

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 923 581

(51) Int. CI.:

C07D 403/12 (2006.01) **C07D 239/48** (2006.01) C07D 401/12 (2006.01) **C07C 211/00** (2006.01)

C07D 407/12 (2006.01) C07D 409/12 (2006.01) C07D 413/12 (2006.01) C07D 417/12 (2006.01) C07D 403/14 C07D 233/96 (2006.01) A61K 31/505 (2006.01) C07D 239/46 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 09.08.2002 E 20165399 (5) (97) Fecha y número de publicación de la concesión europea: 20.07.2022 EP 3808743
 - (54) Título: Pirimidinas inhibidoras de la replicación del VIH
 - (30) Prioridad:

13.08.2001 EP 01203090 10.06.2002 EP 02077748

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 28.09.2022

(73) Titular/es:

JANSSEN PHARMACEUTICA NV (100.0%) Turnhoutseweg 30 2340 Beerse, BE

(72) Inventor/es:

GUILLEMONT, JERÔME, EMILE, GEORGES; JANSSEN, PAUL, ADRIAAN, JAN; PALANDIJAN, PATRICE; DE JONGE, MARC, RENÉ; **KOYMANS, LUCIEN, MARIA, HENRICUS;** VINKERS, HENDRIK, MAARTEN; DAEYAERT, FREDERIK, FRANS, DESIRÉ; HEERES, JAN; VAN AKEN, KOEN, JEANNE, ALFONS y LEWI, PAULUS, JOANNES

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Pirimidinas inhibidoras de la replicación del VIH

35

40

65

- La presente invención se refiere a las combinaciones de derivados de pirimidina que tienen propiedades inhibidoras de la replicación del VIH (virus de la inmunodeficiencia humana) y otros compuestos antirretrovirales, a las composiciones farmacéuticas que comprenden estas combinaciones y a los productos que contienen estas combinaciones como preparación combinada para su uso simultáneo, separado o secuencial en el tratamiento de la infección por el VIH. La invención también se refiere a dichos derivados de pirimidina para su uso en la prevención o el tratamiento de la infección por VIH, en donde dichos derivados de pirimidina se administran en combinación con otro compuesto antirretroviral.
 - En la técnica anterior se describen compuestos relacionados estructuralmente con los derivados de pirimidina.
- Los documentos WO 99/50250 (y el documento EP equivalente, EP 0 945 443) y WO 00/27825 describen aminopirimidinas sustituidas que tienen propiedades inhibidoras de la replicación del VIH.
 - El documento WO 97/19065 describe 2-anilinopirimidinas sustituidas útiles como inhibidores de la proteína quinasa.
- 20 El documento WO 00/62778 se refiere a inhibidores de la proteína tirosina quinasa cíclica.
 - El documento WO 98/41512 describe 2-anilinopirimidinas sustituidas útiles como inhibidores de la proteína quinasa.
 - El documento US 5.691.364 describe derivados de benzamidina y su uso como anticoagulantes.
- 25
 El documento WO 00/78731 describe derivados de 5-ciano-2-aminopirimidina como inhibidores de KDR quinasa o FGFr quinasa útiles en la profilaxis y el tratamiento de enfermedades asociadas con la angiogénesis.
- Los compuestos usados en la invención difieren de los compuestos de la técnica anterior en estructura, actividad farmacológica y/o potencia farmacológica.

 Inesperadamente, se ha encontrado que los compuestos usados en la invención tienen una capacidad mejorada
 - para inhibir la replicación del Virus de la Inmunodeficiencia Humana (VIH), en particular tienen una capacidad mejorada para inhibir la replicación de cepas mutantes, es decir, cepas que se han vuelto resistentes a fármaco(s) conocido(s) en la técnica (cepas del VIH resistentes a fármacos o multifármacos).
 - Los compuestos de fórmula (I) pueden utilizarse en combinación con otros agentes terapéuticos, tales como antivirales, antibióticos, inmunomoduladores o vacunas para el tratamiento de infecciones virales. También pueden utilizarse en combinación con otros agentes profilácticos para la prevención de infecciones víricas. Los compuestos de fórmula (I) pueden utilizarse en vacunas y métodos para proteger a los individuos contra las infecciones víricas durante un periodo de tiempo prolongado. Los compuestos de fórmula (I) pueden emplearse en dichas vacunas junto con otros agentes antivirales de forma coherente con la utilización convencional de los inhibidores de la transcriptasa inversa en las vacunas.
- Así pues, la invención proporciona una composición farmacéutica que comprende un portador farmacéuticamente aceptable y, como ingredientes activos, (a) un compuesto de fórmula (I); y (b) otro compuesto antirretroviral seleccionado de suramina, pentamidina, timopentina, castanospermina, dextrano (sulfato de dextrano), foscarnet-sodio (fosfonoformiato trisódico); inhibidores nucleosídicos de la transcriptasa inversa; inhibidores no nucleosídicos de la transcriptasa inversa; inhibidores de las proteínas transactivadoras; inhibidores de la proteasa; inhibidores de la fusión; antagonistas del receptor CXCR4; inhibidores de la integrasa viral; inhibidores de la transcriptasa inversa de tipo nucleótido; inhibidores de la ribonucleótido reductasa.
- La invención también proporciona una combinación de (a) un compuesto de fórmula (I); y (b) otro compuesto antirretroviral seleccionado de suramina, pentamidina, timopentina, castanospermina, dextrano (sulfato de dextrano), foscarnet-sodio (fosfonoformiato trisódico); inhibidores nucleosídicos de la transcriptasa inversa; inhibidores no nucleosídicos de la transcriptasa inversa; inhibidores de las proteínas transactivadoras; inhibidores de la proteasa; inhibidores de la fusión; antagonistas del receptor CXCR4; inhibidores de la integrasa viral; inhibidores de la transcriptasa inversa de tipo nucleótido; inhibidores de la ribonucleótido reductasa.
 - Además, la combinación de un compuesto antirretroviral y un compuesto de fórmula (I) puede utilizarse como un medicamento. Así pues, la presente invención también proporciona un producto que contiene: (a) un compuesto de fórmula (I), y (b) otro compuesto antirretroviral, como se define en las reivindicaciones adjuntas, como preparación combinada para su uso simultáneo, separado o secuencial en el tratamiento del VIH. Los diferentes fármacos pueden combinarse en una única preparación junto con portadores farmacéuticamente aceptables. Dichos otros compuestos antirretrovirales se seleccionan de suramina, pentamidina, timopentina, castanospermina, dextrano

(sulfato de dextrano), foscarnet-sodio (fosfonoformato trisódico); inhibidores nucleosídicos de la transcriptasa inversa; inhibidores no nucleosídicos de la transcriptasa inversa; inhibidores de la transcriptasa inversa de fosfonato; inhibidores de las proteínas transactivadoras; inhibidores de la proteasa; inhibidores de la fusión; antagonistas del receptor CXCR4; inhibidores de la integrasa viral; inhibidores de la transcriptasa inversa de tipo nucleótido; inhibidores de la ribonucleótido reductasa.

Así pues, la invención también proporciona un compuesto de fórmula (I) para su uso en la prevención o el tratamiento de la infección por el VIH (Virus de la Inmunodeficiencia Humana); en donde el compuesto de fórmula (I) se administra en combinación con otro compuesto antirretroviral, seleccionado de suramina, pentamidina, timopentina, castanospermina, dextrano (sulfato de dextrano), foscarnet-sodio (fosfonato trisódico) inhibidores nucleosídicos de la transcriptasa inversa; inhibidores no nucleosídicos de la transcriptasa inversa; inhibidores de la proteínas transactivadoras; inhibidores de la proteasa; inhibidores de la fusión; antagonistas del receptor CXCR4; inhibidores de la integrasa viral; inhibidores de la transcriptasa inversa de tipo nucleótido; inhibidores de la ribonucleótido reductasa.

Al administrar los compuestos de fórmula (I) con otros agentes antivirales que se dirigen a diferentes eventos del ciclo de vida viral, se puede potenciar el efecto terapéutico de estos compuestos. Las terapias combinadas descritas anteriormente ejercen un efecto sinérgico en la inhibición de la replicación del VIH porque cada componente de la combinación actúa en un sitio diferente de la replicación del VIH. El uso de estas combinaciones puede reducir la dosificación de un determinado agente antirretroviral convencional que se necesitaría para obtener un efecto terapéutico o profiláctico deseado en comparación con cuando ese agente se administra como monoterapia. Estas combinaciones pueden reducir o eliminar los efectos secundarios de la terapia antirretroviral convencional única, sin interferir en la actividad antiviral de los agentes. Estas combinaciones reducen el potencial de resistencia a las terapias con un solo agente, al tiempo que minimizan cualquier toxicidad asociada. Estas combinaciones también pueden aumentar la eficacia del agente convencional sin aumentar la toxicidad asociada.

La invención se expone en las reivindicaciones adjuntas.

La presente invención utiliza un compuesto de fórmula

$$b_{2}^{2} = b^{4}$$

$$k_{1}^{2} = b^{4}$$

$$k_{2}^{3} = k_{1}^{4} = k_{1}^{4}$$

$$k_{2}^{1} = k_{2}^{4}$$

$$k_{3}^{2} = k_{1}^{4} = k_{2}^{4}$$

$$k_{1}^{2} = k_{2}^{4}$$

$$k_{2}^{2} = k_{3}^{4} = k_{1}^{4}$$

$$k_{1}^{2} = k_{2}^{4} = k_{3}^{4}$$

$$k_{2}^{2} = k_{3}^{4} = k_{3}^{4}$$

$$k_{1}^{2} = k_{3}^{4} = k_{$$

un N-óxido, una sal de adición farmacéuticamente aceptable o una forma estereoquímicamente isomérica del mismo, en donde

-a¹=a²-a³=a⁴- representa un radical bivalente de fórmula

-CH=CH-CH=CH- (a-1); -N=CH-CH=CH- (a-2); 40 -N=CH-N=CH- (a-3); -N=CH-CH=N- (a-4); -N=N-CH=CH- (a-5);

-b¹=b²-b³=b⁴- representa un radical bivalente de fórmula

-CH=CH-CH=CH- (b-1); -N=CH-CH=CH- (b-2); -N=CH-N=CH- (b-3); -N=CH-CH=N- (b-4); 50 -N=N-CH=CH- (b-5);

n es 0, 1, 2, 3 o 4; y en el caso de que $-a^1=a^2-a^3=a^4$ - sea (a-1), entonces n también puede ser 5; m es 1, 2, 3, y en el caso de que $-b^1=b^2-b^3=b^4$ - sea (b-1), entonces m también puede ser 4; R¹ es hidrógeno;

cada R², independientemente, es hidroxi, halo, alquilo C₁₋₆, opcionalmente sustituido con ciano o -C(=O)R⁶, cicloalquilo C₃₋₇, alquenilo C₂₋₆, opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquinilo C₂₋₆, opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquil C₁₋₆oxicarbonilo, carboxilo, ciano, nitro, amino, mono- o di(alquil C₁₋₆)amino, polihalometilo, polihalometiltio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶ o un radical de fórmula

60

55

5

10

15

20

25

30

35

45

$$A_1$$
 A_2
 A_1
 A_1

en donde cada A_1 , independientemente, es N, CH o CR^6 ; y A_2 es NH, O, S o NR^6 ;

5 X₁ es -NH- o -O-;

10

15

20

25

30

35

40

45

50

55

60

 X_2 es -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)_p-,

R³ es alquenilo C₂₋₆ sustituido con ciano;

 $X_{3} \text{ es -NR}^{5}\text{-, -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_{p}\text{-, -X}_{2}\text{-alcano }C_{1\text{-}4}\text{diilo-, -alcano }C_{1\text{-}4}\text{diil-X}_{2a}\text{-, -alcano }C_{1\text{-}4}\text{diilo-, -C(=N-OR}^{8})\text{-alcano }C_{1\text{-}4}\text{diilo-;}$

siendo X_{2a} -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-; y

siendo X_{2b} -NH-NH-, -N=N-, -C(=O)-, -S-, -S(=O)_p-;

R⁴ es halo, hidroxi, alquilo C₁₋₆, cicloalquilo C₃₋₇, alcoxi C₁₋₆, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆carbonilo, formilo, amino, mono- o di-(alquil C₁₋₄)amino o R⁷;

 R^5 es hidrógeno; arilo; formilo; alquil C_{1-6} carbonilo; alquilo C_{1-6} ; alquil C_{1-6} oxicarbonilo; alquilo C_{1-6} sustituido con formilo, alquil C_{1-6} carbonilo, alquil C_{1-6} carbonilo o alquil C_{1-6} carbonilo; alquil C_{1-6} oxicarbonilo; sustituido con alquil C_{1-6} oxicarbonilo;

 R^6 es alquilo C_{1-4} , amino, mono- o di-(alquil C_{1-4})amino o polihaloalquilo C_{1-4} ;

R⁷ es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆)aminoalquilo C₁₋₆, formilo, alquil C₁₋₆carbonilo, cicloalquilo C₃₋₇, alquil C₁₋₆oxi, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, -CH(=N-O-R⁸), R^{7a}, -X₃-R^{7a} o R7^a-alquilo C₁₋₄;

R^{7a} es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆)aminoalquilo C₁₋₆, formilo, alquil C₁₋₆carbonilo, cicloalquilo C₃₋₇, alquil C₁₋₆oxi, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, -CH(=N-O-R⁸);

R⁸ es hidrógeno, alquilo C₁₋₄, arilo o arilalquilo C₁₋₄;

p es 1 o 2;

arilo es fenilo o fenilo sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆) aminoalquilo C₁₋₆, alquil C₁₋₆carbonilo, cicloalquilo C₃₋₇, alquil C₁₋₆oxi, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, R⁷ o -X₃-R⁷.

Tal como se utiliza anterior o posteriormente en esta memoria, alquilo C₁₋₄ como un grupo o una parte de un grupo define radicales hidrocarbonados saturados de cadena lineal o ramificada que tienen de 1 a 4 átomos de carbono, tales como metilo, etilo, propilo, 1-metiletilo, butilo; alquilo C₁₋₆ como un grupo o una parte de un grupo define radicales hidrocarbonados saturados de cadena lineal o ramificada que tienen de 1 a 6 átomos de carbono, tales como el grupo definido para alquilo C₁₋₄ y pentilo, hexilo, 2-metilbutilo y similares; alquilo C₂₋₆ como un grupo o una parte de un grupo define radicales hidrocarbonados saturados de cadena lineal o ramificada que tienen de 2 a 6 átomos de carbono, tales como etilo, propilo, 1-metiletilo, butilo, pentilo, hexilo, 2-metilbutilo y similares; alcano C₁₋ 4diilo define radicales hidrocarbonados bivalentes saturados de cadena lineal o ramificada que tienen de 1 a 4 átomos de carbono tales como metileno, 1,2-etanodiilo o 1,2-etilideno, 1,3-propanodiilo o 1,3-propilideno, 1,4butanodiilo o 1,4-butilideno y similares; cicloalquilo C₃₋₇ es genérico para ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo y cicloheptilo; alquenilo C2-6 define radicales hidrocarbonados de cadena lineal y ramificada que tienen de 2 a 6 átomos de carbono que contienen un doble enlace, tales como etenilo, propenilo, butenilo, pentenilo, hexenilo y similares; alquinilo C₂₋₆ define radicales hidrocarbonados de cadena lineal y ramificada que tienen de 2 a 6 átomos de carbono que contienen un triple enlace, tales como etinilo, propinilo, butinilo, pentinilo, hexinilo y similares; un carbociclo saturado monocíclico, bicíclico o tricíclico representa un sistema de anillo que consiste en 1, 2 o 3 anillos, estando dicho sistema de anillo compuesto de solo átomos de carbono y conteniendo dicho sistema de anillo solo enlaces sencillos; un carbociclo parcialmente saturado monocíclico, bicíclico o tricíclico representa un sistema de anillo que consiste en 1, 2 o 3 anillos, estando compuesto dicho sistema de anillo solo por átomos de carbono y comprendiendo al menos un doble enlace, siempre que el sistema de anillo no sea un sistema de anillo aromático; un carbociclo aromático monocíclico, bicíclico o tricíclico representa un sistema de anillo aromático que consiste en 1, 2 o 3 anillos, estando dicho sistema de anillo compuesto solo de átomos de carbono; el término aromático es bien conocido por una persona experta en la técnica y designa sistemas cíclicamente conjugados de 4n + 2 electrones, es decir, con 6, 10, 14, etc. electrones π (regla de Hückel); un heterociclo saturado monocíclico, bicíclico o tricíclico representa un sistema de anillo que consiste en 1, 2 o 3 anillos y comprende al menos un heteroátomo seleccionado

ES 2 923 581 T3

de O, N o S, conteniendo dicho sistema de anillo solo enlaces sencillos; un heterociclo parcialmente saturado monocíclico, bicíclico o tricíclico representa un sistema de anillo que consiste en 1, 2 o 3 anillos y comprende al menos un heteroátomo seleccionado de O, N o S, y al menos un doble enlace siempre que el sistema de anillo no sea un sistema de anillo aromático; un heterociclo aromático monocíclico, bicíclico o tricíclico representa un sistema de anillo aromático que consiste en 1, 2 o 3 anillos y que comprende al menos un heteroátomo seleccionado de O, N o S.

5

10

15

25

30

35

40

45

60

65

Ejemplos particulares de carbociclos saturados monocíclicos, bicíclicos o tricíclicos son ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo, ciclohexilo, biciclo[4,2,0]octanilo, ciclononanilo, ciclodecanilo, decahidronaftalenilo, tetradecahidroantraceno y similares.

Ejemplos particulares de carbociclos parcialmente saturados monocíclicos, bicíclicos o tricíclicos son ciclopropenilo, ciclobutenilo, ciclopentenilo, ciclohexenilo, ciclohexenilo, ciclohexenilo, biciclo[4,2,0]octenilo, ciclononenilo, ciclodecenilo, octahidronaftalenilo, 1,2,3,4- tetrahidronaftalenilo, 1,2,3,4,4a, 9,9a,10-octahidro-antracenilo y similares.

Ejemplos particulares de carbociclos aromáticos monocíclicos, bicíclicos o tricíclicos son fenilo, naftalenilo, antracenilo.

Ejemplos particulares de heterociclos saturados monocíclicos, bicíclicos o tricíclicos son tetrahidrofuranilo, pirrolidinilo, dioxolanilo, imidazolidinilo, tiazolidinilo, tetrahidrotienilo, dihidrooxazolilo, isotiazolidinilo, isoxazolidinilo, oxadiazolidinilo, triazolidinilo, pirazolidinilo, piperidinilo, hexahidropirimidinilo, hexahidropirazinilo, dioxanilo, morfolinilo, ditianilo, tiomorfolinilo, piperazinilo, tritianilo, decahidroquinolinilo, octahidroindolilo y similares.

Ejemplos particulares de heterociclos parcialmente saturados monocíclicos, bicíclicos o tricíclicos son pirrolinilo, imidazolinilo, pirazolinilo, 2,3-dihidrobenzofuranilo, 1,3-benzodioxolilo, 2,3-dihidro-1,4-benzodioxinilo, indolinilo y similares.

Ejemplos particulares de heterociclos aromáticos monocíclicos, bicíclicos o tricíclicos son azetilo, oxetilidenilo, pirrolilo, furilo, tienilo, imidazolilo, oxazolilo, isoxazolilo, tiazolilo, isotiazolilo, pirazolilo, triazolilo, tiadiazolilo, oxadiazolilo, tetrazolilo, piridilo, pirimidinilo, pirazinilo, piridazinilo, triazinilo, piranilo, benzofurilo, isobenzofurilo, benzotienilo, isobenzotienilo, indolizinilo, indolilo, isoindolilo, benzoxazolilo, bencimidazolilo, bencisoxazolilo, bencisotiazolilo, benzopirazolilo, benzoxadiazolilo, benzotiadiazolilo, benzotriazolilo, purinilo, quinolinilo, isoquinolinilo, cinolinilo, quinolizinilo, quinoxalinilo, quinazolinilo, naftiridinilo, pteridinilo, benzopiranilo, pirrolopiridilo, tienopiridilo, furopiridilo, isotiazolopiridilo, tiazolopiridilo, isoxazolopiridilo, oxazolopiridilo, pirazolopiridilo, imidazopiridilo, pirrolopirazinilo, tienopirazinilo, furopirazinilo, isotiazolopirazinilo, tiazolopirazinilo, isoxazolopirazinilo, oxazolopirazinilo, pirazolopirazinilo, imidazopirazinilo, pirrolopirimidinilo, tienopirimidinilo, furopirimidinilo, isotiazolopirimidinilo, tiazolopirimidinilo, isoxazolopirimidinilo, oxazolopirimidinilo, pirazolopirimidinilo, pirazolopirimidinilo, isoxazolopirimidinilo, pirazolopirimidinilo, pi imidazopirimidinilo, pirrolopiridazinilo, tienopiridazinilo, furopiridazinilo, isotiazolopiridazinilo, tiazolopiridazinilo, isoxazolopiridazinilo, oxazolopiridazinilo, pirazolopiridazinilo, imidazopiridazinilo, oxadiazolopiridilo, tiadiazolopiridilo. triazolopiridilo, oxadiazolopirazinilo, tiadiazolopirazinilo, triazolopirazinilo, oxadiazolopirimidinilo, tiadiazolopirimidinilo, triazolopirimidinilo, oxadiazolopiridazinilo, tiadiazolopiridazinilo, triazolopiridazinilo, imidazooxazolilo, imidazotiazolilo, $imidazo imidazo lilo, \quad isoxazo lotriazinilo, \quad isotiazo lotriazinilo, \quad pirazo lotriazinilo, \quad oxazo lotriazinilo, \quad tiazo lotria$ imidazotriazinilo, oxadiazolotriazinilo, tiadiazolotriazinilo, triazolotriazinilo, carbazolilo, acridinilo, fenotiazinilo, fenoxazinilo y similares.

Tal como se ha utilizado anteriormente en esta memoria, el término (=O) forma un resto carbonilo cuando está fijado a un átomo de carbono, un resto sulfóxido cuando está fijado a un átomo de azufre y un resto sulfónilo cuando dos de dichos términos están fijados a un átomo de azufre.

El término halo es genérico para fluoro, cloro, bromo y yodo. Tal como utiliza anterior y posteriormente en esta memoria, polihalometilo como grupo o parte de un grupo se define como metilo sustituido con mono- o polihalosustituido, en particular metilo con uno o más átomos de fluoro, por ejemplo, difluorometilo o trifluorometilo; polihaloalquilo C₁₋₄ o polihaloalquilo C₁₋₆ como un grupo o parte de un grupo se define como mono- o polihaloalquilo C₁₋₄ o polihaloalquilo C₁₋₆ sustituido, por ejemplo, los grupos definidos en halometilo, 1,1 -difluoro-etilo y similares. En caso de que más de un átomo de halógeno esté fijado a un grupo alquilo dentro de la definición de polihalometilo, polihaloalquilo C₁₋₄ o polihaloalquilo C₁₋₆, estos pueden ser iguales o diferentes.

El término heterociclo en la definición de R⁷ o R^{7a} pretende incluir todas las formas isoméricas posibles de los heterociclos, por ejemplo, pirrolilo comprende 1*H*-pirrolilo y 2*H*-pirrolilo.

El carbociclo o heterociclo en la definición de R⁷ o R^{7a} puede estar fijado al resto de la molécula de fórmula (I) a través de cualquier carbono o heteroátomo del anillo, según sea apropiado, si no se especifica lo contrario. Así, por ejemplo, cuando el heterociclo es imidazolilo, puede ser 1-imidazolilo, 2-imidazolilo, 4-imidazolilo y similares, o usando el carbociclo es naftalenilo, puede ser 1-naftalenilo, 2-naftalenilo y similares.

Cuando cualquier variable (p. ej., R⁷, X₂) aparece más de una vez en cualquier constituyente, cada una de las

definiciones es independiente.

5

10

15

20

25

30

35

40

50

55

60

65

Las líneas dibujadas a partir de sustituyentes en sistemas de anillo indican que el enlace puede estar fijado a cualquiera de los átomos de anillo adecuados.

Para uso terapéutico, las sales de los compuestos de fórmula (I) son aquellas en las que el contraión es farmacéuticamente aceptable. Sin embargo, las sales de ácidos y bases que no son farmacéuticamente aceptables también pueden encontrar uso, por ejemplo, en la preparación o purificación de un compuesto farmacéuticamente aceptable. Todas las sales, sean farmacéuticamente aceptables o no, están incluidas dentro del ámbito de la presente invención.

Las sales de adición farmacéuticamente aceptables como las mencionadas anteriormente en esta memoria pretenden comprender las formas de sal de adición de ácidos no tóxicas terapéuticamente activas que los compuestos de fórmula (I) son capaces de formar. Este último puede obtenerse convenientemente tratando la forma de base con ácidos apropiados, tales como ácidos inorgánicos, por ejemplo, ácidos hidrácidos, p. ej., clorhídrico, bromhídrico y similares; ácido sulfúrico; ácido nítrico; ácido fosfórico y similares; o ácidos orgánicos, por ejemplo, acético, propanoico, hidroxiacético, 2-hidroxipropanoico, 2-oxopropanoico, oxálico, malónico, succínico, maleico, fumárico, málico, tartárico, 2-hidroxi-1,2,3-propanotricarboxílico, metanosulfónico, etanosulfónico, bencenosulfónico, 4-metilbencenosulfónico, ciclohexanosulfámico, 2-hidroxibenzoico, 4-amino-2-hidroxibenzoico y ácidos similares. Por el contrario, la forma de sal se puede convertir mediante tratamiento con álcali en la forma de base libre.

Los compuestos de fórmula (I) que contienen protones de carácter ácido pueden convertirse en sus formas de sal de adición de metales o aminas no tóxicas terapéuticamente activas mediante tratamiento con bases orgánicas e inorgánicas apropiadas. Formas de sal de base apropiadas comprenden, por ejemplo, las sales de amonio, las sales de metales alcalinos y alcalinotérreos, p. ej., las sales de litio, sodio, potasio, magnesio, calcio y similares, sales con bases orgánicas, p. ej., aminas alifáticas primarias, secundarias y terciarias y aminas aromáticas, tales como metilamina, etilamina, propilamina, isopropilamina, los cuatro isómeros de butilamina, dimetilamina, dietilamina, dietanolamina, dipropilamina, diisopropilamina, di-n-butilamina, pirrolidina, piperidina, morfolina, trimetilamina, trietilamina, tripropilamina, quinuclidina, piridina, quinolina e isoquinolina, la benzatina, N-metil-D-glucamina, 2-amino-2-(hidroximetil)-1,3-propanodiol, sales de hidrabamina y sales con aminoácidos, tales como, por ejemplo, arginina, lisina y similares. Por el contrario, la forma de sal se puede convertir mediante tratamiento con ácido en la forma de ácido libre

La expresión sal de adición también comprende las formas de adición de hidratos y disolventes que los compuestos de fórmula (I) son capaces de formar. Ejemplos de formas de este tipo son, p. ej., hidratos, alcoholatos y similares.

La expresión "amina cuaternaria" define las sales de amonio cuaternario que los compuestos de fórmula (I) son capaces de formar por reacción entre un nitrógeno de carácter básico de un compuesto de fórmula (I) y un agente de cuaternización apropiado, tal como, para por ejemplo, un haluro de alquilo, haluro de arilo o haluro de arilalquilo opcionalmente sustituido, p. ej., yoduro de metilo o yoduro de bencilo. También se pueden utilizar otros reaccionantes con buenos grupos salientes, tales como trifluorometanosulfonatos de alquilo, metanosulfonatos de alquilo y p-toluenosulfonatos de alquilo. Una amina cuaternaria tiene un nitrógeno cargado positivamente. Contraiones farmacéuticamente aceptables incluyen cloro, bromo, yodo, trifluoroacetato y acetato. El contraión de elección puede introducirse utilizando resinas de intercambio iónico.

Las formas de *N*-óxido de los presentes compuestos pretenden comprender los compuestos de fórmula (I) en donde uno o varios átomos de nitrógeno terciario están oxidados al denominado *N*-óxido.

Se apreciará que algunos de los compuestos de fórmula (I) y sus *N*-óxidos, sales de adición, aminas cuaternarias y formas estereoquímicamente isoméricas pueden contener uno o más centros de quiralidad y pueden existir como formas estereoquímicamente isoméricas.

La expresión "formas estereoquímicamente isoméricas" tal como se utiliza anteriormente en esta memoria define todas las formas estereoisoméricas posibles que pueden poseer los compuestos de fórmula (I) y sus *N*-óxidos, sales de adición, aminas cuaternarias o derivados fisiológicamente funcionales. A menos que se mencione o indique lo contrario, la designación química de los compuestos designa la mezcla de todas las formas isoméricas estereoquímicamente posibles, dichas mezclas que contienen todos los diastereómeros y enantiómeros de la estructura molecular básica, así como cada una de las formas isoméricas individuales de fórmula (I) y su *N*-óxidos, sales, solvatos o aminas cuaternarias sustancialmente libres, es decir, asociadas con menos de 10 %, preferentemente menos de 5 %, en particular menos de 2 % y lo más preferentemente menos de 1 % de los otros isómeros. Por lo tanto, cuando un compuesto de fórmula (I) se especifica, por ejemplo, como (E), esto significa que el compuesto está sustancialmente libre del isómero (Z).

En particular, los centros estereogénicos pueden tener la configuración R o S; los sustituyentes en radicales cíclicos bivalentes (parcialmente) saturados pueden tener la configuración *cis*- o *trans*. Los compuestos que abarcan dobles enlaces pueden tener una estereoquímica E (entgegen) o Z (zusammen) en dicho doble enlace. Los términos cis, trans, R, S, E y Z son bien conocidos por una persona experta en la técnica.

Las formas estereoquímicamente isoméricas de los compuestos de fórmula (I) obviamente pretenden ser usadas

dentro del alcance de esta invención.

