7078891 A1 I 0T 00 OO

>
=
—

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 July 2007 (12.07.2007)

lﬂfb A0 00O

(10) International Publication Number

WO 2007/078891 Al

(51) International Patent Classification:
GOG6F 11/14 (2006.01)

(21) International Application Number:
PCT/US2006/048074

(22) International Filing Date:
15 December 2006 (15.12.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/323,092 30 December 2005 (30.12.2005) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PETERSEN, Leaf
[US/US]; 101 E. San Fernando Street #540, San Jose, CA
95112 (US). SAHA, Bratin [IN/US]; 4301 Norwalk Drive
U 206, San Jose, CA 95129 (US). ADL-TABATABAI,
Ali-Reza [US/US]; 2125 Quinn Avenue, Santa Clara, CA
95051 (US).

(74) Agents: VINCENT, Lester, J. et al.; BLAKELY,
SOKOLOFF, TAYLOR & ZAFMAN LLP, 12400 Wilshire
Boulevard, 7th Floor, Los Angeles, CA 90025 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: SOFTWARE ASSISTED NESTED HARDWARE TRANSACTIONS

Execution
Resources 105

Roll-back module 120

|

126
Logging 127 Monitoring
module 128 module
115 110
Memory 125

100

(57) Abstract: A method and apparatus for efficiently executing nested transactions is herein described. Hardware support for
execution of transactions is provided. Additionally, through the use of logging previous values immediately before a current nested
transaction in a local memory and storage of a stack of handlers associated with a hierarchy of transactions, nested transactions are
potentially efficiently executed. Upon a failure, abort, or invalidating event/access within a nested transaction, the state of variables
or memory locations written to during execution of the nested transaction are rolled-back to immediately before the nested trans-
action, instead of all the way back to an original state of the variables or memory locations before an enclosing transaction. As a
result, nested transactions may be re-executed within enclosing transactions, without flattening the enclosing and nested transactions
to re-execute everything.

WO 2007/078891 A1 {000 0T 0000 0000 O

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gagzette.

WO 2007/078891 PCT/US2006/048074

SOFTWARE ASSISTED NESTED HARDWARE TRANSACTIONS

FIELD

This invention relates to the field of processor execution and, in particular, to
providing for efficient execution of nested transactions.

BACKGROUND

Advances in semi-conductor processing and logic design have permitted an
increase in the amount of logic that may be present on integrated circuit devices. Asa
result, computer system configurations have evolved from a single or multiple
integrated circuits in a system to multiple cores and multiple logical processors
present on individual integrated circuits. An integrated circuit typically comprises a
single processor die, where the processor die may include any number of cores or
logical processors.

As an example, a single integrated circuit may have one or multiple cores.
The term core usually refers to the ability of logic on an integrated circuit to maintain
an independent architecture state, where each independent architecture state is
associated with at least some dedicated execution resources. As another example, a
single integrated circuit or a single core may have multiple logical processors for
executing multiple software threads, which is also referred to as a multi-threading
integrated circuit or a multi-threading core. Multiple logical processors usually share
common data caches, instruction caches, execution units, branch predictors, control
logic, bus interfaces, and other processor resources, while maintaining a unique
architecture state for each logical processor

The ever increasing number of cores and logical processors on integrated
circuits enables more software threads to be executed. However, the increase in the
number of software threads that may be executed simultaneously has created
problems with synchronizing data shared among the software threads. One common
solution to accessing shared data in multiple core or multiple logical processor
systems comprises the use of locks to guarantee mutual exclusion across multiple

accesses to shared data. However, the ever increasing ability to execute multiple

WO 2007/078891 PCT/US2006/048074

software threads potentially results in false contention and a serialization of
execution.

Another solution is using transactional execution to access shared memory to
execute instructions and operate on data. Otten transactional execution includes
speculatively executing a grouping of a plurality of micro-operations, operations, or
instructions. During speculative execution of a transaction by a processor, core, or
thread, the memory locations read from and written to are tracked to see if another
processor, core, or thread accesses those locations. If another thread does alter those
locations, the transaction is restarted and it is re-executed from the beginning.
Currently, values of memory locations to be changed in a transaction are saved
elsewhere, so if the transaction needs to be re-executed the original state of all
memory/registers may be restored.

However, as transactional execution has progressed, software programmers
have begun to use nested transactions, i.e. a grouping of instructions/operations to be
executed within and part of another outer/enclosing group of instructions/operations.
As a consequence, current hardware for support for nested transactions has resulted in
inefficient execution of nested transactions.

For example, assume an outer transaction and an inner transaction nested
within the outer transaction is to be executed. Current hardware support typically
saves values of memory locations to be changed before entering the outer transaction.
Yet, when executing in the inner transaction, if an abort or invalidating event occurs,
the state of memory locations is usually rolled-back to the original state of the
memory locations requiring a re-execution of both the outer and the inner transaction.
This simple example is magnified where more nested transactions exist within each
other. Specifically, if an abort occurs within a nested transaction deep in a hierarchy
of transactions, numerous nested transactions that were not associated with the abort

would have to be re-executed for no reason.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not intended to be

limited by the figures of the accompanying drawings.
2

WO 2007/078891 PCT/US2006/048074

Figure 1 illustrates an embodiment of a processor to efficiently execute nested
transactions.

Figure 2 illustrates an embodiment of a logging module at different points in
pseudo-code including nested transactions.

Figure 3 illustrates another embodiment of a processor to efficiently execute
nested transactions.

Figure 4 illustrates an embodiment of a flow diagram for executing a current
level nested transaction within a previous level transaction.

Figure 5 illustrates an embodiment of a flow diagram for executing a nested
transaction.

DETAILED DESCRIPTION

In the following description, numerous specific details are set forth such as
examples of specific hardware support for transactional execution, specific types of
local memory in processors, and specific types of memory locations, etc. in order to
provide a thorough understanding of the present invention. It will be apparent,
however, to one skilled in the art that these specific details need not be employed to
practice the present invention. In other instances, well known components or
methods, such as coding of transactions in software, demarcation of transactions in
hardware, architectures of multi-core and multi-threaded processors, and specific
operational details of microprocessors, have not been described in detail in order to
avoid unnecessarily obscuring the present invention.

The method and apparatus described herein are for providing software
assistance for nested hardware transactions in processors. However, the methods and
apparatus for providing software assistance for nested hardware transactions are not
so limited, as they may be implemented on or in association with any integrated
circuit device or system, such as cell phones, personal digital assistants, embedded
controllers, mobile platforms, desktop platforms, and server platforms.

