The creator program combines the selected
files and other information and generates as an output a file system in the form of a
brig, as well as a set of database entries. The briq is stored on the RAFT server.
The database entries are stored on the CAS server and comprise such information
as keying information and header check sum values.

Figures 6 is a flow chart illustrating the process steps performed by the SCDP
client 216 and the modules 218-220 contained therein to maintain the installation
abstraction during title execution in accordance with the present invention. Following
selection and negotiation for the purchase of a particular title, the launcher 220 and
ARFSD VxD 218 mount the file system, as indicated by step 600, and store the
associated registry entries on the local drive of the host system, as indicated by step
602. A facility within the File Manager of Windows 95 , Windows 98 and Windows
NT operating systems, as well as equivalent functionality in the Unix operating
system, allows the file directory and content of a remotely located file to be
"mounted" or accessed over a computer network, thereby creating a "virtual drive"
from which data can be accessed. In the present invention, mounting of the file
system comprises using the previously described technique to access the RAFT
server through the SCDP client operating system interface. Mounting of the file
system may result in caching all or a portion of the data blocks from a briq which
contain the title content as well as the registry entries associated with the title. The
series of registry entries are stored locally on the SCDP client's host system memory

and may include such information as the directory where the title files have been

25

10

15

20

25

30

WO 00/30323 ' PCT/US99/27113

installed, etc. ARFSD VxD 218 further extracts the appropriate database entries
from the CAS database 212.

Using the keying information from the activator, which has been forwarded to
the SCDP client by the CAS server, the data blocks from the briq are decrypted and
executed as an operating system file system, as indicated by step 604. Data blocks
from the brig are cached locally on the SCDP client on an as-needed basis
throughout title execution. During execution of the program, operating system
device drivers, such as those contained within the virtual memory manager portion of
the operating system make requests for registry entries stored on the local physical
drive. Upon execution of the application, the ARFSD VxD 218 starts intercepting
such operating requests, as indicated by decisional block 606. The calls, where
applicable, are satisfied with entries from the list of registry entries stored locally, as
indicated by step 608. Some information, however, is written directly to the operating
system using the write-through techniques described hereafter.

Interception of operating system calls, and satisfaction of these requests
using the locally stored registry entries, continues until termination of application
execution, as indicated by decisional step 610. At that point, the launcher directs the
ARFSD VxD 218 to unmount or disconnect the file system, as indicated by step 612.
As a result operating system requests are no longer redirected to the locally stored
registry entries. Both the locally stored registry entries and any data blocks which
have been cached locally may be either erased or over written. As a result, the state
of the SCDP client prior to execution of the title or application is returned to its status
quo without any remnants of installation of the title, except any limited write-through

data which the user intentionally wishes to retain.

Write-through local storage

During the generation of a briq by the author utilizing the creator program,
files and directories can be tagged with a "write-through" attribute. Brigs containing
write-through files or directories may contain a container with the tag, LOCL. This
container contains the full path of all write-through directories and the path of any

directory, other than the root directory, which contains write-through files, specified

26

10

15

20

25

30

WO 00/30323 ' PCT/US99/27113

with the tag LDIR. The user is allowed to specify that the pathname of the root
directory for locally stored files. The new pathname contains the Vendor field from
the URN in order to ensure uniqueness. This information is stored in the ROOT tag
in the title's LOCL container. By default, ARFSD VxD reports 0 bytes free on the
local drive. Brigs containing no write-through files or directories will always report 0
bytes free. The presence of the a tag in a title's LOCL container specifies that
ARFSD VxD should report the amount of free space on the drive containing the local
storage directory. Titles need a LOCL container only if they need to specify non-
default values for the ROOT.

When a briq containing write-through files or directories, i.e. containing a
LOCL container in the header, is loaded, the launcher within the SCDP client creates
a directory for local storage under the SCDP install directory. This directory is
derived from the URN unless a directory is specified by the ROOT tag in the title's
LOCL container. The launcher creates a sub-directory in the local storage directory
for each directory specified with the LDIR tag in the header. The root pathname of
the local storage path is passed as well as whether to report free disk space to
ARFSD VxD when loading the brig. All files in local storage areas are deleted when
the Launcher software is uninstalled, and, optionally, upon title exit. These locally
stored files are persistent by default. Launcher must create directories in local
storage for all write-through directories in a briq.
When a write-through file is started, the information is taken from the file in the local
storage area having the same naming convention as directories mentioned above. If
the file doesn't exist in local storage, it is first copied there from the brig. The original
file in the brig may not be compressed or encrypted, aside from whole-briq
encryption. When a write-through file is opened, the copy on local disk is opened,
and all requests on the ARFSD VxD file handle are performed on the real file handle.

Conditional Access Server (CAS)
Figure 7A is a conceptual block diagram of the Conditional Access Server

(CAS) 700 and associated database 750. In the illustrative embodiment, the CAS
may be implemented as an application executable on a POSIX.1 (IEEE Std 1003.1,

1998) compatible platform, such as the Sun Solaris® operating system commercially

27

10

15

20

25

30

WO 00/30323 PCT/US99/27113

available from Sun Microsystems, Palo Alto, CA, or the Linux operating system
commercially available from Red Hat Software, such platforms may execute on a
computer architecture similar to that illustrated in Fig.1. The CAS application 702
further comprises a database interface module 704, a remote procedure call
interface 706, a URN to URL conversion module 708, an activator factory 710, and a
URL verification module 712.

The database interface module 704 interfaces with the CAS database 750
and may be implemented using commercial database products. Database 750 may
be used to store short-term stay data, such as the stay data of a token requesting
refresh, or long-term stay data, such as title names, crytographic key information,
and other information for titles available over the SCDP system. Database 750 may
be shared by multiple CAS servers 700, if more than one CAS server is present in an
implementation over a network. Database interface 704 and database 750
communicate the SQL standard database query language. The SQL standard is
published by the American National Standards Institute (ANSI). Database interface
704 comprises a set of objects that filter queries received by the server 700. Such
filters are useful in focusing or customizing the scope of a database query.

CAS server 700 is coupled to the rest SCDP system via network 205, which in
the illustrative embodiment is an Internet protocol based network implemented in
either the form of a local area network or a global network. Server 700 interfaces
with network 205 through a remote procedure called module 706. Module 706 may
comprise code or objects which adhere to the open network computing remote
procedure call standard, published by Sun Microsystems (RFC 1057 issued by the
Internet Engineering task force). Such RPC standard defines code which controls
the flow and function calls between two entities trying to communicate remotely over
a network. Module 706 may be implemented with any number of commercial tools
available which make remote procedure calls appear similar to subroutine function
calls. Once such product useful for implementation of module 706 is the Noblenet
Secure RPC from Noblenet, Inc., Southborough, Massachusetts. The Noblenet
Secure RPC provides a standard RPC interface with an additional security layer.

URN to URL conversion moduie 708 comprises code or series of objects

which, if given a URN query database 750 and return a corresponding URL. Such

28

10

15

20

25

30

WO 00/30323 PCT/US99/27113

URNSs are received from the launcher module of the SCDP client over network 205.
Database 750 where the URLs are stored may be implemented as a sequential
database having a plurality of records. Module 708 forwards the appropriate query
to the database interface 704 and receives the appropriate URL from the database.
Module 708 then transmits through RPC module 7086, the corresponding URL to the
SCDP client over the Network. Alternatively, in an environment where a limited
number of titles and/or content servers are utilized, the URLs may be stored on a
disc associated with the server and module 708 may comprise program logic to carry
out a look-up table conversion of a received URN.

The conversion module 708 converts the abstract URN data structures to
specific URL data structures and may be implemented with a series of conversion
tables and associated comparison logic. The URL verification module 712
comprises code or equivalent objects which receives a launch string from the
eCommerce server 202, as explained in greater detail hereinafter, time stamps the
launch string and digitally signs the launch string through use of a hash code and
encryption key. Specifically, a message authentication code may be appended to
the launch string as received by the CAS 700. The message authentication code
may include a hash code generated in accordance with the MD5 hash algorithm and
further includes an encryption key which may be generated in accordance with any
number of encryption standards including the Data Encryption Standard (DES). The
digitally signed launch string is then forwarded to the eCommerce server 202 for
transmission back to the client host systems web browser as described herein.

In the SCDP system, the activator serves as a mechanism to deliver keying
information to potentially unsecure client processes. The activator generation
module 710 of server 700 comprises code or appropriate objects which generate a
series of byte codes and appends a crytographic key to the series of byte codes, the
key being retrieved, in one implementation from database 750. The implementation
of the activator generation module depends in part on the sophistication of the
activators utilized within the SCDP system. For an activator comprising a series of
byte codes and a key appended thereto or integrated therein, the activator
generation module 710 has the implementation described above. In alternative

embodiments, where the key is integrated into the activator in a more secure

29

10

15

20

25

30

WO 00/30323 PCT/US99/27113

manner, e.g., folding the key into the byte code sequence, additional logic and/or
objects would be required to implement such functions within module 710. For
example, rather than appending a key to a series of byte codes, a sequence of byte
codes which perform a function, such as generation of a number or performing other
logic operations may be inserted into the activator. In such an embodiment, the
module 710 may include logic to randomly select from one of a number of byte code
sequence or techniques described herein as code obfuscation techniques. With
such an embodiment, the module 710 is capable of randomly generating activators
with a higher degree of security. Alternatively, with more sophisticated activator
implementations, activator module 710 may generate an activator through calling an
activator generation routine which may be resident in an external library.