5

10

20

25

Para algunos de los compuestos de fórmula (I), sus profármacos, *N*-óxidos, sales, solvatos, aminas cuaternarias o complejos metálicos y los compuestos intermedios utilizados en la preparación de los mismos, la configuración estereoquímica absoluta no se determinó experimentalmente. En estos casos, la forma estereoisomérica que se aisló primero se designa como "A" y la segunda como "B", sin referencia adicional a la configuración estereoquímica real. Sin embargo, dichas formas estereoisoméricas "A" y "B" pueden caracterizarse inequívocamente, por ejemplo, por su rotación óptica en caso de que "A" y "B" tengan una relación enantiomérica. Una persona experta en la técnica puede determinar la configuración absoluta de este tipo de compuestos utilizando métodos conocidos en la técnica, tales como, por ejemplo, difracción de rayos X. En el caso de que "A" y "B" sean mezclas estereoisoméricas, éstas se pueden separar adicionalmente, por lo que las primeras fracciones respectivas aisladas se designan "A1" y "B1" y las segundas como "A2" y "B2", sin referencia adicional al configuración estereoquímica real.

Algunos de los compuestos de fórmula (I) también pueden existir en su forma tautomérica. Dichas formas, aunque no se indican explícitamente en la fórmula anterior, pretenden ser incluidas dentro del alcance de la presente invención.

Siempre que se utilice en lo sucesivo en esta memoria, la expresión "compuestos de fórmula (I)" también pretende incluye sus formas de *N*-óxido, sus sales, sus aminas cuaternarias y sus formas estereoquímicamente isoméricas. De especial interés son aquellos compuestos de fórmula (I) que son estereoquímicamente puros.

Siempre que se utilice anterior o posteriormente en esta memoria, los sustituyentes se pueden seleccionar independientemente de una lista de numerosas definiciones, tales como, por ejemplo, para R⁹ y R¹⁰, se pretende que todas las combinaciones posibles sean químicamente posibles y que conduzcan a moléculas químicamente estables.

Un grupo interesante de compuestos son aquellos compuestos de fórmula (I), en donde -a¹=a²-a³=a⁴- representa un radical bivalente de fórmula -CH=CH-CH=CH- (a-1).

30 También un grupo interesante de compuestos son aquellos compuestos de fórmula (I) que tienen la fórmula

$$b_{0}^{2} = b_{0}^{4} = b_{0}^{4} \times A_{0} \times A_{0}^{1} = A_{0}^{2} \times A_{0}^{2} \times A_{0}^{1} \times A_{0}^{1$$

los *N*-óxidos, las sales de adición farmacéuticamente aceptables o las formas estereoquímicamente isoméricas de los mismos, en donde

a¹=a²-a³=a⁴-, -b¹=b²-b³=b⁴-, R¹, R², R³, R⁴, m y X₁ son como se definieron anteriormente en esta memoria; n' es 0, 1, 2 o 3; y en el caso de que -a¹=a²-a³=a⁴- sea (a-1), entonces n' también puede ser 4; R² es halo, alquilo C₁-6, trihalometilo, ciano, aminocarbonilo, alquilo C₁-6 sustituido con ciano o aminocarbonilo; con la condición de que R² esté situado en la posición para con respecto al resto NR¹.

40 Otro grupo interesante de compuestos son aquellos compuestos de fórmula (I) que tienen la fórmula

$$b_{0}^{2} = b_{0}^{4} + \sum_{n=0}^{R^{3}} X_{1}$$

$$k_{0}^{2} = b_{0}^{4} + \sum_{n=0}^{R^{2}} X_{1}$$

$$k_{0}^{2} = k_{0}^{4} + \sum_{n=0}^{R^{2}} X_{1}$$

los N-óxidos, las sales de adición farmacéuticamente aceptables o las formas estereoquímicamente isoméricas de los mismos, en donde

45 $-b^1=b^2-b^3=b^4$, R¹, R², R³, R⁴, m y X₁ son como se definieron anteriormente en esta memoria; n' es 0, 1, 2, 3 o 4;

 $R^{2'}$ es halo, alquilo C_{1-6} , trihalometilo, ciano, aminocarbonilo, alquilo C_{1-6} sustituido con ciano o aminocarbonilo.

Aún un grupo interesante adicional de compuestos son aquellos compuestos de fórmula (I) que tienen la fórmula

$$\begin{array}{c} \overset{R^{3}}{\underset{(R^{4})_{m}}{}} \overset{X_{1}}{\underset{N}{\underset{N}{\bigvee}}} \overset{R^{1}}{\underset{N}{\underset{N}{\bigvee}}} \overset{R^{2'}}{\underset{(R^{2'})_{n'}}{}} \overset{(I''')}{\underset{R^{2''}}{}} \\ \end{array}$$

los N-óxidos, las sales de adición farmacéuticamente aceptables o las formas estereoquímicamente isoméricas de los mismos, en donde

5 R¹, R², R³, R⁴ y X₁ son como se definieron anteriormente en esta memoria; n' es 0, 1, 2, 3 o 4;

R^{2'} es halo, alquilo C₁₋₆, trihalometilo, ciano, aminocarbonilo, alquilo C₁₋₆ sustituido con ciano o aminocarbonilo.

También son compuestos particulares aquellos compuestos de fórmula (I), (I'), (I") o (I"') en donde se aplica una de las siguientes condiciones o siempre que sea posible:

a) m es 1, 2 o 3, en particular 2 o 3, más en particular 2, incluso más en particular m es 2 y dichos dos sustituyentes R⁴ se colocan en la posición 2 y 6 (posición orto) con respecto al resto X₁;

b) m es 1, 2 o 3 y R³ se coloca en la posición 4 (posición para) con respecto al resto X₁;

c) en los casos en los que sea aplicable n' es 0;

- d) en los casos en los que sea aplicable, n es 1 y dicho sustituyente R² se coloca en la posición 4 (posición para) con respecto al NR¹-enlazador;
 - e) R^2 es hidroxi, halo, alquilo C_{1-6} , opcionalmente sustituido con ciano o $-C(=O)R^6$, cicloalquilo C_{3-7} , alquenilo C_{2-6} , opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquinilo C_{2-6} , opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquil C_{1-6} oxicarbonilo, carboxilo, ciano, nitro, amino, mono- o di(alquil C_{1-6})amino, polihalometilo, polihalometiltio, $-S(=O)_pR^6$, $-NH-S(=O)_pR^6$, -NHC=OH, $-C(=O)NHNH_2$, $-NHC=OR^6$, $-C=NHR^6$ o un radical de fórmula

$$A_{2} A_{1} A_{1} \qquad (c)$$

en donde cada A_1 , independientemente, es N, CH o CR^6 ; y A_2 es NH, O, S o NR^6 ;

- f) $R^{2'}$ es halo, alquilo C_{1-6} , trihalometilo, ciano, alquilo C_{1-6} sustituido con ciano o aminocarbonilo;
- g) R² es ciano, aminocarbonilo o alquilo C₁₋₆ sustituido con ciano o aminocarbonilo, en particular ciano;
- h) R² es ciano, aminocarbonilo o alquilo C₁₋₆ sustituido con ciano o aminocarbonilo, en particular ciano.
- También un grupo interesante de compuestos son aquellos compuestos de fórmula (I), (I'), (I") o (I"") en donde R² o R² es ciano o aminocarbonilo y R¹ es hidrógeno.

También un grupo interesante de compuestos son aquellos compuestos de fórmula (I), (I'), (I") o (I"') en donde se aplica una o más de las siguientes condiciones de restricción:

- a) n es al menos 1, en particular 1; o n' es 0;
 - b) R² o R² es ciano;
 - c) m es 1, 2 o 3;

20

25

40

- d) R⁴ es alquilo C₁₋₆, especialmente metilo; nitro; amino; halo; alquil C₁₋₆oxi o R⁷;
- e) X_3 es -C(=O)-, -CH₂-C(=O)- o -C(=N-OR⁸)-alcano C₁₋₄diilo-.

Los compuestos preferidos de fórmula (I), (I'), (I") o (I"') son los compuestos 1, 25, 84, 133, 152, 179, 233, 239, 247, 248 (véanse las Tablas 3, 4 y 5), sus *N*-óxidos, sales de adición farmacéuticamente aceptables y sus formas estereoquímicamente isoméricas.

45 Los siguientes párrafos describen la química de posible relevancia para los compuestos de las reivindicaciones.

En general, compuestos de fórmula (I) se pueden preparar por reacción de un compuesto intermedio de fórmula (II), en donde W₁ es un grupo saliente adecuado tal como, por ejemplo, halo, triflato, tosilato, metilsulfonilo y similares, con un compuesto intermedio de fórmula (III). Esta reacción se puede realizar a temperatura elevada.

$$W_{1} \longrightarrow N \longrightarrow N \longrightarrow A^{\frac{4}{3}} (R^{2})_{n} \longrightarrow$$

Alternativamente, la reacción anterior se puede realizar en presencia de un disolvente adecuado. Son disolventes adecuados, por ejemplo, acetonitrilo, un alcohol, tal como, por ejemplo, etanol, 2-propanol, 2-propanol-HCl; *N,N*-dimetilformamida; *N,N*-dimetilacetamida, 1-metil-2-pirrolidinona; 1,4-dioxano, propilenglicol monometiléter. Preferentemente, el disolvente es 2-propanol, HCl 6 N en 2-propanol o acetonitrilo, especialmente acetonitrilo. Opcionalmente, puede estar presente hidruro de sodio.

5

10

15

20

25

30

35

En esta y las siguientes preparaciones, los productos de reacción pueden aislarse del medio de reacción y, si es necesario, purificarse adicionalmente de acuerdo con metodologías generalmente conocidas en la técnica tales como, por ejemplo, extracción, cristalización, destilación, trituración y cromatografía.

Los compuestos de referencia de fórmula (I), en donde R³ es R7 que representa un sistema de anillos aromáticos monocíclico, bicíclico o tricíclico, estando representado dicho R³ por R7 y estando representados dichos compuestos de referencia por la fórmula (I-a), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (IV), en donde W₂ representa un grupo saliente adecuado, tal como, por ejemplo, halo, hidroxi, triflato, tosilato, tiometilo, metilsulfonilo, trifluorometilsulfonilo y similares, con un compuesto intermedio de fórmula (V), en donde Rª representa un boronato o un tri(alquil C₁-₄)estannano, tal como tributilestannano, en presencia de un catalizador adecuado, tal como, por ejemplo, tetrakis(trifenilfosfina) paladio, una sal adecuada, tal como, por ejemplo, carbonato disódico, carbonato dipotásico y Cs₂CO₃, y un disolvente adecuado, tal como, por ejemplo, dioxano, dimetil éter, tolueno o una mezcla de alcohol/agua, p. ej. MeOH/H₂O. Rª también puede representar halo, tal como, por ejemplo, bromo, en cuyo caso la reacción se realiza en presencia de 4,4,4',4',5,5,5',5'-octametil-2,2'-bi-1,3,2-dioxaborolano.

Los compuestos de referencia de fórmula (I), en donde R³ es R7 que representa un sistema de anillo saturado monocíclico, bicíclico o tricíclico, estando representado dicho R³ por R7 y estando representados dichos compuestos de referencia por la fórmula (I-b), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (IV) con un compuesto intermedio de fórmula (VI).

Los compuestos de referencia de fórmula (I), en donde R^3 representa alquilo C_{1-6} sustituido con ciano, estando representado dicho R^3 por alquil C_{1-6} -CN y estando representados dichos compuestos de referencia por la fórmula (I-c), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (VII), en donde W_3 representa un grupo saliente adecuado, tal como, por ejemplo, halo, p. ej. cloro, con una sal de cianuro adecuada, tal como, por ejemplo, cianuro de sodio o cianuro de potasio, en presencia de un disolvente adecuado, tal como, por ejemplo, N,N-dimetilformamida o dimetilsulfóxido.

$$\begin{array}{c} W_{3} \\ \text{alquilo } C_{1-6} \\ b^{1-} \\ X_{1} \\ \end{array} \\ \begin{array}{c} X_{1} \\ \end{array} \\$$

Los compuestos de referencia de fórmula (I), en donde R^3 representa alquilo C_{1-6} sustituido con R^7 ; NR^9R^{10} o alquil C_{1-6} oxi opcionalmente sustituido con R^7 o R^9R^{10} , estando representado dicho R^3 por alquil C_{1-6} -Q en donde Q representa R^7 ; NR^9R^{10} o alquil C_{1-6} oxi opcionalmente sustituido con R^7 0 o R^9R^{10} 0, y dichos compuestos de referencia representados por la fórmula (I-d), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (VII) con un compuesto intermedio de fórmula (VIII), opcionalmente en presencia de una sal adecuada, tal como, por ejemplo, carbonato de dipotasio, cianuro de potasio, yoduro de potasio, y un disolvente adecuado, tal como, por ejemplo, acetonitrilo.

5

10

15

20

$$\begin{array}{c} W_{3} \\ \text{alquilo } C_{1-6} \\ b^{1-\begin{vmatrix} X_{1} \\ X_{2} \end{vmatrix} = b^{4}} \\ (R^{4})_{m} \end{array} \qquad (VIII) \\ \begin{array}{c} V_{3} \\ \text{alquilo } C_{1-6} \\ N \\ N \\ \text{alquilo } C_{1-6} \\ \text{alq$$

Los compuestos de referencia de fórmula (I), en donde R^3 representa -C(=N-O- R^8)-alquilo C_{1-4} , estando representados dichos compuestos de referencia por la fórmula (I-e), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (IX) con un compuesto intermedio de fórmula (X) en presencia de un disolvente adecuado, tal como un alcohol, p. ej., etanol.

$$O = C$$

$$b^{1} = b^{4}$$

$$(IX)$$

$$R^{8} = O - N = C$$

$$R^{8} = O - N = C$$

$$R^{8} = O - N = C$$

$$R^{1} = A^{4} = A^{2}$$

$$R^{1} = A^{4} = A^{2}$$

$$R^{8} = O - N = C$$

$$R^{1} = A^{4} = A^{2}$$

$$R^{2} = A^{4} = A^{2}$$

$$R^{4} = A^{2} = A^{2}$$

$$R^{4} = A^{2}$$

Los compuestos de fórmula (I), en donde R^3 representa CR^c - CR^c -CN y en donde CR^c - CR^c está limitado a alquenilo C_{2-6} , estando representados dichos compuestos por la fórmula (I-f), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI) con un reactivo de Wittig o de Horner-Emmons de fórmula (XII), en donde R^b -representa, por ejemplo, (fenil)₃ P^+ - Cl^- o (CH_3CH_2 - $O)_2P(=O)$ -, que puede considerarse un precursor adecuado de un iluro de fósforo, en presencia de una sal adecuada, tal como, por ejemplo, terc-butóxido de potasio, y un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

Los compuestos de fórmula (I-f-1) y los compuestos de referencia de fórmula (I-f-2) tal como se representa a continuación se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XXXIX) o una sal de adición apropiada de la misma, en donde W₅ representa un grupo saliente adecuado, con acrilonitrilo o acrilamida en presencia de un catalizador de paladio adecuado, una base adecuada y un disolvente adecuado.

5

10

15

20

25

30

$$(XXXIX) \qquad \qquad (I-f-1)$$

$$CH_2=CH-C(=O)NH_2 \qquad \qquad H$$

$$N$$

$$N$$

$$C(=O)$$

$$NH_2 \qquad \qquad (I-f-2)$$

Los grupos salientes adecuados en la reacción anterior son, por ejemplo, halo, triflato, tosilato, mesilato y similares. Preferentemente, W₅ es halo, más particularmente yodo o bromo.

El catalizador de paladio (Pd) puede ser un catalizador de Pd homogéneo, tal como, por ejemplo, Pd(OAc)₂, PdCl₂, Pd(PPh₃)₄, Pd(PPh₃)₂Cl₂, bis(dibenciliden acetona)paladio, metalaciclo de tiometilfenilglutaramida-paladio y similares, o un catalizador de Pd heterogéneo, tal como, por ejemplo, paladio sobre carbón vegetal, paladio sobre óxidos metálicos, paladio sobre zeolitas.

Preferentemente, el catalizador de paladio es un catalizador de Pd heterogéneo, más preferentemente paladio sobre carbón vegetal (Pd/C). Pd/C es un catalizador recuperable, es estable y relativamente económico. Se puede separar fácilmente (filtración) de la mezcla de reacción, reduciendo con ello el riesgo de trazas de Pd en el producto final. El uso de Pd/C también evita la necesidad de ligandos, tales como, por ejemplo, ligandos de fosfina, que son caros, tóxicos y contaminantes de los productos sintetizados.

Las bases adecuadas en la reacción anterior son, por ejemplo, acetato de sodio, acetato de potasio, *N,N*-dietiletanamina, hidrógeno-carbonato de sodio, hidróxido de sodio y similares.

Los disolventes adecuados en la reacción anterior son, por ejemplo, acetonitrilo, N,N- dimetilacetamida, un líquido iónico, p. ej., [bmim]PF₆, N,N-dimetilformamida, agua, tetrahidrofurano, dimetilsulfóxido, 1-metil-2-pirrolidinona y similares.

Los compuestos de referencia de fórmula (I), en donde R³ representa CR°=CR°-CN, siendo R° como se ha definido anteriormente en esta memoria y representando R° NR9R¹0, -C(=O)-NR9R¹0, -C(=O)-alquilo C₁₋₆ o R³, estando representados dichos compuestos de referencia por la fórmula (I-g), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI-a) con un compuesto intermedio de fórmula (XIII) en presencia de un disolvente adecuado, tal como, por ejemplo, un alcohol y un alcoholato, p. ej. metanol y etanolato de sodio.

Los compuestos de referencia de fórmula (I), en donde R³ representa CH=C(CN)-CH₂-CN, estando representados dichos compuestos de referencia por la fórmula (I-h), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI-b) con 2-butenodinitrilo en presencia de tributilfosfina y un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

5

10

15

20

25

$$\begin{array}{c}
 & \text{NC} \\
 & \text{NC} \\
 & \text{NC} \\
 & \text{CH} \\
 & \text{NC} \\
 & \text{NC} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{NC} \\
 & \text{NC} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{NC} \\
 & \text{NC} \\
 & \text{NC} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{NC} \\
 & \text{NC} \\
 & \text{NC} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{NC} \\
 & \text{NC} \\
 & \text{NC} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{CH} \\
 & \text{NC} \\
 &$$

Los compuestos de referencia de fórmula (I), en donde R³ representa CH=C(CN)₂, estando representados dichos compuestos de referencia por la fórmula (I-h¹), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI-b) con propanodinitrilo en presencia de una base adecuada, tal como, por ejemplo, piperidina, y un disolvente adecuado, tal como, por ejemplo, un alcohol, p. ej., etanol y similares.

Los compuestos de referencia de fórmula (I), en donde R³ representa -CHOH-CH₂-CN, estando representados dichos compuestos de referencia por la fórmula (I-i), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI-b) con CH₃-CN en presencia de un agente sustractor de protones adecuado, tal como, por ejemplo, butil-litio, en presencia de un sustrato adecuado para el agente sustractor de protones, por ejemplo *N*-(1-metiletil)-2-propanamina, y en presencia de un disolvente, tal como, por ejemplo, tetrahidrofurano.

Los compuestos de referencia de fórmula (I), en donde R^3 representa CR^c = CR^c -halo, en donde R^c representa hidrógeno o alquilo C_{1-4} y R^c representa hidrógeno, alquilo C_{1-4} o R^7 , con la condición de que CR^c = CR^c esté limitado a alquenilo C_{2-6} , estando representados dichos compuestos de referencia por la fórmula (I-j), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI) con un reactivo de Wittig o

de Horner-Emmons de fórmula (XII'), en donde R^b- representa, por ejemplo, (fenil)₃P⁺-Cl⁻ o (CH₃CH₂-O)₂P(=O)-, que puede considerarse un precursor adecuado de un iluro de fósforo, en presencia de nBuLi, y un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

$$O = C \\ b^{1-} X_{1} \\ b^{2} \\ b^{3-} = b^{4} \\ (R^{4})_{m}$$

$$(XII)$$

$$N \\ A^{1} \\ A^{2} \\ A^{3} \\ A^{2} \\ A^{3} \\ A^{3} \\ A^{4} \\ A^{2} \\ A^{3} \\ A^{5} \\ A^$$

Los compuestos de referencia de fórmula (I), en donde R³ representa CR°=CR°-halo, siendo R° como se ha definido anteriormente en esta memoria y representando R° CN, NR9R¹0, -C(=O)-NR9R¹0, -C(=O)-alquilo C₁-6 o R², estando representados dichos compuestos de referencia por la fórmula (I-k), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XII-a) en presencia de un reactivo de Horner-Emmons, tal como, por ejemplo, (CH₃CH₂-O)₂P(=O)-CI, nBuLi, 1,1,1-trimetil-N-(trimetilsilil)-silanamina, y un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

5

10

15

$$O = C \\ b^{1} - X_{1} \\ b^{2} = b^{4} \\ (R^{4})_{m}$$

$$(XI-a)$$

$$N = A^{1} - A^{2} \\ (R^{2})_{n} \\ A^{1} = A^{2}$$

$$(R^{2})_{n} \\ A^{2} = A^{2}$$

$$(R^{2})_{n} \\ A^{2} = A^{2}$$

$$(R^{2})_{n} \\ A^{2} = A^{2}$$

$$(XIII')$$

$$(I-k)$$

Los compuestos de referencia de fórmula (I), en donde R³ representa CH=C(Br)₂, estando representados dichos compuestos de referencia por la fórmula (1-1), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XVIII) con CBr₄, en presencia de un catalizador adecuado, tal como, por ejemplo, (CuCl)₂ y en presencia de una base adecuada, tal como, por ejemplo, NH₃ y un disolvente adecuado, tal como, por ejemplo, dimetilsulfóxido.

Los compuestos de referencia de fórmula (I-m) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XIV) con $Cl_2C=S$ en presencia de un disolvente adecuado, tal como, por ejemplo, dioxano.

$$O = C$$

$$b^{1} - | X_{1} - | X_{1}$$

Los compuestos de referencia de fórmula (I-n) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XV) con un compuesto intermedio de fórmula (XVI) en presencia de un disolvente adecuado, tal como, por ejemplo, un alcohol o un alcoholato, p. ej., etanol o metanolato de sodio.

5

10

15

20

O=C
$$X_1$$
 X_1 X_2 X_3 X_4 X_4 X_4 X_4 X_4 X_4 X_4 X_4 X_4 X_5 X_5 X_6 X_8 X_8

Los compuestos de referencia de fórmula (I), en donde R^3 representa alquenilo C_{2-6} sustituido con $C(=O)NR^9R^{10}$ y opcionalmente sustituido, además, con ciano, estando representados dichos compuestos de referencia por la fórmula (I-o) en donde alquenilo C_{2-6} ' representa alquenilo C_{2-6} opcionalmente sustituido con ciano, se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XXIX) con un compuesto intermedio de fórmula (XXX) en presencia de hidroxibenzotriazol y etildimetilaminopropil carbodiimida y un disolvente adecuado, tal como, por ejemplo, cloruro de metileno o tetrahidrofurano, y opcionalmente en presencia de una base adecuada, tal como, por ejemplo, N,N-dietiletanamina, NH_4OH y similares.

COOH alquenilo
$$C_{2-6}$$
, R^1 alquenilo C_{2-6} , R^2 alquenilo C_{2

Los compuestos de referencia de fórmula (I), en donde R^3 representa $-C(=O)NR^{13}R^{14}$ o $-C(=O)NHR^{13}$, , estando representados dichos compuestos por la fórmula (I-p-1) y (I-p-2), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XXXII) con un compuesto intermedio de fórmula (XXXII-1) o (XXXII-2) en presencia de hidroxibenzotriazol y etildimetilaminopropil carbodiimida y un disolvente adecuado, tal como, por ejemplo, cloruro de metileno o tetrahidrofurano, y opcionalmente en presencia de una base adecuada, tal como, por ejemplo, N,N-dietiletanamina.

Los compuestos de referencia de fórmula (I), en donde R³ representa CH=N-NH-C(=O)-R¹6, estando representados dichos compuestos de referencia por la fórmula (I-q), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI-b) con un compuesto intermedio de fórmula (XXXIII) en presencia de un disolvente adecuado, tal como, por ejemplo, cloruro de metileno y un alcohol, p. ej., metanol, etanol y similares.

5

10

15

$$O = C \\ b^{1} - X_{1} \\ b^{2} \\ b^{3} = A^{2} \\ (R^{4})_{m}$$

$$(XI-b)$$

$$(XXXIII)$$

$$N = A^{1} \\ N = A^{2} \\ N = A^{2} \\ (R^{2})_{n} \\$$

Los compuestos de referencia de fórmula (I), en donde R³ representa N(CH₃)₂, estando representados dichos compuestos de referencia por la fórmula (1-r), se pueden preparar por metilación reductora de un compuesto intermedio de fórmula (XXXIV) con formaldehído, en presencia de un catalizador adecuado, tal como, por ejemplo, un ácido adecuado, es decir, ácido acético y similares, paladio sobre carbón vegetal, níquel Raney, y en presencia de un agente reductor adecuado, tal como, por ejemplo, cianoborohidruro de sodio o H₂, y un disolvente adecuado, tal como, por ejemplo, acetonitrilo.

Los compuestos de referencia de fórmula (I), en donde R³ representa pirrolilo, estando representados dichos compuestos de referencia por la fórmula (I-s), se pueden preparar haciendo reaccionar un compuesto intermedio de

fórmula (XXXIV) con 2,5-dimetoxitetrahidrofurano en presencia de un ácido adecuado, tal como, por ejemplo, ácido acético.

$$b_{a}^{1} = b_{a}^{1} + CH_{3}O$$

$$(XXXIV)$$

$$CH_{3}O$$

$$CH_{4}O$$

$$CH_{4}O$$

$$CH_{4}O$$

$$CH_{4}O$$

$$CH_{4}O$$

$$CH_{4}O$$

$$CH_{4}O$$

$$CH_{5}O$$

Los compuestos de referencia de fórmula (I), en donde R³ representa CH=CH-R⁻, estando representados dichos compuestos de referencia por la fórmula (I-t), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XXXVI) (Ph indica fenilo) con un compuesto intermedio de fórmula (XXXVI) en presencia de nBuLi y un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

$$\begin{array}{c}
Ph \bigoplus_{Ph} \bigoplus_{CH_2} \bigoplus_{CH_2} \bigoplus_{X_1 \longrightarrow X_1 \longrightarrow X_1} \bigoplus_{N \longrightarrow A} \bigoplus_{a=a^2} \bigoplus_{A=a^2} \bigoplus_{A=a^2} \bigoplus_{R^7 \longrightarrow R^7} \bigoplus_{CH_2 \longrightarrow A} \bigoplus_{A=a^2} \bigoplus_{R^7 \longrightarrow R^7 \longrightarrow R^$$

Los compuestos de fórmula (I) pueden prepararse, además, convirtiendo compuestos de fórmula (I) entre sí de acuerdo con reacciones de transformación de grupo conocidas en la técnica.

10

35

40

Los compuestos de fórmula (I) pueden convertirse en las formas de *N*-óxido correspondientes siguiendo procedimientos conocidos en la técnica para convertir un nitrógeno trivalente en su forma de *N*-óxido. Dicha reacción de *N*-oxidación se puede llevar a cabo generalmente haciendo reaccionar el material de partida de fórmula (I) con un peróxido orgánico o inorgánico apropiado. Peróxidos inorgánicos apropiados comprenden, por ejemplo, peróxido de hidrógeno, peróxidos de metales alcalinos o alcalinotérreos, p. ej., peróxido de sodio, peróxido de potasio; peróxidos orgánicos apropiados pueden comprender peroxiácidos, tales como, por ejemplo, ácido bencenocarboperoxoico o ácido bencenocarboperoxoico sustituido con halo, p. ej., ácido 3-clorobencenocarboperoxoico, ácidos peroxoalcanoico, p. ej., ácido peroxoacético, alquilhidroperóxidos, p. ej., hidroperóxido de terc-butilo. Disolventes adecuados son, por ejemplo, agua, alcoholes inferiores, p. ej., etanol y similares, hidrocarburos, p. ej., tolueno, cetonas, p. ej., 2-butanona, hidrocarburos halogenados, p. ej., diclorometano, y mezclas de este tipo de disolventes.

Por ejemplo, un compuesto de fórmula (I), en donde R³ comprende ciano, se puede convertir en un compuesto de referencia de fórmula (I), en donde R³ comprende aminocarbonilo, mediante reacción con HCOOH, en presencia de un ácido adecuado, tal como ácido clorhídrico. Un compuesto de fórmula (I), en donde R³ comprende ciano, se puede convertir también, además, en un compuesto de referencia de fórmula (I), en donde R³ comprende tetrazolilo, por reacción con azida de sodio en presencia de cloruro de amonio y *N,N* -dimetilacetamida.

30 Los compuestos de referencia de fórmula (I), en donde R³ comprende aminocarbonilo, se pueden convertir en un

por reacción con azida de sodio en presencia de cloruro de amonio y *N,N* -dimetilacetamida. Los compuestos de referencia de fórmula (I), en donde R³ comprende aminocarbonilo, se pueden convertir en un compuesto de fórmula (I), en donde R³ comprende ciano, en presencia de un agente deshidratante adecuado. La deshidratación se puede realizar de acuerdo con metodologías bien conocidas por la persona experta en la técnica, tales como las descritas en "Comprehensive Organic Transformations. A guide to functional group preparations" de Richard C. Larock, John Wiley & Sons, Inc, 1999, p 1983-1985. En dicha referencia se enumeran diferentes reactivos adecuados, tales como, por ejemplo, SOCl₂, HOSO₂NH₂, CISO₂NCO, MeO₂CNSO₂NEt₃, PhSO₂CI, TsCl, P₂O₅, (Ph₃PO₃SCF₃)O₃SCF₃, éster polifosfato, (EtO)₂POP(OEt)₂, (EtO)₃Pl₂, 2-cloro-1,3,2-dioxafosfolano, 2,2,2-tricloro-2,2-dihidro-1,3,2-dioxafosfolano, POCl₃, PPh₃, P(NCl₂)₃, P(NEt₂)₃,COCl₂, NaCl.AlCl₃, CICOCOCl, CICO₂Me, Cl₃CCOCl, (CF₃CO)₂O, Cl₃CN=CCl₂, 2,4,6-tricloro-1,3,5-triazina, NaCl.AlCl₃, HN(SiMe₂)₃, N(SiMe₂)₄, LiAlH₄, y similares.