PROCESSORS

Referring to Figure 1, an embodiment of processing element 100, which is

capable of transactional execution, is illustrated. Processing element 100 may be any

element for executing instructions or operating on data. Examples of processing
3

WO 2007/078891 PCT/US2006/048074

element 100 include a processor, microprocessor, multi-resource host processor, a
microprocessor, a processing core, a logical processor, and an embedded processor, a
multi-threaded processor, and a multi-core processor.

In one of the examples, reference to a multi-resource processor is made. Often
a resource is referred to as a processor core, logical processor, or threaded processor.
Consequently, a multi-resource processor includes a processor with multiple cores,
logical processors, threads, or any combination thereof. A core, as used herein, refers
to any logic located on an integrated circuit capable to maintain an independent
architecture state, wherein each independently maintained architecture state is
associated with at least some dedicated execution resources. In contrast, a logical
processor typically refers to any logic located on an integrated circuit capable to
maintain an independent architecture state, wherein the independently maintained
architecture states share access to execution resources

Processor 100 may include any combination of cores or threads, such as a
multi-core processor where each core supports execution of multiple software threads.
Note that processor 100 is capable of individual execution within a system or may be
combined with other processing elements in a multiple physical processor system. In
one embodiment, to support speculative execution of transactions, processor 100 is
capable of speculative execution. Other potential execution capabilities of processor
100 include in-order execution, out-of-order execution, serial execution, parallel
execution, fixed point execution, floating-point execution, or other well-known types
of execution. Specific examples of execution logic and resources are discussed below
in reference to the execution resources section.

TRANSACTIONS/INVALIDATING EVENTS

Transactional execution usually includes grouping a plurality of instructions or

operations into a transaction or a critical section of code. In some cases, use of the
word instruction refers to a macro-instruction which is made up of a plurality of
micro-operations. There are commonly two ways to identify transactions. The first
example, includes demarcating the transaction in software. Here, some software
demarcation is included in code to be identified during execution. In another

embodiment, which may be implemented in conjunction with the foregoing software
4

WO 2007/078891 PCT/US2006/048074

demarcation, transactions are grouped by hardware or recognized by instructions
indicating a beginning of a transaction and an end of a transaction. Begin transaction
and end transaction instructions are discussed in more detail in reference to Figures 4
and 5 below.

In a processor, a transaction is either executed speculatively or non-
speculatively. In the second case, a grouping of instructions is executed with some
form of lock or guaranteed valid access to shared memory locations to be accessed.
In the alternative, speculative execution of a transaction is more common, where a
transaction is speculatively executed and only committed upon verification that no
invalidating events occurred during execution of the transaction.

An invalidating event refers to an event generated by the system, a user, or
another resource, not associated with the execution of the current transaction, that
requires re-execution of the transaction or invalidation of the transaction. For
example, assume processor 100 is a two-core processor. The first core is executing a
transaction accessing shared memory, which includes a read from the shared memory
and a write-back to the shared memory. During speculative execution of a current
transaction by the first core, if the second core writes to the shared memory location
that the first core read from an invalidating event has occurred. The current
transaction is invalid, because a shared memory location read from was written to by
the second core; therefore, the location read from is potentially bad/outdated data.

Another example includes the write to a shared memory location, where the
second core reads from the same memory location. Here, the write is potentially
invalid as it invalidates the read the second core just completed. In these examples,
the second core was “another resource” not associated with the transaction, such as
not assigned to execute the transaction or not executing the transaction, that made an
invalidating access.

However, other examples of invalidating events include system generated
interrupts, user-generated interrupts, an access by another resource to a memory
location to be read from or written to during pendancy of a current transaction, or any
other event that cause a manipulation of a shared memory location that a current

transaction is reading from or writing to. A current transaction is considered
5

WO 2007/078891 PCT/US2006/048074

“pending” when it is being executed, i.e. a begin transaction instruction has been
executed, but an end transaction has not been executed and the data from the
transaction has not been committed or retired. In addition, another resource or other
resource is not limited to a core, but may also include a logical processor, a hardware
thread, a software thread, as well as another remote agent/resource.

EXECUTION RESOURCES

Figure 1 also illustrates execution resources 105, which are to execute
transactions. Execution resources 105 may also refer to hardware, logic, or
modules to support transactional execution. As an example, execution
resources 105 are to execute a first transaction and a second transaction
nested in the first transaction. A transaction is nested within another
transaction, when either in software or hardware, a begin transaction
dermarcation for an inner transaction is within a transaction demarcation for
an outer transaction.

Quickly turning to Figure 2, an embodiment of pseudo code nested
transactions is illustrated. A begin_transaction call identifies either a software
construct or a hardware execution of a begin transaction instruction, while an
end_transaction call identifies also in software or hardware an end transaction
instruction. Here first begin_transaction instruction 272 and first end_transaction
instruction 232 illustrates the bounds of a first transaction. Second begin_transaction
instruction 217 and second end_transaction instruction 227 outline the bounds a
second transaction that is included in the bounds of the first transaction. In other
words, the second transaction is nested within the first transaction. Figure 2 is
discussed in more detail below in the logging module section.

Note that a reference to a first and second transaction herein is arbitrary, in
that, a first transaction references only a starting point within a hierarchy of nested
transactions to view the interplay of operations between an outer transaction and inner
transaction nested within an outer transaction. Reference to a first and second
transaction does not necessarily refer to a numerical first and second transaction, but
rather, may refer to the order/nesting of transactions, i.e. the second within the first.

6

WO 2007/078891 PCT/US2006/048074

In fact, the first transaction may be a nested transaction, as well as the 100™
transaction executed in an execution flow. For example, a first transaction may refer
to a nested transaction nested three levels down from a top-level transaction, and the
second transaction may refer to the fourth level transaction nested within the first
transaction.

Referring back to Figure 1, in one embodiment execution resource 105
includes logic to execute a begin transaction instruction at the start of a transaction, as
well as execute an end transaction instruction at the end of a transaction, such as the
instructions shown in Figure 2. Execution resources 105 may also include logic to
retire transactions or instructions associated with transactions, as well as logic to
buffer writes and commit writes to memory. Other well-known transactional
execution resources and logic may also be included. A few examples include logic to
detect data conflicts, to buffer speculative updates, to make updates atomically visible
at transaction commit, to execute instructions, and to operate on data.

