(54) 发明名称
一种用于定制家具板材加工的数控拉槽设备

(57) 摘要
本发明提供一种用于定制家具板材加工的数控拉槽设备，包括：机架;扫描装置;测量装置;用于根据板材拉槽位置以实现拉槽加工初始位置调节并进行拉槽加工的电主轴加工装置;用于板材定位和推动板材进行拉槽的x轴推板装置;前压紧装置;后压紧装置;以及控制装置;控制装置分别与扫描装置、测量装置、电主轴加工装置、x轴推板装置设置、前压紧装置和后压紧装置信号连接;机架的平台设置有加工区域，电主轴加工装置位于加工区域的下方;前压紧装置和后压紧装置分别位于加工区域的上方两侧;x轴推板装置设置在机架的平台上。本发明拉槽加工效率高，从而代替传统的人工加工，提高生产效率，适用于大规模生产进行家具智能制造。
1. 一种用于定制家具板材加工的数控拉槽设备，其特征在于：包括
 设置有平台的机架；
 用于扫描板材标签的扫描装置；
 用于测量板材实际尺寸的测量装置；
 用于根据板材拉槽位置以实现拉槽加工初始位置调节并进行拉槽加工的主轴加工装置；
 用于板材定位和推动板材进行拉槽的x轴推板装置；
 用于加工时压紧并固定板材的前压紧装置；
 用于加工时压紧板材的后压紧装置；
 以及控制装置；

 所述控制装置分别与扫描装置、测量装置、电主轴加工装置、x轴推板装置设置、前压紧装置和后压紧装置信号连接。

 所述机架的平台设置有加工区域，电主轴加工装置位于加工区域的下方；所述前压紧装置和后压紧装置分别位于加工区域的上方两侧，所述x轴推板装置设置在机架的平台上。

 2. 根据权利要求1所述的用于定制家具板材加工的数控拉槽设备，其特征在于：所述x轴推板装置包括：设置在机架平台上的支撑架，x轴运动部件，用于推动板材沿机架平台长度方向拉削的推板部件，用于运动误差修正补偿的磁栅尺部件和x轴传动部件，所述支撑架与平台连接处设置有挡架，靠挡边沿机架平台长度方向设置并位于推板部件一侧。

 3. 根据权利要求2所述的用于定制家具板材加工的数控拉槽设备，其特征在于：所述x轴运动部件包括x轴直线导轨，x轴滑块和x轴安装板；所述x轴直线导轨沿机架平台长度方向设置并位于支撑架的一侧；所述x轴滑块可滑动的安装于x轴直线导轨上；所述x轴安装板设置在x轴滑块上；所述推板部件通过连接板与x轴安装板连接，并位于支撑架的另一侧。

 4. 根据权利要求3所述的用于定制家具板材加工的数控拉槽设备，其特征在于：所述磁栅尺部件包括沿机架平台长度方向设置在支撑架上的磁栅尺和设置在x轴安装板上的读数头；所述读数头与控制装置信号连接。

 所述x轴传动部件包括设置在x轴安装板的斜齿轮箱，沿机架平台长度方向设置的斜齿轮和x轴驱动电机；所述斜齿轮设置在支撑架的一侧，并位于x轴直线导轨的同侧；所述斜齿轮箱与斜齿轮相啮合，并与x轴驱动电机连接，所述x轴驱动电机与控制装置信号连接，用于实现斜齿轮箱与斜齿轮相啮合，带动x轴安装板沿支撑架长度方向运动。

 5. 根据权利要求1所述的用于定制家具板材加工的数控拉槽设备，其特征在于：所述电主轴加工装置包括设置在拉槽加工的加工区域下方的固定架，设置在固定架上的y轴安装板，沿平台宽度方向运动的y轴运动部件，沿垂直平台方向做升降运动的z轴运动部件，y轴传动部件，z轴传动部件，电主轴夹具和用于拉槽加工的电主轴。