Los compuestos de fórmula (I), en donde R^3 comprende alquenilo C_{2-6} se pueden convertir en un compuesto de referencia de fórmula (I), en donde R^3 comprende alquilo C_{1-6} por reducción en presencia de un agente reductor adecuado, tal como, por ejemplo, H_2 , en presencia de un catalizador adecuado, tal como, por ejemplo, paladio sobre

ES 2 923 581 T3

carbón vegetal, y en presencia de un disolvente adecuado, tal como, por ejemplo, un alcohol, p. ej., metanol.

5

10

15

20

25

30

35

40

Los compuestos de referencia de fórmula (I) en donde R³ representa CH(OH)-R¹⁶,, se pueden convertir en un compuesto de fórmula (I), en donde R³ representa C(=O)-R¹⁶ mediante reacción con el reactivo de Jones en presencia de un disolvente adecuado, tal como, por ejemplo, 2-propanona.

El compuesto de referencia de fórmula (I), en donde R³ representa C(=O)-CH₂-R¹6a, en donde R¹6a representa ciano o aminocarbonilo, se puede convertir en un compuesto de referencia de fórmula (I), en donde R³ representa C(CI)=CH-R¹6a mediante reacción con POCI₃.

Los compuestos de referencia de fórmula (I), en donde R³ representa un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático sustituido con formilo se pueden convertir en compuestos de referencia de fórmula (I), en donde R³ representa un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático sustituido con CH(=N-O-R³) mediante reacción con NH₂OR³ en presencia de una base adecuada, tal como, por ejemplo, hidróxido de sodio y un disolvente adecuado, tal como, por ejemplo, un alcohol, p. ej., etanol y similares. Los compuestos de referencia de fórmula (I), en donde R³ representa un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático sustituido con CH(=N-O-R³) se pueden convertir en compuestos de referencia de fórmula (I), en donde R³ representa un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático sustituido con CN mediante reacción con una carbodiimida, en presencia de un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

Los compuestos de fórmula (I), en donde R⁴ representa nitro, se pueden convertir en un compuesto de fórmula (I), en donde R⁴ es amino, en presencia de un agente reductor adecuado, tal como, por ejemplo, H₂, en presencia de un catalizador adecuado, tal como, por ejemplo, níquel Raney y en presencia de un disolvente adecuado, tal como, por ejemplo, un alcohol, p. ej., metanol.

Los compuestos de fórmula (I), en donde R^1 es hidrógeno se pueden convertir en un compuesto de referencia de fórmula (I), en donde R^1 es alquilo C_{1-6} mediante reacción con un agente alquilante adecuado, tal como, por ejemplo, yodo-alquilo C_{1-6} , en presencia de una base adecuada, tal como, por ejemplo, hidruro de sodio, y un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

Algunos de los compuestos de fórmula (I) y algunos de los compuestos intermedios en la presente divulgación pueden contener un átomo de carbono asimétrico. Formas isoméricas estereoquímicamente puras de dichos compuestos y dichos compuestos intermedios se pueden obtener mediante la aplicación de procedimientos conocidos en la técnica. Por ejemplo, los diastereoisómeros pueden separarse por métodos físicos, tales como cristalización selectiva, o técnicas cromatográficas, p. ej., distribución en contracorriente, cromatografía líquida y métodos similares. Los enantiómeros se pueden obtener a partir de mezclas racémicas convirtiendo primero dichas mezclas racémicas con agentes de resolución adecuados, tales como, por ejemplo, ácidos quirales, en mezclas de sales o compuestos diastereoméricos; separando luego físicamente dichas mezclas de sales o compuestos diastereoméricos mediante, por ejemplo, cristalización selectiva o técnicas cromatográficas, p. ej., cromatografía líquida y métodos similares; y finalmente convirtiendo dichas sales o compuestos diastereoméricos separados en los enantiómeros correspondientes. También se pueden obtener formas isoméricas estereoquímicamente puras a partir de las formas isoméricas estereoquímicamente puras de los compuestos intermedios y materiales de partida apropiados, con la condición de que las reacciones intermedias se produzcan de forma estereoespecífica.

Una manera alternativa de separar las formas enantioméricas de los compuestos de fórmula (I) y de los compuestos intermedios implica la cromatografía líquida, en particular la cromatografía líquida utilizando una fase estacionaria quiral.

Algunos de los compuestos intermedios y materiales de partida son compuestos conocidos y pueden estar disponibles comercialmente o pueden prepararse de acuerdo con procedimientos conocidos en la técnica o algunos de los compuestos de fórmula (I) o los compuestos intermedios descritos pueden prepararse de acuerdo con los procedimientos descritos en los documentos WO 99/50250 y WO 00/27825.

Los compuestos intermedios de fórmula (II) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XVII) con un agente introductor de un grupo saliente de fórmula (XIX), en donde W₁ representa el grupo saliente y R representa el resto del agente introductor del grupo saliente, tal como por ejemplo POCl₃.

HO
$$N$$
 $A_1 = A_2$ A_3 A_4 A_4 A_5 A_5

Los compuestos intermedios de fórmula (III), en donde X₁ representa NH, estando representados dichos compuestos intermedios por la fórmula (III-a), se pueden preparar a partir de un compuesto intermedio de fórmula (XX) en presencia de ZnCl₂ y en presencia de un disolvente adecuado, tal como, por ejemplo, un alcohol, por ejemplo etanol.

$$b^{1-\begin{vmatrix} R^3 \\ b^1-\end{vmatrix} } N \longrightarrow b^{1-\begin{vmatrix} R^3 \\ b^1-\end{vmatrix}$$

5

10

15

Los compuestos intermedios de fórmula (III'-a) como se representa a continuación pueden prepararse a partir de un compuesto intermediario de fórmula (XX), en donde R³ representa alquenilo C₂₋₆ sustituido con CN, estando representado dicho compuesto intermedio por la fórmula (XX-a), en presencia de ZnCl₂ y en presencia de un alquil C₁₋₄-OH adecuado, tal como, por ejemplo, etanol.

CN alquenilo
$$C_{2-6}$$
 alquenilo C_{2-6} b¹- NH₂ NH₂ b²- b³- = b⁴ (R⁴)_m

(XX-a) (III'-a)

Los compuestos de fórmula (III-b-1) y (III-b-2) tal como se representa más adelante se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XLI) o una sal de adición apropiada del mismo, en donde W_6 representa un grupo saliente adecuado, con acrilonitrilo o acrilamida en presencia de un catalizador de paladio adecuado, una base adecuada y un disolvente adecuado.

$$W_6$$
 CH₂=CH-CN W_{NH_2} (III-b-1)

$$\begin{array}{c} W_6 \\ \text{CH}_2 = \text{CH} - \text{C} (=\text{O}) \text{NH}_2 \\ \\ \text{NH}_2 \\ \end{array} \\ \text{(XLI)} \\ \begin{array}{c} \text{CH} = \text{CH} - \text{C} (=\text{O}) \text{NH}_2 \\ \\ \text{NH}_2 \\ \end{array}$$

5

10

15

20

25

30

35

40

Los grupos salientes adecuados en la reacción anterior son, por ejemplo, halo, triflato, tosilato, mesilato y similares. Preferentemente, W₆ es halo, más preferentemente yodo o bromo.

El catalizador de paladio (Pd) puede ser un catalizador de Pd homogéneo, tal como, por ejemplo, Pd(OAc)₂, PdCl₂, Pd(PPh₃)₄, Pd(PPh₃)₂Cl₂, bis(dibenciliden acetona)paladio, metalaciclo de tiometilfenilglutaramida-paladio y similares, o un catalizador de Pd heterogéneo, tal como, por ejemplo, paladio sobre carbón vegetal, paladio sobre óxidos metálicos, paladio sobre zeolitas.

Preferentemente, el catalizador de paladio es un catalizador de Pd heterogéneo, más preferentemente paladio sobre carbón vegetal (Pd/C). Pd/C es un catalizador recuperable, es estable y relativamente económico. Se puede separar fácilmente (filtración) de la mezcla de reacción, reduciendo con ello el riesgo de trazas de Pd en el producto final. El uso de Pd/C también evita la necesidad de ligandos, tales como, por ejemplo, ligandos de fosfina, que son caros, tóxicos y contaminantes de los productos sintetizados.

Las bases adecuadas en la reacción anterior son, por ejemplo, acetato de sodio, acetato de potasio, *N,N*-dietiletanamina, hidrógeno-carbonato de sodio, hidróxido de sodio y similares.

Los disolventes adecuados en la reacción anterior son, por ejemplo, acetonitrilo, *N,N*- dimetilacetamida, un líquido iónico, p. ej., [bmim]PF₆, *N,N*-dimetilformamida, agua, tetrahidrofurano, dimetilsulfóxido, 1-metil-2-pirrolidinona y similares.

Los compuestos intermedios de fórmula (XX), en donde R³ representa CRº=CRº-CN, siendo Rº y Rº como se describen anteriormente en esta memoria, siendo representados dichos compuestos intermedios mediante la fórmula (XX-b), se pueden preparar a partir de un compuesto intermedio de fórmula (XXI) mediante la reacción descrita anteriormente para la preparación de un compuesto de fórmula (I-f).

Los compuestos intermedios de fórmula (XXI) se pueden preparar por oxidación de un compuesto intermedio de fórmula (XXII) en presencia de un agente oxidante adecuado, tal como, por ejemplo, KMnO₄, en presencia de un disolvente adecuado, tal como, por ejemplo, cloruro de metileno y tris[2-(2-metoxietoxi)etil]amina.

HO—CH
$$b^{1} = b^{4}$$

$$(XXII)$$

$$0 = C$$

$$0 = C$$

$$b^{1} = b^{4}$$

$$0 = C$$

Los compuestos intermedios de fórmula (XXI) en donde R^{c'} es H, estando representados dichos compuestos intermedios por la fórmula (XXI-a), también se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XXIII), en donde W₄ representa un grupo saliente adecuado, tal como halo, p. ej., bromo, con *N,N*-dimetilformamida en presencia de nBuLi y en presencia de un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

Los compuestos intermedios de fórmula (XXII), en donde R^{c'} representa alquilo C₁₋₄, estando representados dichos compuestos intermedios por la fórmula (XXII-a), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XXIII) con un compuesto intermedio de fórmula (XXIV) en presencia de nBuLi y un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

$$\begin{array}{c}
 & \text{OH} \\
 & \text{b}^{2} \\
 & \text{b}^{3} = \begin{vmatrix} \mathbf{b}^{4} \\
 & \text{(R}^{4})_{\text{m}} \end{vmatrix} + \text{ alquilo } C_{1.4} - C(=O)H
\end{array}$$

$$\begin{array}{c}
 & \text{OH} \\
 & \text{H-C-alquilo } C_{1.4} \\
 & \text{b}^{1} - \begin{vmatrix} \mathbf{b}^{1} \\
 & \text{N} \end{vmatrix} \\
 & \text{b}^{3} = \begin{vmatrix} \mathbf{b}^{4} \\
 & \text{R}^{4} \end{vmatrix}_{\text{m}}$$

$$(XXIII) \qquad (XXII-a)$$

15

5

Los compuestos intermedios de fórmula (XI) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XXV) con un compuesto intermedio de fórmula (II), opcionalmente en presencia de una base adecuada, tal como, por ejemplo, 1-metil-pirrolidin-2-ona, o un ácido adecuado, tal como, por ejemplo, ácido clorhídrico..

20

Los compuestos intermedios de fórmula (XV) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XXVI) con un compuesto intermedio de fórmula (II) en presencia de una base adecuada, tal como, por ejemplo 1-metil-pirrolidin-2-ona e hidruro de sodio y un disolvente adecuado, tal como, por ejemplo, dioxano.

$$O = C$$

$$O = C$$

$$b^{1} - X_{1} - H$$

$$b^{2} = b^{4}$$

$$(R^{4})_{m}$$

$$(XXVI)$$

$$O = C$$

$$M_{1} - A_{1} - A_{2} - A_{3} - A_{4} - A_{1} - A_{2} - A_{4} - A_{2} - A_{3} - A_{4} - A_{4} - A_{4} - A_{5} - A$$

Los compuestos intermedios de fórmula (VII) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XXVII) con un agente introductor de un grupo saliente de fórmula (XIX'), tal como, por ejemplo, SOCl₂, en presencia de un disolvente adecuado, tal como, por ejemplo, cloruro de metileno.

5

10

15

Los compuestos intermedios de fórmula (XXVII), en donde alquilo C_{1-6} representa CH_2 , estando representados dichos compuestos intermedios por la fórmula (XXVII-a), se pueden preparar reduciendo un compuesto intermedio de fórmula (XV) o de fórmula (XXXI) con un agente reductor adecuado , tal como, por ejemplo, LiAlH₄, en presencia de un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

O=C
$$(XXI)$$

O=C (XXI)

O=C

Los compuestos intermedios de fórmula (XXVII-a) pueden convertirse en un compuesto intermedio de fórmula (XXXI) mediante reacción con el reactivo de Jones en presencia de un disolvente adecuado, tal como, por ejemplo, acetona.

OH CH₂

$$b^{1} - X_{1}$$

$$b^{2} = b^{4}$$

$$(XXVII-a)$$

$$CH_{2}$$

$$A^{1} - A^{2}$$

$$A^{2} - A^{2}$$

Los compuestos intermedios de fórmula (XI-b) se pueden preparar por oxidación de un compuesto intermedio de fórmula (XXVII-a) en presencia de un agente oxidante adecuado, tal como, por ejemplo, MnO₂, y un disolvente adecuado, tal como, por ejemplo, cloruro de metileno, *N,N*-dimetilformamida.

$$\begin{array}{c}
\text{OH} \\
\text{CH2} \\
\text{b}^{1} = \\
\text{b}^{2} = \\
\text{(R}^{4})_{\text{m}}
\end{array}$$

$$\begin{array}{c}
\text{N} \\
\text{N} \\
\text{a}^{1} = \\
\text{a}^{2}
\end{array}$$

$$\begin{array}{c}
\text{N} \\
\text{N} \\
\text{a}^{1} = \\
\text{a}^{2}
\end{array}$$

$$\begin{array}{c}
\text{N} \\
\text{N} \\
\text{a}^{1} = \\
\text{a}^{2}
\end{array}$$

$$\begin{array}{c}
\text{N} \\
\text{N} \\
\text{a}^{1} = \\
\text{a}^{2}
\end{array}$$

$$\begin{array}{c}
\text{N} \\
\text{N} \\
\text{A} = \\
\text{CM - M} = \\
\text{N} = \\
\text{N} = \\
\text{A} = \\
\text{A}$$

5

10

15

Los compuestos intermedios de fórmula (XIV) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XV) con H₂N-NH₂ en presencia de un disolvente adecuado, tal como, por ejemplo, un alcohol, p. ej., etanol y similares.

O=C
$$\begin{array}{c}
O = A \text{divide } C_{1-6} \\
O = C
\\
b^{1} = A^{1}
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}
\end{array}$$

$$\begin{array}{c}
O = C
\\
A^{1} = A^{2}$$

$$\begin{array}{c}
O = C$$

Los compuestos intermedios de fórmula (IX) y (XI-a) pueden reducirse a un compuesto intermedio de fórmula (XXVII'-a) y (XXVII'-b) en presencia de un agente reductor adecuado, tal como, por ejemplo, NaBH₄, LiAlH₄ o BuLi y un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano o un alcohol, p. ej. metanol, etanol y similares.

O=C
$$C = C$$

$$b^{1-} = C$$

$$b^{1-} = C$$

$$C = C$$

$$b^{1-} = C$$

$$C = C$$

$$C$$

$$O = C$$

$$b^{1-} \downarrow X_{1}$$

$$b^{2} \downarrow b^{3-} \mid = b^{4}$$

$$(XI-a)$$

$$(XI-a)$$

$$(XI-a)$$

$$R^{1} \downarrow X_{1}$$

$$A^{2} \downarrow A^{3} \downarrow A^{3}$$

$$A^{1} \downarrow A^{2} \downarrow A^{3} \downarrow A^{3}$$

$$A^{1} \downarrow A^{2} \downarrow A^{3} \downarrow A^{3}$$

$$A^{1} \downarrow A^{2} \downarrow A^{3} \downarrow A^{3} \downarrow A^{3}$$

$$A^{1} \downarrow A^{2} \downarrow A^{3} \downarrow A^{3} \downarrow A^{3} \downarrow A^{3} \downarrow A^{3}$$

$$A^{1} \downarrow A^{2} \downarrow A^{3} \downarrow A^{3}$$

Un compuesto intermedio de fórmula (XI-b) se puede convertir en un compuesto intermedio de fórmula (XXVII'-a) por reacción con yoduro de alquilo C_{1-4} en presencia de Mg y un disolvente adecuado, tal como, por ejemplo, dietiléter y tetrahidrofurano.

$$O = C$$

$$b^{1-1} X_{1}$$

$$b^{2} = b^{4}$$

$$(R^{4})_{m}$$

$$(XI-b)$$

$$O = C$$

$$A^{1} A^{2} A^{3}$$

$$A^{2} A^{3}$$

$$A^{2} A^{3}$$

$$A^{3} A$$

5

10

15

Los compuestos intermedios de fórmula (XVIII) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI-b) con H₂N-NH₂ en presencia de un disolvente adecuado, tal como, por ejemplo, un alcohol, p. ej., etanol y similares.

$$(XXXVII)$$

$$O = \text{alquilo } C_{1-6}$$

$$b^{1} = b^{4}$$

$$(R^{4})_{m}$$

$$(XXIX)$$

$$b^{2} = b^{4}$$

$$(R^{4})_{m}$$

$$(XXIX)$$

$$b^{2} = b^{4}$$

$$(R^{4})_{m}$$

$$(XXIX)$$

$$b^{2} = b^{4}$$

$$(R^{4})_{m}$$

$$(XXIX)$$

$$(XXIX)$$

$$b^{2} = b^{4}$$

$$(R^{4})_{m}$$

$$(XXII)$$

5

15

20

Los compuestos intermedios de fórmula (XXXVII), en donde alquenilo C_{2^-6} es CH=CH, representándose dichos compuestos intermedios por la fórmula (XXXVII-a), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI-b) con un reactivo de Wittig o de Horner-Emmons de fórmula (XII"), en donde R^b representa, por ejemplo, (fenil)₃ P^+ - Cl⁻ o (CH₃CH₂-O)₂P(=O)-, que puede considerarse como un precursor adecuado de un iluro de fósforo, en presencia de un disolvente adecuado, tal como, por ejemplo, tetrahidrofurano.

$$O = C$$

$$O =$$

Los compuestos intermedios de fórmula (XXXVII), en donde alquenilo C₂₋₆' es -CH=C(CN)-, representándose dichos compuestos intermedios por la fórmula (XXXVII-b), se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (XI-b) con

NC-CH₂-C(=O)O-alquilo C_{1.6}, en presencia de una base adecuada, tal como, por ejemplo, piperidina, y un disolvente adecuado, tal como, por ejemplo, un alcohol, p. ej., etanol.

$$O = C \quad C = O \quad C =$$

Los compuestos intermedios de fórmula (XXXIV) se pueden preparar reduciendo un compuesto intermedio de fórmula (XXXVIII) en presencia de H_2 y un catalizador adecuado, tal como, por ejemplo, paladio sobre carbón vegetal o níquel Raney, y en presencia de un disolvente adecuado, tal como, por ejemplo, un alcohol, p. ej. metanol y similares.

Los compuestos intermedios de fórmula (XXXV) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (VII-a) en presencia de trifenilfosfina y un disolvente adecuado, tal como, por ejemplo, acetonitrilo.

$$\begin{array}{c}
C_{1} \\
C_{2} \\
C_{1} \\
C_{1} \\
C_{2} \\
C_{1} \\
C_{2} \\
C_{3} \\
C_{4} \\
C_{4} \\
C_{4} \\
C_{5} \\
C_{5} \\
C_{5} \\
C_{5} \\
C_{6} \\
C_{6} \\
C_{7} \\
C_{8} \\
C_{8}$$

5

10

15

20

25

30

35

Los compuestos intermedios de fórmula (XXXIX) se pueden preparar haciendo reaccionar un compuesto intermedio de fórmula (II-a), en donde W_5 y W_1 son como se definen anteriormente en esta memoria.

Los compuestos de fórmula (I) preparados en los procedimientos descritos anteriormente en esta memoria pueden sintetizarse en forma de una mezcla de formas estereoisoméricas, en particular en forma de mezclas racémicas de enantiómeros que pueden separarse entre sí siguiendo procedimientos de resolución conocidos en la técnica. Los compuestos racémicos de fórmula (I) pueden convertirse en las formas de sal diastereoméricas correspondientes mediante reacción con un ácido quiral adecuado. Dichas formas de sal diastereoméricas se separan posteriormente, por ejemplo, por cristalización selectiva o fraccionada y los enantiómeros se liberan de ellas por medio de álcalis. Una manera alternativa de separar las formas enantioméricas de los compuestos de fórmula (I) implica la cromatografía líquida utilizando una fase estacionaria quiral. Dichas formas isoméricas estereoquímicamente puras también pueden derivarse de las formas isoméricas estereoquímicamente puras correspondientes de los materiales de partida apropiados, con la condición de que la reacción se produzca de manera estereoespecífica. Preferentemente, si se desea un estereoisómero específico, dicho compuesto se sintetizará por métodos de preparación estereoespecíficos. Estos métodos emplearán ventajosamente materiales enantioméricamente puros.

Los expertos en la materia apreciarán que en los procedimientos descritos anteriormente los grupos funcionales de compuestos intermedios pueden necesitar ser bloqueados por grupos protectores.

Los grupos funcionales que es deseable proteger incluyen hidroxi, amino y ácido carboxílico. Grupos protectores adecuados para hidroxi incluyen grupos trialquilsililo (p. ej., terc-butildimetilsililo, terc-butildifenilsililo o trimetilsililo), bencilo y tetrahidropiranilo. Grupos protectores adecuados para amino incluyen terc-butiloxicarbonilo o benciloxicarbonilo. Grupos protectores adecuados para el ácido carboxílico incluyen alquilo C_{1-6} o ésteres bencílicos.

La protección y desprotección de los grupos funcionales puede tener lugar antes o después de una etapa de reacción.

El uso de grupos protectores se describe completamente en 'Protective Groups in Organic Chemistry', editado por J W F McOmie, Plenum Press (1973), y 'Protective Groups in Organic Synthesis' 2ª edición, T W Greene y P G M Wutz, Wiley Interscience (1991).

5 Los nuevos compuestos de fórmula (VII), (XXVII), (XXIX) y (XXXVII) pueden utilizarse como compuestos intermedios en la síntesis de los compuestos de fórmula (I) y que también exhiben actividad inhibidora de la replicación del VIH.

Los compuestos de fórmula (III-b) representados a continuación intervienen en la síntesis de los compuestos de fórmula (I).

Por lo tanto, la presente divulgación también se refiere a un compuesto de fórmula (III-b) (que no está cubierto por las reivindicaciones)

$$R^{4}$$

$$X_{1}$$

$$H$$

10

15

20

25

30

(III-b)

un N-óxido, una sal de adición farmacéuticamente aceptable y una forma estereoquímicamente isomérica del mismo, en donde

R⁴ y X₁ son como se definieron anteriormente en esta memoria para los compuestos de fórmula (I).

Los compuestos preferidos de fórmula (III-b) son aquellos compuestos, en donde X_1 representa NH. Compuestos más preferidos de fórmula (III-b) son aquellos compuestos, en donde X_1 representa NH y alquenilo C_{2^-6} representa CH=CH. Compuestos más preferidos de fórmula (III-b) son los compuestos de fórmula (III-b-1) tal como se describe anteriormente en esta memoria.

Los compuestos de fórmula (I), (I"), (I"), (I"), (VII), (XXVII), (XXIX) y (XXXVII) muestran propiedades antirretrovirales (propiedades inhibidoras de la transcriptasa inversa), en particular contra el Virus de la Inmunodeficiencia Humana (VIH), que es el agente etiológico del Síndrome de la Inmunodeficiencia Adquirida (SIDA) en seres humanos. El virus VIH infecta preferentemente a las células T-4 humanas y las destruye o cambia su función normal, particularmente la coordinación del sistema inmune. Como resultado, un paciente infectado tiene un número cada vez menor de células T-4, que, además de ello, se comportan de manera anormal. Por lo tanto, el sistema de defensa inmunológica es incapaz de combatir infecciones y neoplasias y el sujeto infectado con el VIH fallece generalmente por infecciones oportunistas, tales como la neumonía, o por cánceres. Otras afecciones asociadas con la infección por el VIH incluyen trombocitopenia, sarcoma de Kaposi e infección del sistema nervioso central caracterizada por desmielinización progresiva, que resulta en demencia y síntomas tales como disartria progresiva, ataxia y desorientación. La infección por el VIH también se ha asociado con neuropatía periférica, linfadenopatía generalizada progresiva (PGL) y complejo relacionado con el SIDA (ARC).

35 Lo

Los presentes compuestos también muestran actividad contra cepas del VIH resistentes a (multi)fármacos, en particular cepas del VIH-1 resistentes a (multi)fármacos, más en particular los presentes compuestos muestran actividad contra cepas del VIH, especialmente cepas del VIH-1, que han adquirido resistencia a uno o más inhibidores de la transcriptasa inversa no nucleosídicos conocidos en la técnica. Inhibidores de la transcriptasa inversa no nucleosídicos conocidos en la técnica son aquellos inhibidores de la transcriptasa inversa no nucleosídicos distintos de los presentes compuestos y, en particular, inhibidores de la transcriptasa inversa no nucleosídicos comerciales. Los presentes compuestos también tienen poca o ninguna afinidad de unión a la glicoproteína ácida α-1 humana; la glicoproteína ácida α-1 humana no afecta o solo afecta débilmente a la actividad anti-VIH de los presentes compuestos.

45

50

40

Debido a sus propiedades antirretrovirales, particularmente sus propiedades anti-VIH, especialmente su actividad anti-VIH-1, los compuestos de fórmula (I), sus *N*-óxidos, sales de adición farmacéuticamente aceptables y formas estereoquímicamente isoméricas de los mismos, son útiles en el tratamiento de individuos infectados por el VIH y para la profilaxis de estas infecciones. En general, estos compuestos pueden ser útiles en el tratamiento de animales de sangre caliente infectados con virus cuya existencia está mediada por, o depende de la enzima transcriptasa inversa. Las afecciones que pueden prevenirse o tratarse con los compuestos de fórmula (I), especialmente afecciones asociadas con el VIH y otros retrovirus patógenos, incluyen SIDA, complejo relacionado con el SIDA (ARC), linfadenopatía progresiva generalizada (PGL), así como enfermedades del sistema nervioso central crónico provocadas por retrovirus, tales como, por ejemplo, demencia mediada por VIH y esclerosis múltiple.

Por lo tanto, los compuestos divulgados en esta memoria o cualquier subgrupo de los mismos pueden utilizarse como medicamentos contra las afecciones arriba mencionadas. Dicho uso como un medicamento o método de tratamiento comprende la administración a sujetos infectados con el VIH de una cantidad efectiva para combatir las afecciones asociadas con el VIH y otros retrovirus patógenos, especialmente el VIH-1. En particular, los compuestos de fórmula (I) pueden utilizarse en la fabricación de un medicamento para el tratamiento o la prevención de infecciones por el VIH.

5

10

15

20

25

30

35

45

50

60

65

puntual, como un ungüento.

En esta memoria se divulgan también composiciones para tratar infecciones virales que comprenden una cantidad terapéuticamente efectiva de un compuesto de fórmula (I) y un soporte o diluyente farmacéuticamente aceptable.

Los compuestos de fórmula (I) o cualquier subgrupo de los mismos pueden formularse en diversas formas farmacéuticas para fines de administración. Como composiciones apropiadas, pueden citarse todas las composiciones empleadas habitualmente para administrar fármacos por vía sistémica. Para preparar composiciones farmacéuticas que pueden utilizarse en esta invención, se combina una cantidad eficaz del compuesto particular. opcionalmente en forma de sal de adición, ya que el ingrediente activo se combina en una mezcla íntima con un soporte farmacéuticamente aceptable, el cual puede adoptar una amplia diversidad de formas dependiendo de la forma de preparación deseada para la administración. Estas composiciones farmacéuticas son deseables en una forma de dosificación unitaria adecuada, particularmente para la administración por vía oral, rectal, percutánea o por inyección parenteral. Por ejemplo, al preparar las composiciones en forma de dosificación oral, se puede emplear cualquiera de los medios farmacéuticos habituales, tales como, por ejemplo, agua, glicoles, aceites, alcoholes y similares en el caso de preparaciones líquidas orales, tales como suspensiones, jarabes, elixires, emulsiones y soluciones; o soportes sólidos, tales como almidones, azúcares, caolín, diluyentes, lubricantes, aglutinantes, agentes desintegrantes y similares en el caso de polvos, píldoras, cápsulas y comprimidos. Debido a su facilidad de administración, los comprimidos y las cápsulas representan las formas unitarias de dosificación oral más ventajosas, en cuyo caso obviamente se emplean soportes farmacéuticos sólidos. Para las composiciones parenterales, el soporte comprenderá generalmente agua estéril, al menos en gran parte, aunque pueden incluirse otros ingredientes, por ejemplo, para ayudar a la solubilidad. Se pueden preparar soluciones invectables, por ejemplo, en las que el soporte comprende solución salina, solución de glucosa o una mezcla de solución salina y solución de glucosa. También se pueden preparar suspensiones inyectables, en cuyo caso se pueden emplear soportes líquidos, agentes de suspensión y similares, apropiados. También se incluyen preparaciones en forma sólida que están destinadas a convertirse, poco antes de su uso, en preparaciones en forma líquida. En las composiciones adecuadas para la administración percutánea, el vehículo comprende opcionalmente un agente potenciador de la penetración y/o un agente humectante adecuado, opcionalmente combinado con aditivos adecuados de cualquier naturaleza en proporciones menores, aditivos que no introducen un efecto perjudicial significativo sobre la piel. Dichos aditivos pueden facilitar la administración a la piel y/o pueden ser útiles para preparar las composiciones deseadas. Estas composiciones pueden administrarse de varias maneras, p. ej., como un parche transdérmico, como una unción

Los compuestos divulgados en la presente memoria también pueden administrarse por inhalación o insuflación por medio de métodos y formulaciones empleados en la técnica para la administración por este medio. Por lo tanto, en general, los compuestos divulgados en la presente memoria pueden administrarse a los pulmones en forma de una solución, una suspensión o un polvo seco. Cualquier sistema desarrollado para el suministro de soluciones, suspensiones o polvos secos mediante inhalación o insuflación oral o nasal es adecuado para la administración de los presentes compuestos.