Other common modules, logic, and functional units not illustrated in Figure 1
may also be included, but are not required to be included, in processor 108, such as
any one or any combination of the following: a data path, an instruction path, a virtual
memory address translation unit (a translation buffer), an arithmetic logic unit (ALU),
a floating point calculation unit capable of executing a single instruction or multiple
instructions, as well as capable to operate on single or multiple data operands in serial
or in parallel, a register, an interrupt controller, an advanced programmable interrupt
controller (APIC), a pre-fetch unit, a fetch unit, a decode unit, a cache, an instruction
retirement unit, an instruction re-order unit, and any other logic that is be used for
fetching, executing, or operating on instructions and/or data.

MEMORY

Memory 125 includes any memory location to be accessed by execution
resources 105, processing resources, such as cores, logical processors, or threads. In
one embodiment, memory 125 is a shared memory shared by at least one other
processing resource, such as a core, thread, logical processor, or remote agent.
Examples of memory 125 include a cache, a plurality of registers, a register file, a

static random access memory (SRAM), a plurality of latches, or other storage
7

WO 2007/078891 PCT/US2006/048074

element. Note that processor 100 or any processing resources on processor 100 may
be addressing a system memory location, a virtual memory address, a physical
address, or other address when reading from or writing to a memory location.
Memory 125 will be discussed in more detail in reference to the exemplary
embodiments below, when discussing memory location to be written to or read from,
states of memory locations, or rolling-back/restoring states/values of memory
locations.

As a specific illustrative example, assume that memory 125 is a cache
memory, such as a trace cache, a first-level cache, a second-level cache, or a higher-
level cache. Cache 125 includes cache lines 126, 127, and 128, which may also be
referred to as memory locations within memory Z25. As another example, assume
memory 125 is a plurality of registers used by a processing element or resource as
execution space or scratch pad to store variables, instructions, or data. Memory
locations in grouping of registers 125 are registers 126, 127, and 128, in this example.

MONITOR MODULE

In Figure 1, monitoring module 714 is illustrated coupled to memory 125;
however, monitor module 170 may be wholly or partially implemented in memory
125, as well as implemented elsewhere in processor 100. A module may be
implemented in hardware, software, firmware, or any combination thereof.
Commonly, module boundaries vary and functions are implemented together, as well
as separately in different embodiments. As an example, which is discussed in more
detail below, a cache coherency protocol is used to monitor/track invalidating
accesses to memory 125, where bits in the cache are used to represent invalidating
accesses and other hardware, software, or firmware determines that an invalidating
event has occurred based on the value of those bits. Here, monitoring module varies
across boundaries, as parts are implemented in memory 125, as well as in other
hardware or firmware in processor 100, as well as software executed on processor
100.

Monitoring module 7110 is to detect an invalidating event during execution of
a transaction. In one embodiment, monitor module 710 is part of the hardware

support for executing transactions, as discussed above. Here, monitor module 110 is
8

WO 2007/078891 PCT/US2006/048074

implemented in hardware to detect/monitor invalidating accesses to locations memory
125 to be changed/written to during execution of a transaction. As stated above an
invalidating event refers to an event generated by the system, a user, or another
resource, not associated with the execution of the current transaction, that requires re-
execution of the transaction or invalidation of the transaction. For example, assume a
current transaction writes to memory locations 726 and 127. A write to memory
location 126 or 127 by another resource is monitored/detected by monitoring module
110 as an invalidating access.

As a first example, monitoring module 710 includes a cache coherency
protocol to detect invalidating accesses to memory 725. In one embodiment of a
cache coherency protocol there is a bit/flag for every line of the cache/memory
location, such as lines 126 — 128, to represent if an invalidating access occurred to a
corresponding memory location during execution of a transaction.

To simplify the example, assume that a transaction is executing and is to write
to line 127 of cache 125. If a predetermined flag/bit in cache line 127 or a bit/flag
associated with cache line 127 represents a first logical value, such as a high logical
value, then there has been no invalidating access. However, upon an access to cache
line 127 that would invalidate the current transaction, the flag/bit is flipped to
represent that an invalidating access has occurred. Essentially, monitoring module
110 has detected an invalidating access and represented that in cache 125. Detecting
of an invalidating access may include any known-method, such as comparing a
resource ID, such as a thread ID or core ID, with that of the ID executing the current
transaction.

Note that specific reference to a high logical value for one implementation
was used in the example above; however, conversely, a low logic level may represent
that there was no invalidating access. Often, the use of logic levels or logical values
is also referred to as 1’s and 0’s, which simply represents binary logic states. For
example, a 1 refers to a high logic level and 0 refers to a low logic level. In many
older systems a high voltage level was represented by a voltage, e.g. 5V, and a low
voltage level, e.g. OV. As another specific example, a high logic level is at 1.2V and a

low logic level is at .3V. However, a high logic/voltage level may refer to any voltage
9

WO 2007/078891 PCT/US2006/048074

level above a threshold value, and inversely, a low logic level may refer to any
voltage level below the threshold value. In addition, there may be more than two
logical levels in a cell or waveform. As an example, a single waveform may represent
four different logical values at different voltage levels.

Other methods of using hardware or software to monitor/track invalidating
accesses to a memory, such as memory 125 may be used. One example of tracking
invalidating accesses using at least in part tracking logic, such as an advanced load
address table (ALAT), is discussed in, “Transaction based shared data operations in a
multiprocessor environment,” with serial no. 11/027,623. Other standard hardware
support may also be used. Two examples of standard hardware support for
transactions are discussed in the following articles: (1) “Transactional Memory:
Architectural support for lock-free data structures,” by Maurice Herlihy and J. Eliot B.
Mossand in “Proceedings of the 20th Annual International Symposium on Computer
Architecture,” May 1993, pp. 289-—300; (2) “Virtualizing Transactional Memory,” by
Ravi Rajwar and Maurice Herlihy and Konrad Lai in "Proceedings of the 32nd
Annual International Symposium on Computer Architecture,” June 2003, pp. 494--
505.

LOGGING MODULE

Also illustrated in Figure 1 is logging module 115 and rollback module 720,

which may be implemented together, separately, or vary across each other’s
boundaries. As stated above, a module may be implemented in hardware, software,
firmware, or any combination thereof. Commonly, module boundaries vary and
functions are implemented together, as well as separately in different embodiments.
Logging module is to take a snapshot of values in memory, record states of memory
locations, store handlers, store stacks of values in memory, store stacks of abort
handlers, and/or perform other functions to enable roll-back/restore of memory
locations to values immediately preceding a nested transaction.