 6. 根据权利要求5所述的用于定制家具板材加工的数控拉槽设备，其特征在于：所述y轴驱动部件包括沿平台宽度方向设置的y轴直线导轨，y轴滑块和y轴安装板，所述y轴直线导轨设置在y轴安装板上；所述y轴滑块可滑动的安装于y轴直线导轨上；所述y轴滑块设置在y轴滑块上；

 所述y轴传动部件包括y轴定位电机，y轴滚珠丝杆和连接块一；所述y轴滚珠丝杆安装在y轴安装板上，所述连接块一设置在y轴滚珠丝杆上并与y轴滑块固定连接；所述y轴定位电机
电机与控制装置信号连接，用于驱动y轴滚珠丝杆转动以带动与连接块一连接的y轴滑板沿y轴方向运动。

7. 根据权利要求6所述的用于定制家具板材加工的数控拉槽设备，其特征在于：所述z轴运动部件包括垂直平台方向设置的z轴直线导轨，z轴滑块和z轴滑板；所述z轴直线导轨设置在y轴滑板上；所述z轴滑块可滑动的安装于z轴直线导轨上；所述z轴滑板设置在z轴滑块上；

所述z轴传动部件包括：z轴电机、z轴滚珠丝杆和连接块二；所述z轴滚珠丝杆安装在y轴滑板上，所述连接块二设置在z轴滚珠丝杆上并与z轴滑板固定连接；所述z轴电机与控制装置信号连接，用于驱动z轴滚珠丝杆转动以带动与连接块二连接的z轴滑板沿z轴方向运动；

所述电主轴夹具固定安装在z轴滑板上；所述电主轴设置有加工刀具，并垂直安装于电主轴夹具中。

8. 根据权利要求1所述的用于定制家具板材加工的数控拉槽设备，其特征在于：所述前压紧装置与机架固定连接，设置在加工区域上方的右侧；其包括前支架、气缸一，前弹簧装置，压块一，滚轮一、前导向杆和辅助压紧装置；

所述前支架与机架固定连接；所述气缸一设置在前支架上方与压块一连接，气缸一与控制装置信号连接，实现驱动压块一的上升和下压运动；所述滚轮一安装在压块一的底部；所述前导向杆穿设在前支架上，并与压块一连接；前弹簧装置穿设在前导向杆上并位于压块一与前支架之间；

所述辅助压紧装置包括均设置在压块一上方的气缸三和压块三；所述气缸三垂直安装在前支架上并与压块三连接，气缸三与控制装置信号连接，实现驱动压块三的上升和下压运动。

9. 根据权利要求1所述的用于定制家具板材加工的数控拉槽设备，其特征在于：所述后压紧装置与机架固定连接，设置在加工区域上方的左侧；其包括后支架、后弹簧装置，气缸二，压块二，后导向杆和滚轮二；

所述后支架与机架固定连接；所述气缸二设置在后支架上方与压块二连接，气缸二与控制装置信号连接，实现驱动压块二的上升和下压运动；所述滚轮二安装在压块二的底部；所述后导向杆穿设在后支架上，并与压块二连接；后弹簧装置穿设在后导向杆上并位于压块二与后支架之间；

所述测量装置设置在后压紧装置的压块二上。

10. 根据权利要求1所述的用于定制家具板材加工的数控拉槽设备，其特征在于：还包括用于清理拉槽加工废屑的吸尘装置，所述吸尘装置包括设置在电主轴上的吸尘罩和设置在平台上的吸尘孔；所述吸尘罩呈盒状，底部设有吸尘吸料管的外接口一和外接口二；所述吸尘孔设置在平台的加工区域上方，底部外接真空吸料管。
一种用于定制家具板材加工的数控拉槽设备