The above-described CAS modules may perform five primary functions within
the SCDP system. First, the CAS provides users with the cryptographic activators
that allow one-time use of encrypted brig content. Second, the CAS insures that the
SCDP system can accurately track the usage of titles and to support a security
model in which development of a “hacked” client designed to steal usage is very
difficult. Third, the CAS provides limited-lifetime RAFT authorization tokens signed
with a CAS private key and bundled with an activator. The RAFT client includes the
authorization token with it's RAFT requests. The RAFT server uses the token to
verify a client’s right to access the requested content. Fourth, the CAS interacts with
the eCommerce software billing system to “settle” transactions. The transaction
settlement is not done during purchase negotiation but is delayed until the CAS is
assured that the end user has been able to run the content successfully. Completion
of the first activator refresh is an indication that the title is running successfully.
Fifth, the CAS maintains a database for title usage reporting and activator tracking.

Three types of logs may be associated with the CAS. First, CAS activity is be
logged to a standard UNIX text log. This log is intended only for diagnostic purposes.
Second, the CAS records transactions into the CAS database table, for reporting
purposes and for activator tracking. These records are in addition to those kept by
the e-commerce system, which are used for actual billing purposes. Third, the CAS
database itself keeps internal transaction logs, which are the mechanisms used to

insure that database transactions are completed or rolled back successfully. Such

30

10

15

20

25

30

WO 00/30323 PCT/US99/27113

functionality may be internal to the CAS database. In the illustrative embodiment,
the CAS will use a commercially available database maintenance software such as
that commercially available from Oracle Software to insure that a purchase is
committed or rolled back. Database transactions are different than financial
transactions described above. A financial transaction may be a database
transaction, but many other transactions such as updating a user name, may be
database transactions.

In the illustrative embodiment, the CAS supports an administration interface
with which an system administator can monitor CAS status, for example, the current
number of database connection threads in use and the current number of user
connections, i. e., connection threads in use. In addition, statistical information such
as the peak number of user and database connections used since startup; the
number of times since startup that user or database connections have reached a
predetermined limit may be made available.

The SCDP client interacts with the CAS by means of a client library. The
client library may be specific to each client platform, because it uses platform-native
methods to communicate with the SCDP client GUI. In the illustrative embodiment,
i.e., the Win32 platform, the client library is called CASLIB32. The client library
exports the CAS interface classes CCAS, which represents the transport to the CAS,
and CCasSession, which represents a specific client session. An Application
Program Interface (API) allows the CASLIB32 client to negotiate for multiple tities
simultaneously by using multiple sessions. The API also exports extra classes that
represent information passed to and received from the CAS that insulate the CAS
interface from the specifics of the transport protocol. Such methods may be
implemented as, CActivator, CUrl, etc. The CCAS responds asynchronously to the

client by sending Windows messages.

CAS support for Activators

The simplest implementation of an activator is a bytecode routine that has the
key for a given briq compiled into the activator. With this activator implementation,

the CAS authenticates the client, identifies the purchased brig, constructs the

31

10

15

20

25

30

WO 00/30323 PCT/US99/27113

activator bytecode and downloads the activator. The SCDP client can then close the
connection and run the title. Such activators may be generated in advance and
retrieved directly from a database by the CAS activator factory 710 and interface
704.

In a more sophisticated activator implementation, the activator is aware of a
cryptographic algorithm, and requests a key from the CAS. The CAS has
authentication information and security data from the existing stream, and can have
a predefined RPC response for "request key" with whatever arguments are needed.

In another implementation, the activator may have arbitrary code for some
new mechanism, possibly requiring multiple stages. The activator can make a
Remote Procedure Call to the CAS with opaque arguments and a specification of a
“technique,” as explained hereafter. The CAS then dispatches the opaque data to
the Technique, which returns opaque data to the client or makes other calls, or calls
out to other services. If the CAS has its own interpreter, the CAS can retrieve the
code for the Activator and the technique from the database. [f all Activators are pre-
generated, there may be many possible activators for any single technique.
Alternatively a database of obfuscations and a set of rules for how to combine them
may be maintained by the CAS.

The CAS selects an activator appropriate to a given client, product, and
purchase. The CAS delivers the activator, and "supports" the activator through
additional RPCs. Many CAS RPCs can be predefined, such as a simple "request
key" for a given brig. Such RPCs may be restricted based on the particular activator
selected. For example, most clients won't be permitted the simple "request key" call,
but would be required to perform whatever calls the Technique expects the activator
to use.

Referring to Fig. 7B, a flowchart illustrating the process steps performed by
the CAS 700 during the subscription and title execution process is illustrated.
Specifically, CAS 700 receives a launch string, as described with referenced to Fig. 9
and its accompanying explanation, from the eCommerce server, as illustrated in step
720. Next, the CAS digitally “signs” the launch string, as indicated in procedural step
722. The CAS “signs” the launch string with a private cryptographic key. The signed
launch string is then forwarded from CAS 700 to the SCDP client executing on a host

32

10

15

20

25

30

WO 00/30323 PCT/US99/27113

system connected to the broadband network, as illustrated by process step 724.
The SCDP client extracts URN from the launch string, as described herein with
reference to Figs. 5A-C and their accompanying descriptions, and transmits the URN
to CAS 700. CAS 700 receives the URN from the SCDP client, as illustrated by step
726, and performs a conversion of the URN to a URL, as illustrated by procedural
step 728. As described previously, the CAS 700 performs the URN to URL
conversion using module 708 as described previously. Such conversion may include
a query of database 750 or use of a table look-up algorithm, depending on the
implementation of module 708. The CAS 700 transmits the URL list to the SCDP
client, also illustrated by procedural step 728. Next, CAS 700 receives a purchase
authorization request from the SCDP client, as illustrated by procedural step 730.
The purchase authorization request from the SCDP client includes the launch string.
CAS 700 then verifies the launch string to determine if the launch string had been
previously signed by it, or, in an implementation with multiple conditional access
servers, by another authorized CAS server, as illustrated by procedural step 732.
CAS 700 then generates an activator for the client requesting purchase
authorization, as illustrated by process step 734. Activator generation occurs in
accordance with the specific implementation of module 710 of the CAS server, as
described herein.

Next, CAS 700 transmits the activator as well as a RAFT token to the SCDP
client, as illustrated in procedural step 736. The CAS 700 retrieves the RAFT token
from database 750. The RAFT token has the format illustrated in Fig. 8 and as
described in the relevant portions herein. The activator and RAFT token enable the
SCDP client to access the desired title and to begin execution of the title data as
described herein. At this point, the CAS will take no further action regarding the
specific SCDP client until an activator token refresh request is received from the
SCDP client, as illustrated by decisional step 738. Upon receipt of the first refresh
request from the SCDP client, the CAS 700 posts the title purchase to the
eCommerce server, as illustrated by procedural step 740. Posting of the transaction
with the eCommerce server comprises the actual recorded acknowledgement that
the user has paid for the identified title. Such posting is delayed until the first refresh
request to ensure that the title is executing properly on the SCDP client. The time-

33

10

15

20

25

30

WO 00/30323 PCT/US99/27113

out mechanism within the activator initially sent from the CAS to the SCDP client
expires after a predetermined interval, indicating that the title is executing
appropriately. The CAS issues a new token, as illustrated in procedural step 742,
and transmits the pair to the requesting SCDP activator client. The RAFT token life
time, as indicated by the start time and stop time fields of the RAFT token, may be
longer than the lifetime of the token initially transmitted to the SCDP client with the
activator. Subsequent requests for activator/token refresh from the SCDP client will
not cause the CAS to post the purchase of the title to the eCommerce server. As
described previously, all communication between the SCDP client and the CAS
occur over a secure RPC connection, such connection may be established using a
commercial product which adheres to the RPC standard.

As may be appreciated by those skilled in the art, the process outlined in Fig.
7D highlights those steps executed by the CAS in relationship to a particular SCDP
client which will terminate when title execution ends. It will be obvious to those
reasonably skilled in the art that the CAS may be implemented as a multi-tasking
application in which several separate threads are currently executing various steps
of the illustrated process. Accordingly, while servicing the requests of a specific
SCDP client, the CAS may be concurrently servicing the requests from other SCDP

clients as well.