Turning to Figure 2, an embodiment of a log at different points in pseudo-
code is illustrated. Figure 2 illustrates pseudo code on the left, and at checkpoints
through the pseudo code, such as checkpoints 210, 215, 220, 225, 230, and 235, log

200’s operation is illustrated. At the highest level, instruction 205 is shown, i.e. X =
10

WO 2007/078891 PCT/US2006/048074

0, which represents a store, write, or other representation of setting a memory location
X or a memory location referenced by address X to a simple numerical value, 0. In
addition, further calls to variable, address, or memory location X operate in a similar
manner. As stated above, X may be any memory location such as a cache location,
register, variable space, system memory, etc.)

First, it is worth noting that a first transaction, which is a top-level transaction
as it is not nested within another transaction, begins at begi_transaction 1 instruction
212 and ends at end_transaction_1 instruction 232. Consequently, a second
transaction, which is a nested transaction being within the bounds of the first
transaction, starts at begin_transaction_2 217 and ends at end_transaction_2 227.
Finally, a third transaction, which is nested within the second transaction, starts at
begin_transaction_3 222 instruction and ends at end_transaction_3 instruction 224.
Labeling of begin and end of transactions is shown as separate instructions with
different reference numerals to illustrate that matching of the beginning and ending of
transactions. However, begin_transaction_1 instruction 272, begin_transaction_2
instruction 217, begin_transaction_3 instruction 232 may be the same instruction to
be executed at three different periods of time during execution. The same applies to
the end _transaction instructions.

Starting at line 205 memory location X gets a value 0. At checkpoint 210,
before entering the first transaction, there are two options to begin logging. In a first
option, where all addresses written to/changed are enumerated, i.e. known, then log
200 stores a first set of values/takes a snapshot of memory locations, such as X, to be
changed in the first transaction. Here, before entering the first transaction or at the
start of the transaction before executing a first instruction in the transaction, the
current value/snapshot of memory location X is taken and stored in log 200, as
represented by entry 211 including X = 0.

As a second option, where not all addresses to be written to are known,
executing of the first transaction begins, and during the transaction but immediately
before changing/writing to a memory location, the snapshot or storing of a state of the

memory location to be changed/written to is then stored in entry 211.

11

WO 2007/078891 PCT/US2006/048074

Therefore, upon execution of the first transaction, if an abort, failure, or
invalidating access occurs, the memory location X that was changed is able to be
rolled-back/restored to its original state immediately before the first transaction from
entry 211 in log 200. However, assuming execution continues to checkpoint 215
memory location X now has a value of 1 from operation/execution of instruction 213.
Now, in one embodiment a logging module, which includes log 200, is to take a
second-level snapshot of a second-level value in a memory location to be changed
during execution of the second transaction.

To illustrate, assume that the program flow is at checkpoint 215, before
entering the second transaction, which is at a second-level and nested within the first
transaction. At this point there the same two options for logging exist: (1) log before
any locations are written to or (2) log as execution goes along immediately before any
writes. Here, the second-level value is the value written to X at line/instruction 213,
as it is the value at the same level as the second transaction. The second transaction is
at a second-level as it is nested within another transaction, which is deemed the first-
level. As aresult, a second-level snapshot of a second-level value, i.e. 1 from line
213, in a memory location to be changed during execution of the second transaction,
such as X which is changed/written to in line 218. Here, the second level-snapshot
includes the storing of the second-level value, 1, in log 200, which is seen at entry
216.

It is worth noting at this point, that log 200 may be implemented in any
manner to track values, such as regular storage in a stack configuration. In this
example, the second-level value of 1 is stacked on the first-level value of 0. To
illustrate this functionality, assume an abort occurs at line 278. Instead of previous
transactional execution that would flatten nested transactions and restore X to its first-
level original state of 0, the state of X is able to be rolled-back to just checkpoint 215
where X has a value of 1, from the assistance of log 200. Additionally, if execution
had to be rolled back again to checkpoint 210 and the value 1 had been popped off a
stack configuration to roll-back previously, then the state of X may further be rolled-
back to 0 at checkpoint 210 based on log 200.

12

WO 2007/078891 PCT/US2006/048074

It should also be apparent that reference to a first transaction and a second
transaction nested within a first transaction does not necessarily refer to a top-level
transaction, such as the first transaction in Figure 2, and the second transaction does
not necessarily refer to the first nested transaction, as in Figure 2. For example, a
first transaction may be the second transaction in Figure 2, which is a nested
transaction already, while the second transaction nested within the first transaction
may be the third transaction that is nested in the second transaction of Figure 2.
Basically, the first and second transaction may be viewed at any level in a hierarchy of

nested transactions.

Continuing the example, from above, assume that execution has continued to
checkpoint 22¢. At this point, the third transaction is a current-level transaction or an
inner transaction, while the second transaction is the outer transaction, enclosing
transaction, or previous-level transaction. Once again, X is to be changed in the
inner-level transaction, so a state of the previous-level or second-level memory
location to be changed during execution of the transaction is stored in log 200. Here,
X has a value of 2, so the value 2 is pushed onto a stack in entry 221 including 0, 1,
and 2. Similarly, if an abort occurs at this point, memory location X is restored to the
previous-level value of 2 and the third transaction may be re-executed without re-
executing both the first and second transactions.

Upon end-transaction_3 instruction 224 when the third transaction is to be
ended, retired, and/or committed a write log is merged into the write log of the
enclosing or previous level transaction. In the embodiment above, values were
appended or popped onto the entries store in log 200. As a result upon executing an
end_transaction instruction, the nested transaction is to be committed, so the log pops,
merges, or removes the value appended for the current-level transaction that is being
ended. Therefore, upon an abort at this point the second transaction is able to be re-
executed and the original state of the memory location X is able to be restored from
the log to the value before entering the second transaction of 1. This embodiment is
illustrated in entry 226.

13

WO 2007/078891 PCT/US2006/048074

However, any other implementation of storing the values may be used. In
fact, an implementation is tailored to an abort handler that rolls-back or restores the
values, as discussed below. Similar merging operations are done at checkpoints 230
and 235, as illustrated in entries 231 and 236, respectively.

Returning to Figure 1 briefly, roll-back module 120 is illustrated and is to
roll-back the memory location to the second-level snapshot, upon the monitor module
detecting an invalidating event during execution of the second transaction. In the
example, above it is apparent, that roll-back module 220 restores values of memory
locations to be changed during execution of a nested transaction to their states
immediately before executing the nested transaction. Examples of roll-back module
120 are discussed below in reference to default handlers and abort handlers.

Turning over to Figure 3, an embodiment of a processor to efficiently execute
nested transactions is illustrated. Similar to Figure 1, processor 300 includes
execution logic 305, memory 315 including memory locations 376, and monitoring
logic 310. In one embodiment, processor 300 is a multi-resource processor, such as a
multi-core, multi-threaded, or multi-logical processor with monitoring logic 310
including cache coherency logic. However, any of the foregoing examples of a
processor and its contents may be included in processor 300.