Para ayudar a la solubilidad de los compuestos de fórmula (I), se pueden incluir ingredientes adecuados, p. ej., ciclodextrinas, en las composiciones. Las ciclodextrinas apropiadas son α -, β -, γ -ciclodextrinas o éteres y éteres mixtos de las mismas, en donde uno o más de los grupos hidroxi de las unidades de anhidroglucosa de la ciclodextrina están sustituidos con alquilo C_{1-6} , particularmente metilo, etilo o isopropilo, p. ej. β -CD metilado al azar; hidroxialquilo C_{1-6} , particularmente hidroxietilo, hidroxipropilo o hidroxibutilo; carboxialquilo C_{1-6} , particularmente carboximetilo o carboxietilo; alquil C_{1-6} carbonilo, particularmente acetilo. Especialmente notables como formadores de complejos y/o solubilizantes son β -CD, β -CD metilado al azar, 2,6-dimetil- β -CD, 2-hidroxietil- β -CD, 2-hidroxipropil- β -CD y, en particular, 2-hidroxipropil- β -CD (2-HP- β -CD).

La expresión éter mixto designa derivados de ciclodextrina en los que al menos dos grupos hidroxi de ciclodextrina están eterificados con diferentes grupos, tales como, por ejemplo, hidroxipropilo e hidroxietilo.

La sustitución molar promedio (M.S) se utiliza como una medida del número promedio de moles de unidades alcoxi por mol de anhidroglucosa. El grado de sustitución (D.S.) promedio se refiere al número promedio de hidroxilos sustituidos por unidad de anhidroglucosa. Los valores M.S. y D.S. pueden determinarse mediante diversas técnicas analíticas, tales como la resonancia magnética nuclear (RMN), la espectrometría de masas (MS) y la espectroscopía infrarroja (IR). Dependiendo de la técnica utilizada, se pueden obtener valores ligeramente diferentes para un derivado de ciclodextrina dado. Preferentemente, medido por espectrometría de masas, la M.S. varía de 0,125 a 10 y el D.S. varía de 0,125 y 3.

Otras composiciones adecuadas para la administración oral o rectal comprenden partículas que consisten en una

dispersión sólida que comprende un compuesto de fórmula (I) y uno o más polímeros hidrosolubles farmacéuticamente aceptables apropiados.

La expresión "una dispersión sólida", utilizada en lo sucesivo define un sistema en un estado sólido (en oposición a un estado líquido o gaseoso) que comprende al menos dos componentes, en el caso del compuesto de fórmula (I) y el polímero hidrosoluble, en el que un componente se dispersa más o menos uniformemente por todo el otro componente o componentes (en caso de que se incluyan agentes de formulación farmacéuticamente aceptables adicionales, generalmente conocidos en la técnica, tales como plastificantes, conservantes y similares). Cuando dicha dispersión de los componentes es tal que el sistema es química y físicamente uniforme u homogéneo en su totalidad o consiste en una fase tal como se define en termodinámica, dicha dispersión sólida se denominará "una solución sólida". Las soluciones sólidas son sistemas físicos preferidos, porque los componentes que contienen están habitualmente biodisponibles fácilmente para los organismos a los que se administran. Esta ventaja probablemente puede explicarse por la facilidad con la que dichas soluciones sólidas pueden formar soluciones líquidas cuando se ponen en contacto con un medio líquido, tal como los jugos gastrointestinales. La facilidad de disolución puede atribuirse, al menos en parte, al hecho de que la energía requerida para la disolución de los componentes de una solución sólida es menor que la requerida para la disolución de componentes de una fase sólida cristalina o microcristalina.

La expresión "una dispersión sólida" también comprende dispersiones que son menos homogéneas por completo que las soluciones sólidas. Dichas dispersiones no son química ni físicamente uniformes por completo ni comprenden más de una fase. Por ejemplo, la expresión "una dispersión sólida" también se refiere a un sistema que tiene dominios o regiones pequeñas en las que el compuesto amorfo, microcristalino o cristalino de fórmula (I), o polímero amorfo, microcristalino o cristalino hidrosoluble, o ambos, se dispersan más o menos uniformemente en otra fase que comprende polímero hidrosoluble, o compuesto de fórmula (I), o una solución sólida que comprende compuesto de fórmula (I) y polímero hidrosoluble. Dichos dominios son regiones dentro de la dispersión sólida marcadas distintivamente por alguna característica física, de pequeño tamaño y distribuidas de manera uniforme y aleatoria por toda la dispersión sólida.

Existen diversas técnicas para preparar dispersiones sólidas que incluyen extrusión por fusión, secado por pulverización y evaporación de la solución.

El proceso de evaporación de la solución comprende las siguientes etapas:

- a) disolver el compuesto de fórmula (I) y el polímero hidrosoluble en un disolvente apropiado, opcionalmente a temperaturas elevadas;
- b) calentar la solución resultante bajo el punto a), opcionalmente en vacío, hasta que se evapore el disolvente. La solución también se puede verter sobre una superficie grande para formar una película delgada y evaporar el disolvente de la misma.
- En la técnica de secado por pulverización, los dos componentes también se disuelven en un disolvente apropiado y
 40 la solución resultante se pulveriza entonces a través de la boquilla de un secador por pulverización, seguido de
 evaporación del disolvente de las gotitas resultantes a temperaturas elevadas.

La técnica preferida para preparar dispersiones sólidas es el proceso de extrusión por fusión, que comprende las siguientes etapas:

- a) mezclar un compuesto de fórmula (I) y un polímero hidrosoluble apropiado,
 - b) opcionalmente, mezclar aditivos con la mezcla así obtenida,
 - c) calentar y combinar la mezcla así obtenida hasta que se obtenga una masa fundida homogénea,
 - d) impulsar la masa fundida así obtenida a través de una o más boquillas; y
 - e) enfriar la masa fundida hasta que solidifique.

5

10

15

50

55

60

65

La expresión "masa fundida" y el término "fundir" deben interpretarse de manera amplia. Esta expresión y este término no solo significan la alteración de un estado sólido a un estado líquido, sino que también pueden referirse a una transición a un estado vítreo o gomoso, y en el que es posible que un componente de la mezcla se embeba más o menos homogéneamente en el otro. En casos particulares, un componente se fundirá y el o los otros componentes se disolverán en la masa fundida, formando así una solución que al enfriarse puede formar una solución sólida que tiene propiedades ventajosas de disolución.

Después de preparar las dispersiones sólidas como se describió anteriormente en esta memoria, los productos obtenidos se pueden moler y tamizar opcionalmente.

El producto de dispersión sólido puede molerse o triturarse en partículas que tienen un tamaño de partícula inferior a 600 μm, preferentemente inferior a 400 μm y lo más preferentemente inferior a 125 μm.

Las partículas preparadas tal como se describe anteriormente pueden formularse luego mediante técnicas convencionales en formas de dosificación farmacéutica tales como comprimidos y cápsulas.

ES 2 923 581 T3

Se apreciará que una persona experta en la técnica será capaz de optimizar los parámetros de las técnicas de preparación de dispersión sólida descritas anteriormente, tales como el disolvente más apropiado, la temperatura de trabajo, el tipo de aparato utilizado, la velocidad de secado por pulverización, la tasa de rendimiento en el extrusor de masa fundida.

5

10

Los polímeros hidrosolubles en las partículas son polímeros que tienen una viscosidad aparente, cuando se disuelven a 20 °C en una solución acuosa al 2 % (p/v), de 1 a 5000 mPa.s, más preferentemente de 1 a 700 mPa. s, y lo más preferido de 1 a 100 mPa.s. Por ejemplo, polímeros hidrosolubles adecuados incluyen alquilcelulosas, hidroxialquilcelulosas, carboxialquilcelulosas, carboxialquilcelulosas, sales de metales alcalinos de carboxialquilcelulosas, carboxialquilcelulosas, derivados de quitina, di-, oligo- y poli-sacáridos tales como trehalosa, ácido algínico o sales de metales alcalinos y de amonio, carragenanos, galactomananos, tragacanto, agar-agar, goma arábiga, goma guar y goma xantana, ácidos poliacrílicos y sus sales, ácidos polimetacrílicos y sus sales, copolímeros de metacrilato, poli(alcohol vinílico), polivinilpirrolidona, copolímeros de polivinilpirrolidona con acetato de vinilo, combinaciones de poli(alcohol vinílico) y polivinilpirrolidona, óxidos de polialquileno y copolímeros de óxido de etileno y óxido de propileno. Polímeros hidrosolubles preferidos son hidroxipropilmetilcelulosas.

20

15

También se pueden utilizar una o más ciclodextrinas como polímero hidrosoluble en la preparación de las partículas arriba mencionadas tal como se describe en el documento WO 97/18839. Dichas ciclodextrinas incluyen las ciclodextrinas no sustituidas y sustituidas farmacéuticamente aceptables conocidas en la técnica, más particularmente las ciclodextrinas α , β o γ o los derivados farmacéuticamente aceptables de las mismas.

25

Las ciclodextrinas sustituidas que se pueden utilizar para preparar las partículas arriba descritas incluyen poliéteres descritos en la patente de EE.UU. 3.459.731. Además ciclodextrinas sustituidas son éteres en los que el hidrógeno de uno o más grupos hidroxi de ciclodextrina está reemplazado por alquilo C_{1-6} , hidroxialquilo C_{1-6} , carboxialquilo C_{1-6} o alquil C_{1-6} oxicarbonilalquilo C_{1-6} o éteres mixtos de las mismas. En particular, ciclodextrinas sustituidas de este tipo son éteres en los que el hidrógeno de uno o más grupos hidroxi de ciclodextrina se reemplaza por alquilo C_{1-3} , hidroxialquilo C_{2-4} o carboxialquilo C_{1-2} , o más en particular por metilo, etilo, hidroxietilo, hidroxipropilo, hidroxibutilo, carboxi-metilo o carboxietilo.

30

Son de particular utilidad los éteres de β -ciclodextrina, p. ej., dimetil- β -ciclodextrina tal como se describe en Drugs of the Future, vol. 9, N.° 8, págs. 577-578 por M. Nogradi (1984) y poliéteres, p. ej., hidroxipropil β -ciclodextrina e hidroxietil β -ciclodextrina, como ejemplos. Un alquil éter de este tipo puede ser un metil éter con un grado de sustitución de aproximadamente 0,125 a 3, p. ej., aproximadamente 0,3 a 2. Una hidroxipropil ciclodextrina de este tipo puede formarse, por ejemplo, a partir de la reacción entre β -ciclodextrina y óxido de propileno y puede tener un valor MS de aproximadamente 0,125 a 10, p. ej., de aproximadamente 0,3 a 3.

Otro tipo de ciclodextrinas sustituidas son las sulfobutilciclodextrinas.

40

35

La relación del compuesto de fórmula (I) al polímero hidrosoluble puede variar ampliamente. Por ejemplo, se pueden emplear relaciones de 1/100 a 100/1. Relaciones interesantes del compuesto de fórmula (I) a ciclodextrina varían de aproximadamente 1/10 a 10/1. Las relaciones más interesantes varían de aproximadamente 1/5 a 5/1.

45

Además, puede ser conveniente formular los compuestos de fórmula (I) en forma de nanopartículas que tienen un modificador de la superficie adsorbido en su superficie en una cantidad suficiente para mantener un tamaño medio efectivo de partículas de menos de 1000 nm. Se cree que modificadores de la superficie útiles incluyen aquellos que se adhieren físicamente a la superficie del compuesto de fórmula (I) ,pero que no se unen químicamente a dicho compuesto.

50

Los modificadores de la superficie adecuados pueden seleccionarse preferentemente de excipientes farmacéuticos orgánicos e inorgánicos conocidos. Dichos excipientes incluyen diversos polímeros, oligómeros de bajo peso molecular, productos naturales y tensioactivos. Modificadores de la superficie preferidos incluyen tensioactivos no iónicos y aniónicos.

55

Aún otra forma interesante de formular los compuestos de fórmula (I) implica una composición farmacéutica mediante la cual los compuestos de fórmula (I) se incorporan en polímeros hidrofílicos y aplicar esta mezcla como una película de recubrimiento sobre muchas perlas pequeñas, produciendo así una composición que puede convenientemente ser fabricada y que sea adecuada para preparar formas de dosificación farmacéutica para la administración por vía oral.

60

Dichas perlas comprenden un núcleo central, redondeado o esférico, una película de recubrimiento de un polímero hidrofílico y un compuesto de fórmula (I) y, opcionalmente, una capa de recubrimiento de sellado.

65

Son múltiples los materiales adecuados para uso como núcleos en las perlas, siempre que dichos materiales sean farmacéuticamente aceptables y tengan dimensiones y firmeza apropiadas. Ejemplos de materiales de este tipo son polímeros, sustancias inorgánicas, sustancias orgánicas y sacáridos y derivados de los mismos.

Es especialmente ventajoso formular las composiciones farmacéuticas mencionadas anteriormente en forma de dosificación unitaria para facilidad de administración y uniformidad de dosificación. Forma de dosificación unitaria, tal como se utiliza en esta memoria, se refiere a unidades físicamente discretas adecuadas como dosificaciones unitarias, conteniendo cada una de las unidades una cantidad predeterminada de ingrediente activo calculada para producir el efecto terapéutico deseado en asociación con el soporte farmacéutico requerido. Ejemplos de formas de dosificación unitaria de este tipo son comprimidos (incluyendo comprimidos ranurados o recubiertos), cápsulas, píldoras, paquetes de polvo, obleas, supositorios, soluciones o suspensiones inyectables y similares, y múltiplos segregados de las mismas.

10

15

Los expertos en el tratamiento de la infección por el VIH podrían determinar la cantidad diaria efectiva a partir de los resultados de ensayo presentados aquí. En general, se contempla que una cantidad diaria efectiva sería de 0,01 mg/kg a 50 mg/kg de peso corporal, más preferentemente de 0,1 mg/kg a 10 mg/kg de peso corporal. Puede ser apropiado administrar la dosis requerida como dos, tres, cuatro o más sub-dosis a intervalos apropiados a lo largo del día. Dichas sub-dosis pueden formularse como formas de dosificación unitarias, por ejemplo, que contienen de 1 a 1000 mg y, en particular, de 5 a 200 mg de ingrediente activo por forma de dosificación unitaria.

20

La dosificación exacta y la frecuencia de administración dependen del compuesto particular de fórmula (I) utilizado, de la afección particular que se esté tratando, de la gravedad de la afección que se esté tratando, de la edad, del peso y del estado físico general del paciente particular, así como otros medicamentos que el individuo puede estar tomando, como es bien sabido por los expertos en la materia. Además, es evidente que dicha cantidad diaria efectiva puede reducirse o aumentarse dependiendo de la respuesta del sujeto tratado y/o dependiendo de la evaluación del médico que prescribe los compuestos. Los intervalos de cantidades diarias efectivas mencionados anteriormente en esta memoria son, por lo tanto, solo pautas.

25

30

Los presentes compuestos de fórmula (I) se utilizan en combinación con otros agentes terapéuticos, tales como antivirales, antibióticos, inmunomoduladores o vacunas para el tratamiento de infecciones virales. También se pueden utilizar en combinación con otros agentes profilácticos para la prevención de infecciones virales. Los presentes compuestos pueden utilizarse en vacunas y métodos para proteger a individuos contra infecciones virales durante un periodo de tiempo prolongado. Los compuestos pueden emplearse en vacunas de este tipo junto con otros agentes antivirales de una manera consistente con la utilización convencional de inhibidores de la transcriptasa inversa en vacunas. Por lo tanto, los presentes compuestos pueden combinarse con adyuvantes farmacéuticamente aceptables empleados convencionalmente en vacunas y administrarse en cantidades profilácticamente efectivas para proteger a los individuos durante un periodo de tiempo prolongado contra la infección por el VIH.

35

40

45

50

55

Además, la combinación de un compuesto antirretroviral y un compuesto de fórmula (I) se puede utilizar como medicamento. Por lo tanto, la presente invención también se refiere a un producto que contiene (a) un compuesto de fórmula (I) y (b) otro compuesto antirretroviral, tal como una preparación combinada para uso simultáneo, separado o secuencial en el tratamiento anti-VIH. Los diferentes fármacos se pueden combinar en una sola preparación junto con soportes farmacéuticamente aceptables. Dichos otros compuestos antirretrovirales pueden ser compuestos antirretrovirales conocidos, tales como suramina, pentamidina, timopentina, castanospermina, dextrano (sulfato de dextrano), foscarnet sódico (fosfonoformiato trisódico); inhibidores nucleosídicos de la transcriptasa inversa, p. ej., zidovudina (3'-azido-3'-desoxitimidina, AZT), didanosina (2',3'-didesoxiinosina; ddl), zalcitabina (didesoxicitidina, ddC) o lamivudina (2'-3'-didesoxi-3'-tiacitidina, 3TC), estavudina (2',3'-dideshidro-3'-desoxitimidina, d4T), abacavir y similares; inhibidores no nucleosídicos de la transcriptasa inversa, tales como nevirapina (11-ciclopropil-5,11-dihidro-4-metil-6*H*-dipirido-[3,2-b: 2',3'-e][1,4]diazepin-6-ona), efavirenz, delavirdina, TMC-120, TMC-125 y similares; inhibidores de la fosfonato transcriptasa inversa, p. ej., tenofovir y similares; compuestos del tipo TIBO (tetrahidroimidazo[4,5,1-jk][1,4]-benzodiazepina-2(1H)-ona y tiona), p. ej., (S)-8-cloro-4,5,6,7-tetrahidro-5-metil-6-(3-metil-2-butenil)-imidazo-[4,5,1-jk][1,4]benzodiazepina-2(1H)-tiona; compuestos del tipo α -APA (α -anilino fenil acetamida), p.e j., α-[(2-nitrofenil)amino]-2,6-diclorobenceno-acetamida y similares; inhibidores de proteínas trans-activantes, tales como inhibidores de TAT, p. ej., RO-5-3335, o inhibidores de REV, y similares; inhibidores de proteasas, p. ej., indinavir, ritonavir, saquinavir, lopinavir (ABT-378), nelfinavir, amprenavir, TMC-126, BMS-232632, VX-175 y similares; inhibidores de fusión, p. ej., T-20, T-1249 y similares; antagonistas del receptor CXCR4, p. ej., AMD-3100 y similares; inhibidores de la integrasa viral; inhibidores de la transcriptasa inversa tipo nucleótido, p. ej., tenofovir y similares; inhibodores de la ribonucleótido reductasa, p. ej., hidroxiurea y similares.

60

65

Al administrar los compuestos de fórmula (I) con otros agentes antivirales que fijan como objetivo diferentes eventos en el ciclo de vida del virus, se puede potenciar el efecto terapéutico de estos compuestos. Las terapias combinadas tal como se describió arriba ejercen un efecto sinérgico en la inhibición de la replicación del VIH, porque cada uno de los componentes de la combinación actúa en un sitio diferente de replicación del VIH. El uso de combinaciones de este tipo puede reducir la dosificación de un agente antirretroviral convencional dado que se requeriría para un efecto terapéutico o profiláctico deseado en comparación con cuando ese agente se administra como una monoterapia. Estas combinaciones pueden reducir o eliminar los efectos secundarios de la terapia antirretroviral simple convencional, sin interferir en la actividad antiviral de los agentes. Estas combinaciones reducen el potencial de resistencia a las terapias de agente único, al tiempo que minimizan cualquier toxicidad asociada. Estas combinaciones también pueden aumentar la eficacia del agente convencional sin aumentar la toxicidad asociada.

Los compuestos de fórmula (I) también se pueden administrar en combinación con agentes inmunomoduladores, p. ej., levamisol, bropirimina, anticuerpo interferón alfa anti-humano, interferón alfa, interleuquina 2, metionina, encefalina, dietilditiocarbamato, factor de necrosis tumoral, naltrexona y similares; antibióticos, p. ej., isetiorato de pentamidina y similares; agentes colinérgicos, p. ej., tacrina, rivastigmina, donepezil, galantamina y similares; bloqueadores de canales de NMDA, p. ej., memantina para prevenir o combatir infecciones y enfermedades o síntomas de enfermedades asociadas con infecciones por el VIH, tales como SIDA y ARC, p. ej., demencia. Un compuesto de fórmula (I) también se puede combinar con otro compuesto de fórmula (I).

10 Los siguientes ejemplos pretenden ilustrar la presente invención.

Los siguientes párrafos describen la química de posible relevancia para los compuestos de las reivindicaciones.

Parte experimental

15

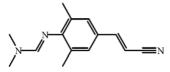
En lo sucesivo, "DMF" se define como *N,N*-dimetilformamida, "DIPE" se define como diisopropiléter, "THF" se define como tetrahidrofurano, "DMA" se define como *N,N* -dimetilacetamida, "DMSO" se define como dimetilsulfóxido, "DME" se define como dimetiléter, "EtOAc" se define como acetato de etilo, "EDCI" se define como *N*-(etilcarbonimidoil)-*N,N*-dimetil-1,3-propanodiamina.

20

A. Preparación de los compuestos intermedios.

Ejemplo A1

a) La preparación del compuesto intermedio 1

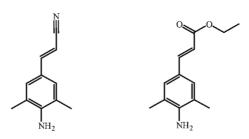

25

30

Se añadió nBuLi (0,012 mol) gota a gota a -70 °C a una mezcla de N-(4-bromo-2,6-dimetilfenil)-N,N-dimetilmetanimidamida (0,0078 mol) en THF (20 ml) bajo un flujo de N_2 . La mezcla se agitó a -30 °C durante 30 minutos y luego se enfrió a -70 °C. Se añadió gota a gota una mezcla de DMF (0,078 mol) en THF (30 ml). La mezcla se agitó a -70 °C durante 2 horas, luego se llevó a 0 °C, se vertió en H_2O y se extrajo con acetato de etilo. La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. Rendimiento: 1,8 g del compuesto intermedio 1.

35

b) La preparación del compuesto intermedio 2



40

Una mezcla de (cianometil)fosfonato de dietilo (0,0037 mol) en THF (10 ml) se enfrió a 5 °C bajo flujo de N_2 . Se añadió terc-butóxido de potasio (0,0037 mol) en porciones. La mezcla se agitó a 5 °C durante 30 minutos y luego se agitó a temperatura ambiente durante 30 minutos. Se añadió una mezcla del compuesto intermedio 1 (0,0024 mol) en THF (10 ml). La mezcla se agitó a temperatura ambiente durante 1 hora, luego se vertió en H_2O y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. Rendimiento: 0,82 g (100 %) del compuesto intermedio 2.

45

c) La preparación del compuesto intermedio 3 y el compuesto intermedio 22

compuesto intermedio 3

compuesto intermedio 22

Una mezcla del compuesto intermedio 2 (0,059 mol) y ZnCl₂ (0,299 mol) en etanol (150 ml) se agitó y se sometió a reflujo durante 24 horas, después se vertió en solución de K₂CO₃ (al 10 % en agua) y se extrajo con CH₂Cl₂. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (9 g) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,8 g (6 %) del compuesto intermedio 22. El filtrado se concentró y se recristalizó en DIPE para obtener 6 g del compuesto intermedio 3.

Alternativamente, el compuesto intermedio 3 también se preparó como sigue:

A una solución de 159 g de 4-yodo-2,6-dimetil-bencenoamina se añadieron 63,8 g de acetato de sodio. La mezcla de reacción se mantuvo bajo una atmósfera de nitrógeno. Se añadieron 7 g de paladio humedecido sobre carbón vegetal (Pd al 10 %/C) y 64,4 ml de acrilonitrilo. La mezcla de reacción se calentó a 130 °C y se agitó durante la noche. Después de enfriar a temperatura ambiente, se añadieron 0,5 l de tolueno y 0,5 l de *N,N*-dimetilacetamida. La mezcla de reacción se filtró sobre Dicalite y el filtro se lavó con 0.5 l de tolueno. Se añadió agua (6 l) a la mezcla que se agitó durante 30 minutos. Las capas se separaron. A la capa acuosa, se añadió 1 l de tolueno y la mezcla se agitó durante 30 minutos. Las capas se separaron de nuevo. Las capas orgánicas separadas se recogieron y el disolvente se evaporó, proporcionando 123 g del compuesto intermedio 3.

El compuesto intermedio 3 se convirtió en su sal de ácido clorhídrico como sigue:

A una mezcla de 123 g del compuesto intermedio 3 en 630 ml de etanol se añadieron 1,25 l de diisopropiléter. La mezcla de reacción se mantuvo bajo una atmósfera de nitrógeno. La mezcla de reacción se calentó a 60 °C y se agitó durante 30 minutos. Se añadieron 120 ml de una solución 6 N de ácido clorhídrico en 2-propanol y la mezcla se agitó durante 30 minutos. Después de enfriar a temperatura ambiente, la mezcla de reacción se filtró y el residuo se lavó con 100 ml de 2-propanol. El residuo resultante se secó a presión reducida a 50 °C. Rendimiento: 103 g (77 %) de la sal de ácido clorhídrico (1:1) de compuesto intermedio 3.

El compuesto intermedio 3 (E) se preparó como sigue:

x) Preparación de compuesto intermedio 3a (E)

5

10

15

20

25

Compuesto intermedio 3a (E)

30 En 10 ml de acetonitrilo, seco, se disolvieron 2,00 g (10,0 mol) de 4-bromo-2,6-dimetilanilina, 1,07 g (1,5 eq) de acrilamida, 224 mg (0,1 eq) de Pd(OAc)₂, 609 mg (0,2 eq) de tris(2-metilfenil)fosfina y 1,52 g de *N,N*-dietiletanamina. La mezcla se purgó con N₂ durante 20 minutos y se agitó durante la noche a 70 °C. La mezcla se diluyó con 150 ml de cloruro de metileno, se lavó con una solución acuosa saturada de NaHCO₃, se secó (NaCl sat., Na₂SO₄) y se filtró. El disolvente se evaporó y el residuo se agitó en diisopropil éter, seguido de filtración. Rendimiento: 1,51 g (79,5 %) del compuesto intermedio 3a (E).

y) Preparación de compuesto intermedio 3 (E)

Compuesto intermedio 3 (E)

Se enfrió POCl₃ (3 ml) a 0 °C y se añadieron 500 mg (2,63 mmol) de compuesto intermedio 3a (E). Después de 30 minutos, se retiró el baño de enfriamiento y la mezcla se agitó durante la noche a 20 °C. La mezcla se añadió gota a gota a 150 ml de diisopropil éter al tiempo que se agitaba vigorosamente. El precipitado se filtró y se lavó con diisopropil éter. El residuo se añadió a 100 ml de acetato de etilo / 100 ml de solución acuosa saturada de NaHCO₃ y se agitó. La capa de acetato de etilo se separó, se secó (NaCl sat., Na₂SO₄) y se filtró. El disolvente se evaporó. Rendimiento: 380 mg (84 %) del compuesto intermedio 3 (E).

d) La preparación del compuesto intermedio 4

$$H_2N$$
 $N^{\pm}O$

Una mezcla de 4-bromo-2,6-dimetilbencenoamina (0,024 mol) en H₂SO₄ (30 ml) se agitó a -5 °C. KNO₃ (0,024 mol) se añadió lentamente. La mezcla se agitó a -5 °C durante 30 minutos, se vertió en H₂O y se extrajo con acetato de etilo. La capa orgánica se lavó con H₂O, se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,058 g, 95 %) se purificó por cromatografía en columna sobre gel de sílice (eluyente: ciclohexano/acetato de etilo; 70/30; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 4,1 g del compuesto intermedio 4.

10 Ejemplo A1A

5

20

25

30

35

40

La preparación del compuesto intermedio 28

Se añadió 1-cloro-pirrolidina-2,5-diona (0,032 mol) a 60 °C a una mezcla de éster etílico del ácido 4-amino-3-metil-benzoico [CAS 40800-65-5] (0,029 mol) en CH₃CN (50 ml). La mezcla se agitó y se calentó a reflujo lentamente. Se añadió K₂CO₃ al 10 %. La mezcla se extrajo con CH₂Cl₂. La capa orgánica se evaporó. El residuo (6,6 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: ciclohexano/EtOAc; 85/15; 15-40 μm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 5,2 g del compuesto intermedio 28 (84 %).