RPC Transport

The CAS and CASLIB32 communicate through a standards-based Remote
Procedure Call library, such as the NobleNet Secure RPC. The SCDP client makes

synchronous calls to the CAS, which assigns them to a thread for processing.

CASLIB32 presents an asynchronous interface to its attached GUI, so internally it

queues the synchronous RPC requests and places them from a background thread.
To provide high transaction throughput, the CAS maintains a pool of ready threads
that can be used to run tasks. The thread pool is a reusable C++ class. Incoming
tasks are intercepted in the RPC layer, queued to the thread pool, and eventually
processed on a thread as opposed to being processed inline. The thread pool

allows the CAS to process higher simultaneous transaction rates and perform better

34

10

15

20

25

30

WO 00/30323 PCT/US99/27113

under short load spikes. The RPC calls need to allocate thread-safe memory that
can be tagged and freed later, because buffers cannot be freed until the RPC
transport is done sending them. The CAS uses a reusable C++ memory pool class
that can delete memory by thread id.

The CAS may be implemented as a stateless server, like a web server. A
stateless server has the advantage that it can be easily scaled by deploying more
server machines and using "round robin" software to parcel out incoming
connections to the servers, since an SCDP client's subsequent requests do not need
to go to the server it originally connected to. The CAS maintains a connected socket
TCP stream between requests, so some information could be attached, such as a
transport session key. If this connection is dropped, the CASLIB32 will attempt to
reconnect, potentially to a different CAS process, so pushing state out to CASLIB32
or into the database is preferable.

To facilitate high transaction volume, the CAS is designed to make use of a
pool of multiple active database connections. Server threads request connections
from the pool, which reconnects dead connections in the background as necessary
to minimize database connection latency. The database connection pool is
implemented as a reusable C++ class. The CAS uses an abstract database
interface called DBObiject, which is implemented as a reusable C++ class and allows

the CAS to be ported easily to other databases.

Raft Token

To improve the overall security model of the SCDP system, the CAS provides
the SDCP client with a signed RAFT Authorization Token. The RAFT token
authorizes a particular SCDP client to access a particular URN, for a specified time
period. The CAS digitally signs the RAFT Token, using standardized, public-key
digital signature algorithms. In order to access a executable content on a RAFT
server, the RAFT VxD must present its token to that server. The RAFT server
verifies the CAS’s digital signature and then verifies the token’s contents. The RAFT

token 800 is valid for any number of the RAFT servers within a CAS’s administrative

35

10

15

20

25

30

WO 00/30323 PCT/US99/27113

domain; i.e., a broadband service provider may install multiple RAFT servers on their
network, and the RAFT token would be admissible by any of them.

In the illustrative embodiment, the RAFT token is implemented as a data
structure having the format illustrated in Fig. 8. The RAFT token 800 comprises an
URN, an URN length 804, a start time 806, an end time 808, an IP address 810, and
a CAS signature 812. The URN 802 and its associated length 804, define the
specific title that the RAFT token will unlock. The start time 806 and end time 808
define the lifetime of the token. The format of the described URN has been
described previously. The RAFT authorization token contains the RAFT client's IP
address as a 32-bit value in network byte order, the requested URN, and 32-bit start
and expiration times. The times are defined as POSIX 1003.1-1988 "seconds since
the Epoch" or approximately seconds since 00:00:00 GMT, January 1, 1970. The
CAS signs the token with the CAS group's private key so that the RAFT server can
validate its authenticity. The RAFT server will deny access if server's current time is
not within the token's window. The IP address defines the network address of the
SCDP client requesting the activator/token. The RAFT server will deny access if the
SCDP client providing the token does not have the same IP address, thereby
preventing another client from using a stolen token.

The RAFT token is transferred to the client as part of the activator. RAFT
tokens are refreshed along with activators. The activator is constructed with a time-
to-live mechanism. The SCDP client issues a CAS request, via the RPC
mechanism, to refresh the activator/token combination prior to expiration of the

existing activator.

Random Access File Transport Protocol and Server

Figure 10 illustrates conceptually a block diagram of the RAFT Server 1000
and its accompanying database 1050. In the illustrative embodiment, the RAFT
Server 1000 may be implemented as an application executable on a POSIX.1 (IEEE
Std 1003.1, 1998) compatible platform, such as the Sun Solaris® operating system
commercially available from Sun Microsystems, Palo Alto, CA, or the Linux operating
system commercially available from Red Hat Software, such platforms may execute

on a computer architecture similar to that illustrated in Fig.1.

36

10

15

20

25

30

WO 00/30323 PCT/US99/27113

The RAFT server may be implemented as a RAFT application 1002 and a
Simple Network Management Protocol (SNMP) master agent 1004 executing on top
of the operating system. A commercial product suitable for implementing the SNMP
master agent 1004 is the Emanate product commercially available from SNMP
Research, Inc. The master agent 1004 communicates with network 205 using
published application program interfaces in accordance with the SNMP standards.

The RAFT application 1002 comprises a POSIX (Portable Operating System
Interface Standard) file input/output module 10086, a file system interface 1008, and
SNMP instrumentation module 1010 (i.e., the RAFT SNMP sub-agent) and a
network/RPC/RAFT protocol interface module 1012.

The SNMP instrumentation module 1010 contains objects or corresponding
code which collects statistical and logistical information useful for a system
administrator in throttling the bandwidth of the network to improve network
performance. As such, module 1010 is an optional element of Raft Server 1000.

The RPC Raft Protocol module 1012 interfaces with the IP based network 205
using a proprietary RPC protocol as defined herein. Module 1012 includes the
necessary code and/or objects to implement the protocol and to verify the contents
of the RAFT token.

The file input output module 1006 may be an object-oriented implementation
according to POSIX standard 1003.1 published by the Institute of Electrical and
Electronic Engineers (IEEE). The POSIX /O module 1006 provides a local file
system interface abstraction for memory discs 1050. Memory 1050, illustrated
conceptually in Fig. 10 are used to store multiple titles in the forms of brigs. In the
contemplated embodiment, the header portion of a brig which is unencoded and the
body portion of a briq, which is encoded, are stored together. However, they are
accessed independently from each other utilizing module 1006 and 1008. File
system interface module 1008 contains program logic which receives requests for a
particular brig and maps the brig into the directory and file where it is stored in
memory 1050. In this manner, file system interface 1008 functions as an interface
between the network request from the SCDP system and the memory 1050. In the
illustrative embodiment, memory 1050 may be implemented as one or more discs,

e.g., a RAID disc array or a disc farm. The file system interface module 1008

37

10

15

20

25

30

WO 00/30323 PCT/US99/27113

interfaces with the file input/output module 1006 and the network protocol module
1012 and implements program logic for accessing files and brigs as described
herein.

The SNMP master agent 1004 provides SNMP protocol services on behalf of
the RAFT SNMP subagent, which is embedded within the RAFT application. The
RAFT application uses its SNMP subagent to make its management accessible to a
remote SNMP manager

The following steps describe the interaction between the SCDP client and the
RAFT server, the Launcher launches a title. Launcher contacts the CAS server to
obtain a list of URLs that correspond to the requested URN. A URL identifies the
location of a particular briq, including the RAFT server on which it resides. For each
RAFT URL, a weight may be returned to help select the most appropriate URL. A
URL is more desirable when it has a higher weight value.

Following the URN-to URL conversion by the CAS, the SCDP client sends the
CAS a purchase request described previously in the discussion of the CAS
exchanges. In response to the purchase request, the CAS server provides the
SCDP client with an activator containing the RAFT Authorization Token for the
selected URN. Note that the Authorization Token is valid for any of the URLs
associated with the selected URN.

Launcher then examines the list of URLs to determine if any RAFT URLs are
present. If RAFT URLs are present, the Launcher sends only the list of RAFT URLs
along with the RAFT access token to ARFSD VxD which will forward this information
to the RAFT client, i.e. the RAFT VxD of the SCDP client. The Launcher also
provides a weight for each of the RAFT URLs. These weights may be different than
the ones provided by the CAS during the URN to URL conversion. The RAFT client
then establishes a connection with one of the RAFT servers specified by the list of
URLs. The RAFT client may contain the appropriate program logic which enables it
to use the weights provided with the URLSs to decide which RAFT server to contact
first.

The RAFT client then attempts to open a Brig on the RAFT server 1000. The
client specifies a protocol version, the path name (from the URL) and the RAFT

access token. The protocol version is a 32-bit value used to verify that the RAFT

38

10

15

20

25

30

WO 00/30323 ‘ PCT/US99/27113

client and RART server are protocol compatible. To validate access, the RAFT
server verifies that the URN provided in the token is one of the ones listed in the Brig
header. The RAFT server 1000 checks the RAFT token's start and expiration times
during the open. If the RAFT_OPEN is successful, the RAFT server returns a RAFT
file handle and a unique ID for the Briq, e.g. a hash of the Briq tag, used for caching.