In addition, processor 340 includes local memory 320. Local memory 320
includes any memory associated with processor 320. In one embodiment, local
memory consists of memory that is only accessible by one processor or one
processing resource; however, local memory is not so limited. In another
embodiment local memory includes a globally shared memory that is partitioned
among processors or resources. In this case, a thread Id, core Id, or other way of
identifying a resource is used to allow access to a section of memory, and inversely, to
deny access to other resources not assigned to the section of memory. Specific
examples of local memory 320 include a Random Access Memory (RAM), a Static
RAM (SRAM), a Dynamic RAM (DRAM), a plurality of registers, a plurality of
latches, a cache, or any storage element in processor 300.

In one embodiment, log 325 is illustrated stored in local memory 320. As an

example, log 325 operates in a similar manner to log 200 illustrated in Figure 2. In
14

WO 2007/078891 PCT/US2006/048074

this case, notice that log 325 illustrates the state of log 200 at entry 220 in a stack
format. Assuming that operation is at checkpoint 220 in Figure 2, the third nesteid‘
transaction is the current-level transaction and the second transaction is the previous-
level transaction. Therefore, upon an invalidating event occurring during execution of
the current-level transaction, the memory location to be changed during execution of
the current-level transaction, i.e. memory location X, is restored to the previous-level
value/state of 2, which is on the top of the stack in log 325 at entry 326.

Moreover, handler module 330, which may also be referred to as a roll-back
module, is shown stored in local memory 320, but as illustrated in Figure 1 handler
module 330 may be stored in other memory or implemented in other logic/modules of
processor 300. Handler module 330 is to restore the memory locations to be written
to during execution of a second transaction nested within a first transaction to a
second set of values or a plurality of previous-level values logged before writing to
the memory locations to be written to , if an invalidating access occurs during
execution of the second transaction.

A specific simplified embodiment of handler module 33@ is discussed to
illustrate its potential operation. Upon an invalidating access/event occurring during
execution of a nested transaction, a default handler is initially invoked/executed. A
default handler, although not specifically depicted, may be stored in local memory
320, memory 315, system memory 340, or other memory in processor 300 not
depicted. A default handler is to transfer control of processor 300 to an abort handler
associated with the current-level transaction, if an invalidating access occurs during
execution of the current level-transaction.

For example, assume that upon execution of the first transaction in Figure 2,
an abort handler associated with the first transaction, such as abort handler 337 in
Figure 3, is pushed onto a stack of abort handlers, as in handler module 330. In
addition, a first set of values of memory locations to be written to during execution of
the first transaction are stored in log 325, which in this case includes only memory
location X getting a value 0 in entry 328 of log 325. Next, upon entering the second

transaction in Figure 2, second abort handler 332 associated with the second

15

WO 2007/078891 PCT/US2006/048074

transaction is pushed onto handler module 33@’s stack and a second set of values is
logged in entry 327, i.e. second/previous-level value 1, for X.

Now assume, that an invalidating access or event occurs during execution of
the second transaction. The default handler, when executed, is to initiate execution
and/or control to the top abort handler on the stack, which is abort handler 332 that is
associated with the second transaction. Abort handler 332, when executed by the
execution unit, is to restore memory location X to the previous-level, i.e. the second
set of values, logged in log 325. At this point the value 1 is at the top of the stack and
is loaded into memory location X by abort handler 332 to allow for re-execution of
the second nested transaction.

However, if normal execution were to continue, then upon entering the third
transaction in Figure 2, abort handler 333 associated with the third transaction is
pushed onto the handler stack and previous-level value 326 is pushed onto log 325°s
stack.

AN EMBODIMENT OF A SYSTEM

Referring still to Figure 3, an embodiment of a system is illustrated.
Processor 300 is coupled to system memory 340. Although not shown, system
memory 340 may be coupled to processor 300 through other components or devices,
such as a memory controller hub. System memory includes any memory for storage
in a system such as a SRAM, DRAM, double data rate (DDR) RAM, non-volatile
(NV) RAM, EDO RAM, or other memory device. System memory 340 is to store
elements, such as instructions and data operands to be executed by processor 300. In
one embodiment, system memory stores a plurality of instructions that are to be
grouped into transactions, such as a first transaction and a second transaction to be
nested in the first transaction.

AN EMBODIMENT OF A METHOD FOR EXECUTING A NESTED
TRANSACTION

Turning to Figure 4, an embodiment of a flow diagram for a method of

executing a current level transaction nested within a previous level transaction is
illustrated. In flow 405, a current level transaction nested within a previous-level

transaction is executed. Here, as above, a begin transaction instruction or
16

WO 2007/078891 PCT/US2006/048074

demarcation may establish the starting points of both the current level and previous
level transactions. In one embodiment, the transaction is executed with hardware
support for determining bounds of transaction, detecting data conflicts, and other
hardware support functions mentioned above.

In flow 410 a log including a first state of a memory location at the previous
level, which is to be written to during execution of the current-level transaction, is
maintained. Although, the flow diagram in Figure 4, illustrates an arrowed flow, the
flows shown, such as flow 470 and 405 may occur in any order. As stated above,
storing to the log may be done either before entering and executing the transaction, as
well as during execution of the transaction and immediately before the memory
location to be written to is changed, written to, or a write to is buffered. As
illustrated, in the foregoing examples, the log may be stored in a local memory.

In one embodiment, local memory also maintains a stack of a first abort
handler associated with the current level transaction stacked on a second abort handler
associated with the previous level transaction. Similar in operation, to handler
module 330 in Figure 3, a stack or other general configuration of abort handlers is
stored in local memory. In another embodiment, the stack of handlers is stored in a
different memory at random locations, not in a stack confi guration. In this case, a
group of pointers or other association device associates the handlers with their
respective transaction.

In decision box 415, it is determined if an invalidating event occurs during
execution of the current level transaction. Examples of invalidating events are
discussed above, in the transactions/invalidating events sections. In one embodiment,
a cache coherency protocol or other hardware support is used to determine if the
invalidating event occurs during execution of the current-level transaction.