技术领域
【0001】本发明涉及定制家具自动化加工技术领域，更具体地说，涉及一种用于定制家具板材加工的数控拉槽设备。

背景技术
【0002】目前，定制家具以其可量身定做的特点愈发受到人们的喜爱。为把定制化订单实现规模化生产，在“工业4.0”的大潮下，定制家具生产企业逐渐淘汰效率低下的人工生产线，并且吸取欧美家具企业的先进经验，形成以数控开料加工中心、封边机、数控排钻加工中心为核心设备的高精度自动化板式生产线。
【0003】在板件加工过程中，为了保证板件与板件、板件与其他材料相互配合成的家具，一般需要在板件上的不同位置切割出相同或不相同的拉槽，以达到板件之间的相互连接。现有的数控排钻加工中心以自动化板式生产线的核心设备，可自动完成板件的垂直和侧边打孔。但是对于同时需要钻孔加工和需要拉槽加工的板件，数控钻孔加中心需要分步骤完成钻孔和拉槽的加工，对比单纯钻孔加工的板件而言，这类板件的加工耗时长，生产效率低，从而成为自动化板式生产线的瓶颈。而现有拉槽加工的方式采用人工作业方式，这样不仅加工效率不高，而且由于人工加工方式操作误差不可控，会造成本材加工精度低，板材报废率高，无法和自动化板式生产线相匹配。
【0004】因此，现需提供一种专门针对板材拉槽加工、且结构简单、自动化程度高、体积紧凑和成本低廉的数控拉槽设备，在自动化板式生产线上搭配数控排钻加工中心解决生产瓶颈问题，以适应定制家具板材规模化生产的迫切需要。

发明内容
【0005】本发明的目的在于克服现有技术中的缺点与不足，提供一种用于定制家具板材加工的数控拉槽设备。该数控拉槽设备专门针对定制家具板材拉槽加工，而且结构简单、体积紧凑、成本低廉、自动化程度高、可靠性高和能减少生产占地面积；同时，该数控拉槽设备拉槽加工效率高，从而代替传统的人工加工，提高生产效率，适用于大规模生产进行家具智能制造。
【0006】为了达到上述目的，本发明通过下述技术方案予以实现：一种用于定制家具板材加工的数控拉槽设备，其特征在于：包括：
【0007】设置有平台的机架；
【0008】用于扫描板材标签的扫描装置；
【0009】用于测量板材实际尺寸的测量装置；
【0010】用于根据板件拉槽位置以实现拉槽加工初始位置调节并进行拉槽加工的电主轴加工装置；
【0011】用于板材定位和推动板材进行拉槽的X轴推板装置；
【0012】用于加工时压紧并固定板材的前压紧装置；
用于加工时压紧板材的后压紧装置；
以及控制装置；
所述控制装置分别与辅助装置、测量装置、电轴轴加工装置、X轴推板装置设置、前压紧装置和后压紧装置信号连接；
所述机架的平台设置有加工区域，电轴轴加工装置位于加工区域的下方；所述前压紧装置和后压紧装置分别位于加工区域的上方两侧；所述X轴推板装置设置在机架的平台上。
在上述方案中，扫描装置扫描板材的标签信息（板材开料尺寸的和拉槽加工信息），测量装置测量板材的尺寸，控制装置对开料尺寸和实际尺寸进行比对，并根据拉槽加工信息和加工基准面不同确定板材的定位和加工运动路线，板材通过X轴推板装置定位后，前压紧装置、后压紧装置、X轴推板装置和电轴轴加工装置在控制装置的控制下，配合完成板材的数控拉槽加工。相对于通过人工操作进行拉槽加工导致加工效率低、加工精度低和操作误差不可控等问题，本发明采用数控拉槽设备对板材拉槽加工的全过程实现自动化智能控制，从而大大提高板材拉槽加工的速度、效率和板材拉槽加工的精度、质量，降低生产成本，适用于大规模生产进行家具智能制造。
所述X轴推板装置包括：设置在机架平台上的支撑架、X轴运动部件、用于推动板料沿机架平台长度方向加工的推板部件，用于运动误差修正补偿的磁栅尺部件和X轴传动部件；所述支撑架与平台接触处设置有靠背板，靠背板沿机架平台长度方向设置并位于推板部件一侧。靠背板的设计可使得板材通过X轴推板装置和靠背板进行精确定位。
所述X轴运动部件包括X轴直线导轨、X轴滑块和X轴安装板；所述X轴直线导轨沿机架平台长度方向设置并位于支撑架的一侧；所述X轴滑块可滑动的安装于X轴直线导轨上；所述X轴安装板设置在X轴滑块上；所述推板部件通过连接板与X轴安装板连接，并位于支撑架的另一侧。
所述磁栅尺部件包括沿机架平台长度方向设置在支撑架上的磁栅尺和设置在X轴安装板上的读数头，所述读数头与控制装置信号连接；
所述X轴传动部件包括设置在X轴安装板的斜齿轮箱，沿机架平台长度方向设置的斜齿轮和X轴进给电机；所述斜齿轮设置在支撑架的一侧面上，并位于X轴直线导轨的同侧；所述斜齿轮箱与斜齿轮箱啮合，并与X轴进给电机连接；所述X轴进给电机与控制装置信号连接，用于实现斜齿轮箱与斜齿轮啮合连接，带动X轴安装板沿支撑架长度方向运动。
所述电轴轴加工装置包括设置在拉槽加工的加工区域下方的固定架，设置在固定架上的Y轴安装板、沿平台宽度方向运动的Y轴运动部件，沿垂直平台方向做升降运动的Z轴运动部件、Y轴传动部件、Z轴传动部件、电主轴夹具和用于拉槽加工的电主轴。
所述Y轴运动部件包括沿平台宽度方向设置的Y轴直线导轨、Y轴滑块和Y轴滑板；所述Y轴直线导轨设置在Y轴安装板上；所述Y轴滑块可滑动的安装于Y轴直线导轨上；所述Y轴滑板设置在Y轴滑块上；
所述Y轴传动部件包括Y轴定位电机，Y轴滚珠丝杆和连接块一；所述Y轴滚珠丝杆安装在Y轴安装板上；所述连接块一设置在Y轴滚珠丝杆上并与Y轴滑板固定连接；所述Y轴定位电机与控制装置信号连接，用于驱动Y轴滚珠丝杆转动以带动与连接块一连接的Y轴滑板沿Y轴方向运动。
[0025] 所述z轴运动部件包括垂直平台方向设置的z轴直线导轨，z轴滑块和z轴滑板；所述z轴直线导轨设置在y轴滑板上；所述z轴滑块可滑动的安装于z轴直线导轨上；所述z轴滑板设置在z轴滑块上；