In order for the RAFT server to validate the expiration time, the RAFT server
time is synchronized with the CAS to within a predetermined interval. The RAFT
server therefore accepts start times earlier than the current time and does not deny
access until after expiration of the interval. The token expiration time is proposed to
be some multiple of the Activator keep-alive time plus additional time to handle
varying network and server latencies.

On each subsequent RAFT read request, the RAFT server checks that the
access token has not expired. The RAFT server will fail any request that occurs
when the server does not have a valid access token for that particular client.

Eventually, the RAFT access token will expire. The SCDP client’s activator
keep-alive mechanism is responsible for obtaining a new RAFT token before the
current token expires. This insures RAFT tokens are refreshed in timely manner so
that access failures will not occur under normal operating conditions. When the
RAFT client sends the token to the RAFT server during a RAFT_OPEN, RAFT client
must compute how long the token is valid from the start and expiration time. Since
the RAFT client cannot verify the legitimacy of the token contents without the CAS'
public key, RAFT client must wait for a successful RAFT_OPEN to determine that
the token is valid before setting its refresh time. However, the refresh time is based
upon when RAFT client received the token and not when the RAFT_OPEN
completed. To insure uninterrupted access to the server, the RAFT client requests
a new RAFT access token from the CAS in advance of when the token expires.
Upon receipt of the new RAFT access token, the RAFT client will send a
RAFT_REFRESH operation with the newly obtained token to the RAFT server.

When the RAFT client is finished accessing a Brig, the RAFT client sends a
RAFT_CLOSE message with the RAFT file handle. If the RAFT server loses the
connection to the RAFT client, all open files corresponding to that connection are

automatically closed.

39

10

15

20

25

30

WO 00/30323 PCT/US99/27113

Raft Packet Header Definition

All communications in accordance with the RAFT protocol contain a RAFT
packet header 1100, as illustrated in Fig. 11. The RAFT packet header 1100 may
be implemented as a data structure comprising a procedure number data field 1102,
a sequence number data field 1104, a packet length data field 1106, and a status
data field 1108. The procedure number field 1102 indicates the RAFT protocol
message type and may be implemented in the form of an integer. The sequence
number field 1104 is used to match requests with responses and may be
implemented in the form of an integer. The sequence number is only unique per
connection. The packet length field 1106 indicates the size of the packet data, not
including the size of the header, and may be implemented in the form of an integer.
The status field 1108 indicates the status from the RAFT request and may be
implemented in the form of an integer . A non-zero status indicates that the request
failed. Different protocol messages will return different status codes. However, a
status of zero indicates that the request completed successfully. A non-zero status
results in the length field being set to zero, indicating that no packet data will be
returned if a request fails. In accordance with the RAFT protocol the packet header
is followed by the RAFT packet data.

RAFT Protocol Messages

The RAFT protocol consists of four distinct protocol messages which enable
brig access and RAFT token management. After establishing the TCP connection,
the initial RAFT protocol message contains the protocol version as one of its
arguments in order to identify the protocol version of the requester. A list and
description of the RAFT protocol messages as follows. The RAFT_OPEN function is
called with a protocol version, a token length, a RAFT access token, a path length,
and a null-terminated full path name. Upon success, the result is a RAFT file handle,
a RAFT ID, and the maximum read length supported by the RAFT server. The
RAFT ID may be used to generate an SCDP client cache tag. The RAFT ID may be

the Brig ID to enable consistent caching across multiple RAFT servers in case fail-

40

10

15

20

25

30

WO 00/30323 PCT/US99/27113

over occurs. The maximum read length is intended to inform the RAFT client about
how much data it can request during a RAFT_READ operation.

The RAFT_REFRESH_TOKEN function enables the RAFT client to update
the RAFT server with a newer RAFT access token and is called with a token length,
a RAFT access token and a RAFT file handle. Upon success, the new RAFT access
token replaces the current token associated with the specified handle, effectively
increasing the expiration time of the token. The current token will be retained if the
new token is invalid. This function does not return any data, but the status in the
header is updated to reflect success or failure.

RAFT_READ function is called with the RAFT file handle returned from the
RAFT_OPEN call, a 64-bit offset, and a length. The RAFT file handle must be
associated with a valid access token in order to access the requested data.

The RAFT_CLOSE function is used to close an open RAFT file handle. The
call takes a RAFT file handle and does not return any data. However, the status in

the header is updated to indicate success or failure.

Launch String

Fig. 9 illustrates a launch string 900 in accordance with the present invention.
The Launch String 900 may be implemented as a data structure comprising a URN
data field 902, a Store ID data field 904, a goods type data field 906, a subscription
domain data field 908 and an amount data field 910, as illustrated in Fig. 9. The
URN 902 uniquely identifying the desired content and may be implemented, as
described herein. The Store ID 904 identifies a specific storefront to the eCommerce
system and may be implemented in the form of a numeric or alphanumeric character
string or an integer. Store IDs are used to separate the transactions from different
storefronts for reporting purchase. Multiple storefronts may share a store ID if they
are really representing the same organization. The goods type 906 indicates
whether the transaction should be a purchase through a subscription or through a
microtransaction and may be implemented in the form of a numeric or alphanumeric
character string or an integer. A subscription transaction is a single payment for

unlimited use of a title or set of titles over a specified period of time. A

41

10

15

20

25

30

WO 00/30323 PCT/US99/27113

microtransaction is a charge against a user debit account, and is used to support the
“pay-per-single-use” payment model. The subscription domain 908 indicates if the
transaction is covered by a specific subscription offer for example, "Weekly Hot
Game Pack" or "Small Office Applications Package," applicable to the purchase.
The subscription domain may be implemented in the form of a numeric or
alphanumeric character string or an integer. The amount field 910 indicates the
purchase amount of the microtransaction and may be implemented in the form of an
integer.

The contents of launch string 900 are generated by the eCommerce server
front end module 1408 as illustrated in Fig. 14. The CAS digitally signs the launch
string 900, using, for example, a standardized, public-key digital signature algorithm.
Thereatfter, launch string 900 comprises an additional CAS signature field 912 which
identifies the CAS group's private key. The Launch String is sent to the SDCP client
via the eCommerce system, as part of the fulfillment process. The SDCP client
passes the Launch String back to the CAS during its pre-launch negotiations with the

CAS, as explained herein.

eCommerce System

An electronic commerce software application, hereafter referred to as
eCommerce system, suitable for use with the present invention is Transact 4.0,
commercially available from OpenMarket, Cambridge, MA. eCommerce software is
used for managing user accounts and conducting financial transactions, including to
1) maintain user account information, 2) manage purchase and payment, 3) collect
and verify credit card information, and 4) settle transactions.

Referring again to Fig. 2, eCommerce server 202 comprises a server
application running on a computer architecture similar to that described with
reference to Fig. 1. The application may be designed to operate on an operating
system such as Sun’s Solaris operating system or other operating systems designed
for executing server-type applications. Referring to Fig. 14, the eCommerce server
14 comprises a hardware platform 1402 on which an operating system 1404
executes. The actual eCommerce server application 1406 presents a front end

module 1408 and a back end module 1410 to the various other components of the

42

10

15

20

25

30

WO 00/30323 PCT/US99/27113

SCDP system 200. Specifically, front end module 1408 of server 1400 may be
implemented to produce a web server front end to the other components of SCDP
system 200 through network 205. Such a front end is similar to other web servers
which currently exist on the Internet. The back end 410 module of server 1400
interfaces with billing databése 204 and implements logic and/or objects necessary
for query the database and executing transactions and microtransactions associated
with the negotiation and purchase of a title. As mentioned previously, eCommerce
server 1400 may be coupled either through a private local area network or over a
global area network, such as the Internet to a third party credit processing server of a
bank or other financial institution which may perform services such as credit card
clearing, electronic account debiting, etc. Front end module 1404 and back end
module 1410 of server 1400 communicate through a series of scripts written in
accordance with the Common Gateway Interface (CGl) standard. It will be obvious
to those reasonably skilled in the art that other commercially available electronic
commerce server applications may be utilized with the inventive SCDP system in
addition to those mentioned herein.

Database 204, associated with server 202 may comprise a conventional serial
data base and is used to store credit and billing information necessary to carry on
transactions.

Front end module 1408 of server 1400 further comprises the necessary code
or objects to generate launch strings as explained in greater detail with reference to
Fig. 9. Once generated, the launch strings are forwarded to the CAS server for
digital signing thereof.

In the illustrative embodiment, the eCommerce system comprises a server
and the storefront, which work together to enable the user to navigate through a
catalog and accept and validate purchase information. The eCommerce system
uses an open web-based architecture for interfacing with external components. The
inventive SCDP system software modules communicate with the eCommerce
software by posting URLs to the eCommerce software’s web server front end. In
responding to the posting, transact makes a call to a CGI program with specific
arguments encoded in the URL. Evaluating the URL via the CGI call causes the

Transact software to change the database state. An entire transaction sequence is

43

10

15

20

25

30

WO 00/30323 PCT/US99/27113

completed by simply evaluating a set of URLs. The e-commerce system will
captured and maintain client data, such as user accounts or credit card information.