In flow 420, the memory location is restored to the first state of the memory
location at the previous level, if an invalidating event is detected during execution of
the current level transaction. As an example restoring includes popping the first abort
handler off the stack, transferring control to the first abort handler, executing the first
abort handler, wherein upon execution, the first abort handler restores the memory

location with the first state of the memory location maintained in the log.
17

WO 2007/078891 PCT/US2006/048074

Finally, in flow 425, the log is merged with a second state of the memory
location at the current level, if no invalidating event occurs during execution of the
current level transaction. In a first embodiment, merging includes appending the
second state on the end of the log. In another example, merging may include
discarding the last log entry to ensure a potential abort within the previous-level
transaction is correctly rolled-back to an original state before its execution. In
addition, upon committing or ending the previous-level transaction the log may be
discarded completely, if the previous-level transaction is a top-level transaction,

which is not nested within another transaction.

18

WO 2007/078891 PCT/US2006/048074

ANOTHER EMBODIMENT OF A METHOD FOR EXECUTING A
NESTED TRANSACTION

Turning finally to Figure 5, another embodiment of a flow diagram for a

method of executing a nested transaction is illustrated. In flow 505, an abort handler
associated with a current nested transaction is pushed onto a stack of abort handlers.
In one embodiment, the stack of abort handlers is stored in a local memory.

In flow 510, a first value of a first memory location, which is to be changed
during execution of the current nested transaction, is logged in a local memory before
changing the value of the first memory location. As a first example, logging a first
value of the first memory location includes storing/logging the first value of the first
memory location in a local memory before executing a first instruction in the current
nested transaction. In another embodiment, logging a first value of the first memory
locations includes storing/logging the first value of the first memory location in a
local memory during execution of the current execution and immediately before the
first memory location is changed/written to.

In decision box 515, it is determined with hardware if an invalidating event
occurs during execution of the current nested transaction. In an illustrative example, a
functional unit of a microprocessor such as a cache, an advanced load address table
(ALAT), and invalidating access tracking unit is at least partially used to determine if
an invaliding event occurs during execution of the current nested transaction. A
cache coherency protocol or other hardware based protocol may also be used.

In flow 520 and 525, control is transferred to the abort handler associated with
the current nested transaction and the first memory location is restored with the first
value, if an invalidating event occurs during execution of the current nested
transaction. In one embodiment, control is transferred by execution of a default
handler to pop the abort handler associated with the current nested transaction off the
stack of handlers to be executed by a processor. Restoring the location includes
writing the first value to the first memory location before re-execution of the current
transaction. The abort handler associated with the current transaction may

accomplish this, when executed.

19

WO 2007/078891 PCT/US2006/048074

In decision box, 530 it is determined if an enclosing transaction is a top-level
transaction, if no invalidating event occurs during execution of the current nested
transaction. Essentially, here, the transaction is ended successfully with no
invalidating access or event, such as a write or interrupt. If the transaction is not an
enclosing transaction, but rather a nested transaction, a log associated with the current
nested transaction including the first value is merged with an enclosing transaction
log. In contrast, if the transaction is an enclosing transaction then a log associated
with the current nested transaction including the first value is discarded.

As illustrated above, nested transaction may be executed efficiently. Previous
nested transaction execution, typically, flattened the nested transaction. As a result, in
a nested transaction hierarchy, like the transactions shown in Figure 2, if there was a
failure, abort, or invalidating access during execution of the third transaction, then
both the first and the second transaction would also have to be re-executed. However,
by providing hardware support of the execution-of transactions, and assistance
through modules such as a logging module and handler module, only the failed third
transaction is potentially re-executed, which saves precious execution time and allows
for efficient execution of nested transactions.

The embodiments of methods, software, firmware or code set forth above may
be implemented via instructions or code stored on a machine-accessible or machine
readable medium which are executable by a processing element. A machine-
accessible/readable medium includes any mechanism that provides (i.e., stores and/or
transmits) information in a form readable by a machine, such as a computer or
electronic system. For example, a machine-accessible medium includes random-
access memory (RAM), such as static RAM (SRAM) or dynamic RAM (DRAM);
ROM; magnetic or optical storage medium; flash memory devices; electrical, optical,
acoustical or other form of propagated signals (e.g., carrier waves, infrared signals,
digital signals); etc.

In the foregoing specification, a detailed description has been given with
reference to specific exemplary embodiments. It will, however, be evident that
various modifications and changes may be made thereto without departing from the

broader spirit and scope of the invention as set forth in the appended claims. The
20

WO 2007/078891 PCT/US2006/048074

specification and drawings are, accordingly, to be regarded in an illustrative sense
rather than a restrictive sense. Furthermore, the foregoing use of embodiment and
other exemplarily language does not necessarily refer to the same embodiment or the
same example, but may refer to different and distinct embodiments, as well as

potentially the same embodiment.

21

WO 2007/078891 PCT/US2006/048074

CLAIMS

What is claimed is:

1.

An apparatus comprising;:

execution resources to execute first transaction and a second transaction nested in the

first transaction;

a monitoring module to detect an invalidating event during execution of the second

transaction;

a logging module to take a second-level snapshot of a second-level value in a memory

location to be changed during execution of the second transaction; and

a roll-back module to roll-back the memory location to the second-level snapshot,

upon the monitor module detecting an invalidating event during execution of

the second transaction.

The apparatus of claim 1, wherein the execution resources includes logic to
execute a begin transaction instruction at the start of the first transaction and
the second transaction, and wherein the execution module also includes logic

to execute an end transaction at the end of the first and the second transaction.

The apparatus of claim 1, wherein the monitoring module includes a cache
coherency module to detect an invalidating event during execution of the

second transaction.

The apparatus of claim 3, wherein the cache coherency module includes a bit
associated with memory location, and wherein the bit is flipped to a first
logical value upon detecting an invalidating event to represent an invalidating

event occurred.

The apparatus of claim 1, wherein the logging module is also to store an abort

handler stack including a second-level abort handler associated with the

22

WO 2007/078891 PCT/US2006/048074

10.

second transaction stacked on a first-level abort handler associated with the

first transaction.

The apparatus of claim 3, wherein the roll-back module includes a control
transfer module to transfer control to the second-level abort handler, if the
monitoring module detects an invalidating event during execution of the

second transaction.

The apparatus of claim 1, wherein the logging module includes a local

memory to store the second-level snapshot.

The apparatus of claim 7, wherein the local memory is to store the second-
level snapshot is stored in a stacked snapshot of the second-level snapshot

stacked on a first-level snapshot taken before executing the first transaction.
The apparatus of claim 7, wherein the local memory is selected from a group
consisting of a Random Access Memory (RAM), a Static RAM (SRAM), a

Dynamic RAM (DRAM), a plurality of registers, and a plurality of latches.