[0026] 所述z轴传动部件包括：z轴进给电机，z轴滚珠丝杆和连接块二；所述z轴滚珠丝杆安装在y轴滑板上，所述连接块二设置在z轴滚珠丝杆上并与z轴滑板固定连接；所述z轴进给电机与控制装置信号连接，用于驱动z轴滚珠丝杆转动以带动与连接块二连接的z轴滑板沿z轴方向运动；

[0027] 所述电主轴夹具固定安装在z轴滑板上；所述电主轴设置有加工刀具，并垂直安装于电主轴夹具中。

[0028] 所述前压紧装置与机架固定连接，设置在加工区域上方的右侧；其包括前支架、气缸一，前弹簧装置、压块一，滚轮一，前导向杆和辅助压紧装置；

[0029] 所述前支架与机架固定连接；所述气缸一设置在前支架上并与压块一连接，气缸一与控制装置信号连接，实现驱动压块一的上升和下压运动；所述滚轮一安装在压块一的底部；所述前导向杆穿设于前支架上，并与压块一连接；所述弹簧装置穿设于前导向杆上并位于压块一与前支架之间；

[0030] 所述辅助压紧装置包括均设置在压块一上方的气缸三和压块三；所述气缸三垂直安装在前支架上并与压块三连接，气缸三与控制装置信号连接，实现驱动压块三的上升和下压运动。

[0031] 所述后压紧装置与机架固定连接，设置在加工区域上方的左侧；其包括后支架、后弹簧装置，气缸二，压块二，后导向杆和滚轮二；

[0032] 所述后支架与机架固定连接；所述气缸二设置在后支架上并与压块二连接，气缸二与控制装置信号连接，实现驱动压块二的上升和下压运动；所述滚轮二安装在压块二的底部；所述后导向杆穿设于后支架上，并与压块二连接；所述弹簧装置穿设于后导向杆上并位于压块二与后支架之间；