Assuming the eCommerce system is a full-featured system that provides the
ability to commerce-enable a storefront and conduct credit card transactions through
the web, interaction between the CAS and eCommerce system occurs primarily in
three different places. When the user has purchased a title, the user is presented
with a page, referred to as a "Digital Receipt", on which appears a link called the
Fulfillment URL. The Fulfillment URL is really a CGI program whose purpose is to
obtain a Launch String from the CAS. As described in greater detail herein, a
Launch String is a collection of all the information needed for the CAS to later
recognize the user's right to the software and then settle a transaction with the
eCommerce system. This information is returned in a form that only the CAS can
recognize, so that the CAS can later validate its own Launch Strings. Returning the
Launch String to the client browser triggers the browser to activate the Launcher
within the SCDP client and pass the launcher the Launch String. Subsequently, the
Launcher may provide a launch string to the CAS and request an activator. The
CAS verifies the Launch String and asks the eCommerce server to validate that this
purchase, if settled, would succeed. However, the CAS does not yet actually settle
the transaction. At this point the CAS returns an activator to the Launcher and the
title can begin to run. The initial activator is created with a short lifespan, e. g.,
finally, when the initial activator is about to expire, the SCDP client VxD notifies the
Launcher and requests that the CAS refresh the activator. On the first refresh of the
activator, CASLIB32 again provides the Launch String and this time the CAS will
settle the transaction with the eCommerce server. Delaying settlement of the
transaction allows the SCDP system to positively guarantee that the title has run
properly on the SCDP client machine before billing for its use.

The SCDP system supports five different purchase models. The first
purchase model, Title Subscriptions offers unlimited access to a specific title for a
specified period of time. Subscriptions can be renewed. The second purchase
model, Package Subscriptions such as an "Arcade Game Pack", offers unlimited
access to a set of multiple titles for a limited time. The set of titles covered by a

package subscription could change over time. For example, if the user purchases a

44

10

15

20

25

30

WO 00/30323 PCT/US99/27113

subscription to the "Hot New Games Pack”, the titles available under this package
may not be the same a week or two after the initial subscription purchase. The third
purchase model, Pay Per Use, offers access once for an unlimited amount of time.
In the fourth purchase model, Time-Based Billing, a user is charged more for running
the title for longer or can buy a fixed block of time. In the fifth purchase model,
Monthly Billing, the SCDP system is integrated into an existing cable Multiple Server
Operation (MSO) or telco billing system and adds charges to the customer's monthly

bill. Additional purchase models can be added with minor changes.

Virtual Store Front

The Virtual Store Front server 215 and accompanying database 213 present a
virtual catalog to clients and prospective clients of the SCDP system 200. In the
illustrative embodiment, server 215 may be implemented as a conventional web
server, e.g., a server application executing on top of an operating system which, in
turn, executes on top of a server hardware, similar to those described with reference
to eCommerce server 202. The store front application includes a graphic user
interface which presents a series of selections for clients to browse with a
conventional network browser. Such selections may include the name of a particular
title, a brief description of the title, associated costs or purchase options, in the event
of a multimedia title, such as a movie or audio clip, brief samples of the titie content,
etc. In addition, associated with each title selection is a corresponding URN. As
such, the store front implements the appropriate database querying engine to
interact with database 213 on which the title, description, pricing, digital offer, and
URN information may be stored for a large number of possible titles within the SCDP
system 200. In response to selection of a particular title, the store front application
logic queries database 213 for the corresponding URN and forwards the appropriate
information to eCommerce server 202 in a manner described herein.

In the illustrative embodiment, virtual store front server 215 and database 213
are coupled to cache server 210 over a private, secure local area network 205, as
previously described. It will be obvious, however, to those reasonably skilled in the
art that the SCDP system 200 may be implemented with one or more virtual store

fronts coupled to the cache server 210 and the eCommerce server 202 over other

45

10

15

20

25

30

WO 00/30323 PCT/US99/27113

than a local area network, for instance a global area network, such as the Internet in
a manner reasonably understood by those skilled in the arts. In such
implementations, where the storefront server resides on a public network, various
subsets of information may be available for viewing by perspective clients. For
instance, clients who pay a subscription fee may have access to a storefront server
on the private network which may provide greater information and/or samples of title
data then the general public accessing a store front server located on a public
network which may provide only minimal information regarding a title and its

associated purchase options.

Briqg Format

Fig. 12 illustrates conceptually a block diagram of a brig in accordance with
the present invention and its constituent components. As illustrated, a brig 1200
comprises a briq header 1202, a cryptoblock 1204, a superblock 1206 and one or
more titles 1208A-1208N. The briq header 1202 contains information used by the
launcher module within the SCDP client, including such information as system
registration information, resolution, application title, a URL, etc. The cryptographic
block 1204 is used by the ARFSD VxD within the SCDP client to determine if the title
is encrypted, and, if so, the cryptographic key version used for such encryption. The
superblock 1206 may include general information about the briq including the size of
the briq, the creation date, the entry in which the ROOT directory may be found, etc.
Each of the titles 1208A-N may include a directory and one or more files associated
with a particular title. As explained hereinafter, brigs are stored on the RAFT Server,
accessed remotely by an SDCP client using the RAFT protocol, and presented to the
host's operating system as a local file system.

In accordance with the present invention, one or more titles are processed
and packaged in the form of a briq, as described with reference to Fig. 12. The
process by which a title is formatted into a briq is as follows. First, a utility tool, such
as the viewer utility in the Windows operating system is used to extract registry
information from a title. Such registry entries may comprise a minimal set of
information such as the file names, directory names and configurations citings

necessary to execute a particular titte. The extracted registry entries are placed into

46

10

15

20

25

30

WO 00/30323 PCT/US99/27113

afile. Next, the file containing the registry entries are provided to a creator program.
The creator program, in the illustrative embodiment, comprises code capable of
taking the data comprising the title and the registry entry file and encrypting such
information in accordance with any number of currently available encryption
algorithms. The resulting encrypted files may be stored in a conventional directory
hierarchy, as illustrated by directories 1208A-N of Fig. 12. Next, the root directory of
the file system and any additional meta information including the size of the file
system, etc., are stored in the superblock 206 of the briq 1200, as illustrated in Fig.
12. Next, information about the decryption key, necessary to decrypt the encrypted
information within the brig, is stored in the cryptoblock 1204. The information within
the cryptoblock may comprise data identifying the key version and a description of
the type of encryption used. The information in cryptoblock 1204 may be partially
encrypted. Information such as the briqg URL, and system requirements are placed
into the briq header 1202 along with the names of the executable files and titles, and
a map of the network drive and additional tags. The information contained within

briqg header 1202 is not encrypted, as illustrated in Fig. 12.

Activator

The activator has a format as illustrated in Fig. 13. Specifically, an activator
1300 comprises a token 1302, authorization data 1304, a cryptographic key 1306,
and, optionally, one or more byte codes 1308-1312. In the illustrative embodiment,
token 1302 may be implemented similar RAFT token 800, as described previously
with reference to Fig. 8 herein. Authorization data 1304 comprises the “keep-alive”
data useful by the SCDP client when requesting a new activator from the CAS
server. Such authorization data may be implemented with a simple numeric string or
code or, alternatively, may have a more sophisticated implementation, such as a
hash of data previously associated with the client. Key 306 comprises cryptographic
data useful in decrypting the data contained within the briq prior to execution. The
cryptographic data comprising key 306 may comprises a bit string which is extracted
by byte code interpreter 308 and supplied to the RAFT VxD to facilitate decryption of
briq data.

47

10

15

20

25

30

WO 00/30323 PCT/US99/27113

In a simple embodiment, activator 1300 comprises only token 1302,
authorization data 1304 and key 1306. In a more sophisticated embodiment, one or
more byte codes 1308-1312 are also included as part of the activator. In the
illustrative embodiment, byte codes are essentially instructions executable on either
a physical or virtual machine, as implemented within the byte code interpreter 308.
In the illustrative emb‘odiment, byte code interpreter 308 comprises a virtual machine
capable of executing such byte codes as supplied to it from the activator. The type
and nature of possible byte codes 1-N which may be used with activator 1300 are
described hereafter. Byte code interpreter 308 is described with reference to Fig.
3C.

Code Obfuscation

The essence of a program can be broken up into flow and primitives.
Normally flow includes building up higher level abstractions out of primitives.
Optimization involves combining redundant primitives, rearranging flow so similar
structures can be combined and eliminated, and recognizing patterns and replacing
them with other, more efficient patterns. Optimization preserves the behaviour of a
program with respect to the original specification. Obfuscation operations may
produce more than one correct result. Rather than selecting randomly, producing all
or some subset of correct variants in parallel may be more efficient overall, at some
cost to the individual production.