Ejemplo A2

Una mezcla de 4-[(1,4-dihidro-4-oxo-2-pirimidinil)amino]benzonitrilo (0,12 mol) en POCl₃ (90 ml) se agitó y se sometió a reflujo bajo argón durante 20 minutos. La mezcla de reacción se vertió lentamente sobre 750 ml de hielo/agua, y el sólido se separó por filtración. El sólido se suspendió en 500 ml de agua, y el pH de la suspensión se ajustó a neutro mediante la adición de una solución de NaOH al 20 %. El sólido se separó de nuevo por filtración, se suspendió en 200 ml de 2-propanona y se añadieron 1000 ml de CH₂Cl₂. La mezcla se calentó hasta que todo el sólido se hubo disuelto. Después de enfriar a temperatura ambiente, la capa acuosa se separó y la capa orgánica se secó. Durante la separación del agente de secado mediante filtración, se formó un sólido blanco en el filtrado. El enfriamiento adicional del filtrado en el congelador, seguido de filtración, proporcionó 21,38 g (77,2 %) de [4- [(4-cloro-2-pirimidinil)amino]benzonitrilo (interm. 5).

Ejemplo A3

a) La preparación del compuesto intermedio 6

Se añadió nBuLi (0,024 mol) gota a gota a -70 $^{\circ}$ C a una mezcla de N-(4-bromo-2,6-dimetilfenil)-N,N-dimetilmetanimidamida (0,0157 mol) en THF (50 ml) bajo un flujo de N_2 . La mezcla se agitó a -30 $^{\circ}$ C durante 30 minutos y luego se enfrió a

-70 °C. Se añadió una solución de 2-metilpropanal (0,055 mol) en THF (50 ml). La mezcla se agitó a -70 °C durante 2 horas, luego se llevó a 0 °C, se vertió en H₂O y se extrajo con CH₂Cl₂. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (6,7 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂/CH₃OH/NH₄OH 95/5/0,5; 15-40 μm). Se recogieron dos fracciones y el disolvente se evaporó. Fracción 1: rendimiento: 1,5 g del compuesto intermedio 6 (38 %).

45 b) La preparación del compuesto intermedio 7

Se añadió tris[2-(2-metoxietoxi)etil]amina (0,0193 mol) a temperatura ambiente a una solución de compuesto intermedio 6 (0,0048 mol) en CH_2CI_2 (20 ml). Se añadió en porciones $KMnO_4$ (0,0193 mol). La mezcla se agitó a temperatura ambiente durante la noche, después se filtró sobre celite y se lavó con CH_2CI_2 . La capa orgánica se lavó con K_2CO_3 al 10 %, se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. Rendimiento: 1,2 g (100 %) del compuesto intermedio 7.

c) La preparación del compuesto intermedio 8

5

10

15

20

25

30

$$H_2N$$

Una mezcla del compuesto intermedio 7 (0,0043 mol) y ZnCl₂ (0,017 mol) en etanol (20 ml) se agitó y se sometió a reflujo durante la noche, se vertió en H₂O y se extrajo con CH₂Cl₂/CH₃OH. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. Rendimiento: 0,94 g (82 %) del compuesto intermedio 8. d-1) La preparación del compuesto intermedio 9

Una mezcla del compuesto intermedio 8 (0,0049 mol) y el compuesto intermedio 5 (0,0025 mol) se agitó a 150 °C durante 2 horas y se recogió en K₂CO₃ al 10 %/CH₂Cl₂/CH₃OH. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (1,3 g) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. La capa madre se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂/CH₃OH 98,5/1,5; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,21 g del compuesto intermedio 9.

d-2) La preparación del compuesto intermedio 29

$$HO \longrightarrow \bigcup_{i=1}^{CI} \bigcup_{i=1}^{H} \bigcup_{i=1}^{H$$

Una mezcla del compuesto intermedio 28 (0,023 mol) y el compuesto intermedio 5 (preparado de acuerdo con A2) (0,025 mol) en HCl 3N (10 ml) se agitó a 105 °C, luego se llevó a temperatura ambiente y se filtró. El precipitado se lavó con DIPE y se secó. Rendimiento: 8,4 g del compuesto intermedio 29 (96 %). d-3) La preparación del compuesto intermedio 30

Una mezcla de éster etílico del ácido 4-amino-3-clorobenzoico [CAS 82765-44-4] (0,02 mol) y el compuesto intermedio 5 (preparado de acuerdo con A2) (0,0243 mol) en 1-metil-pirrolidin-2-ona (40 ml) se agitó a 180 °C durante 2 horas, después se vertió en H₂O y se extrajo tres veces con EtOAc (80 ml). La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (10 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂ 100; 15-30 µm). Se recogieron dos fracciones y el disolvente se evaporó. Rendimiento: 1,7 g de F1 y 1 g de F2. F2 se recogió en dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,95 g del compuesto intermedio 30 (12 %). e-1) La preparación del compuesto intermedio 17

Se añadió NaBH₄ (0,0001 mol) en porciones a 5 °C a una mezcla del compuesto intermedio 9 (0,0001 mol) en etanol (7 ml) bajo flujo de N_2 . La mezcla se agitó a 5 °C durante 1 hora, luego se vertió en hielo y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,1 g) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,044 g del compuesto intermedio 17. e-2) La preparación del compuesto intermedio 32

Se añadió BuLi 1,6 M (0,009 mol) a -78 °C a una mezcla de ⁶ (compuesto intermedio 31) (preparado de acuerdo con A4a) (0,0029 mol) en THF (25 ml) bajo flujo de N₂. La mezcla se agitó a -78 °C durante 10 minutos, luego se llevó a temperatura ambiente y después se agitó durante 3 horas. Se añadió H₂O. La mezcla se extrajo con CH₂Cl₂. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (1,28 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂/CH₃OH/NH₄OH 98/2/0,1; 15-40 μm). Se recogieron tres fracciones y el disolvente se evaporó. Rendimiento: 0,189 g de fracción 1, 0,14 g de fracción 2 y 0,5 g de fracción 3 (48 %). La fracción 3 se purificó por cromatografía en columna sobre Kromasil (eluyente: CH₂Cl₂/EtOAc 80/20; 10 μm). Se recogieron dos fracciones (F1, F2) y el disolvente se evaporó. Rendimiento: 0,25 g de F1 (24 %) y 0,1 g de F2. F1 se cristalizó en dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,21 g del compuesto intermedio 32 (20 %).

e-3) La preparación del compuesto intermedio 34

Se añadió una solución de yoduro de metilmagnesio (solución 1,0 M en dietiléter) (0,6 ml) a una solución de

compuesto intermedio 33 (preparado de acuerdo con A5.a) (0,0006 mol) en THF (3 ml). La mezcla se agitó durante 2 horas. Se añadió H_2O . La mezcla se filtró sobre celite. Se añadió H_2O . La mezcla se extrajo con EtOAc. La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo (0,05 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: $CH_2CI_2/CH_3OH 96/4$; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,015 g del compuesto intermedio 34 (7,2 %).

Ejemplo A4

5

10

15

20

25

30

35

40

a) La preparación del compuesto intermedio 10

Una mezcla de 3,5-dimetil-4-hidroxibenzoato de etilo (0,0025 mol) en 1,4-dioxano (2,5 ml) se agitó a temperatura ambiente bajo flujo de N_2 . Se añadió hidruro de sodio (0,0033 mol). La mezcla se agitó durante 2 minutos. Se añadió compuesto intermedio 5 (0,0028 mol). La mezcla se agitó durante 10 minutos y se añadió 1-metil-2-pirrolidinona (2,5 ml). La mezcla se agitó a 150 °C durante 12 horas, se vertió en H_2O y se extrajo con CH_2CI_2/CH_3OH . La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo (1,7 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH_2CI_2/CH_3OH 92/8; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,7 g del compuesto intermedio 10 (70 %).

b-1) La preparación del compuesto intermedio 11

- Una solución de compuesto intermedio 10 (0,0005 mol) en THF (5 ml) se añadió gota a gota a $0\,^{\circ}$ C a una suspensión de LiAlH₄ (0,001 mol) en THF (5 ml) bajo flujo de N_2 . La mezcla se agitó a $0\,^{\circ}$ C durante 1 hora y se vertió 5 en H₂O (0,5 ml). Se añadió CH₂Cl₂. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo se purificó por cromatografía en columna sobre Kromasil (eluyente: CH2Cl2 100 a CH₂Cl₂/CH₃OH 99/1; 5 μm). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,1 g) se 10 cristalizó en dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,043 g del compuesto intermedio 11 (24 %).
 - b-2) La preparación del compuesto intermedio 37

15

20

Se añadió LiAlH₄ (0,0196 mol, 0,75 g) en porciones a 5 °C a una mezcla del compuesto intermedio 29 (preparado de acuerdo con A3d-2) (0,0098 mol) en THF (100 ml) bajo flujo de N2. La mezcla se agitó a temperatura ambiente durante la noche, se vertió en EtOAc, luego en H₂O y se filtró sobre celite. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. Rendimiento: 3,4 g. Esta fracción se purificó por cromatografía en columna sobre kromasil (eluyente: CH₂Cl₂/CH₃OH/NH₄OH 97/3/0,1; 15-40 μm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 1 g (27 %). Esta fracción se cristalizó en DIPE/CH₃CN. El precipitado se separó por filtración y se secó. Rendimiento: 0,03 g del compuesto intermedio 37.

c) La preparación del compuesto intermedio 12

25

30

Una mezcla del compuesto intermedio 11 (0,0043 mol) en CH₂Cl₂ (50 ml) se agitó a 0 °C. SOCl₂ (0,0206 mol) se añadió gota a gota. La mezcla se vertió en agua con hielo/K2CO3. La mezcla se agitó a temperatura ambiente durante 5 minutos. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. Rendimiento: 1,5 g del compuesto intermedio 12 (98 %).

d) La preparación del compuesto intermedio 55

35

Se añadió reactivo de Jones (0,0084 mol) a una mezcla del compuesto intermedio 19 (véase la Tabla 1) (preparado

de acuerdo con A4b-1) (0,0028 mol) en acetona (50 ml). La mezcla se agitó a temperatura ambiente durante 2 horas y después se vertió en H_2O y se basificó con NaHCO₃. El precipitado se separó por filtración y se secó. Rendimiento: 1,39 g. El residuo (0,1 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: $CH_2CI_2/CH_3OH/NH_4OH$ 85/15/1, luego CH_3OH 100). Las fracciones puras se cristalizaron en isopropanol/DIPE. Rendimiento: 0,071 g del compuesto intermedio 55.

Ejemplo A5

a) La preparación del compuesto intermedio 13

10

15

5

Una mezcla del compuesto intermedio 19 (véase la Tabla 1) (preparada de acuerdo con A4.b-1) (0,0037 mol) y MnO₂ (0,0185 mol) en CH₂Cl₂ (100 ml) se agitó a la temperatura ambiente durante la noche y luego se filtró sobre celite. El filtrado se evaporó. Rendimiento: 1,3 g del compuesto intermedio 13.

b) La preparación del compuesto intermedio 21

Una mezcla del compuesto intermedio 13 (preparada de acuerdo con A5.a) (0,0029 mol) y H₂N-NH₂, H₂O

(0,0058 mol) en EtOH (10 ml) se agitó a la temperatura ambiente durante la noche. El disolvente se evaporó a

sequedad. Rendimiento: 0,53 g del compuesto intermedio 21.

<u>Ejemplo A6</u> La preparación del compuesto intermedio 14

25

20

30

Se añadió hidrazina (0,0077 mol) a una mezcla de (0,0005 mol) en EtOH (10 ml). La mezcla se agitó y se sometió a reflujo durante la noche. Se añadió hidrazina (0,028 mol). La mezcla se agitó y se sometió a reflujo durante la noche. Rendimiento: 0,28 g del compuesto intermedio 14.

Ejemplo A7

a) La preparación del compuesto intermedio 23

Una mezcla del compuesto intermedio 35 (preparada de acuerdo con A3.d-1) (0,0056 mol) en HCl 3 N (60 ml) e *i*PrOH (15 ml) se agitó y se sometió a reflujo durante la noche. El precipitado se filtró, se lavó con H₂O recogida en DIPE y se secó. Rendimiento: 2,3 g del compuesto intermedio 23 (100 %). b) La preparación del compuesto intermedio 56

Una mezcla del compuesto intermedio 10 (preparada de acuerdo con A4.a) (0,0012 mol) en HCl 3 N (26 ml) e *i*PrOH (4 ml) se agitó y se sometió a reflujo durante 12 horas. El disolvente se evaporó a sequedad. El residuo se recogió en (CH₃)₂CO. El disolvente se evaporó. El residuo se recogió en dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,4 g (78,5 %). Esta fracción se agitó a 60 °C durante 20 minutos. Rendimiento: 0,19 g. Esta fracción se cristalizó en H₂O/2-propanona. El precipitado se separó por filtración y se secó. Rendimiento: 0,12 g del compuesto intermedio 56 (26 %).

Ejemplo A8

a) La preparación del compuesto intermedio 24

20

25

5

Una mezcla del compuesto intermedio 31 (preparada de acuerdo con A4.a) (0,0005 mol) y éster etílico del ácido (trifenilfosforanilideno)acético [CAS 1099-45-2] (0,0006 mol) en THF (5 ml) se agitó a 80 °C durante 48 horas, se vertió en H_2O y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo (0,4 g) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,08 g (33 %). Esta fracción se cristalizó en DIPE/CH₃CN. El precipitado se separó por filtración y se secó. Rendimiento: compuesto intermedio 24 (33 %).

b) La preparación del compuesto intermedio 25

Se añadió piperidina (0,0011 mol) a temperatura ambiente durante 30 minutos. Se añadió compuesto intermedio 31 (preparado de acuerdo con A4.a) (0,0005 mol). La mezcla se agitó a temperatura ambiente durante 1 hora, se vertió en H₂O y se extrajo con CH₂Cl₂. El precipitado se separó por filtración y se secó. El residuo (0,2 g) se cristalizó en CH₃CN/DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,048 g del compuesto intermedio 25 (19 %) (p.f. 222 °C).

Ejemplo A9

5

10 La preparación del compuesto intermedio 26

Una mezcla de NO2 (preparada de acuerdo con A3.d-1) (0,0011 mol) y Pd/C (0,2 g) en metanol (30 ml) se hidrogenó a temperatura ambiente durante 2 horas bajo una presión de una bar y luego se filtró sobre celite. Celite se lavó con CH₃OH. El filtrado se evaporó a sequedad. El residuo (0,3 g) se cristalizó en 2-propanona/CH₃OH/dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,07 g de fracción 1. La fracción 1 se purificó por cromatografía en columna sobre kromasil (eluyente: CH₂Cl₂/CH₃OH 99,5/0,5; 5 µm). Se recogieron tres fracciones (F1, F2, F3) y el disolvente se evaporó. Rendimiento: 0,0516 g de F1, 0,1 g de F2 y 0,15 g de F3. F1 se recogió en dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,028 g del compuesto intermedio 26 (8 %) (p.f. 272 °C).

Ejemplo A10

La preparación del compuesto intermedio 27

25

30

15

20

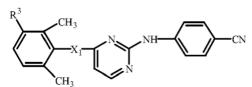
Una mezcla de (0,0005 mol) y trifenilfosfina (0,0005 mol) en CH₃CN (10 ml) se agitó y se sometió a reflujo durante un fin de semana. El disolvente se evaporó a sequedad. El residuo se recogió en dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,34 g del compuesto intermedio 27 (94 %).

Una mezcla de 4-bromo-2,6-dimetilbencenoamina (0,013 mol) y el compuesto intermedio 5 (0,013 mol) se agitó a 150 °C durante 1 hora.re La mezcla se vertió en solución acuosa de K_2CO_3 al 10 % y se extrajo con $CH_2CI_2/$ MeOH (95/5). La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo se cristalizó en diisopropiléter. El precipitado se separó por filtración y se secó. Rendimiento: 2,3g (45 %). La capa madre se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH_2CI_2/CH_3OH-NH_4OH 98,5/1,5; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,90 g (17 %). El rendimiento global de compuesto intermedio 5 fue 3,2 g (62 %).

El compuesto intermedio 59 se preparó de manera análoga.

Compuesto intermedio 59

Las Tablas 1 y 2 enumeran compuestos intermedios que intervienen en la preparación de los compuestos descritos en esta memoria.


Tabla 1

5

Comp. interm.	Ej. N.°	X ₁	R ³	R ^{4a}	R ^{4b}	Datos físicos
11	A4b-1	0	-CH ₂ -OH	CH ₃	CH ₃	
12	A4c	0	-CH ₂ -CI	CH ₃	CH ₃	
16	A3e	NH	-CH(OH)-CH ₃	CH ₃	CH ₃	
17	A3e	NH	-CH(OH)-CH(CH ₃) ₂	CH ₃	CH ₃	
18	A3e	NH	-CH(OH)-CH ₂ -CH ₃	CH ₃	CH ₃	
19	A4b-1	NH	-CH ₂ -OH	CH ₃	CH ₃	
15	A4c	NH	-CH ₂ -CI	CH ₃	CH ₃	
24	A8a	0	-CH=CH-C(=O)-O-C ₂ H ₅	CH ₃	CH ₃	pf. 180 °C; (E)
25	A8b	0	NC O−C ₂ H ₅	CH₃	CH ₃	pf. 222 °C; (A)
35	A3d-1	NH	-CH=CH-C(=O)-O-C ₂ H ₅	CH ₃	CH ₃	pf. 200 °C; (E)
23	A7a	NH	-CH=CH-COOH	CH ₃	CH ₃	
34	A3e-3	NH	-CH(OH)-CH ₃	CH ₃	Н	pf. 182 °C
36	A4b-1	NH	-CH ₂ -OH	CH ₃	Н	pf. 210 °C
37	A4b-2	NH	-CH ₂ -OH	CI	CH ₃	
38	A4b-1	NH	-CH ₂ -OH	CI	Н	pf. 226 °C
39	A3e-1	0	-CH(OH)-CH ₃	CH ₃	Н	pf. 160 °C
40	A4b-1	S	-CH ₂ -OH	CH ₃	CH ₃	pf. 173 °C
41	A4b-1	NH	-CH ₂ -OH	Α	Н	pf. 234 °C
32	A3e-2	0	-CH(OH)-CH ₃	CH ₃	CH ₃	pf. 193 °C
42	A4b-1	NH	-CH ₂ -OH	Α	CH ₃	pf. 250 °C
43	A4b-1	NH	-CH ₂ -OH	OH	Н	pf. 124 °C

Comp. interm.	Ej. N.°	X ₁	R ³	R ^{4a}	R ^{4b}	Datos físicos
N.°						
44	A4b-1	NH	-CH ₂ -OH	Н	Н	pf. 215 °C
45	A4b-1	NH	-CH ₂ -OH	O-CH ₃	Н	
46	A4b-1	NH	-CH ₂ -OH	CF ₃	Н	pf. 194 °C
47	A4c	ΝН	-CH ₂ -CI	CI	CH ₃	
48	A4c	NH	-CH ₂ -CI	CI	Н	
49	A3e-1	0	-CH ₂ -OH	CH ₃	Н	
50	A4c	0	-CH ₂ -CI	CH ₃	Н	
51	A4b-1	ΝН	-CH ₂ -OH	C(CH ₃) ₃	Н	
52	A4c	NH	-CH ₂ -CI	CH ₃	Н	
53	A4b-1	NH	-CH ₂ -OH	2-furanilo	CH ₃	
54	A4c	NH	-CH ₂ -CI	Α	CH ₃	
57	A7b	0	-CH=CH-COOH	CH ₃	CH ₃	

Tabla 2

Comp. interm. N.°	Ej. N.°	X ₁	R^3	Datos físicos
20	A3e	NH	-CHOH-CH ₃	

5 B. Preparación de los compuestos finales

Ejemplo B1

La preparación del compuesto 1

10

15

20

25

30

Una mezcla del compuesto intermedio 3 (0,034 mol) y el compuesto intermedio 5 (0,0174 mol) se agitó a 150 °C durante 1 hora y se recogió en K_2CO_3 al 10 %/ CH_2Cl_2/CH_3OH . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (10 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH_2Cl_2 /acetato de etilo 80/20; 15-40 µm). La fracción 1 se cristalizó en iPrOH. El precipitado se separó por filtración y se secó. Rendimiento: 1,3 g de 4-[[4-[[4-(2-cianoetenil)-2,6-dimetilfenil]amino]-2-pirimidinil]amino]benzonitrilo (E) (compuesto 1) (20 %).

Ejemplo B1A

El compuesto 1 también se preparó como sigue:

Se preparó una mezcla de 93,9 g (0,45 mol) de la sal de ácido clorhídrico del compuesto intermedio 3, preparada de acuerdo con el Ejemplo A1c), y 109 g (0,4725 mol) de compuesto intermedio 5 en 1,8 l de acetonitrilo bajo una atmósfera de nitrógeno. La mezcla se agitó y se calentó a reflujo durante 69 horas, luego se dejó enfriar a 55 °C. La mezcla se filtró y el residuo se lavó con 200 ml de acetonitrilo, seguido de secado a presión reducida a 50 °C durante la noche. Se introdujeron 144,6 g (0,3666 mol) del sólido obtenido en 1 l de solución acuosa de K₂CO₃ al 10 %. La mezcla se agitó a temperatura ambiente, seguido de filtración. El residuo obtenido se lavó dos veces con agua seguido de secado a 50 °C a presión reducida. El residuo se introdujo en 6,55 l de isopropanol y la mezcla se sometió a reflujo, luego se agitó durante la noche y se filtró a temperatura ambiente. El residuo se secó a 50 °C a presión reducida.. Rendimiento: 113,2 g (68,6 %) de 4-[[4-[[4-(2-cianoetenil)-2,6-dimetilfenil]amino]-2-pirimidinil]amino]benzonitrilo (E) (compuesto 1).

Ejemplo B1B

Alternativamente, compuesto 1 también se preparó como sigue:

a) Una mezcla del compuesto intermedio 58 (0,00021 mol), preparada de acuerdo con el Ejemplo A11, acrilonitrilo (CH₂=CH-CN) (0,00213 mol), Pd(OAc)₂ (0,000043 mol), N, N-dietiletanamina (0,000043 mol) y tris(2-metilfenil)fosfina (0,00021 mol) en CH₃CN (7 ml) se agitó en un recipiente sellado a 150 °C durante la noche. Se añadió H₂O. La mezcla se extrajo con CH₂Cl₂. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,15 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂/acetato de etilo 80/20; 15-40 µm). La fracción 1 se recogió y el disolvente se evaporó, proporcionando 0,045 g de 4-[[4-[[4-(2-cianoetenil)-2,6-dimetilfenil]amino]-2-pirimidinil]amino]benzonitrilo (E/Z=80/20). El sólido se cristalizó en dietiléter. Rendimiento: 0,035g de 4-[[4-[[4-(2-cianoetenil)-2,6-dimetilfenil]amino]-2-pirimidinil]amino]benzonitrilo (E) (compuesto 1) (55 %). b) 4,41g (10 mmol) de compuesto intermedio 59 y 15 ml de N,N-dimetilacetamida se llevaron a un matraz de 100 ml bajo nitrógeno. A esta mezcla se añadieron 0,98 g de acetato de sodio (12 mmol), 107 mg (0,1 mmol de Pd) de Pd al 10 %/C (húmedo) y 1 ml (15 mmol) de acrilonitrilo. La mezcla se calentó a 140 °C y la evolución de la reacción fue seguida por cromatografía líquida. La reacción proporcionó 4-[[4-[[4-(2-cianoetenil)-2,6-dimetilfenil]amino]-2-pirimidinil]amino]benzonitrilo (E/Z=80/20), que se puede convertir en 4-[[4-[[4-(2-cianoetenil)-2,6-dimetilfenil]amino]-2-pirimidinil]amino]benzonitrilo (E) tal como se describe arriba en el Ejemplo B1Ba).

Ejemplo de referencia B2

5

10

15

20

25

30

35

a) La preparación del compuesto de referencia 2

Una mezcla de (preparada de acuerdo con A3.d-1) (0,0002 mol), ácido 2-benzofuranilborónico (0,0005 mol), Pd(PPh₃)₄ (0,00002 mol) y Na₂CO₃ (0,0007 mol) en DME (3 ml) se agitó y se sometió a reflujo en un tubo sellado durante 3 horas. Se añadió H₂O. La mezcla se extrajo con acetato de etilo. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,126 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂/CH₃OH 98/2; 15-40 μm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,011 g del compuesto de referencia 2 (10 %). b) La preparación del compuesto de referencia 3

BITTON

Una mezcla de ^{br} (preparada de acuerdo con A3.d-1) (0,0002 mol), tributil-2-furanilestannano (0,0005 mol) y Pd(PPh₃)₄ (0,00001 mol) en dioxano (5 ml) se agitó a 80 °C. El disolvente se evaporó. El residuo se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂/CH₃OH 98/2; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,025 g) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,021 g del compuesto de referencia 3 (22 %).

c) La preparación del compuesto de referencia 104

[CAS 73183-34-3] (0,0055 mol), Pd(PPh₃)₄ (0,29 g) y K₂CO₃ (2,8 g, 0,02 mol) en tolueno (100 ml) y etanol/agua (5 a 10 ml) se agitó y se sometió a reflujo durante un fin de semana. Se añadieron 5-bromo-furan-2-carbaldehído (0,0055 mol) y K₂CO₃ (1,4 g, 0,01 mol). La mezcla se agitó y se sometió a reflujo durante la noche. La mezcla (2,25 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂/CH₃OH 100/0 a 99/1; 15-40 mm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,135 g del compuesto de referencia 104 (6 %).

Ejemplo B3

5

10

La preparación del compuesto de referencia 4

Una mezcla del compuesto intermedio 15 (véase la Tabla 1) (preparada de acuerdo con A4.c) (0,0005 mol) y NaCN (0,0011 mol) en DMF (5 ml) se agitó a 80 °C durante la noche, se vertió en H₂O y se extrajo con acetato de etilo. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,15 g) se purificó por cromatografía en columna sobre kromasil (eluyente: CH₂Cl₂/CH₃OH 99/1; 10 μm). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,024 g) se purificó por cromatografía en columna sobre hypersil (eluyente: acetonitrilo/H₂O 52/48; 8 μm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,02 g del compuesto de referencia 4 (10 %).

Ejemplo de referencia B4

a) La preparación del compuesto de referencia 5

25

Una mezcla de $^{\text{N}}$ (preparada de acuerdo con A3.d) (0,0006 mol) y tiomorfolina (0,5 g) se agitó a 120 °C durante 48 horas, se recogió en CH_2Cl_2 y se evaporó el disolvente. El residuo (0,44 g) se

purificó por cromatografía en columna sobre kromasil (eluyente: CH_2CI_2/CH_3OH 99/1; 10 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,06 g (20 %). Esta fracción se cristalizó en dietiléter/2-propanona. El precipitado se separó por filtración y se secó. Rendimiento: 0,035 g del compuesto de referencia 5. b) La preparación del compuesto de referencia 6

5

10

Una mezcla del compuesto intermedio 15 (véase la Tabla 1) (preparada de acuerdo con A4.c) (0,000137 mol), N,N,N'-trimetil-1,2-etanodiamina (2 equiv, 0,000275 mol) y K_2CO_3 (2 equiv, 0,000275 mol) en CH_3CN (c. s.) se agitó a 80 °C durante 12 horas. Se añadió H_2O . La mezcla se extrajo con CH_2CI_2 . El disolvente del extracto se evaporó. El residuo se purificó por cromatografía. Se recogieron las fracciones del producto y se evaporó el disolvente. Rendimiento: 0,006 g del compuesto de referencia 6 (10,16 %).

c) La preparación del compuesto de referencia 7

15

20

Una mezcla del compuesto intermedio 15 (véase la Tabla 1) (preparada de acuerdo con A4.c) (0,0005 mol) en 3-hidroxi-propanonitrilo (2 ml) se agitó durante la noche, se vertió en H_2O y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo se purificó por cromatografía en columna sobre gel de sílice (eluyente: $CH_2Cl_2/CH_3OH/NH_4OH$ 99/1/0,1; 15-40 µm). Se recogieron dos fracciones (F1, F2) y el disolvente se evaporó. Rendimiento: 0,034 g de F1 y 0,514 g de F2. F2 se lavó con HCl 3 N y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,039 g del compuesto de referencia 7 (18 %). d) La preparación del compuesto de referencia 105

25

30

Una mezcla del compuesto intermedio 50 (preparada de acuerdo con A4c) (0,001 mol), KCN (0,0011 mol) y KI (0,00005 mol) en EtOH (15 ml) se agitó y se sometió a reflujo durante 4 horas. El disolvente se evaporó a sequedad. El residuo se recogió en CH₂Cl₂/H₂O. La mezcla se extrajo con CH₂Cl₂. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,31 g) se purificó por cromatografía en columna sobre kromasil (eluyente: ciclohexano/EtOAc 70/30; 10 µm). Se recogieron tres fracciones y se evaporó el disolvente. Rendimiento: 0,044 g de fracción 1, 0,11 g de fracción 2 y 0,055 g de fracción 3. La fracción 3 se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,046 g del compuesto de referencia 105 (12 %) (p.f.

140 °C).

5

10

15

20

25

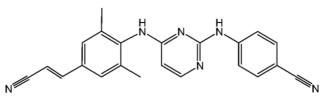
30

35

40

Ejemplo de referencia B5

a) La preparación del compuesto de referencia 8


HO N

Una mezcla del compuesto intermedio 9 (0,0001 mol) e hidroxilamina (0,0002 mol) en EtOH (7 ml) se agitó a temperatura ambiente durante 3 horas, se vertió en K_2CO_3 al 10 % y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,1 g) se cristalizó en DIPE/CH₃CN. El precipitado se separó por filtración y se secó. Rendimiento: 0,026 g del compuesto de referencia 8. b) La preparación del compuesto de referencia 9

Una mezcla del compuesto intermedio 9 (0,0002 mol) y O-metilhidroxilamina (0,0003 mol) en EtOH (10 ml) se agitó a temperatura ambiente durante la noche, se vertió en H_2O y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,13 g) se purificó por cromatografía en columna sobre kromasil (eluyente: ciclohexano/iPrOH/NH₄OH; 5 µm). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,06 g) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,036 g del compuesto de referencia 9 (34 %).