[0033] 所述测量装置设置在后压紧装置的压块二上。

[0034] 本发明还包括用于清理拉槽加工废屑的吸尘装置；所述吸尘装置包括设置在电主轴上的吸尘罩和设置在平台上的吸尘孔；所述吸尘罩呈盒状，底部设有外接真空吸废料管的外接孔一和外接孔二；所述吸尘孔设置在平台的加工区域上方，底部外接真空吸废料管道。

[0035] 本发明工作原理是这样的：在板材拉槽加工前，先使用扫描装置扫描板材的标签信息，获得板材的开料尺寸和拉槽加工信息。测量装置测量板材的公差尺寸后，控制装置对开料尺寸和实际尺寸进行比对，根据板材信息和加工基准确定板材的加工定位点和加工运动路线。控制装置控制x轴推板装置沿着平台长度方向移动，使其推板部件前端定位在控制装置预设的位置点处，推板前端和设置在平台上的靠挡边形成了板材的定位基准。板材在定位基准处完成定位后，控制装置控制电主轴加工装置沿平台宽度方向移动，使其刀具定位在拉槽加工的加工区域中初始位置的下方。此时，控制装置控制前压紧装置的气缸一驱动压块一下降，前弹簧装置作用于压块一并通过滚轮一与板材压紧，气缸三驱动压块三下降并触碰到压块一，对压块一产生额外的压紧力来压紧固定板材。同时，控制装置也控制后压紧装置对板材进行压紧。电主轴加工装置上升，其刀具在板材上开孔，开孔完成后气缸三
驱动压块三上升并松开压块一，这时前弹簧装置继续作用于压块二，后弹簧装置继续作用于压块一，提供既能保证板材能被x轴推板装置推动也能确保在推动过程中板材不会发生偏移的压紧力。控制装置控制x轴推板装置沿平台长度方向推动加工板件完成制槽加工。

拉槽加工完毕后，控制装置控制x轴推板装置、前压紧装置、后压紧装置和电主轴加工装置复位。

[0036] 与现有技术相比，本发明具有如下优点与有益效果：

[0037] 1. 本发明针对定制家具板材进行数控拉槽加工，加工动作和加工工序精简，板材加工速度快且加工精度高。在自动化板式生产线中搭配数控排钻加工中心使用，能有效解决生产线上的瓶颈，满足定制家具订单大规模生产的需求。

[0038] 2. 本发明结构简单、可靠性高、机体体积小，相对数控排钻加工中心价格低廉，能有效减少生产成本和生产占用面积。

[0039] 3. 本发明x轴推板装置采用齿条传动且能对误差进行动态补偿，在维护保养方便、生产成本低廉的同时保证了加工精度。

[0040] 4. 本发明电主轴加工装置采用滚珠丝杆传动，传动效率和运动精度高的同时噪音低，适合高速往返的拉槽加工运动，保证了设备在高速运转下的可靠性和加工精度。