Generically, optimization involves looking for ways to take a solution to a
problem and modify it to produce a better solution. In compilation specifically, it
implies taking a simply produced, correct expression of a piece of high level code
and turning it into more efficient code while preserving its correctness.
Pessimization also preserves this correctness, but sacrifices efficiency for
decompilation difficulty in the form of obfuscation.

By splitting front end and assembler stages allows insertion of pessimizers at
different levels and allows later alternative high level languages (such as
Lisp/Scheme) which provide for more flexibility in pessimization. A number of

pessimizer techniques may be utilized with the present invention, including 1)

48

10

15

20

25

30

WO 00/30323 PCT/US99/27113

Assembler-level Peephole Pessimizer which takes bytecode streams and does local
reordering and obfuscation; 2) Intermediate Language Pessimizer which exposes
the translation layer between the high level language and the assembiler in order to
provide a more natural interface for certain structural pessimizations; and 3) High-
level Manual Pessimizer which, rather than actually performing generic operations
on high level language code, allows the coder to specify multiple ways of expressing
a given function and then have the compiler directly produce a form with
combinatoric expansion of alternatives already initiated.

In theory, it is always possible for someone to single step the activator and
monitor the changes it makes and thus figure out how to decode the brig, or even
more simply, to stop once the briq is decoded and dump the cleartext out of memory.
By using differing bytecode sequences, written in a hard-to-interpret "obfuscated"
manner, and avoiding reusing identical ones, e.g. skeleton keys, the present
invention utilizes constructs which make the work of the human decompiler hard, and
the automatic analysis impossible. The bytecode makes the an unauthorized
cracker's work on a single download arbitrarily time consuming, and not applicable to
any other download.

Sample obfuscation techniques useful with the activators of the present invention
may include
e Selecting from a large pool of algorithms for each operation so that even a
second request for the same object gets significantly different code;
* Apply behaviour-preserving operations directly to the byte code, using
compiler optimization techniques for examples.
e Have the SCDP client support multiple sets of byte codes, or cryptographically
key the byte code list itself.
o Self-modifying byte code.
e "trapdoor” byte code streams, e.g. generating a sequence of bytecodes, and a
mapping function that picks out a subset and maps the bytecode subject into
a useful algorithm. It may be necessary to define constraints and then search
a space for useful sequences.
* "Dead code" bytecodes, possibly related by pattern to existing codes as a

distraction.

49

10

15

20

25

30

WO 00/30323 PCT/US99/27113

¢ “abstain from" certain bytecodes, e.g., code has different meanings on
subsequent runs. (High level tools can simply interleave working algorithms to
produce these. Extensions include abstaining from any instruction which
references a particular location or register.

e "unary" operators for use in crypto implementations.

o Optimize the byte code mapping based on parameters of the code, e.g.,
frequency of use, unrelated factors, etc.

o When implementing crypto directly in bytecode, deliver partial key/schedules
or code sequences to generate keys instead of "standard" format keys.

e Have the byte code download additional bytecode through later callbacks, or
have the server send down byte code changes asynchronously.

e Use existing environmental data as sources of byte codes, data, keying
material, or weak entropy, such as the briq itself, or other binaries in the
environment, or even the downloaded bytecode.

|deally, obfuscations may be produced into a framework that provides information

about how they can be combined with each other, and how they can be operated

upon.

Techniques

Another way to give Activators additional strength is to make them
incomplete, so that they need to make further contact with the CAS to continue
operating. A "Technique" is a piece of code that runs in the CAS and is customized
to support such requests. Although multiple techniques could may be used, a single
Technique may serve a class of activators. A simple Technigue implementation can
be hard coded into the CAS, or, alternatively, implemented with dynamically loaded
bytecode or shared objects. The activator to Technique protocol may be a layer on
top of an existing RPC for transport from the SCDP client, eliminating the need for
the technique to have predefined messages. In the present invention, activator
bytecode and Technique bytecode may be treated as distinct languages. Technique
code may instead simply have single bytecodes for entire cryptographic routines.

in order to implement obfuscated bytecode in the activators of the present

invention, the following components are utilized: 1) bytecode interpreter; 2) a bytecode

50

10

15

20

25

30

WO 00/30323 PCT/US99/27113

assembler; 3) cryptographic bytecode routines; 4) an interface to the ARFS VxD to call in
to the activator at useful points; 5) protocol as decsribed herein which enables the
activator to communicate with the technique implementation in the CAS; 6) CAS
Activator construction functions (activator factory 710);

The reader will appréciate that the inventive system described herein
facilitates the on demand delivery of secure content over broadband networks as
well as private intranets.

The above-described invention may be implemented in either all software, all
hardware, or a combination of hardware and software, including program code
stored in firmware format to support dedicated hardware. A software implementation
of the above described embodiment(s) may comprise a series of computer
instructions either fixed on a tangible medium, such as a computer readable media,
e.g. diskette 142, CD-ROM 147, ROM 115, or fixed disk 152 of Figure 1, or
transmittable to a computer system in a carrier wave, via a modem or other interface
device, such as communications adapter 190 connected to the network 195 over a
medium 191. Medium 191 can be either a tangible medium, including but not limited
to optical or analog communications lines, or may be implemented with wireless
techniques, including but not limited to microwave, infrared or other transmission
techniques. The series of computer instructions whether contained in a tangible
medium or a carrier wave embodies all or part of the functionality previously
described herein with respect to the invention. Those skilled in the art will appreciate
that such computer instructions can be written in a number of programming
languages for use with many computer architectures or operating systems and may
exist in machine executable format. Further, such instructions may be stored using
any memory technology, present or future, including, but not limited to,
semiconductor, magnetic, optical or other memory devices, or transmitted using any
communications technology, present or future, including but not limited to optical,
infrared, microwave, or other transmission technologies. It is contemplated that such
a computer program product may be distributed as a removable media with
accompanying printed or electronic documentation, e.g., shrink wrapped software,

preloaded with a computer system, e.g., on system ROM or fixed disk, or distributed

51

10

WO 00/30323 PCT/US99/27113

from a server or electronic bulletin board over a network, e.g., the Internet or World
Wide Web.

Although various exemplary embodiments of the invention have been
disclosed, it will be apparent to those skilled in the art that various changes and
modifications can be made which will achieve some of the advantages of the
invention without departing from the spirit and scope of the invention. It will be
obvious to those reasonably skilled in the art that other components performing the
same functions may be suitably substituted. Further, the methods of the invention
may be achieved in either all software implementations, using the appropriate
processor instructions, or in hybrid implementations which utilize a combination of
hardware logic and software logic to achieve the same results.

What is claimed is:

52

_— A -
HoOwWN ArOWON N =~ O O 0O N O O bMAOwWw N -

AW N

w

1.

of:

WO 00/30323 PCT/US99/27113

A method for securely delivering content over a network comprising the steps

(a) storing at least one title on a content server operatively coupled to the
network, the title stored in unexecutable form;

(b) storing on an access server operatively coupled to the network a
location identifier of the title and data necessary to process the title into
executable form;

(c) requiring a client process operatively coupled to the network to obtain
the location identifier of the title from the access server prior to
retrieving at least a portion of the title from the content server; and

(d) requiring a client process to obtain from the access server the data

necessary to process the portion of the title into executable form.

The method of claim 1 further comprising the step of:
(e) requiring the client process to obtain a signature of the access server
and to present the signature to the content server before retrieving at

least a portion of the title from the content server.

The method of claim 1 further comprising the step of:
(e) requiring the client process to obtain from the access server time data
defining a time period in which the client process may retrieve at least

a portion of the title from the content server.

The method of claim 3 further comprising the step of:
) requiring the client process to obtain new time data from the access
server once the time period has expired and before retrieving at least a

portion of the title from the content server.

An apparatus for secure delivery of over a network comprising:

(@) acontent server operatively coupled to the network and having at least

one title stored therein unexecutable form;

53

~N OO o AW N

WO 00/30323 PCT/US99/27113

(b) an access server operatively coupled to the network and having stored
therein a location identifier of the title and data necessary to process the
title into executable form; and

(c) a client system operatively coupled to the network and containing program
logic configured to obtain from the access server the location identifier of
the title and the data necessary to process the portion of the title into
executable form.

The apparatus of claim 5 wherein the client system further comprises:

program logic configured to execute portion of the title.

The apparatus of claim 5 wherein the access server further comprises:

program logic configured to generate time data defining a time period in which

the client system may retrieve at least a portion of the title from the content server.

8.

The apparatus of claim 7 wherein the client system further comprises:

program logic configured to request new time data from the access server

once the time period has expired.