Ejemplo B6

a) La preparación del compuesto 1 y 10

Compuesto 1 = (E); compuesto 10 = (Z)

Una mezcla de cloruro de (cianometil)trifenilfosfonio (0,0022 moles) y terc-butóxido de potasio (0,0022 mol) en THF (7 ml) se agitó a 5 °C durante 30 minutos bajo un flujo de N_2 y después se agitó a 5 °C durante 30 minutos. Se añadió una mezcla del compuesto intermedio 13 (0,0015 mol) en THF (7 ml). La mezcla se agitó durante 8 horas en la oscuridad, se vertió en H_2O y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo (1,4 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: tolueno/iPrOH/NH $_4OH$ 96/4/0,1; 15-40 $_4OH$ 0). Se recogieron dos fracciones (F1, F2) y el disolvente se evaporó. Rendimiento: 0,165 g de F1 (E/Z=32/68) (30 %) y 0,225 g de F2 (E/Z=90/10) (41 %). F2 se cristalizó en CH_3CN /dietiléter. Rendimiento: 0,036 g de compuesto 1 (7 %). F1 se purificó por cromatografía en columna sobre kromasil (eluyente: tolueno/iPrOH 98/2; 5 $_4OH$ 0). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,029 g de compuesto 10 (5 %).

b) La preparación del compuesto 11 (Z) y el compuesto 103 (E)

Se añadió terc-butóxido de potasio (0,0196 mol) en porciones a 5 °C a una mezcla de éster dietílico del ácido (1-

cianoetil)-fosfónico (0,0196 mol) en THF (25 ml) bajo flujo de N_2 . La mezcla se agitó a 5 °C durante 30 minutos y luego a temperatura ambiente durante 30 minutos. Se añadió una solución de compuesto intermedio 13 (0,0130 mol) en THF (25 ml). La mezcla se agitó a temperatura ambiente durante la noche, se vertió en H_2O y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (5,8 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: tolueno/iPrOH/NH4OH 92/8/0,5; 15-40 µm). Se recogieron cuatro fracciones (F1, F2, F3, F4) y el disolvente se evaporó. Rendimiento: 0,21 g de F1 (mezcla Z/E=90/10), 0,836 g de F2 (mezcla Z/E=57/43), 0,9 g de F3 y 0,87 g de F4. F3 se cristalizó en DIPE/iPrOH para dar 0,7 g de compuesto 11 (14 %). F4 se cristalizó en DIPE/iPrOH para dar 0,67 g de compuesto 103 (13 %). c) La preparación de los compuestos 12 y 13

10

5

compuesto 12 = (E) compuesto 13 = (Z)

Se añadió terc-butóxido de potasio (0,0008 mol) en porciones a $5\,^{\circ}$ C a una mezcla de éster dietílico del ácido (cianometil)fosfónico (0,0005 mol) en THF (20 ml) bajo flujo de N_2 . La mezcla se agitó a temperatura ambiente

HN HN H

15

20

durante 30 minutos. Una solución de (0,0005 mol) en THF (4 ml) se añadió gota a gota. La mezcla se agitó a temperatura ambiente durante 4 horas, se vertió en H₂O y se extrajo con CH₂Cl₂. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. Rendimiento: 0,3 g. Esta fracción se purificó por cromatografía en columna sobre kromasil (eluyente: CH₂Cl₂/CH₃OH 99/1; 5 μm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,21 g. Esta fracción se purificó por cromatografía en columna sobre kromasil (eluyente: ciclohexano/acetato de etilo 50/50; 10 μm). Se recogieron dos fracciones (F1, F2) y se evaporó el disolvente. Rendimiento: 0,04 g de F1 y 0,047 g de F2. F1 se secó a 70 °C durante 2 horas. Rendimiento: 0,041 g de compuesto 12 (20 %). d) La preparación del compuesto de referencia 14

25

Se añadió terc-butóxido de potasio (0,0013 mol) a 5 $^{\circ}$ C a una mezcla de éster dietílico del ácido (cianometil)fosfónico (0,0013 mol) en THF (10 ml) bajo flujo de N_2 . La mezcla se agitó a 5 $^{\circ}$ C durante 30 minutos. Se añadió una mezcla de

(preparada de acuerdo con A3.d-1) (0,0009 mol) en THF (10 ml). La mezcla se agitó a temperatura ambiente durante 4 horas, se vertió en H₂O y se extrajo con acetato de etilo. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,17 g) se purificó por cromatografía en columna sobre kromasil (eluyente: CH₂Cl₂ 100 a CH₂Cl₂/CH₃OH 99/1; 5 µm). Se recogieron dos fracciones (F1, F2) y el disolvente se evaporó. Rendimiento: 0,054 g de F1 y 0,05 g de F2. F1 se cristalizó en DIPE/CH₃CN. El precipitado se separó por filtración y se secó. Rendimiento: 0,046 g del compuesto de referencia 14 (12 %).

e) La preparación del compuesto de referencia 15

10

15

Se añadió 4-fluorobencenoacetonitrilo (1,2 equiv, 0,000175 ml) a una mezcla del compuesto intermedio 13 (0,000146 mol) en CH_3OH (1 ml). Se añadió $NaOCH_3/CH_3OH$ (1,2 equiv, 0,000175 mol) a temperatura ambiente. La mezcla se agitó a 60 °C durante 2 horas, luego se vertió en hielo-agua y se extrajo con CH_2Cl_2 . El disolvente se evaporó. El residuo se purificó por cromatografía. Se recogieron las fracciones del producto y se evaporó el disolvente. Rendimiento: 0,009 g del compuesto de referencia 15 (13,42 %).

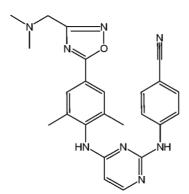
f) La preparación del compuesto de referencia 106

20

Una mezcla del compuesto intermedio 13 (preparada de acuerdo con A5.a) (0,0005 mol) y piperidina (0,0005 mol) en etanol (5 ml) se agitó a la temperatura ambiente durante 30 minutos. Se añadió 4,4-dimetil-3-oxo-pentanonitrilo (0,0011 mol). La mezcla se agitó a temperatura ambiente durante la noche, se vertió en H_2O y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo (0,3 g) se purificó por cromatografía en columna sobre kromasil (eluyente: CH_2Cl_2/CH_3OH 99/1; 10 μ m). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,2 g) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,141 g del compuesto de referencia 106 (54 %) (p.f. 193 °C).

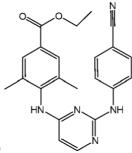
Ejemplo de referencia B7

La preparación del compuesto de referencia 16


5

Una mezcla del compuesto intermedio 14 (0,00005 mol) y dicloruro de carbonotioico (0,001 mol) en dioxano (10 ml) se agitó a temperatura ambiente. Se añadió H_2O . La mezcla se extrajo con CH_2Cl_2 . Esta fracción se purificó por cromatografía en columna sobre gel de sílice (eluyente: $CH_2Cl_2/CH_3OH/NH_4OH$ 90/10/0,1; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,027 g del compuesto de referencia 16 (95,6 %).

10


Ejemplo de referencia B8

La preparación del compuesto de referencia 17

15

La mezcla de NaOCH₃ (0,001 mol) y 2-(dimetilamino)-*N*-hidroxi-etanimidamida (0,001 mol) en EtOH (10 ml) se agitó a temperatura ambiente durante 30 minutos.

Se añadió

(preparado de acuerdo con A3.d-1) (0,0005 mol).

20

La mezcla se agitó y se sometió a reflujo durante la noche. Se añadió H_2O . La mezcla se extrajo con CH_2Cl_2 . El residuo se purificó por cromatografía en columna sobre gel de sílice (eluyente: $CH_2Cl_2/CH_3OH/NH_4OH$ 95/5/0,1; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,07 g del compuesto de referencia 17 (31 %).

25

Ejemplo de referencia B9

La preparación del compuesto de referencia 18

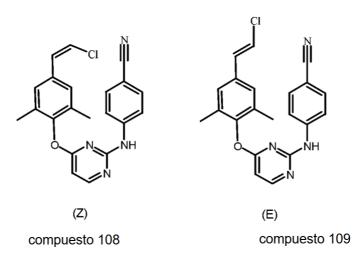
nBuLi (0,0038 mol) se añadió gota a gota a -70 °C a una mezcla de iPr $_2$ NH (0,0038 mol) en THF (5 ml) bajo flujo de N $_2$. La mezcla se llevó a -20 °C, se agitó durante 30 minutos y se enfrió de nuevo a -70 °C. Se añadió gota a gota una solución de CH $_3$ CN (0,0038 mol) en THF (6 ml). La mezcla se llevó a -20 °C, se agitó durante 1 hora y se enfrió de nuevo a -70 °C. Se añadió una mezcla del compuesto intermedio 13 (0,0009 mol) en THF (1 ml). La mezcla se agitó durante 2 horas, luego se vertió en hielo a -30 °C y se extrajo con acetato de etilo. La capa orgánica se separó, se secó (MgSO $_4$), se filtró y se evaporó el disolvente. El residuo (0,433 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH $_2$ Cl $_2$ /CH $_3$ OH 98/2; 35-70 µm). Se recogieron dos fracciones y el disolvente se evaporó. Rendimiento: 0,056 g de F1 y 0,23 g de F2 (78 %). F1 se cristalizó en DIPE/CH $_3$ CN. El precipitado se separó por filtración y se secó. Rendimiento: 0,036 g del compuesto de referencia 18.

Ejemplo de referencia B9A

10

15

20


25

a) La preparación del compuesto de referencia 107

HN N N

Se añadió nBuLi[1.6] (0,0026 mol) gota a gota a -70 °C a una mezcla del compuesto intermedio 13 (preparada de acuerdo con A5.a) (0,0008 mol) en THF (10 ml) bajo flujo de N_2 . La mezcla se agitó a -70 °C durante 30 minutos. Se añadió gota a gota una solución de cloruro de (clorometil)difenilfosfonio (0,0026 mol) en THF (5 ml). La mezcla se agitó a temperatura ambiente durante la noche, se vertió en H_2O y se extrajo con EtOAc. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,7 g) se purificó por cromatografía en columna sobre kromasil (eluyente: CH_2CI_2/CH_3OH 99/1; 10 µm). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,155 g) se purificó por cromatografía en columna sobre C18 (eluyente: CH_3CN/NH_4Ac 0,5 % 60/40). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,051 g) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,029 g del compuesto de referencia 107 (9 %). (p.f. 250 °C)

b) La preparación de los compuestos de referencia 108 y 109

Se añadió nBuLi[1.6] (0,00261 mol) gota a gota a -70 °C a una mezcla de cloruro de (clorometil)difenilfosfonio (0,00261 mol) en THF (10 ml) bajo flujo de N_2 . La mezcla se agitó durante 30 minutos. Se añadió gota a gota una solución de compuesto intermedio 31 (preparada de acuerdo con A4.a) (0,00087 mol) en THF (5 ml). La mezcla se agitó a temperatura ambiente durante la noche, luego se vertió en H_2O y se extrajo con EtOAc. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (1,1 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: $CH_2Cl_2/CH_3OH/NH_4OH$ 98/2/0,1; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,3 g) se purificó por cromatografía en columna sobre hypersil C18 (eluyente: CH_3OH/NH_4Ac 0,5 % 70/30). Se recogieron dos fracciones (F1, F2) y el disolvente se evaporó. Rendimiento: 0,097 g de F1 y 0,085 g de F2. F1 se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,045 g del compuesto de referencia 108 (14 %) (p.f.) 165 °C). F2 se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,045 g del compuesto de referencia 108 (14 %) (p.f.) 165 °C).

c) La preparación del compuesto de referencia 110

(E)

Se añadió nBuLi[1.6] (1,1 ml, 0,0017 mol) gota a gota a -70 °C a una mezcla de 1,1,1,3,3,3-hexametildisilazano (HN(TMS)₂) (0,0017 mol) en THF (6 ml). La mezcla se agitó a -70 °C durante 30 minutos. Se añadió cianofluorometilo (0,0017 mol). La mezcla se agitó durante 30 minutos. Se añadió éster dietílico del ácido fosforocloridico (0,0017 mol). La mezcla se agitó a -70 °C durante 15 minutos. Se añadió gota a gota nBuLi[1.6] (1,1 ml, 0,0017 mol). La mezcla se agitó durante 30 minutos. Se añadió una solución de compuesto intermedio 31 (preparada de acuerdo con A4.a) (0,0008 mol) en THF (4 ml). La mezcla se agitó a temperatura ambiente durante la noche, se vertió en H_2O y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,5 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: $CH_2Cl_2/EtOAc$ 95/5; 15-40 µm). Se recogieron cuatro fracciones (F1, F2, F3, F4) y el disolvente se evaporó. Rendimiento: 0,026 g del compuesto de referencia 110 (8 %) (p.f. 254 °C).

Una solución de $(CuCl)_2$ (0,00015 mol) en NH $_3$ acuoso $(500 \,\mu\text{l})$ se añadió a una mezcla del compuesto intermedio 21 (preparada de acuerdo con A5.b) (0,0014 mol) en DMSO (1 ml). Se añadió a 0 °C una solución de CBr_4 (0,0044 mol) in DMSO (1,5 ml). La mezcla se agitó a temperatura ambiente durante la noche, se vertió en hielo y se filtró. La capa orgánica se lavó con CH_2Cl_2 , se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo (2,73 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH_2Cl_2/CH_3OH 100/0 a 99/1; $15-40 \,\mu\text{m}$). Se recogieron dos fracciones y el disolvente se evaporó. Rendimiento: $0,007 \, \text{g}$ de fracción 1 y $0,11 \, \text{g}$ de fracción 2. La fracción 2 se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: $0,075 \, \text{g}$ del compuesto de referencia $111 \, (\text{p.f.} 223 \, ^{\circ}\text{C})$.

Ejemplo de referencia B9B

a) La preparación del compuesto de referencia 112

35

30

5

10

15

20

$$(E)$$

Se agitó una mezcla del compuesto intermedio 23 (0,0005 mol), 1-hidroxibenzotriazol (0,0007 mol) y EDCl (0,0007 mol) en CH_2CI_2 (10 ml) y THF (2 ml). Se añadió una solución de $NH(CH_3)_2.HCl$ (0,0006 mol) y Et_3N (0,0005 mol). La mezcla se agitó a temperatura ambiente durante 12 horas. Se añadió H_2O . La mezcla se extrajo con CH_2CI_2 . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo se purificó por cromatografía en columna sobre kromasil (eluyente: CH_2CI_2/CH_3OH 100/0 a 90/10; 5 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,124 g (58 %). Esta fracción se purificó por cromatografía en columna sobre kromasil (eluyente: CH_2CI_2/CH_3OH 99/1; 5 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,045 g del compuesto de referencia 112 (21 %) (p. f. > 264 °C).

15

20

5

10

Se agitó una mezcla del compuesto intermedio 57 (preparada de acuerdo con A7.b) $(0,0002\,\text{mol})$, 1-hidroxibenzotriazol $(0,0003\,\text{mol})$ y EDCI $(0,0003\,\text{mol})$ en CH_2Cl_2 $(10\,\text{ml})$. Se añadió N-metil-1-butanamina [CAS 110-68-9] $(0,0002\,\text{mol})$. La mezcla se agitó a temperatura ambiente durante 12 horas. Se añadió H_2O . La mezcla se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. Rendimiento: 0,149 g. Esta fracción se purificó por cromatografía en columna sobre kromasil (eluyente: CH_2Cl_2/CH_3OH 100/0 a 90/10; 5 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,065 g. Esta fracción se recogió en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,035 g del compuesto de referencia 113 $(30\,\%)$ (p.f. 212 °C).

25

c) La preparación del compuesto de referencia 114

Se agitó una mezcla del compuesto intermedio 23 (preparada de acuerdo con A7.a) $(0,0005\,\text{mol})$, 1-hidroxibenzotriazol $(0,0007\,\text{mol})$ y EDCI $(0,0007\,\text{mol})$ en CH_2Cl_2 $(10\,\text{ml})$ y THF $(2\,\text{ml})$. Se añadió 3-(metilamino)propanonitrilo $(0,0006\,\text{mol})$. La mezcla se agitó a temperatura ambiente durante 12 horas. Se añadió H_2O . La mezcla se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo se purificó por cromatografía en columna sobre Kromasil (eluyente: CH_2Cl_2/CH_3OH 100/0 a 90/10; 5 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: $0,068\,\text{g}$. Esta fracción se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: $0,032\,\text{g}$ del compuesto de referencia $114\,(14\,\%)$ (p.f. $168\,^{\circ}C$).

d) La preparación del compuesto de referencia 115

10

15

20

Una mezcla de (0,000195 mol) y metilamina (2 equiv, 0,000390 mol) en THF (5 ml) y Et₃N (0,054 ml) se agitó a temperatura ambiente. Se añadieron EDCI (2 equiv, 0,000390 mol) y 1-hidroxi-benzotriazol (2 equiv, 0,000390 mol). La mezcla de reacción se agitó a temperatura ambiente durante 12 horas y se recogió en H₂O. La capa orgánica se separó, se secó, se filtró y se evaporó el disolvente. El producto se aisló y se purificó por cromatografía en columna. Rendimiento: 0,026 g del compuesto de referencia 115 (17,92 %).

Ejemplo de referencia B9C

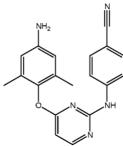
La preparación del compuesto de referencia 116

Una mezcla del compuesto intermedio 13 (preparada de acuerdo con A5.a) (0,000291 mol) e hidrazida del ácido isonicotínico (2,5 equiv., 0,000728 mol) en etanol (1 ml) y CH_2Cl_2 (2 ml) se agitó y se sometió a reflujo durante 12 horas. El disolvente se evaporó a sequedad. El residuo se purificó por cromatografía. Rendimiento: 0,033 g del compuesto de referencia 116 (24,50 %).

Ejemplo de referencia B9D

5

15


20

a) La preparación del compuesto de referencia 117

10

Se añadió cianoborohidruro de sodio (0,0024 mol) a temperatura ambiente a una solución de compuesto intermedio 26 (preparada de acuerdo con A9) (0.0008 ml) en formaldehído (0,5 ml) y CH₃CN (20 ml) bajo flujo de N₂. Se añadió ácido acético (0,5 ml). La mezcla se agitó a temperatura ambiente durante 2 horas, se vertió en H₂O/K₂CO₃ al 10 % y se extrajo con CH₂Cl₂. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,3 g) se purificó por cromatografía en columna sobre hypersil (eluyente: CH₂Cl₂/CH₃OH 97/3; 5 μ m). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,08 g (28 %). Esta fracción se cristalizó en 2-propanona/dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,012 g del compuesto de referencia 117 (5 %) (p.f. 132 °C).

b) La preparación del compuesto de referencia 118

Una mezcla de (preparada de acuerdo con A9) (0,0015 mol) y tetrahidro-2,5-dimetoxifurano (0,0077 mol) en ácido acético (10 ml) se agitó y se sometió a reflujo durante 1 hora, luego se vertió en hielo-agua y K_2CO_3 y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo (1 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: ciclohexano/EtOAc; 95/5; 15-40 μ m). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,23 g. Esta fracción se cristalizó en DIPE/dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,075 g. Esta fracción se cristalizó de nuevo en DIPE/dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,027 g del compuesto de referencia 118 (5 %).

10 Ejemplo de referencia B9E

5

a) La preparación del compuesto de referencia 119

15 Se añadió tributilfosfina (0,0015 mol) a una mezcla de but-2-enodinitrilo (0,0015 mol) en THF (8 ml). La mezcla se agitó y se sometió a reflujo durante 2 horas.

HN N N

Se añadió \mathbb{N} (preparado de acuerdo con A5.a) (0,0005 mol). La mezcla se agitó y se sometió a reflujo durante la noche. Se añadió H_2O . La mezcla se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,618 g) se purificó por cromatografía en columna sobre kromasil (eluyente: CH_2Cl_2 100; 10 μ m). Se recogieron dos fracciones y el disolvente se evaporó. Rendimiento: 0,03 g del compuesto de referencia 119 (13 %).

b) La preparación del compuesto de referencia 120

25

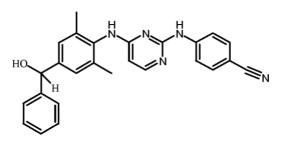
El compuesto intermedio 13 (preparado de acuerdo con A5.a) (0,002 mol) se añadió a una mezcla de propanodinitrilo (0,004 mol) y piperidina (0,004 mol) en etanol (10 ml). La mezcla se agitó a temperatura ambiente durante 5 minutos. El disolvente se evaporó. El residuo se recogió en CH_2CI_2 y se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH_2CI_2/CH_3OH 98/2; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,6 g del compuesto de referencia 120.

Ejemplo B9F

La preparación del compuesto de referencia 122

10

15


5

Se añadió nBuLi [1,6 M] (0,0016 mol) gota a gota a -78 °C a una mezcla del compuesto intermedio 27 (preparada de acuerdo con A10) (0,0004 mol) en THF (10 ml) bajo flujo de N_2 . La mezcla se agitó a -78 °C durante 1 hora y luego se llevó a temperatura ambiente, se agitó durante 30 minutos y se enfrió -78 °C. Se añadió una solución de 2-piridinacarboxaldehído (0,0004 mol) en THF (10 ml). La mezcla se agitó a temperatura ambiente durante 2 horas, luego se vertió en hielo y se extrajo con EtOAc. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,32 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: $CH_2CI_2/CH_3OH/NH_4OH$ 98/2/0,1; 10 µm). Se recogieron dos fracciones y el disolvente se evaporó. Rendimiento: 0,021 g del compuesto de referencia 122 (10,4 %) (p.f. 120 °C).

20

Ejemplo de referencia B10

La preparación del compuesto de referencia 20

25

30

Se añadió NaBH $_4$ (0,0015 mol) en porciones a 5 °C a una mezcla del compuesto de referencia 19 (véase la tabla 3) (preparada de acuerdo con B1) (0,0014 mol) en CH $_3$ OH (15 ml) bajo flujo de N $_2$. La mezcla se agitó a 5 °C durante 1 hora, se vertió en H $_2$ O y se extrajo con CH $_2$ Cl $_2$. La capa orgánica se separó, se secó (MgSO $_4$), se filtró y se evaporó el disolvente. El residuo (0,15 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH $_2$ Cl $_2$ /CH $_3$ OH 99/1; 10 µm). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,068 g, 12 %) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,032 g del compuesto de referencia 20.

Ejemplo de referencia B11

35 La preparación del compuesto de referencia 21

Una mezcla del compuesto 2 (véase la Tabla 3) (0,0002 mol), ácido 3-tienilborónico (0,0005 mol), Pd(PPh₃)₄ (0,00002 mol) y Na₂CO₃ (0,0007 mol) en DME (3 ml) se agitó y se sometió a reflujo en un tubo sellado durante 3 horas. Se añadió H₂O. La mezcla se extrajo con acetato de etilo. La capa orgánica se separó, se secó $(MgSO_4)$, se filtró y se evaporó el disolvente. El residuo se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂/CH₃OH 98/2; 15-40 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,04 g del compuesto de referencia 21 (40 %).

Ejemplo de referencia B12

5

10

15

20

25

30

La preparación del compuesto de referencia 23

NH₂
HN NH₂

Una mezcla del compuesto intermedio 22 (véase la Tabla 3) (preparada de acuerdo con B4.a) (0,0002 mol) y níquel Raney (0,1 g) en CH₃OH (10 ml) se agitó a la temperatura ambiente durante 15 minutos bajo una presión de 2 bares de H₂ y luego se filtró sobre celite. Celite se lavó con CH₃OH. El filtrado se evaporó. Rendimiento: 0,48 g. Esta fracción se purificó por cromatografía en columna sobre kromasil (eluyente: CH₂Cl₂/CH₃OH 99/1; 15-40 μ m). Se recogieron dos fracciones (F1, F2) y el disolvente se evaporó. Rendimiento: 0,13 g de F1 y 0,13 g de F2. F2 se cristalizó en dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,09 g del compuesto de referencia 23 (20 %).

Ejemplo B13

La preparación del compuesto de referencia 24

Una mezcla del compuesto 1 (0,0004 mol) y Pd/C (0,07 g) en CH_3OH (10 ml) se hidrogenó a temperatura ambiente durante 5 horas bajo una presión de 3 bares de H_2 , luego se filtró sobre celite, se lavó con CH_2Cl_2 y el disolvente se evaporó a sequedad. El residuo se cristalizó en DIPE. El precipitado se separó por filtración y se secó. El residuo (0,7 g) se purificó por cromatografía en columna sobre kromasil (eluyente: CH_2Cl_2/CH_3OH 100/0 a 99/1; 5 μ m). Se recogieron las fracciones puras y el disolvente se evaporó. El residuo (0,06 g) se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,04 g del compuesto de referencia 24 (27 %).

Ejemplo B14

La preparación del compuesto de referencia 26

Se añadió NaH al 60 % (0,0004 mol) a temperatura ambiente a una mezcla del compuesto 25 (véase la Tabla 4) (preparada de acuerdo con B6.c) (0,0004 mol) en THF (30 ml). La mezcla se agitó a temperatura ambiente durante 1 hora. Se añadió una solución de ICH $_3$ (0,0004 mol) en THF (30 ml). La mezcla se agitó a 60 °C durante 2 horas, luego se enfrió, se vertió en H $_2$ O y se extrajo con CH $_2$ Cl $_2$. La capa orgánica se separó, se secó (MgSO $_4$), se filtró y se evaporó el disolvente. El residuo (0,12 g) se purificó por cromatografía en columna sobre kromasil (eluyente: CH $_2$ Cl $_2$ /CH $_3$ OH 99/1; 10 µm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,049 g del compuesto de referencia 26 (32 %).

Ejemplo de referencia B15

5

10

15

20

30

a) La preparación del compuesto de referencia 123

Se añadió reactivo de Jones (0,0056 mol) a 5 °C a una mezcla del compuesto de referencia 18 (preparada de acuerdo con B9) (0,0029 mol) en 2-propanona (20 ml) bajo flujo de N₂. La mezcla se agitó a 5 °C durante 2 horas, se vertió en H₂O , se basificó con NaHCO₃ y se extrajo con CH₂Cl₂. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (1,5 g) se purificó por cromatografía en columna sobre gel de sílice (eluyente: CH₂Cl₂/CH₃OH/NH₄OH 98/2/0,1; 15-40 µm). Se recogieron dos fracciones (F1, F2) y el disolvente se evaporó. Rendimiento: 0,122 g de F1 (11 %) y 0,19 g de F2 (17 %). F2 se cristalizó en DIPE. El precipitado se separó por filtración y se secó. Rendimiento: 0,034 g del compuesto de referencia 123 (p.f. 150 °C). b) La preparación del compuesto de referencia 124

Una mezcla del compuesto de referencia 123 (0,0005 mol) en POCl₃ (1,5 ml) se agitó a 80 °C durante 24 horas, se vertió en hielo y K₂CO₃ al 10 % y se extrajo con CH₂Cl₂/CH₃OH. La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,14 g) se purificó por cromatografía en columna sobre kromasil (eluyente: CH₂Cl₂/CH₃OH 99/1; 10 μm). Se recogieron las fracciones puras y el disolvente se evaporó. Rendimiento: 0,026 g del compuesto de referencia 124.

Ejemplo de referencia B16

a) La preparación del compuesto de referencia 125

Se añadió NaOH 5 N (2 ml) gota a gota a 50 °C a una mezcla del compuesto de referencia 104 (véase la Tabla 3) (preparada de acuerdo con B2.c) (0,0003 mol) y NH₂OH, HCl (0,0004 mol) en etanol (10 ml). La mezcla se agitó a 50 °C durante 2 horas. Se evaporaron dos tercios de la mezcla. La mezcla se vertió en H₂O y se extrajo con CH₂Cl₂. La capa orgánica se lavó con K₂CO₃ al 10 %, se secó (MgSO₄), se filtró y se evaporó el disolvente. Rendimiento: 0,21 g del compuesto de referencia 125.

b) La preparación del compuesto de referencia 126

10

15

5

Se añadió 1,1'-carbonildiimidazol (0,0012 mol) a una mezcla del compuesto de referencia 125 (0,0003 mol) en THF (20 ml). La mezcla se agitó y se sometió a reflujo durante la noche, se vertió en H_2O y se extrajo con CH_2Cl_2 . La capa orgánica se separó, se secó (MgSO₄), se filtró y se evaporó el disolvente. El residuo (0,17 g) se purificó por cromatografía en columna sobre kromasil (eluyente: CH_2Cl_2/CH_3OH 98/2; 10 µm). Se recogieron dos fracciones y el disolvente se evaporó. Rendimiento: 0,035 g de fracción 1 y 0,05 g de fracción 2. Ambas fracciones se mezclaron y se cristalizaron en dietiléter. El precipitado se separó por filtración y se secó. Rendimiento: 0,05 g del compuesto de referencia 126 (38 %) (p.f. > 260 °C).

20 Ejemplo B17

Preparación del compuesto de referencia 253

25

- a) Se introdujeron 2,53 ml de acetonitrilo, 0,056 g (0,253 mmol) de Pd(OAc)₂ y 0,154 g (0,506 mmol) de tris(2-metilfenil)fosfina en un matraz de 100 ml bajo nitrógeno y la mezcla se agitó durante 10 minutos. A la mezcla se le añadió 1 g (2,53 mmol) del compuesto intermedio 58, 0,51 ml (3,8 mmol) de *N,N*-dietiletanamina y 0,36 g (5,06 mmol) de acrilamida. La mezcla se calentó a reflujo (80 °C) durante 5 días, proporcionando 28 % del compuesto de referencia 253.
- b) En un matraz de 100 ml bajo N_2 se introdujeron 0,8 g (4,33 mmol; 1 eq.) de compuesto intermedio 3a (E), 1 g (4,33 mmol; 1 eq.) de compuesto intermedio 5 y 16 ml de 2-propanol. A esta mezcla se añadieron 0,72 ml de HCl 6 N en 2-propanol. La mezcla se agitó a reflujo durante 72 horas y luego se enfrió proporcionando la sal de ácido

clorhídrico de compuesto de referencia 253, es decir, el compuesto de referencia 254.