[0041] 5. 本发明的数控拉槽设备拉槽加工效率高，从而代替传统的人工加工，提高生产效率，适用于大规模生产进行家具智能制造。

附图说明

[0042] 图1是本发明用于定制家具板材加工的数控拉槽设备的结构示意图；

[0043] 图2是本发明用于定制家具板材加工的数控拉槽设备的结构示意图二；

[0044] 图3是本发明板材数控拉槽设备中后压紧装置的结构示意图；

[0045] 图4是本发明板材数控拉槽设备中前压紧装置的结构示意图；

[0046] 图5是本发明板材数控拉槽设备中x轴推板装置的结构示意图；

[0047] 图6是本发明板材数控拉槽设备中x轴推板装置的结构示意图二；

[0048] 图7是本发明板材数控拉槽设备中电主轴加工装置的结构示意图；

[0049] 图8是图7在B-B处的截面示意图；

[0050] 图9是图7在A-A处的截面示意图；

[0051] 其中，1为机架、2为平台、3为吸尘孔、4为后压紧装置、4.1为后支架、4.2为气缸二、4.3为后弹簧装置、4.4为压块二、4.5为滚轮二、4.6为后导向支杆、4.1为前压紧装置、5.1为前支架、5.2为气缸一、5.3为前弹簧装置、5.4为压块一、5.5为滚轮一、5.6为气缸三、5.7为压块三、5.8为前导向支杆、6为x轴推板装置、6.1为支撑架、6.2为x轴直线导轨、6.3为x轴滑块、6.4为x轴进给电机、6.5为磁栅尺、6.6为传感器、6.7为斜齿轮箱、6.8为x轴安装板、6.9为推板部件、6.10为连接板、6.11为斜齿轮、7为电主轴加工装置、7.1为固定架、7.2为y轴传动部件、7.2.1为y轴定位电机、7.2.2为y轴滚珠丝杆、7.2.3为连接块、7.3为y轴运动部件、7.3.1为y轴直线导轨、7.3.2为y轴滑块、7.3.3为y轴滑板、7.4为z轴运动部件、7.4.1为z轴直线滑轨、7.5为z轴传动部件、7.5.1为z轴进给电机、7.5.2为z轴滚珠丝杆、7.5.3为连接块、7.6为电主轴、7.7为电主轴夹具、7.8为y轴安装板、8为电控柜、9为测量装置、10为靠边边、11为脚杯、12为扫描装置、13为吸尘罩、14为显示器架。
具体实施方式

[0052] 下面结合附图与具体实施方式对本发明作进一步详细的描述。

[0053] 实施例

[0054] 如图1至图9所示，本发明用于定制家具板材加工的数控拉槽设备，其包括：

[0055] 设置有平台2的机架1；

[0056] 用于扫描板材标签的扫描装置12；

[0057] 用于测量板材实际尺寸的测量装置9；

[0058] 用于根据板材拉槽位置以实现拉槽加工初始位置调节并进行拉槽加工的电主轴
加工装置7；

[0059] 用于板材定位和推动板材进行拉槽的x轴推板装置6；

[0060] 用于加工时压紧并固定板材的前压紧装置5；

[0061] 用于加工时压紧板材的后压紧装置4；

[0062] 用于清理加工废屑的吸尘装置；

[0063] 以及控制装置；

[0064] 其中，机架1主体下方设置有多个脚杯11，主体后端设置有显示器架14。控制装置
分别和扫描装置12、测量装置9、电主轴加工装置7、x轴推板装置6设置、前压紧装置5和后压
紧装置4信号连接。该控制装置设置在电控柜8中，电控柜8设置在机架1上且位于平台2的下方。
机架1的平台2设置有加工区域，电主轴加工装置7位于加工区域的下方；而前压紧装置5
和后压紧装置4分别位于加工区域的上方两侧，x轴推板装置6设置在机架1的平台2上。

[0065] 本发明的x轴推板装置6包括：设置在机架平台2上的支撑架6.1、x轴运动部件、用于
推动板材沿机架平台2长度方向加工的推板部件6.9、用于运动误差修正补偿的磁栅尺部
件和x轴传动部件；其中，支撑架6.1与平台2连接处设置有靠挡边10，靠挡边10沿机架平台2
长度方向设置并位于推板部件6.9的一侧。

[0066] 所述x轴运动部件包括x轴直线导轨6.2、x轴滑块6.3和x轴安装板6.8，其中，x轴直
线导轨6.2沿机架平台2长度方向设置并位于支撑架6.1的一侧；x轴滑块6.3可滑动的安
装于x轴直线导轨6.2上，x轴安装板6.8设置在x轴滑块6.3上，推板部6.9通过连接板6.10与
x轴安装板6.8连接，并位于支撑架6.1的另一侧。