9. The apparatus of claim 5 wherein the network comprises a broadband access
network.
10. Apparatus for secure delivery of content over a network comprising:

(A) content server system connectable to the network, the content
server system comprising:
(A.1) authentication program logic, responsive to a token
received from a client process, the token containing data identifying a
time period, and configured to determine whether the client process is

authorized to access the memory at a specific time; and

54

O O 0 N OO oD W N

N O N NN N & A A A a A aa
HODN —*OQOOD\IO)(J'I-I>(».>I\)‘—ak

WO 00/30323 PCT/US99/27113

(A.2) access program logic, responsive to the token received
from the client process, the token containing data uniquely identifying
one of the titles stored in the memory, and configured to enable access
to the memory and the title uniquely identified by the token;

(B) access server system connectable to the network, the access

server system comprising:

(B.1) conversion program logic, responsive to a unique
identifier of a title supplied by a client process, and configured to
convert the unique identifier of the title into a location identifier
indicating an address on the network where the title may be accessed;
and

(B.2) activator generation program logic, responsive to a
request from a client process, and configured to generate an activator
in response thereto; and
(C) client system connectable to the content server system and the

access server system over the network, the client system

comprising:

(C.1) program logic configured to obtain from the access server
system a token, an activator and a location identifier of the content
server at which an identified title can be accessed;

(C.2) program logic configured to retrieve at least a portion of
the identified title from the content server; and

(C.3) program logic configured to execute the portion of the

identified title retrieved from the content server system.

D ;AW N

11. The apparatus of claim 10 wherein the client system further comprises an
operating system executable on the client system and wherein the client process
further comprises:

(C.4) program logic configured to mount a network file system
associated with the identified title and store in the memory of the client system, a

plurality of registry entries related to the title;

55

—

© 00 N o O AW N - AW N

s A A oA
w N -~ O

oD o W N

WO 00/30323 PCT/US99/27113

(C.5) program logic configured to intercept requests from the
operating system during title execution and redirect selected of the intercepted

request to the set of registry entries.

12. The apparatus of claim 10 wherein the activator comprises cryptographic
data.

13. The apparatus of claim 10 wherein the activator comprises at least one
bytecode and the client system further comprises:
(C.4) program logic configured to interpret and execute the

bytecode contained within the activator.

14. A method for executing an application on a local computer system without the
application being installed on the local computer system, the method comprising the
steps of:
(a) accessing a network mountable file system and set of registry entries
related to the application;
(b) mounting the network file system;
(c) storing the registry entries on the local computer system;
(d) retrieving at least a portion of the application from a remote source;
(e) executing the application under the control of an operating system on the
local computer system;
(f) intercepting requests from the operating system; and
(g) redirecting selected of the intercepted requests to the registry entries

stored on the local computer system.

15. In a computer system having a processor and a memory and an operating
system capable of executing one or more applications, an apparatus for executing
an application without installing the application on the computer system, the
apparatus comprising:

program logic configured to mount a network file system and store in the

memory a plurality of registry entries related to the application;

56

-—
- (23S B N ¢ A \V) O ©W 00 N OO s W N - o W N

0 N 4O o0 bW ON

WO 00/30323 PCT/US99/27113

program logic configured to execute at least a portion of the application retrieved
from a remote source; and

program logic, responsive to requests from the operating system, and
configured to intercept requests from the operating system and redirect selected of

the intercepted requests to the set of registry entries.

16. In aclient process executing on a local computer system operatively coupled
over a computer network to an access server and one or more sources of titie data,
a method for enabling on-demand delivery of a title comprising the steps of:
(a) obtaining from the access server a token, an activator and a network
address of a source at which an identified title can be accessed;
(b) transmitting the token to the source, the token data defining an interval of
time in which the source may be accessed:;
(c) retrieving at least a portion of the title from the source;
(d) executing the portion of the title received from the source; and

(e) obtaining from the access server a refreshed token.

17. The method of claim 9 wherein the title comprises a network mountable file

system and a set of registry entries and wherein step (d) comprises the steps of:
d.1 mounting the network file system and storing the registry entries; and
d.2 intercepting requests from an operating system executing on the local

computer system and redirecting selected of the intercepted requests to the registry

entries.

18. In a server apparatus comprising a processor, memory and a network
interface, and connectable to a computer network, a method for enabling requesting
processes to access a title comprising the steps of:
(a) authenticating a launch string from a requesting process;
(b) converting a unique identifier of a title received from a
requesting process to a location identifier indicating an address on the computer
network where the title may be accessed;

(c) generating an activator; and

o7

—_

©w O N OO s, wWw N

10
11
12

O 0 N O o B~ W N -

—

[>T B - 2 V)

WO 00/30323 PCT/US99/27113

(d) forwarding the activator to the requesting process over the

computer network.

19. In a server apparatus comprising a processor, memory and a network
interface, the server apparétus connectable to one or more client processes a
computer network, a method comprising the steps of:

(a) receiving a token from a client process through the network interface,
the token containing data identifying a time period and data uniquely identifying a
title;

(b) determining whether the client process is authorized to access the
title at a specific time;

(c) if the client is authorized in step (b), accessing the memory and a
titte uniquely identified by the token; and

(d) supplying to the client at least a portion of the title identified by the

token.

20. The method for selectively enabling delivery of a title over a computer network
to one or more requestor processes comprising:

(a) providing, under predetermined conditions, a requestor process with
access to selected portions of a title, the title being stored at an address on the
computer network in unexecutable form;

(b) providing the requestor process with data useful in processing the title
from unexecutable form to executable form; and

(c) allowing execution of selected portions of the title on the computer

system while preventing the title from being installed on the computer.

21. A method for delivering tities over a computer network to one or more
requestor processes comprising:

(a) receiving from a requestor process data identifying a title;

(b) providing the requestor process with data identifying a location on the
computer network where the title executables may be accessed and authorization

data necessary to access the title; and

58

WO 00/30323 PCT/US99/27113

(c) receiving payment information from the requestor process.

59

PCT/US99/27113

WO 00/30323

1/21

AHOMLIN

0L1

161

(uv Howd) | @4nbif

LGl —>

SG1

d3TIOUINOD

JOVINILNI ¥3TIOWINOD || ¥3TouINOD | 3ISNOW
MHOMLIN O3aIA - wWa ANV QHYOSAIN YITIOULINOD
| A o
| ol \— o9t LdNYUALNI
A 4 Y
sng Ggel I\
YITIOULNOD
sng
Y3ITIOULNOD
iSIa | mwjomEoo mm._._omhzoo sl —"
ost— ¢ syl —/ - om =/
Y3ITIOYLNOD
_w>_mo ¥S1a omx_..__ IAIHA WOY a9 || 3niya 3LL3NsIa AHOWIN
<
vgL — t\. __ i - g, ozt
ovL vl YITIOULNOD
Ot
61
ZS1 1 / rAg) /
964 —>.

PCT/US99/27113

2/21

WO 00/30323

od “1sa
- v e4nbjd
802 wou/ od sa
‘ H3AH3S
14vd HOLIMS
——————] e T T T —— - o . e ———— ._
I - I
ittt - I
[|
ocz—{ g8t | | NOLLVNIWEL |
| 27| uoanaATIavo |
| |
_ “
“ SN0 [S602 i
8«__ “
_ L !
dsi |)
0ez | e_.w |
{ R T -
\ 4 4 L
S0Z e - >d
GN2LNOUd WILSAS ONLLYE3dO
ske\ e.«w JOUIWWOI @ S
Y A m —l _
| vd
iNouzzuoss | | swo B 3| oavy HL o
a | oxaasay [
0 " “ N 812
:
usHoNV1 [T
g “|1 lllll |1..., ™~ o
/
t4%4 7

214

voe

PCT/US99/27113

321

WO 00/30323

ISMOUHE/dOHS

mw«\

gz a4nbiy | 22N
- , INIINOD AV3Y by ——————p;
YIAHIS 1dvd N3MOL 13S Oy axA 14vy
7 - 43aVIH av3y “1HN NIdO 60v
1dAYHO3a
%02 AT 2l ﬁ 812 \
N
03X3 SMOANIM Jl . aé,_nm“_ma‘
/ ddV NNy HS3YI3Y
9% gy HONNVT SLVILNI
Rl 80Y P ¢/
NOLLVOIddV HONAV1S0) ——»
Y3SMOHE g3M . HIHONAVT | I o2z
ONIULS 1s3n03Y 1
HONNV ISYHOUNd
NUNL3Y q90p —|
gavob NOISHIANOD |
_ ._.m_._.h.am__mn_._ww 14N OL NYN ©90H —|
Lob —— 0y ONILLS HONAV |_3svHound
NSIS SV9 3AVH UNY3d LoV
ISVYHOUNd /
£0b AGNIINOHS >
FOHIWWOI®
INOHI3HOLS)
e0z aNaiove ")
304awwooe [« 7 ,
, NOLLOVSNVHL

ERTTE MY

PCT/US99/27113

WO 00/30323

4/21

ve ainbi-

[wanuss _
| v 902

— 612

~~ 912

802
$
WHO41V1d 3HVMAHVH LSOH
W3LSAS DNILYHIO
1IN 4adS
\ 4
X y
«N«\\ﬁt\ axA L4V
X
a1z aXA asduv q
LIZ | ﬁ
yasmoud o2z _ HIHONAVT
y3IAY3S
02 .SVD

0 —N\

PCT/US99/27113

5/21

WO 00/30323

ge ainbi

w_,w\— axA as3dy _

YIHONNY _~

Advyan
02z | v NOLLVOINNWINOD
voe QXA aS4dv

W3LSAS
ONLLYHIAO <— 3OVUIINI (s) Loarao/31NAOW
wod4/oL H3sn 7IOHINOD
s0e/

AdvHd8I7 OdY SV

(411 \ q
oLz _ H3IAHIS SVO

PCT/US99/27113

WO 00/30323

6/21

o¢ ainbi

. @XA asdyv
vie
Advdsarn
NOLLVIINAWINOD
HOLVALLOVY axA asdgv

§103rg0

Y3134dH3INI

3009 31A89 /AINAON TOHLNOD
808 \ ole \ | ﬁ
022 H3HONNV

PCT/US99/27113

WO 00/30323

7/21

ag e4nbid

90z \— H3AY3S 14vd _

!