El compuesto de referencia 254 puede convertirse en la base libre de acuerdo con metodologías conocidas en la técnica (véase también el Ejemplo B1A).

El compuesto de referencia 253 se puede convertir en el compuesto 1 de acuerdo con el método arriba descrito en el Ejemplo A1c) y).

Las siguientes Tablas 3, 4 y 5 enumeran compuestos de fórmula (I) preparados de acuerdo con uno de los ejemplos anteriores (Ej. N.°).

Tabla 3

5

Comp. N.°	Ej. N.°	R ³	R⁴	Datos físicos p.f. °C / (MH+)*
2**	B2a	2-benzofuranilo	Н	pf. > 240
21**	BII	3-tienilo	Н	pf. 220
3**	B2b	2-furanilo	Н	pf. 228
28**	B2a	2-tienilo	Н	pf. 235
29**	B2a	fenilo	Н	pf. 230
1	B1/B6a	-CH=CH-CN	Н	pf. 245, (E)
30**	B2a	2,4-diclorofenilo	Н	(460)
31**	B2a	2-benzo[b]tienilo	Н	(448)
32**	B2a	1-naftalenilo	Н	(442)
33**	B2a	3-clorofenilo	Н	(426)
34**	B2a	3-acetilfenilo	Н	(434)
35**	B2a	3-metilfenilo	Н	(406)
36**	B2a	2-naftalenilo	Н	(442)
37**	B2a	4-clorofenilo	Н	(426)
38**	B2a	4-metoxifenilo	Н	(422)
39**	B2a	4-metiltiofenilo	Н	(438)
40**	B2a	Ş —€CH ₂ OH	Н	
19**	B1		Н	pf. 220
8**	B5a	-C(=N-OH)-CH(CH ₃) ₂	Н	pf. 156
20**	B10	Ş OH	Н	pf. 205
27**	B1	₹\\	Н	pf. 193
41**	B10	√ OH OH	Н	pf. 200
42**	B5a	HO'N	Н	pf. 155
43**	B4b	₹ ^¬\	Н	pf. 110

Comp. N.°	Ej. N.°	R ³	R ⁴	Datos físicos p.f. °C / (MH+)*
44**	B5b	H ₃ C-O ^N	н	pf. 110
45**	B5a	-C(=N-OH)-CH ₃	Н	pf. 135
9**	B5b	-C(=N-O-CH ₃)-CH(CH ₃) ₂	H	pf. 185
46**	B5b	CH ₃	н	pf. 164
47**	B4b	-CH ₂ -N(CH ₂ -CH ₃) ₂	Н	pf. 150
48**	B4b	₹ ^_o	Н	pf. 85
15**	B6e	CN F	н	(461)
49**	B6e	₹ CN	н	(449)
50**	B6e	T CN	н	(487)
51**	B6e	₹ ÇN	н	(493)
52**	B6e	CH3	н	(473)
53**	B6e	₹ \ CN	н	(443)
54**	B6e	CN CH ₃	н	(446)
55**	B6e	Z CN S	Н	(449)
56**	B6e	₹ CN Br	н	(521)

Comp. N.°	Ej. N.°	R ³	R ⁴	Datos físicos p.f. °C / (MH+)*
57**	B6e	CN CH ₃	Н	(457)
6**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -N(CH ₃) ₂	Н	(430)
58**	B4b	NCH3 CH3	н	(506)
59**	B4b	Y─CH ₃	Н	(428)
60**	B4b	СH ₃	н	(532)
61**	B4b	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	(504)
62**	B4b	'_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	(503)
63**	B4b		н	(472)
64**	B4b	4~ N N N N N N N N N N N N N N N N N N N	Н	(491)
65**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -CH ₂ -CH ₃	Н	(415)
66**	B4b	N-CH ₃	Н	(442)
67**	B4b	H ₁ C N	Н	(410)
68**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -CH ₃	Н	(401)
69**	B4b	₹ ^№	Н	(399)
70**	B4b	Z N N	Н	(396)
71**	B4b	-CH ₂ -N(CH ₂ -CH ₂ -O-CH ₃) ₂	Н	(461)
72**	B4b	₹ CH ₃	Н	(485)

Comp. N.°	Ej. N.°	(continual R ³	R ⁴	Datos físicos p.f. °C / (MH+)*
14.				
73**	B4b	LANCH3	Н	(456)
74**	B4b		Н	(492)
75**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -CN	Н	(412)
76**	B4b	CH ₃	н	(443)
77**	B4b	__\	Н	(397)
78**	B4b	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	(417)
79**	B4b	75~ N	Н	(464)
80**	B4b	-CH ₂ -NH-CH ₂ -CH ₂ -N(CH ₂ -CH ₃) ₂	Н	PF, 105
81**	B1		Н	pf. 240
82**	B10	OH	Н	pf. 170
24**	B13	-CH ₂ -CH ₂ -CN	Н	pf. 208
83**	B8		Н	pf. >250 °C
14**	B6d	N C	Н	pf. 158
84	B6c	-C(CH ₃)=CH-CN	Н	pf. 224 °C (E)
18**	B9	-CH(OH)-CH ₂ -CN	Н	pf. 252 °C
85**	B4b	Z∕N N	Н	(474)
86**	B4b	ZNNN -	Н	(473)

	1	(continuac		T
Comp. N.°	Ej. N.°	R ³	R⁴	Datos físicos p.f. °C / (MH+)*
87**	B4b	OH N	Н	(426)
88**	B4b	CH ₃	Н	(424)
89**	B4b		н	(446)
90**	B4b	7~ N~ N	н	(397)
91**	B4b	H ₃ C CH ₃	н	(438)
92**	B4b	CH ₃	н	(438)
93**	B4b	CH ₃	н	(410)
94**	B4b	N CH ₃	н	(410)
95**	B4b	H_3C	н	(478)
96**	B4b		н	(473)
103	B6b	-CH=C(CH ₃)-CN	Н	pf. 201 °C (E)
11	B6b	-CH=C(CH ₃)-CN	Н	pf. 246 °C (Z)
10	B6a	-CH=CH-CN	Н	pf. 258 °C (Z)
4**	B3	-CH ₂ -CN	Н	
17**	B8	CH ₃	н	pf. 110 °C
97**	В8	CH ₃	н	pf. 240 °C

Comp.	Ej. N.°	\mathbb{R}^3	R⁴	Datos físicos p.f. °C / (MH+)*
N.°	- jv.			Butto notoco p o / (iiii /)
16**	B7	J SH	н	pf. >250 °C
7**	B4c	-CH ₂ -O-CH ₂ -CH ₂ -CN	Н	PF>260
5**	B4a	4-tiomorfolinilo	-NO ₂	pf. 268
98**	B4a	4-morfolinilo	-NO ₂	pf. 210
22**	B4a	1-piperidinilo	-NO ₂	pf. 252
23**	B12	1-piperidinilo	-NH ₂	pf. 262
12	B6c	Н	-C(CH ₃)=CH-CN	(E) (381)
13	B6c	Н	-C(CH ₃)=CH-CN	(Z) (381)
127**	B1	-N(CH ₃) ₂	H	pf. 228 °C
123**	B15a	-C(=O)-CH ₂ -CN	Н	pf. 150 °C
116**	В9С	H N N	н	(463)
128**	B9C	H N N F	н	(480)
129**	B9C	H N O	Н	(452)
130**	В9С	-CH=N-NH-C(=O)-CH ₃	Н	(400)
131**	B9C	-CH=N-NH-C(=O)-CH ₂ -CN	Н	(425)
132**	B9C	H S	Н	(468)
115**	B9Bd	-C(=O)-NH-CH ₃	Н	(373)
134**	B9Bd	-C(=O)-N(CH ₃) ₂	Н	(387)
135**	B9Bd	-C(=O)-N(CH ₃)-CH ₂ -CH ₃	Н	(401)
136**	B9Bd	-C(=O)-N(CH ₂ -CH ₃) ₂	Н	(415)
137**	B9Bd	-C(=O)-NH-CH ₂ -CH ₃	Н	(387)
138**	B9Bd	-C(=O)-NH-CH ₂ -CN	Н	(398)
139**	B9Bd	-C(=O)-N(CH ₃)-CH ₂ -CN	Н	(412)
140**	B9Bd	-C(=O)-NH-CH ₂ -C≡CH	Н	(397)
141**	B9Bd	-C(=O)-NH-CH ₂ -CH=CH ₂	Н	(399)
142**	B9Bd	-C(=O)-NH-CH(CH ₃) ₂	Н	(401)
143**	B1	-N[CH ₂ -CH(CH ₃) ₂] ₂	Н	pf. 238 °C
144**	B13	-CH ₂ -CH(CN) ₂	Н	pf. 160 °C
106**	B6f	-CH=C(CN)-C(=O)-C(CH ₃) ₃	Н	(E), pf. 193 °C
145**	B9F		Н	(E), pf. 229 °C
146**	B9F	├	Н	(Z), pf. 258 °C

Comp. N.°	Ej. N.°	R ³	R ⁴	Datos físicos p.f. °C / (MH+)*
147**	B9Ea	-CH=C(CN)-CH ₂ -CN	Н	(406) (Z/E=88/12)
148	B6c	-C(CH ₂ -CH ₃)=CH-CN	Н	(E), pf. 173 °C
149	B6c	-C(CH(CH ₃) ₂)=CH-CN	Н	132 °C (E), pf.
150	B6c	-C(CH(CH ₃) ₂)=CH-CN	Н	(Z), pf. 132 °C
151	B6b	-CH=C(CH ₃)-CN	Н	(Z), pf. 246 °C
152	B6b	-CH=C(CH ₃)-CN	Н	(E), pf. 201 °C
153**	B13	-CH ₂ -CH(CH ₃)-CN	Н	pf. 187 °C
124**	B15b	-C(CI)=CH-CN	Н	
154**	В9Ва	-CH=CH-C(=O)-N(CH ₃)-CH ₂ -CN	Н	(E)
112**	В9Ва	-CH=CH-C(=O)-N(CH ₃) ₂	Н	(E), pf. >264 °C
155**	B9Bc	V—CH ₃	н	(E), pf. 156 °C
156**	B9Bc	r √ N →	н	(E), pf. 168 °C
157**	В9Вс	₹ N	н	(E), pf. >265 °C
158**	B9Bc	-CH=CH-C(=O)-N(CH ₃)-CH ₂ -CH ₃	Н	(E), pf. >260 °C
114**	B9Bc	-CH=CH-C(=O)-N(CH ₃)-(CH ₂) ₂ -CN	Н	(E), pf. 168 °C
159**	B9Bc	-CH=CH-C(=O)-N(CH ₂ -CH ₃) ₂	Н	(E), pf. 249 °C
160	B6b	-C(CH ₃)=C(CH ₃)-CN	Н	(E)
107**	B9Aa	-CH=CH-CI	Н	(Z), pf. 250 °C
161**	B9Aa	-CH=CH-A	Н	(Z), PF, 248 °C
111**	B9Ad	-CH=C(A) ₂	Н	pf. 223 °C
122**	B9F		Н	(E), pf. 120 °C
162**	B9F	├	Н	(E), pf. >260 °C
163**	B9F	⊱∕~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	pf. 128 °C
164**	B9FF	4	н	pf. 104 °C
125**	B16a	L O NOH	н	
104**	B2c		н	

Comp. N.°	Ej. N.°	R ³	R ⁴	Datos físicos p.f. °C / (MH+)*
165**	B9F	K_S	н	pf. 112 °C
166**	B9F	K CH3	н	pf. 194 °C
167**	B9F	→	н	pf. 191 °C
126**	B16b	L O CN	Н	pf. >260 °C
168**	B4c	-CH ₂ -O-CH ₂ -CH ₃	Н	pf. 201 °C
117**	B9Da	Н	-N(CH ₃) ₂	pf. 132 °C
120**	B9Eb	-CH=C(CN) ₂	Н	
253**	B17a/b	-CH=CH-C(=O)NH ₂	Н	(E)
254**	B17b	-CH=CH-C(=O)NH ₂	Н	(E) HCI

^{* (}MH⁺) define la masa del compuesto protonado; se determinó con un espectrómetro MicroMass equipado con una sonda de electropulverización con un analizador cuadrupolar.

Tabla 4:

Comp. N.°	Ej. N.°	R ³	R ¹	Datos físicos p.f. °C / (MH+)*
25	B6c	-CH=CH-CN	Н	pf. 256 °C
99**	B3	-CH ₂ -CN	Н	pf. 184 °C
100**	B4b	-CH ₂ -N(CH ₂ -CH ₃) ₂	Н	pf. 172 °C
102**	B13	-CH ₂ -CH ₂ -CN	Н	pf. 224 °C
101**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -CN	Н	pf. 196 °C
26**	B14	-CH=CH-CN	CH ₃	pf. 195 °C
169**	B9Bd	-C(=C)-N(CH ₂ -CH ₃) ₂	Н	pf. 172 °C
170**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CN	Н	
171**	B4b	\\\	Н	(398)
172**	B2a	├	Н	pf. 158 °C
173**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -N(CH ₃) ₂	Н	pf. 196 °C
174**	B4b	-CH ₂ -N(CH ₃)-CH=N-CN	Н	pf. 254 °C
175**	B14	2-furanilo	CH ₃	pf. 178 °C

^{**} indica un compuesto de referencia.

Г	T	(continuación)	1	T
Comp. N.°	Ej. N.°	R ³	R ¹	Datos físicos p.f. °C / (MH+)*
118**	B9Db	\	н	164 °C
176**	B14	├ \	CH ₃	pf. 188 °C
177**	В9Аа	-CH=CH-A	Н	(Z), pf. 169 °C
110**	B9Ac	-CH=C(F)-CN	Н	(E), pf. 254 °C
178	B6b	-CH=C(CH ₃)-CN	Н	(Z)
179	B6b	-CH=C(CH ₃)-CN	Н	(E)
180**	B9Bb	LY N	Н	(E)
181**	B9Bc	-CH=CH-C(=O)-NH-ciclopropilo	Н	(E) (426)
182**	B9Bc	-CH=CH-C(=O)-NH-CH ₂ -CH ₂ -N(CH ₃) ₂	Н	(E) (427)
183**	B9Bc	-CH=CH-C(=O)-NH-CH ₂ -CH ₂ -CH ₂ -O-CH ₃	Н	(E)(458)
184**	B9Bc	-CH=CH-C(=O)-NH-CH ₂ -CH(CH ₃) ₂	Н	(E)(442)
185**	B9Bc	-CH=CH-C(=O)-NH-CH ₂ -CH ₂ -CN	Н	(E)439)
186**	В9Вс		Н	(E)(468)
187**	B9Bc	-CH=CH-C(=O)-NH-CH ₂ -CH ₂ -CH ₂ -N(CH ₃) ₂	Н	(E)(471)
188**	B9Bc	-CH=CH-C(=O)-NH-(CH ₂) ₃ -O-CH ₂ -CH ₃	Н	(E)(472)
189**	В9Вс	-CH=CH-C(=O)-NH-CH ₂ -CH ₃	Н	(E)(414)
190**	B9Bc	-CH=CH-C(=O-NH-CH ₂ -CH ₂ -O-CH ₃	Н	(E)(444)
191**	B9Bc	-CH=CH-C(=O)-NH-CH(CH ₃) ₂	Н	(E)(428)
192**	B4b	CH ₃	Н	(E)(491)
193**	B4b	4	н	(E)(444)
194**	B4b	-CH=CH-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -CN	Н	(E)(439)
195**		NH ₂	Н	(E)(483)
196**	B4b	-CH=CH-CH ₂ -N(CH ₂ -CH ₂ -O-CH ₃) ₂	Н	(E)(488)
197**	B4b	₹ KH3	Н	(E)(476)
198**	B4b	-CH=CH-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -CH ₃	Н	(E)(428)
199**	B4b	-CH=CH-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -N(CH ₂ -CH ₃) ₂	Н	(E)(485)
200**	B4b	-CH=CH-CH ₂ -N(CH ₂ -CH ₃)-CH ₃	Н	(E)(414)
201**	B4b	-CH=CH-CH ₂ -N(CH ₂ -CH ₂ -CH ₃) ₂	Н	(E)(456)
202**	B4b	-CH=CH-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -CH ₂ -CH ₃	Н	(E)(442)
203**	B4b		Н	(E)(438)

Comp. N.°	Ej. N.°	R ³	R ¹	Datos físicos p.f. °C / (MH+)*
14.				
204**	B4b	\(\frac{1}{\sqrt{\sq}\}}\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqit{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqit{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqit{\sqrt{\sq}\sqrt{\sq}}}}}\sqit{\sqrt{\sq}\sq}\sqnt{\sq}}}}\signignignightimedeeeeeee	Н	(E)(442)
205**	B4b	N-CH ₃	Н	(E)(455)
206**	B4b	-CH=CH-CH ₂ -N(bencil)-CH ₂ -CH ₂ -N(CH ₃) ₂	Н	(E)(533)
207**	B4b	-CH=CH-CH ₂ -N(CH ₃) ₂	Н	(E)(457)
208**	B4b	-CH=CH-CH ₂ -N(isopropilo) ₂	Н	(E)(456)
121**	B9Bb	-CH=CH-C(=O)-NH ₂	Н	(E)
209**	B9Bb		Н	(E), pf. 116 °C
210**	B9Bb	CH3	Н	(E), pf. 254 °C
211**	B9Bb	-CH=CH-C(=O)-N(CH ₃)-CH ₂ -CH ₂ -OH	Н	(E), pf. 222 °C
212**		-CH=CH-C(=O)-N(CH ₃)-CH ₂ -CN	Н	(E), pf. 198 °C
213	B6c	-C(CH ₃)=CH-CN	Н	(E)
214**	B9Bc	-CH=CH-C(=O)-N(CH ₃)-CH ₂ -CH ₂ -CN	Н	(E), pf. 204 °C
215**	B9Bc	-CH=CH-C(=O)-N(CH ₃)-CH ₂ -CH ₃	Н	(E), pf. 211 °C
216**	В9Вс	₹ ~ ~~~	Н	(E), pf. 246 °C
217**	B9Bc	-CH=CH-C(=O)-N(CH ₂ -CH ₃) ₂	Н	(E), pf. 226 °C
218**	В9Вс	1. N	Н	(E), pf. 196 °C
219**	B9Ba	-CH=CH-C(=O)-N(CH ₃) ₂	Н	(E), pf. 225 °C
220**	B9E	-CH=C(CN)-CH ₂ -CN	Н	(Z), pf. 195 °C
109**	B9Ab	-CH=CH-CÍ	Н	(E), pf. 200 °C
108**	B9Ab	-CH=CH-CI	Н	(Z), pf. 165 °C
221**	В9Ва	-CH=CH-C(=O)-NH-CH ₃	Н	(E), pf. 260 °C
222**	B9Bb	-CH=CH-C(=O)-N(CH ₂ -CH ₂ -O-CH ₃) ₂	Н	(E), pf. 158 °C
223**	B9Bb		Н	(E), pf. 208 °C
224**	B9Bb	rt N CH3	Н	(E), pf. 208 °C
113**	B9Bb	-CH=CH-C(=O)-N(CH ₃)-CH ₂ -CH ₂ -CH ₂ -CH ₃	Н	(E), pf. 212 °C
225**	B4b	-CH ₂ -N(CH ₂ -CH ₂ -CN) ₂	Н	pf. 154 °C
226**	B2a	2-furanilo	Н	pf. 162 °C

^{* (}MH⁺) define la masa del compuesto protonado; se determinó con un espectrómetro MicroMass equipado con una sonda de electropulverización con un analizador cuadrupolar.

^{**} indica un compuesto de referencia.

Tabla 5:

$$\begin{array}{c|c}
R^{4a} \\
X^{1} \\
N \\
N
\end{array}$$

Comp. N.°	Ej. N.°	R^3	R ^{4a}	R ^{4b}	X ¹	Datos físicos p.f. °C
227**	B13	-CH ₂ -CH ₂ -CN	CH ₃	Н	-NH	pf. 186 °C
228**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CN	CH ₃	Н	-NH	pf. 138 °C
229	B6b	-CH=C(CH ₃)-CN	CH ₃	Н	-NH	pf. 190 °C
230	В6с	-CH=CH-CN	CH ₃	Н	-0-	(E), pf. 254 °C
231	B6b	-CH=C(CH ₃)-CN	CH ₃	Н	-0-	pf. 150 °C
232	В6с	-C(CH ₃)=CH-CN	CH ₃	Н	-0-	(E), pf. 234 °C
105**	B4d	-CH ₂ -O-CH ₂ -CH ₃	CH ₃	Н	-0-	pf. 140 °C
233	B6b	-CH=C(CH ₃)-CN	CH ₃	CI	-NH	pf. 214 °C
234**	B13	-CH ₂ -CH ₂ -CN	CH ₃	Н	-0-	pf. 199 °C
235**	B13	-CH(CH ₃)-CH ₂ -CN	CH ₃	Н	-0-	pf. 195 °C
236**	B13	-CH ₂ -CH(CH ₃)-CN	CH ₃	Н	-0-	pf. 161 °C
237	В6с	-CH=CH-CN	CH ₃	Н	-NH	(E), pf. >264 °C
238**	В3	-CH ₂ -CN	CH ₃	CI	-NH	pf. 184 °C
239	В6с	-CH=CH-CN	CH ₃	2-furanilo	-NH	(E) pf. 175 °C
119**	B9E	-CH=C(CN)-CH ₂ -CN	CH ₃	2-furanilo	-NH	

Comp. N.°	Ej. N.°	R^3	R ^{4a}	R ^{4b}	X ¹	Datos físicos p.f. °C
240**	B9F		CH ₃	Cl	-NH	pf. 248 °C Z/E=50/50
241**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -CN	CH ₃	Α	-NH	pf. 148 °C
242	B1	-CH=CH-CN	Н	isopropilo	-NH	(E) 30 %-(Z) 70 %
243**	B4b	-CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -CN	CH ₃	CI	-NH	pf. 85 °C
244	В6с	-CH=CH-CN	Н	Α	-NH	(E), pf. 270 °C
245	B6c	-CH=CH-CN	Н	-OCH ₃	-NH	(E), pf. 258 °C
246	B6b	-C(CH ₃ =C(CH ₃)-CN	CH ₃	Н	ġ	(E), pf. 214 °C
247	B6b	-CH=C(CH ₃)-CN	CH ₃	Α	-NH	pf. 212 °C
248	B6c	-CH=CH-CN	CH ₃	Α	-NH	(E), pf. 250 °C
249	B6b	-CH=C(CH ₃)-CN	Н	-OCH ₃	-NH	pf. 166 °C
250	B6b	-CH=C(CH ₃)-CN	Н	Α	-NH	pf. 186 °C
251**	B13	-CH ₂ -CH ₂ -CN	Η	-OCH ₃	-NH	pf. 228 °C
252**	B4c	-CH ₂ -O-CH ₂ -CH ₂ -CN	Н	CI	-NH	pf. 168 °C
133	B6c	-CH=CH-CN	CH ₃	CI	-NH	(E), PF, 258 °C

^{**} indica un compuesto de referencia

C. Ejemplo farmacológico

5

10

La actividad farmacológica de los presentes compuestos se examinó utilizando el siguiente ensayo.

Se utilizó un procedimiento de ensayo rápido, sensible y automatizado para la evaluación *in vitro* de agentes anti-VIH. Una línea de células T4 transformadas por VIH-1, MT-4, que se demostró previamente (Koyanagi et al., Int. J. Cancer, 36, 445-451, 1985) es altamente susceptible y permisiva para la infección por el VIH, sirvió como la línea celular diana. La inhibición del efecto citopático inducido por el VIH se utilizó como punto final. La viabilidad de las células infectadas tanto con VIH como de manera simulada se evaluó por espectrofotometría mediante la reducción *in situ* de bromuro de 3- (4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio (MTT). La concentración citotóxica al 50 % (CC₅₀ en M) se definió como la concentración de compuesto que redujo la absorbancia de la muestra de control infectada

de manera simulada en un 50 %. El porcentaje de protección logrado por el compuesto en células infectadas por el VIH se calculó mediante la siguiente fórmula:

$$\frac{(OD_T)_{VIH} - (OD_C)_{VIH}}{(OD_C)_{SIMILIADO} - (OD_C)_{VIH}}$$
 expresado en %,

en donde (OD_T)_{VIH} es la densidad óptica medida con una concentración dada del compuesto de ensayo en células infectadas por el VIH; (OD_C)_{VIH} es la densidad óptica medida para el control de las células infectadas por el VIH no tratadas; (OD_C)_{SIMULADO} es la densidad óptica medida para las células infectadas simuladas de control no tratadas; Todos los valores de densidad óptica se determinaron a 540 nm. La dosis que logró el 50 % de protección de acuerdo con la fórmula anterior se definió como la concentración inhibitoria del 50 % (IC₅₀ en M). La relación de CC₅₀ a Cl₅₀ se definió como el índice de selectividad (SI).

La Tabla 6 enumera los valores pCl₅₀ (-logCl₅₀), pCC₅₀ (-logCC₅₀) y pSI (pCC₅₀-pCl₅₀) para los compuestos de fórmula (I). Por ejemplo, un compuesto con un valor Cl₅₀ de 10^{-9} M, es decir, pCl₅₀=9, y un valor CC₅₀ de 10^{-5} M, es decir, pCC₅₀= 5, tiene un SI de 10^{-5} M/ 10^{-9} M = 10,000, es decir, un pSI de 5-9=-4.

15 <u>Tabla 6</u>

5

Co. N.°	pCI ₅₀ (M)	pCC ₅₀ (M)	pSI
21**	8,4	4,9	-3,5
3**	8,4	5,5	-2,9
1	9,4	5,0	-4,4
34**	8,0	4,8	-3,2
19**	8,4	4,8	-3,6
45**	8,7	5,0	-3,8
49**	8,0	4,8	-3,2
70**	8,1	4,8	-3,3
75**	9,0	5,0	-4,0
78**	8,4	4,9	-3,5
79**	8,0	5,3	-2,7
84	9,0	4,5	-4,5
18**	8,8	4,9	-4,0
25	9	4	-5
24**	9,1	5,7	-3,4
81**	9,1	5,6	-3,5
11	9,2	5,7	-3,5
10	9,2	6,3	-2,9
174**	8,8	5,3	-3,5
227**	9,5	<4,0	<-5,5
144**	8,6	6,4	-2,2
229	8,8	<4,0	<-4,8
118**	8,4	4,1	<-4,1
177**	8,3	<4,0	<-4,3
106**	7,7	5,2	-2,5
145**	8,7	5,3	-3,4
147**	9,4	5,7	-3,7
148	8,8	4,9	-3,9
230	9,2	<4,0	<-5,2
231	9,2	<4,0	<-5,2
232	8,4	<4,0	<-4,4
105**	7,2	<4,0	<-3,2
110**	8,6	4,3	-4,3
233	9,3	5,7	-3,6
234**	8,7	<4,0	<-4,7
235**	9,3	<4,0	<-5,3
236**	8,8	<4,0	<-4,8
149	9,1	5,3	-3,8
150	8,8	4,8	-4,0
237	8,9	<4,0	<-4,9
151	9,1	5,5	-3,6
152	9,1	4,8	-4,3
178	8,8	5,7	-3,1
179	8,9	<4,0	<-4,9

ES 2 923 581 T3

Co. N.°	pCI ₅₀ (M)	pCC ₅₀ (M)	pSI
153**	9,2	6,3	-2,9
124**	8,5	6,3 4,7	-3,8
238**	8,5 9,5	5,6	-3,9
238** 112** 244	9,1 9,2 8,6 8,3 8,8	5,6 4,9 4	-4,2
244	9,2	4	-5,2
209**	8,6	4,9	-3,7
210**	8,3	4,8	-3,5
155**	8,8	6,3	-2,5
156**	7,7	4,9 4,8 6,3 5,1	-2,6
158** 212** 114** 213 214**	7,7 8	5,5 5	-3,8 -3,9 -4,2 -5,2 -3,7 -3,5 -2,5 -2,6 -2,5 -4,1 -3,5 -4,2 -3,5 -3,6 -3,6 -4,1 -4,8 -3 -3 -3 -3,5
212**	9,1	5	-4,1
114**	8,6	5,1	-3,5
213	9	4,8 5,1	-4,2
214**	8,6	5,1	-3,5
215**	9,1	5,5	-3,6
216**	8,2	5	-3,6
215** 216** 219**	9,1 8,2 9,1 8,8 8,4 9,2 9,3 8,5	5,5 5 5 4	-4,1
245	8,8	4	-4,8
146**	8,4	5,4 6,2 5,7 4	-3
247	9,2	6,2	-3
248	9,3	5,7	-3,5
249	8,5	4	-4,5
42**	9	6,3 5 4	-4,5 -2,7 -3,9 -5,2 -4 -3,9
251**	8,9	5	-3,9
133	8,9 9,2	4	-5,2
9**	8,8	4,8 5	-4
239	8,9	5	-3,9
241**	9,4	5,3	-4,1
126**	8,4	4,9	-4,1 -3,5

^{**} indica un compuesto de referencia.