[0067] 而磁栅尺部件包括沿机架平台2长度方向设置在支撑架6.1上的磁栅尺6.5和设置
在x轴安装板6.8上的读数头6.6，该读数头6.6与控制装置信号连接。在加工过程中，通过磁
栅尺部件能精密测量出x轴推板装置6的实际位置和位置量，控制装置计算当前运动误差并
对误差进行修正补偿，确保x轴推板装置6的精准定位和加工精度；

[0068] x轴传动部件包括设置在x轴安装板6.8的斜齿轮箱6.7。沿机架平台2长度方向设
置的斜齿轮条6.11和x轴进给电机6.4，其中，斜齿轮条6.11设置在支撑架6.1的一侧面上，并位
于x轴直线导轨6.2的同侧，斜齿轮箱6.7与斜齿轮条6.11相啮合，并与x轴进给电机6.4连接；x
轴进给电机6.4与控制装置信号连接，用于实现斜齿轮箱6.7与斜齿轮条6.11啮合连接，带动x
轴安装板6.8沿支撑架6.1长度方向运动。

[0069] 本发明的电主轴加工装置7包括设置在拉槽加工的加工区域下方的固定架7.1、设
置在固定架7.1上的y轴安装板7.8、沿平台2宽度方向运动的y轴运动部件7.3、沿垂直平台2
方向做升降运动的z轴运动部件7.4，y轴传动部件7.2，z轴传动部件7.5，主轴夹具7.7和用于拉槽加工的主轴7.6。

【0070】其中，y轴传动部件7.3包括沿平台2宽度方向设置的y轴直线导轨7.3.1，y轴滑块7.3.2和y轴滑板7.3.3，y轴直线导轨7.3.1设置在y轴安装板7.8上，y轴滑块7.3.2可滑动的安装于y轴直线导轨7.3.1上，y轴滑板7.3.3设置在y轴滑块7.3.2上。

【0071】而y轴传动部件7.2包括沿平台1宽度方向设置的y轴直线导轨7.2.1，y轴滚珠丝杆7.2.2和连接板7.2.3，y轴滚珠丝杆7.2.2安装在y轴安装板7.8上，连接板7.2.3设置在y轴滚珠丝杆7.2.2上并与y轴滑板7.2.3固定连接，y轴定位电机7.2.1与控制装置信号连接，用于驱动y轴滚珠丝杆7.2.2转动以带动与连接板7.2.3连接的y轴滑板7.2.3沿y轴方向运动。

【0072】本发明z轴运动部件7.4包括垂直平台方向设置的z轴直线导轨7.4.1，z轴滑块和z轴滑板，其中，z轴直线导轨7.4.1设置在y轴安装板7.3.3上，z轴滑块可滑动的安装于z轴直线导轨7.4.1上，z轴滑板设置在z轴滑块上。

【0073】z轴传动部件7.5包括：z轴进给电机7.5.1，z轴滚珠丝杆7.5.2和连接板7.5.3，其中，z轴滚珠丝杆7.5.2安装在y轴安装板7.3.3上，连接板7.5.3设置在z轴滚珠丝杆7.5.2上并与z轴滑板固定连接，z轴进给电机7.5.1与控制装置信号连接，用于驱动z轴滚珠丝杆7.5.2转动以带动与连接板7.5.3连接的z轴滑板沿z轴方向运动，而主轴夹具7.7固定安装在z轴滑板上，主轴7.6设置有加工刀具，并垂直安装于主轴夹具7.7中。

【0074】本发明的前压紧装置5与机架1固定连接，设置在加工区域上方的右侧，其包括前支架5.1，气缸5.2，前弹簧装置5.3，压块5.4，滚轮5.5，前导向杆5.8和辅助压紧装置，其中，前支架5.1与机架1固定连接，气缸5.2设置在前支架5.1上并与压块5.4连接，气缸5.2与控制装置信号连接，实现驱动压块5.4的上下和下压运动。滚轮5.5安装在压块5.4的底部，前导向杆5.8穿设在前支架5.1上，并与压块5.4连接，前弹簧装置5.3穿设在前导向杆5.8上并位于压块5.4与前支架5.1之间。