QXA L4vY 9l€

} . :
Advdgil 14vd Odd
s103rg0
/AvVINAaon
TJOHLINOD
219071 HNIHOVI Dldg
o«m\ . wwm.\ ﬁ
NNN\ h .

_ X
81z \—i axA asddv

WO 00/30323 PCT/US99/27113

USER SELECTS TITLE

401

SCDP CLIENT BROWSER DIRECTED TO

eCOMMERCE SYSTEM BY DIGITAL OFFER 402
USER NEGOTIATES TITLE PURCHASE 403
WITH eCOMMERCE SYSTEM
'@eCOMMERCE SYSTEM GENERATES 404A

LAUNCH STRING

CAS DIGITALLY SIGNS LAUNCH STRING l/ 404B

SCDP CLIENT RECEIVES LAUNCH STRING J/ 4058

AND INVOKES LAUNCHER MODULE

" LAUNCHER PROVIDES URN TO CAS FOR

406A
URN TO URL CONVERSION
LAUNCHER RECEIVES URL AND 4068
REQUESTS PURCHASE FROM CAS

() Figure 4A

WO 00/30323 PCT/US99/27113

9/21

CAS VERIFIES LAUNCH STRING AND
SENDS RAFT TOKEN AND ACTIVATOR TO
' LAUNCHER

407

LAUNCHER LAUNCHERS TITLE 408

RAFT VxD READS TOKEN HEADER l/ 409
RAFT VxD SENDS TOKEN TO RAFT SERVER I/ 410

|

RAFT VxD READS TITLE CONTENT FROM 411
RAFT SERVER AND TRANSMITS TO
ARFSD VxD
ACTIVATOR DECRYPTS AND L-a12

DECOMPRESSES BRIG DATA (TITLE)

TITLE EXECUTED BY SCDP CLIENT LOCAL 413
OPERATING SYSTEM USING INSTALLATION i
ABSTRACTION

—

ACTIVATOR REQUESTS TOKEN REFRESH; 414
CAS POSTS PURCHASE WITH e COMMERCE |~
SYSTEM; CAS ISSUES REFRESHED TOKEN

<> Figure 4B

WO 00/30323 PCT/US99/27113

10/21

CSTaRT

502

INVOKE LAUNCHER

LAUNCHER EXTRACTS URN 504
AND TRANSMITS TO CAS

AND PASSES CONTENT TO RAFT VxD
LAUNCHER USES HEADER CONTENT 510
TO PERFORM TESTING |

;

LAUNCHER REQUEST PURCHASE

RAFT SERVER READS URL HEADER I/ 508

512

TOKEN
RECEIVED
?

TOKEN AND ACTIVATOR

LAUNCHER INSTALLS RAFT |/515

Figure 5A

WO 00/30323 PCT/US99/27113

11/21

LOAD RAFT TOKEN INTO
RAFT VxD

I}

RAFT VxD TRANSMITS TOKEN I 520

TO RAFT SERVER
ARFSD VxD READS
SUPERBLOCK FROM BRIG

N

|
1

LAUNCHER RUNS TITLE I/ 526

EXECUTABLE

—]

RAFT VxD PULLS DATA BLOCK(s) | 628

FROM RAFT SERVER

|

ARFSD VxD USES ACTIVATOR | 539
TO DECRYPT BRIG DATA AND
PERFORM INTEGRITY CHECKS

Figure 5B

WO 00/30323 PCT/US99/27113

12/21

©) ©

ARFSD VxD MAINTAINS
INSTALLATION ABSTRACTION

532

 LAUNCHER REQUESTS NEW 536
TOKEN/ACTIVATOR

- INSTALL NEW TOKEN/ 538
ACTIVATOR PAIR

o

Figure 5C

WO 00/30323 PCT/US99/27113

13/21

MOUNT NETWORK l/ 500

FILE SYSTEM

v

STORE REGISTRY
ENTRIES LOCALLY

602

EXECUTE APPLICATION/CACHE 604
AND DECRYPT DATA BLOCKS

OP SYS
REQUEST
UEST

REDIRECT REQUEST TO

REGISTRY ENTRIES 6os

EXECUTION
TERMINATED
2

UNMOUNT FILE svsTEMJ/612

Figure 6

WO 00/30323

PCT/US99/27113

14/21

/7oo
\ ~ CAS SERVER
\ CAS APPLICATION

DATA BASE INTERFACE 704

/710 /712 /708
ACTIVATOR URL URN -> URL
FACTORY VERIFICATION | | CONVERSION

REMOTE PROCEDURE CALL |

— 702

Figure 7A

WO 00/30323 PCT/US99/27113

15/21

CAS RECEIVING LAUNCH
STRING FROM e COMMERCE
SYSTEM

720

CAS DIGITALLY SIGNS

722
LAUNCH STRING

CAS FORWARDS LAUNCH

724
STRING TO SCDP CLIENT

FROM SCDP CLIENT

v

" CAS CONVERTS URN TO 798
URL AND TRANSMITS TO
: i SCDP CLIENT

v

CAS RECEIVES PURCHASE
'REQUEST FROM SCDP CLIENT

CAS RECEIVES URN |/ 726

730

CAS VERIFIES LAUNCH STRING 732

CAS GENERATES ACTIVATOR | _ 734

CAS TRANSMITS ACTIVATOR
AND RAFT TOKEN TO
SCDP CLIENT

736

° Figure 7B

WO 00/30323 PCT/US99/27113

16/21

REFRESH

REQUEST
?

CAS POSTS PURCHASE 740
WITH eCOMMERCE
SYSTEM

CAS ISSUES NEW
RAFT TOKEN

742

Figure 7B com.

PCT/US99/27113

WO 00/30323

17/21

|1 @inbi4

8:/ mc:./ ecvw/ «c——/
_ yIgNNN yIGWNN
'SMLVLS | HLONITIIDIOVA | 39N3npas | 3uNa300Hd
| HIAVIH 13M0Vd 1dvd
0041 /!
6 oinbi4
26\ 016 806 906y Sm/ 206
FHNLYNOIS OV NIVWOQ dAL SQ00D | @13YOLS NHA
SV2 ANR NOLLdIHOSENS 3dAL SAO
HNIHLS HONNY
Sm\
g ainbi4
808 908 08 c08

ci8

FUNLVYNDIS HIDNIT NHN

A
A NI)OL 14vH
008

JNLL LYVIS

ss3yaav di | 3wl ana

WO 00/30323

18/21

PCT/US99/27113

/ 1000
\ RAFT SERVER
\ RAFT APPLICATION

POSIX FILEVO

1006 | - 1002

NETWORK/RPC/RAFT PROTOCOL

1012

1010 1004
/1008 / /
FILE SNMP
SNMP
SYSTEM | MASTER
INTERFACE INSTRUMENTATION AGENT

Y
< NETWORK

Figure 10

WO 00/30323 | PCT/US99/27113

19/21

BRIQ HEADER

. | [-1204
CRYPTOBLOCK
1206
SUPERBLOCK

DIRECTORY |

_—1208A
FILE
FILE

FILE

__— 1208N
| ‘ DIRECTORY l —

FILE
FILE

* _~ 1200

FILE

Figure 12

PCT/US99/27113

WO 00/30323

20/21

N 3a003LA8

oicl

€ 300031Ad

cocl

viva
NOLLVZIHOHLNY

NaMOL

HOLVALLOY

WO 00/30323 PCT/US99/27113

21/21

1412

| » 10 OFFER CREDIT .
PROCESSING SERVICES

\ 4

T~ BACKEND
I - 1404

1410

1408

[—
T~] FRONTEND I 1402
1200 —_| |
eCOMMERCE SERVER
OPERATING SYSTEM
HOST HARDWARE PLATFORM

Figure 14

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