An apparatus comprising:

a processor including

execution logic to execute a first transaction and a second transaction nested within

the first transaction;

monitoring logic to determine if an invalidating access occurs during execution of the

first or second transactions;

a local memory to store a first set of values from memory locations to be written to

during execution of the first transaction and, a second set of values from

memory locations to be written to during execution of the second transaction;

a handler module to restore the memory locations to be written to during execution of

the second transaction to the second set of values, if an invalidating access

occurs during execution of the second transaction.
23

WO 2007/078891 PCT/US2006/048074

11.

12.

13.

14.

15.

16.

The apparatus of claim 10, wherein the processor is selected from a group
consisting of a host processor, a microprocessor, a processing core, a logical
processor, and an embedded processor, a multi-threaded processor, and a

multi-core processor.

The apparatus of claim 10, wherein execution logic includes logic to detect
data conflicts, to buffer speculative updates, to make updates atomically

visible at transaction commit, to execute instructions, and to operate on data.

The apparatus of claim 10, wherein a first transaction is demarcated by a first
begin transaction instruction and a first end transaction instruction, and
wherein the second transaction is demarcated by a second start transaction
instruction and a second end transaction instruction between the first begin

and end transaction instruction.

The apparatus of claim 10, wherein monitoring logic includes a flag for every
line of memory in a cache of the processor to represent if an invalidating
access occurred to a corresponding memory location during execution of the

first or second transactions.

The apparatus of claim 14, wherein an invalidating access occurs during
execution of the first transaction when an access by another resource to a
memory location to be read from or written to occurs during pendancy of the
first transaction, and wherein an invalidating access occurs during execution
of the second transaction when an access by another resource to a memory
location to be read from or written to occurs during pendancy of the second

transaction.

The apparatus of claim 10, wherein the another resource is a resource, not

executing the transaction, the resource being selected from a group consisting
24

WO 2007/078891 PCT/US2006/048074

17.

18.

19.

20.

21.

of a logical processor, a core, a thread, a software thread, a hardware thread,

and a remote resource.

The apparatus of claim 10, wherein the first set of values from memory
locations to be written to during execution of the first transaction are stored in
the local memory before entering the first transaction, and wherein the second
set of values from memory locations to be written to are stored in the local

memory before entering the second transaction.

The apparatus of claim 10, wherein the first set of values from memory
locations to be written to are stored in the local memory during execution of
the first transaction immediately before the memory locations are written to,
and wherein the second set of values from memory locations to be written to
are stored in the local memory during execution of the second transaction

immediately before the memory locations are written to.

The apparatus of claim 10, wherein the local memory is also to store a first
abort handler associated with the first transaction and a second abort handler

associated with the second transaction.

The apparatus of claim 19, wherein the handler module includes a default
handler to transfer control of the processor to the first abort handler, if an
invalidating access occurs during execution of the first transaction, and to
transfer control of the processor to the second abort handler, if an invalidating

access occurs during execution of the second transaction.

The apparatus of claim 20, wherein the second abort handler restores the
memory locations to be written to during execution of the second transaction
to the second set of values, after control is transferred to the second abort
handler, if an invalidating access occurs during execution of the second

transaction.
25

WO 2007/078891 PCT/US2006/048074

22. The apparatus of claim 21, wherein restoring the memory locations to be
written to during execution of the second transaction to the second set of
values comprises writing the second set of values, stored in the local memory,
back into the memory locations to be written to during execution of the second

transaction.

23. A system comprising:

a multi-resource microprocessor including

an execution unit to execute an outer transaction and an inner transaction nested
within the outer transaction,

a local memory to store

a first set of values of a first plurality of locations, which are to be written to during
execution of the inner transaction,

a first abort handler associated with the inner transaction, when executed, to restore
the first plurality of locations to the first set of values;

a default handler, when executed by the execution unit, to initiate execution of the
second abort handler, if an invalidating event occurs during execution of the
second transaction; and

a system memory coupled to the multi-resource microprocessor to store a first
plurality of instructions to be grouped as the outer instruction and a second

plurality of instructions to be grouped as the inner transaction.

24, The system of claim 23, wherein the local memory is also to store
a second abort handler associated with the outer transaction, and
a second set of values of a second plurality of locations, which are to be written to

during execution of the outer transaction.

25. The system of claim 23, wherein the default handler, when executed, is also to
initial execution of the second abort handler, if an invalidating event occurs

during execution of the outer transaction, and wherein the second abort
26

WO 2007/078891 PCT/US2006/048074

handler, when executed, is to restore the second plurality of locations to the

second set of values.

26. The system of claim 23, wherein the multi-resource processor includes a
plurality of resources, and wherein the plurality of resources are a plurality of

execution threads.

27. The system of claim 26, wherein an invalidating event occurring during
execution of the second transaction includes an event initiated by one of the
plurality of resources, not associated with the inner transaction, accessing one

of the first plurality of locations during pendancy of the second transaction.

28. The system of claim 27, wherein a cache coherency protocol is used to
determine if an invalidating event occurs during execution of the second

transaction.

29. A method comprising:

executing a current level transaction nested within a previous level transaction; and

maintaining a log including a first state of a memory location at the previous level,
which is to be written to during execution of the current level,

determining if an invalidating event occurs during execution of the current level
transaction;

restoring the memory location to the first state of the memory location at the previous
level, if an invalidating event is detected during execution of the current level
transaction; and

merging the log with a second state of the memory location at the current level, if no

invalidating event occurs during execution of the current level transaction.

30. The method of claim 29, wherein the log is stored in a local memory in a

Microprocessor.

27

WO 2007/078891 PCT/US2006/048074

31.

32.

33.

The method of claim 29, wherein determining if an invalidating event occurs
during execution of the current level transaction includes using a cache
coherency protocol to determine if the invalidating event occurs during

execution of the current level transaction.

The method of claim 29, further comprising maintaining a stack of a first abort
handler associated with the current level transaction stacked on a second abort

handler associated with the previous level transaction.

The method of claim 32, wherein restoring the memory location to the first

state of the memory location at the previous level comprises:

popping the first abort handler off the stack;

transferring control to the first abort handler;

executing the first abort handler, wherein upon execution, the first abort handler

34.

35.

36.

restores the memory location with the first state of the memory location

maintained in the log.

The method of claim 29, wherein merging the log with a second state of the
memory location at a current level comprises: appending the second state on

the end of the log.
The method of claim 29, further comprising discarding the log upon
committing the previous-level transaction, if the previous-level transaction is a

top-level transaction.