REIVINDICACIONES

- 1. Una composición farmacéutica que comprende un portador farmacéuticamente aceptable y, como ingredientes activos:
- (a) un compuesto de fórmula

5

10

15

20

25

35

50

55

$$b_{a}^{1} = b_{a}^{4} \times 1$$

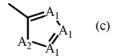
$$b_{a}^{2} = b_{a}^{4} \times 1$$

$$(R^{4})_{m}$$

$$(I)$$

un N-óxido, una sal de adición farmacéuticamente aceptable y una forma estereoquímicamente isomérica del mismo, en donde

-a¹=a²-a³=a⁴- representa un radical bivalente de fórmula


```
-CH=CH-CH=CH-
                   (a-1);
-N=CH-CH=CH-
                   (a-2);
-N=CH-N=CH-
                   (a-3);
-N=CH-CH=N-
                   (a-4);
-N=N-CH=CH-
                   (a-5):
```

-b¹=b²-b³=b⁴- representa un radical bivalente de fórmula

-CH=CH-CH=CH-(b-1);-N=CH-CH=CH-(b-2);-N=CH-N=CH-(b-3);-N=CH-CH=N-(b-4);-N=N-CH=CH-(b-5);

n es 0, 1, 2, 3 o 4; y en el caso de que $-a^1=a^2-a^3=a^4$ sea (a-1), entonces n también puede ser 5; m es 1, 2, 3, y en el caso de que $-b^1=b^2-b^3=b^4$ sea (b-1), entonces m también puede ser 4; R¹ es hidrógeno;

cada R^2 , independientemente, es hidroxi, halo, alquilo C_{1-6} , opcionalmente sustituido con ciano o -C(=0) R^6 , 30 cicloalquilo C₃₋₇, alquenilo C₂₋₆, opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquinilo C2-6, opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquil C1-6 oxicarbonilo, carboxilo, ciano, nitro, amino, mono- o di(alquil C_{1-6})amino, polihalometilo, polihalometilio, -S(=O) $_p$ R 6 , -NH-S(=O) $_p$ R 6 , -C(=O)R 6 , -NHC(=O)H, -C(=O)NHNH $_2$, -NHC(=O)R 6 , -C(=NH)R 6 o un radical de fórmula

en donde cada A₁, independientemente, es N, CH o CR⁶; y

 A_2 es NH, O, S o NR⁶;

 X_1 es -NH- o -O-;

 X_2 es -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)_p-, R³ es alquenilo C_{2-6} sustituido con ciano; 40

 X_3 es -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-, -X₂-alcano C₁₋₄diilo-, -alcano C₁₋₄diil-X_{2a}-, -alcano C₁₋₄diil-X_{2b}-alcano C₁₋₄diilo, -C(=N-OR⁸)-alcano C₁₋₄diilo-;

siendo X_{2a} -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-; y

45 siendo X_{2b} -NH-NH-, -N=N-, -C(=O)-, -S-, -S(=O)_p-;

 R^4 es halo, hidroxi, alquilo C_{1-6} , cicloalquilo C_{3-7} , alcoxi C_{1-6} , ciano, nitro, polihaloalquilo C_{1-6} , polihaloalquil C_{1-6} oxi, aminocarbonilo, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆carbonilo, formilo, amino, mono- o di-(alquil C₁₋₄)amino o R¹;

 R^5 es hidrógeno; arilo; formilo; alquil C_{1-6} carbonilo; alquilo C_{1-6} ; alquil C_{1-6} oxicarbonilo; alquilo C_{1-6} sustituido con formilo, alquil C_{1-6} carbonilo, alquil C_{1-6} carbonilo o alquil C_{1-6} carboniloxi; alquil C_{1-6} carbonilo sustituido con alquil C₁₋₆oxicarbonilo;

R⁶ es alquilo C₁₋₄, amino, mono- o di-(alquil C₁₋₄)amino o polihaloalquilo C₁₋₄;

R⁷ es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆)aminoalquilo C₁₋₆, formilo, alquil C₁₋₆carbonilo, cicloalquilo C_{3-7} , alquil C_{1-6} oxi, alquil C_{1-6} oxicarbonilo, alquil C_{1-6} tio, ciano, nitro, polihaloalquilo C_{1-6} polihaloalquil C₁₋₆oxi, aminocarbonilo, -CH(=N-O-R⁸), R^{7a}, -X₃-R^{7a} o R7^a-alquilo C₁₋₄;

R^{7a} es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆)aminoalquilo C₁₋₆, formilo, alquil C₁₋₆carbonilo, cicloalquilo C₃₋₇, alquil C₁₋₆oxi, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, -CH(=N-O-R⁸);

 R^8 es hidrógeno, alquilo $C_{1\text{--}4}$, arilo o arilalquilo $C_{1\text{--}4}$;

10 pes 1 o 2;

5

15

20

30

35

40

45

55

- arilo es fenilo o fenilo sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆) aminoalquilo C₁₋₆, alquil C₁₋₆carbonilo, cicloalquilo C₃₋₇, alquil C₁₋₆oxi, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, R⁷ o -X₃-R⁷; y
- (b) otro compuesto antirretroviral seleccionado de suramina, pentamidina, timopentina, castanospermina, dextrano (sulfato de dextrano), foscarnet-sodio (fosfonoformiato trisódico); inhibidores nucleosídicos de la transcriptasa inversa; inhibidores no nucleosídicos de la transcriptasa inversa; inhibidores de la transcriptasa inversa de fosfonato; inhibidores de las proteínas transactivadoras; inhibidores de la proteasa; inhibidores de la fusión; antagonistas del receptor CXCR4; inhibidores de la integrasa viral; inhibidores de la transcriptasa inversa de tipo nucleótido; inhibidores de la ribonucleótido reductasa.
- 2. Una combinación de:
- 25 (a) un compuesto de fórmula

$$b_{a}^{2} = b^{4}$$

$$(R^{4})_{m}$$

$$N$$

$$A^{1} = a^{2}$$

$$A^{2} = a^{2}$$

$$(R^{2})_{n}$$

$$A^{2} = a^{2}$$

$$(R^{2})_{n}$$

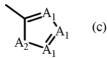
$$A^{2} = a^{2}$$

$$(R^{2})_{n}$$

$$A^{2} = a^{2}$$

un *N*-óxido, una sal de adición farmacéuticamente aceptable y una forma estereoquímicamente isomérica del mismo, en donde

-a¹=a²-a³=a⁴- representa un radical bivalente de fórmula


```
-CH=CH-CH=CH- (a-1);
-N=CH-CH=CH- (a-2);
-N=CH-N=CH- (a-3);
-N=CH-CH=N- (a-4);
-N=N-CH=CH- (a-5);
```

-b¹=b²-b³=b⁴- representa un radical bivalente de fórmula

```
-CH=CH-CH=CH- (b-1);
-N=CH-CH=CH- (b-2);
-N=CH-N=CH- (b-3);
-N=CH-CH=N- (b-4);
-N=N-CH=CH- (b-5);
```

n es 0, 1, 2, 3 o 4; y en el caso de que $-a^1=a^2-a^3=a^4$ - sea (a-1), entonces n también puede ser 5; m es 1, 2, 3, y en el caso de que $-b^1=b^2-b^3=b^4$ - sea (b-1), entonces m también puede ser 4; R¹ es hidrógeno;

cada R^2 , independientemente, es hidroxi, halo, alquilo C_{1-6} , opcionalmente sustituido con ciano o $-C(=O)R^6$, cicloalquilo C_{3-7} , alquenilo C_{2-6} , opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquinilo C_{2-6} , opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquil C_{1-6} oxicarbonilo, carboxilo, ciano, nitro, amino, mono- o di(alquil C_{1-6})amino, polihalometilo, polihalometiltio, $-S(=O)_pR^6$, $-NH-S(=O)_pR^6$, $-C(=O)R^6$, -NHC(=O)H, $-C(=O)NHNH_2$, $-NHC(=O)R^6$, $-C(=NH)R^6$ o un radical de fórmula

en donde cada A₁, independientemente, es N, CH o CR⁶; y

A₂ es NH, O, S o NR⁶:

X₁ es -NH- o -O-;

 X_2 es -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)_p-, R³ es alquenilo C_{2-6} sustituido con ciano;

 $X_{3} \text{ es -NR}^{5}\text{-, -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_{p}\text{-, -X}_{2}\text{-alcano }C_{1\text{-}4}\text{diilo-, -alcano }C_{1\text{-}4}\text{diil-X}_{2a}\text{-, -alcano }C_{1\text{-}4}\text{diilo-, -C(=N-OR}^{8})\text{-alcano }C_{1\text{-}4}\text{diilo-;}$

siendo X_{2a} -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-; y

siendo X_{2b} -NH-NH-, -N=N-, -C(=O)-, -S-, -S(=O)_p-;

 R^4 es halo, hidroxi, alquilo C_{1-6} , cicloalquilo C_{3-7} , alcoxi C_{1-6} , ciano, nitro, polihaloalquilo C_{1-6} , polihaloalquil C_{1-6} , polihaloalquilo C_{1-6} aminocarbonilo, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆carbonilo, formilo, amino, mono- o di-(alquil C₁₋₄)amino o R⁷;

 R^5 es hidrógeno; arilo; formilo; alquil C_{1-6} carbonilo; alquilo C_{1-6} ; alquil C_{1-6} oxicarbonilo; alquilo C_{1-6} sustituido con formilo, alquil C₁₋₆carbonilo, alquil C₁₋₆carbonilo o alquil C₁₋₆carboniloxi; alquil C₁₋₆carbonilo sustituido con alquil C₁₋₆oxicarbonilo;

 R^6 es alquilo C_{1-4} , amino, mono- o di-(alquil C_{1-4})amino o polihaloalquilo C_{1-4} ;

R⁷ es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆)aminoalquilo C₁₋₆, formilo, alquil C₁₋₆carbonilo, cicloalquilo C_{3-7} , alquil C_{1-6} oxi, alquil C_{1-6} oxicarbonilo, alquil C_{1-6} tio, ciano, nitro, polihaloalquilo C_{1-6} , polihaloalquil C_{1-6} oxi, aminocarbonilo, -CH(=N-O-R⁸), R^{7a}, -X₃-R^{7a} o R7^a-alquilo C_{1-4} ;

R^{7a} es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C_{1-6} , aminoalquilo C_{1-6} , mono o di(alquil C_{1-6})aminoalquilo C_{1-6} , formilo, alquil C_{1-6} carbonilo, cicloalquilo C_{3-7} , alquil C_{1-6} oxi, alquil C_{1-6} oxicarbonilo, alquil C_{1-6} tio, ciano, nitro, polihaloalquilo C_{1-6} polihaloalquil C₁₋₆oxi, aminocarbonilo, -CH(=N-O-R⁸);

 R^8 es hidrógeno, alquilo $C_{1\text{--}4}$, arilo o arilalquilo $C_{1\text{--}4}$;

30 p es 1 o 2;

10

15

20

25

35

40

arilo es fenilo o fenilo sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente $_{6}$)aminoalquilo C_{1-6} , alquil C_{1-6} carbonilo, cicloalquilo C_{3-7} , alquil C_{1-6} oxi, alquil C_{1-6} oxicarbonilo, alquil C_{1-6} tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, R⁷ o -X₃-R⁷; y

otro compuesto antirretroviral seleccionado de suramina, pentamidina, timopentina, castanospermina, dextrano (sulfato de dextrano), foscarnet-sodio (fosfonoformiato trisódico); inhibidores nucleosídicos de la transcriptasa inversa; inhibidores no nucleosídicos de la transcriptasa inversa; inhibidores de la transcriptasa inversa de fosfonato; inhibidores de las proteínas transactivadoras; inhibidores de la proteasa; inhibidores de la fusión; antagonistas del receptor CXCR4; inhibidores de la integrasa viral; inhibidores de la transcriptasa inversa de tipo nucleótido; inhibidores de la ribonucleótido reductasa.

3. Un producto que contiene:

45 (a) un compuesto de fórmula

un N-óxido, una sal de adición farmacéuticamente aceptable y una forma estereoquímicamente isomérica del mismo,

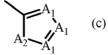
-a¹=a²-a³=a⁴- representa un radical bivalente de fórmula

-CH=CH-CH=CH-(a-1);-N=CH-CH=CH-(a-2);

-N=CH-N=CH-(a-3);-N=CH-CH=N-(a-4);

-N=N-CH=CH-(a-5);

-b1=b2-b3=b4- representa un radical bivalente de fórmula


60

50

```
-CH=CH-CH=CH-
                   (b-1):
-N=CH-CH=CH-
                   (b-2);
-N=CH-N=CH-
                   (b-3);
-N=CH-CH=N-
                   (b-4);
-N=N-CH=CH-
```

n es 0, 1, 2, 3 o 4; y en el caso de que $-a^1 = a^2 - a^3 = a^4$ sea (a-1), entonces n también puede ser 5; m es 1, 2, 3, y en el caso de que $-b^1=b^2-b^3=b^4$ sea (b-1), entonces m también puede ser 4; R¹ es hidrógeno;

cada R², independientemente, es hidroxi, halo, alquilo C₁₋₆, opcionalmente sustituido con ciano o -C(=O)R⁶, cicloalquilo C₃₋₇, alquenilo C₂₋₆, opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquinilo C₂₋₆, opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquil C₁₋₆oxicarbonilo, carboxilo, ciano, nitro, amino, mono- o di(alquil C_{1-6})amino, polihalometillo, polihalometillo, -S(=O) $_p$ R 6 , -NH-S(=O) $_p$ R 6 , -C(=O)R 6 , -NHC(=O)H, -C(=O)NHNH $_2$, -NHC(=O)R 6 , -C(=NH)R 6 o un radical de fórmula

en donde cada A₁, independientemente, es N, CH o CR⁶; y

 A_2 es NH, O, S o NR⁶;

X₁ es -NH- o -O-;

5

10

15

25

30

35

40

45

50

55

 X_2 es -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)_p-, R³ es alquenilo C₂₋₆ sustituido con ciano; 20

 X_3 es -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-, -X₂-alcano C₁₋₄diilo-, -alcano C₁₋₄diil-X_{2a}-, -alcano C₁₋₄diil-X₁-, -alcano C₁₋₄diil-X₁-, -alcano C₁₋₄diil-X₁₋₄-, -alcano C₁₋₄-, -alcano X_{2b}-alcano C₁₋₄diilo, -C(=N-OR⁸)-alcano C₁₋₄diilo-;

siendo X_{2a} -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-; y

siendo X_{2b} -NH-NH-, -N=N-, -C(=O)-, -S-, -S(=O)_p-;

R⁴ es halo, hidroxi, alquilo C₁₋₆, cicloalquilo C₃₋₇, alcoxi C₁₋₆, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, alquil C_{1-6} oxicarbonilo, alquil C_{1-6} carbonilo, formilo, amino, mono- o di-(alquil C_{1-4}) amino o R';

 R^5 es hidrógeno; arilo; formilo; alquil C_{1-6} carbonilo; alquilo C_{1-6} ; alquil C_{1-6} oxicarbonilo; alquilo C_{1-6} sustituido con formilo, alquil C_{1-6} carbonilo, alquil C_{1-6} carbonilo o alquil C_{1-6} carboniloxi; alquil C_{1-6} carbonilo sustituido con alquil C₁₋₆oxicarbonilo;

R⁶ es alquilo C₁₋₄, amino, mono- o di-(alquil C₁₋₄)amino o polihaloalquilo C₁₋₄;

R⁷ es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C_{1.6}, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆)aminoalquilo C₁₋₆, formilo, alquil C₁₋₆carbonilo, cicloalquilo C₃₋₇, alquil C₁₋₆oxi, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, -CH(=N-O-R⁸), R^{7a}, -X₃-R^{7a} o R7^a-alquilo C₁₋₄;

R^{7a} es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆)aminoalquilo C₁₋₆, formilo, alquil C₁₋₆carbonilo, cicloalquilo C_{3-7} , alquil C_{1-6} oxi, alquil C_{1-6} oxicarbonilo, alquil C_{1-6} tio, ciano, nitro, polihaloalquilo C_{1-6} polihaloalquil C₁₋₆oxi, aminocarbonilo, -CH(=N-O-R⁸);

 R^8 es hidrógeno, alquilo $C_{1\text{--}4}$, arilo o arilalquilo $C_{1\text{--}4}$; p es 1 o 2;

arilo es fenilo o fenilo sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁-6)aminoalquilo C₁₋₆, alquil C₁₋₆carbonilo, cicloalquilo C₃₋₇, alquil C₁₋₆oxi, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, R⁷ o -X₃-R⁷, y

- (b) otro compuesto antirretroviral seleccionado de suramina, pentamidina, timopentina, castanospermina, dextrano (sulfato de dextrano), foscarnet-sodio (fosfonoformiato trisódico); inhibidores nucleosídicos de la transcriptasa inversa; inhibidores no nucleosídicos de la transcriptasa inversa; inhibidores de la transcriptasa inversa de fosfonato; inhibidores de las proteínas transactivadoras; inhibidores de la proteasa; inhibidores de la fusión; antagonistas del receptor CXCR4; inhibidores de la integrasa viral; inhibidores de la transcriptasa inversa de tipo nucleótido; inhibidores de la ribonucleótido reductasa;
- 60 como una preparación combinada para uso simultáneo, separado o secuencial en el tratamiento de la infección por VIH.

4. La composición farmacéutica de acuerdo con la reivindicación 1, la combinación de acuerdo con la reivindicación 2 o el producto de acuerdo con la reivindicación 3, en donde el compuesto de fórmula (I) tiene la fórmula

$$b_{a}^{1-|A|} = b_{a}^{1-|A|} \times A_{1} \times A_{1$$

en donde

5

 $-a^1=a^2-a^3=a^4-$, $-b^1=b^2-b^3=b^4-$, R^1 , R^2 , R^3 , R^4 , m y Xi son como se definen en las reivindicaciones 1 a 3; n' es 0, 1, 2 o 3 y en el caso de que $-a^1=a^2-a^3=a^4-$ sea (a-1), entonces n' también puede ser 4;

10 R^{2'} es halo, alquilo C₁, trihalometilo, trihalometiloxi, ciano, aminocarbonilo, alquilo C₁₋₆ sustituido con ciano o aminocarbonilo;

con la condición de que R² esté situado en la posición para con respecto al resto NR¹.

5. La composición farmacéutica, combinación o producto de acuerdo con una cualquiera de las reivindicaciones 1 a 4, en donde el compuesto de fórmula (I) tiene la fórmula

en donde

20

30

40

 $-b^1=b^2-b^3=b^4-$, R^1 , R^2 , R^3 , R^4 , m y Xi son como se definen en las reivindicaciones 1 a 3; n' y R^2 son como se definen en la reivindicación 4.

6. La composición farmacéutica, combinación o producto de acuerdo con una cualquiera de las reivindicaciones 1 a 5, en donde el compuesto de fórmula (I) tiene la fórmula

$$\mathbb{R}^{3}$$
 \mathbb{R}^{1} $\mathbb{R}^{2^{l}}$ $\mathbb{R}^{2^{l}}$ $\mathbb{R}^{2^{l}}$

en donde

R¹, R², R³, R⁴, m y Xi son como se definen en las reivindicaciones 1 a 3; n' y R² son como se definen en la reivindicación 4.

- 7. La composición farmacéutica, combinación o producto de acuerdo con una cualquiera de las reivindicaciones 4 a
 6, en donde, en el compuesto de fórmula (I), R² es ciano, aminocarbonilo o alquilo C₁₋₆ sustituido con ciano o aminocarbonilo.
 - 8. La composición farmacéutica, combinación o producto de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde, en el compuesto de fórmula (I),

n es al menos 1; o n' es 0;

R² o R² es ciano;

m es 1, 2 o 3;

 R^4 es alquilo C_{1-6} ; nitro; amino; halo; alquil C_{1-6} oxi o R^7 ;

45 X_3 es -C(=O)-, -CH₂-C(=O)- o -C(=N-OR⁸)-alcano C₁₋₄diilo-.

9. La composición farmacéutica de acuerdo con la reivindicación 1, la combinación de acuerdo con la reivindicación 2, o el producto de acuerdo con la reivindicación 3, en donde el compuesto de fórmula (I) es 4-[[4-[[4-(2-cianoetenil)-

- 2,6-dimetilfenil]amino]-2-pirimidinil]amino]benzonitrilo (E).
- 10. La composición farmacéutica o la combinación de acuerdo con una cualquiera de las reivindicaciones 1, 2 o 4-9 para su uso en la prevención o el tratamiento de la infección por el VIH (Virus de la Inmunodeficiencia Humana).
- 11. Un compuesto de fórmula

5

$$b_{a}^{1-1} = b^{4}$$

$$b_{a}^{2} = b^{4}$$

$$(R^{4})_{m}$$

$$(R^{2})_{n}$$

$$A^{1} = A^{2}$$

$$A^{2} = A^{2}$$

$$A^{2} = A^{2}$$

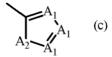
$$A^{1} = A^{2}$$

$$A^{2} = A^{2}$$

$$A^{2$$

- un N-óxido, una sal de adición farmacéuticamente aceptable y una forma estereoquímicamente isomérica del mismo, 10 en donde
 - -a¹=a²-a³=a⁴- representa un radical bivalente de fórmula

```
15
           -CH=CH-CH=CH-
                              (a-1);
           -N=CH-CH=CH-
                              (a-2);
                              (a-3);
           -N=CH-N=CH-
           -N=CH-CH=N-
                              (a-4);
           -N=N-CH=CH-
                              (a-5);
20
```


-b1=b2-b3=b4- representa un radical bivalente de fórmula

```
-CH=CH-CH=CH-
                              (b-1);
           -N=CH-CH=CH-
                               (b-2);
25
           -N=CH-N=CH-
                               (b-3);
           -N=CH-CH=N-
                               (b-4);
           -N=N-CH=CH-
                               (b-5):
```

n es 0, 1, 2, 3 o 4; y en el caso de que $-a^1=a^2-a^3=a^4$ sea (a-1), entonces n también puede ser 5;

m es 1, 2, 3, y en el caso de que -b¹=b²-b³=b⁴- sea (b-1), entonces m también puede ser 4; 30 R¹ es hidrógeno;

cada R², independientemente, es hidroxi, halo, alquilo C₁₋₆, opcionalmente sustituido con ciano o -C(=O)R⁶, cicloalquilo C₃₋₇, alquenilo C₂₋₆, opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquinilo C₂₋₆, opcionalmente sustituido con uno o más átomos de halógeno o ciano, alquil C₁₋₆oxicarbonilo, carboxilo, ciano, nitro, amino, mono- o di(alquil C_{1-6}) amino, polihalometilo, polihalometilo, -S(=O) $_pR^6$, -NH-S(=O) $_pR^6$ C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶ o un radical de fórmula

en donde cada A₁, independientemente, es N, CH o CR⁶; y

 A_2 es NH, O, S o NR⁶;

 X_1 es -NH- o -O-;

35

40

45

55

 X_2 es -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)_p-, R³ es alquenilo $C_{2\text{-}6}$ sustituido con ciano;

 X_3 es -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-, -X₂-alcano C₁₋₄diilo-, -alcano C₁₋₄diil-X_{2a}-, -alcano C₁₋₄diil-X_{2b}-alcano C₁₋₄diilo, -C(=N-OR⁸)-alcano C₁₋₄diilo-;

siendo X_{2a} -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-; y siendo X_{2b} -NH-NH-, -N=N-, -C(=O)-, -S-, -S(=O)_p-;

 R^4 es halo, hidroxi, alquilo C_{1-6} , cicloalquilo C_{3-7} , alcoxi C_{1-6} , ciano, nitro, polihaloalquilo C_{1-6} , polihaloalquil C_{1-6} oxi, aminocarbonilo, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆carbonilo, formilo, amino, mono- o di-(alquil C₁₋₄)amino o R⁷;

R⁵ es hidrógeno; arilo; formilo; alquil C₁₋₆carbonilo; alquilo C₁₋₆; alquil C₁₋₆oxicarbonilo; alquilo C₁₋₆ sustituido con 50 formilo, alquil C_{1-6} carbonilo, alquil C_{1-6} carbonilo o alquil C_{1-6} carboniloxi; alquil C_{1-6} carbonilo sustituido con alquil C₁₋₆oxicarbonilo;

R⁶ es alquilo C₁₋₄, amino, mono- o di-(alquil C₁₋₄)amino o polihaloalquilo C₁₋₄;

R⁷ es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆,

hidroxialquilo C_{1-6} , aminoalquilo C_{1-6} , mono o di(alquil C_{1-6})aminoalquilo C_{1-6} , formilo, alquil C_{1-6} carbonilo, cicloalquilo C_{3-7} , alquil C_{1-6} oxi, alquil C_{1-6} oxicarbonilo, alquil C_{1-6} tio, ciano, nitro, polihaloalquilo C_{1-6} , polihaloalquil C_{1-6} oxi, aminocarbonilo, $-CH(=N-O-R^8)$, R^{7a} , $-X_3-R^{7a}$ o R^{7a} -alquilo C_{1-4} ;

R^{7a} es un carbociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático o un heterociclo monocíclico, bicíclico o tricíclico saturado, parcialmente saturado o aromático, en donde cada uno de dichos sistemas de anillo carbocíclico o heterocíclico puede estar opcionalmente sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆)aminoalquilo C₁₋₆, formilo, alquil C₁₋₆carbonilo, cicloalquilo C₃₋₇, alquil C₁₋₆oxi, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, -CH(=N-O-R⁸);

 R^8 es hidrógeno, alquilo C_{1-4} , arilo o arilalquilo C_{1-4} ;

arilo es fenilo o fenilo sustituido con uno, dos, tres, cuatro o cinco sustituyentes, cada uno independientemente seleccionado de halo, hidroxi, mercapto, alquilo C₁₋₆, hidroxialquilo C₁₋₆, aminoalquilo C₁₋₆, mono o di(alquil C₁₋₆) aminoalquilo C₁₋₆, alquil C₁₋₆carbonilo, cicloalquilo C₃₋₇, alquil C₁₋₆oxi, alquil C₁₋₆oxicarbonilo, alquil C₁₋₆tio, ciano, nitro, polihaloalquilo C₁₋₆, polihaloalquil C₁₋₆oxi, aminocarbonilo, R⁷ o -X₃-R⁷;

para su uso en la prevención o el tratamiento de la infección por el VIH (Virus de la Inmunodeficiencia Humana);

- en donde el compuesto de fórmula (I) se administra en combinación con otro compuesto antirretroviral seleccionado de suramina, pentamidina, timopentina, castanospermina, dextrano (sulfato de dextrano), foscarnet-sodio (fosfonoformiato trisódico); inhibidores nucleosídicos de la transcriptasa inversa; inhibidores no nucleosídicos de la transcriptasa inversa de fosfonato; inhibidores de las proteínas transactivadoras; inhibidores de la proteasa; inhibidores de la fusión; antagonistas del receptor CXCR4; inhibidores de la integrasa viral; inhibidores de la transcriptasa inversa de tipo nucleótido; inhibidores de la ribonucleótido reductasa.
 - 12. El compuesto de fórmula (I) para uso de acuerdo con la reivindicación 11, en donde el compuesto de fórmula (I) tiene la fórmula

$$b_{3}^{2} = b_{4}^{3} \times 1$$

$$k_{N}^{2} = a_{1}^{2} \times 1$$

$$k_{N}^{2} = a_{2}^{4} \times 1$$

en donde

30

35

40

45

5

10

15

- $-a^1=a^2-a^3=a^4$, $-b^1=b^2-b^3=b^4$, R^1 , R^2 , R^3 , R^4 , m y Xi son como se definen en la reivindicación 11; n' es 0, 1, 2 o 3 y en el caso de que $-a^1=a^2-a^3=a^4$ sea (a-1), entonces n' también puede ser 4;
- R^{2'} es halo, alquilo C₁₋₆, trihalometilo, trihalometiloxi, ciano, aminocarbonilo, alquilo C₁₋₆ sustituido con ciano o aminocarbonilo; con la condición de que R² esté situado en la posición para con respecto al resto NR¹.
 - 13. El compuesto de fórmula (I) para uso de acuerdo con una cualquiera de las reivindicaciones 11 a 12, en donde el compuesto de fórmula (I) tiene la fórmula

$$b_{0}^{2} = b_{0}^{4} \times 1$$

$$k_{0}^{2} = b_{0}^{4} \times 1$$

$$(R^{2})_{n'} \times 1$$

$$(R^{2}$$

en donde

- -b¹=b²-b³=b⁴-, R¹, R², R³, R⁴, m y Xi son como se definen en la reivindicación 11; n' y R2 son como se definen en la reivindicación 12.
- 14. El compuesto de fórmula (I) para uso de acuerdo con una cualquiera de las reivindicaciones 11 a 13, en donde el compuesto de fórmula (I) tiene la fórmula

$$\mathbb{R}^{3} \times \mathbb{R}^{1} \times \mathbb{R}^{1} \times \mathbb{R}^{2^{n}} \times \mathbb{R}^{2^{n}}$$

en donde

 $R^1,\,R^2,\,R^3,\,R^4$ y Xi son como se definen en la reivindicación 11; n' y R^2 son como se definen en la reivindicación 12. 5

15. El compuesto de fórmula (I) para su uso de acuerdo con una cualquiera de las reivindicaciones 12 a 14 en donde, en el compuesto de fórmula (I), $R^{2'}$ es ciano, aminocarbonilo o alquilo C_{1-6} sustituido con ciano o aminocarbonilo.

16. El compuesto de fórmula (I) para su uso de acuerdo con una cualquiera de las reivindicaciones 11 a 15 en donde, en el compuesto de fórmula (I)

n es al menos 1; o n' es 0; R^2 o R^2 es ciano; m es 1, 2 o 3;

15

10

 R^4 es alquilo C_{1-6} ; nitro; amino; halo; alquil C_{1-6} oxi o R^7 ;

 X_3 es -C(=O)-, -CH₂-C(=O)-, o -C(=N-OR⁸)-alcano C₁₋₄diilo-.

20 17. El compuesto de fórmula (I) para su uso de acuerdo con la reivindicación 11, en donde el compuesto de fórmula (I) es 4-[[4-(2-cianoetenil)-2,6-dimetilfenil]amino]-2-pirimidinil] amino]benzonitrilo (E).