【0075】而辅助压紧装置包括均设置在压块5.4上方的气缸5.6和压块5.7，气缸5.6垂直安装在前支架5.1上并与压块5.7连接，气缸5.6与控制装置信号连接，实现驱动压块5.7的上下和下压运动。在主轴7.6钻孔加工时，压块5.7下压触碰到压块5.4，从而下压滚轮5.5对板材压紧固定，确保板材不发生偏移；钻孔完成后，在x轴推板装置6推动板材加工时，压块5.7上升，前弹簧装置5.3对压块5.4提供持续稳定的下压力，确保推板加工过程不发生偏移且平稳移动。

【0076】本发明的后压紧装置4与机架1固定连接，设置在加工区域上方的左侧，其包括后支架4.1，后弹簧装置4.3，气缸4.2，压块4.4，后导向杆4.6和滚轮4.5，后支架4.1与机架1固定连接，气缸4.2设置在后支架4.1上并与压块4.4连接，气缸4.2与控制装置信号连接，实现驱动压块4.4的上下和下压运动。滚轮4.5安装在压块4.4的底部，后导向杆4.6穿设在后支架4.1上，并与压块4.4连接。后弹簧装置4.3穿设在后导向杆4.6上并位于压块4.4与后支架4.4之间。

【0077】本发明的测量装置9设置在后压紧装置4的压块4.4右侧，用于测量板材沿平台2长度方向的实际尺寸。

【0078】本发明的吸尘装置包括设置在主轴7.6上的吸尘罩13和设置在平台2上的吸尘孔3，其中，吸尘罩13呈盒状，底部设有外接真空吸废料管的外接口一和外接口二，吸尘孔
3. 设置在平台2的加工区域左方，底部外接真空吸废料管道。本发明在加工时，吸尘罩13随电
主轴7.6同步移动，板材加工产生的废屑基本可通过吸尘罩13清理，而遗漏的废屑则可通过
平台2上的吸尘孔3清理。

【0079】本发明工作原理是这样的：在板材拉槽加工前，先使用扫描装置12扫描板材的标
签信息，获得板材的开料尺寸和拉槽加工信息。测量装置9测量板材的实际尺寸后，控制装
置对开料尺寸和实际尺寸进行比对，根据板材信息和加工基准确定板材的加工定位点和加
工运动路线。控制装置控制x轴推板装置6沿平台2长度方向移动，使其推板部件6.9前端
定位在控制装置预设的定位点处，推板前端6.9和设置在平台上的靠挡边10形成了板材的
定位基准。板材在定位基准处完成定位后，控制装置控制电主轴加工装置7沿平台2宽度方
向移动，使其刀具定位在拉槽加工的加工区域中初始位置的下方。此时，控制装置控制前压
紧装置5的气缸→5.2驱动压块→5.4下降，前弹簧装置5.3作用于压块→5.4并经过滚轮→
5.5对板材压紧，气缸三5.6驱动压块三5.7下降并触碰到压块→5.4，对压块→5.4产生额外
的压紧力来压紧固定板材。同时，控制装置也控制后压紧装置4对板材进行压紧。电主轴加
工装置7上升，其刀具在板材上开孔，开孔完成后气缸三5.6驱动压块三5.7上升并松开压块
→5.4，此时前弹簧装置5.3继续作用于压块→5.4，后弹簧装置4.3继续作用于压块→5.4，
提供既能保证板材的被x轴推板装置推动也能确保在推动过程中板材不会发生偏移的的压
紧力。控制装置控制x轴推板装置6沿平台长度方向推动加工板件完成拉槽加工。拉槽加工
完毕后，控制装置控制x轴推板装置6、前压紧装置5、后压紧装置4和电主轴加工装置7复位。

【0080】上述实施例为本发明较佳的实施方式，但本发明的实施方式并不受上述实施例的
限制，其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化，
均应为等效的置换方式，都包含在本发明的保护范围之内。
图2
图3
图4
图7

图8
图9