A method comprising:

pushing an abort handler associated with a current nested transaction onto a stack of

abort handlers;

logging a first value of a first memory location, which is to be changed during

execution of the current nested transaction, in a local memory, before

changing the value of the first memory location; and
28

WO 2007/078891 PCT/US2006/048074

determining with hardware if an invalidating event occurs during execution of the

current nested transaction;

if an invalidating event occurs during execution of the current nested transaction

transferring control to the abort handler associated with the current nested transaction,

and

restoring the first memory location with the first value.

37.

38.

39.

40.

41.

The method of claim 36, wherein the stack of abort handlers is stored in the

local memory.

The method of claim 36, wherein logging a first value of a first memory
location in a local memory before changing the value of the first memory
location comprises: logging the first value of the first memory location in a
local memory before executing a first instruction in the current nested

transaction.

The method of claim 36, wherein logging a first value of a first memory
location in a local memory before changing the value of the first memory
location comprises: logging the first value of the first memory location in a
local memory during execution of the current execution and immediately

before the first memory location is changed.

The method of claim 36, wherein the hardware used to determine if an
invalidating event occurs during execution of the current nested transaction
includes a functional unit of a microprocessor selected from a group
consisting of a cache, an advanced load address table (ALAT), and

invalidating access tracking unit.

The method of claim 36, further comprising merging a log associated with the

current nested transaction including the first value with an enclosing

29

WO 2007/078891 PCT/US2006/048074

42.

transaction log, if the current nested transaction is committed and the

enclosing transaction is a nested transaction.

The method of claim 36, further comprising discarding a log associated with
the current nested transaction including the first value, if the current nested
transaction is committed and the enclosing transaction is a top-level

transaction.

30

WO 2007/078891 PCT/US2006/048074
1/5
Execution
Resources 105
Roll-back module 120
l
126
Logging 127 Monitoring
module 128 module
1156 110
Memory 125
100

FIG. 1

210

215

220

225

230

235

WO 2007/078891

2/5

PCT/US2006/048074

begin transaction 1 <=— 212

X=1;, =— 213

begin transaction 2 <— 217

X=2; «— 218

begin_transaction_3 <«— 2

X=3 <«— 223

end_transaction_3 -<«— 22

22

end transaction 2 <— 227

end_transaction]-<— 232

Log 200

X=0 < 211

X=0,1 «—— 216

X=0,1,2 «— 221

X=0,1 -=-— 226

X =0 --— 231

X -—— 236

FIG. 2

WO 2007/078891

3/5

PCT/US2006/048074

Execution logic 305

Local
Memory
320 316
317
395 318 Moqitoring
logic 310
33(\
\ Memory 315
300
i
Handler Log 325 341
module
330
Handler 333 X=2 35 System
— Memory
Handler 332 =1 35 340
Handler 331 X=0 55

FIG. 3

WO 2007/078891

4/5

Execute a current level
transaction nested within a
previous level transaction

l 405

Maintain a log including a first
state of a memory location at the

previous level
410

Invalidating event
occurred during
execution of the

current level

transaction?

PCT/US2006/048074

Merge the log with a
second state of the
memory location at the
current level 455

Restore the memory location
to the first state of the
memory location at the

previous level
420

FI1G. 4

WO 2007/078891

Push an abort handler
associated with a current nested
transaction onto a stack of

abort handlers 505

\

Log a first value of a first
memory location in a local
memory, which is to be
changed during execution of
the current nested transaction,
before changing the value of

the first memory location5 :

hardware if an
invalidating event
occurs during
execution of the
current nested

5/5

Transfer control to the abort
handler associated with the
current nested transaction

520

Restore the first memory
location with the first value

525

2

Is an enclosing

transaction a top-
level transaction

530,

PCT/US2006/048074

Yes

v

Merge a log associated
with the current nested
transaction including the
first value with an
enclosing transaction log

Discard a log associated
with the current nested
transaction including the

first value 540

535

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/048074

A. CLASSIFICATION OF SUBJECT MATTER
N =B66F 11712

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, IBM-TDB, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

-

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*Q" document referring to an oral disclosure, use, exhibition or
other means

*P" document published prior to the international filing date but
later than the priority date claimed

e

e

v

%

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
_m%r]ﬂs, ﬁuch combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actnal completion of the international search

5 June 2007

Date of mailing of the international search report

13/06/2007

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Johansson, U1f

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/048074
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 219 666 Bl (KRISHNASWAMY JANAKI [US] 1,5-12,
ET AL) 17 April 2001 (2001-04-17) 16-27,
36-39,
41,42
A 2-4,
13-15,
28-35,40
column 2, 1ine 1 - T1ine 30
column 3, Tine 11 - Tine 22
column 3, Tine 44 - column 4, line 6
column 5, Tine 4 - 1ine 25
figures 2,3a,3b
column 7, Tine 45 ~ column 8, 1line 19
column 9, Tine 1 - 1ine 14
column 9, Tine 65 ~ column 10, Tine 30
column 16, line 14 - column 17, line 23
column 20, line 47 - 1ine B9
column 24, line 26 - Tine 36
claims 12,13
X US 4 164 017 A (HORNING JAMES J [CA] ET 1,5-12,
AL) 7 August 1979 (1979-08-07) 16-27,
36-39,
41,42
A 2-4,
13-15,
28-35,40
cotumn 1, Tine 9 - line 68
cotumn 2, tine 25 - column 3, tine 32
column 5, Tine b - line 36
column 7, Tine 35 - column 8, line 17
cotumn 11, Tine 27 - line 50
column 12, 1ine 25 - Tine 64
column 17, line 46 - line 60
claims 1-3,6,8
figures 1,10
X WO 01/50264 A (ORACLE CORP [USI) 1,7,
12 July 2001 (2001-07-12) 10-12,
16-27,
36-39,
41,42
A 2-6,8,9,
13-15,
28-35,40
page 6, 1line 4 - Tine 10
page 8, column 4 - page 9, column 3
page 11, line 4 - page 12, Tine 22
page 14, 1ine 1 - page 17, Tine 23
figures 1,4,6

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Iinternational application No

PCT/US2006/048074
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6219666 Bl 17-04-2001 NONE
US 4164017 A 07-08-1979 GB 1509193 A 04-05-1978
WO 0150264 A 12-07-2001 AT 242896 T 15-06-2003
AU 771514 B2 25-03-2004
AU 2291701 A 16-07-2001
CA 2395282 Al 12-07-2001
DE 60003339 D1 17-07-2003
DE 60003339 T2 29-04-2004
EP 1247182 Al 09-10-2002
HK 1046455 Al 11-09-2003
us 6574750 Bl 03-06-2003

Form PCT/ISA/210 (patent family annex) {April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report
	Page 40 - wo-search-report

