
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0219372 A1

Li et al.

US 20130219372A1

(43) Pub. Date: Aug. 22, 2013

(54)

(71)

(72)

(73)

(21)

(22)

(60)

RUNTIME SETTINGS DERVED FROM
RELATIONSHIPSIDENTIFIED IN TRACER
DATA

Applicant: Concurix Corporation, (US)

Inventors: Ying Li, Bellevue, WA (US); Alexander
G. Gounares, Kirkland, WA (US);
Charles D. Garrett, Woodinville, WA
(US); Russell S. Krajec, Loveland, CO
(US)

Assignee: Concurix Corporation, Kirkland, WA
(US)

Appl. No.: 13/853,809

Filed: Mar. 29, 2013

Related U.S. Application Data
Provisional application No. 61/801.298, filed on Mar.
15, 2013.

OPTIMIZATION FEEDBACK
LOOPFOR AN APPLICATION

106

TRACER
DATA

104

1

APPLICATION

O2

Publication Classification

(51) Int. Cl.
G06F II/36 (2006.01)

(52) U.S. Cl.
CPC G06F II/3612 (2013.01)
USPC .. T17/128

(57) ABSTRACT

An analysis system may perform network analysis on data
gathered from an executing application. The analysis system
may identify relationships between code elements and use
tracer data to quantify and classify various code elements. In
Some cases, the analysis system may operate with only data
gathered while tracing an application, while other cases may
combine static analysis data with tracing data. The network
analysis may identify groups of related code elements
through cluster analysis, as well as identify bottlenecks from
one to many and many to one relationships. The analysis
system may generate visualizations showing the interconnec
tions or relationships within the executing code, along with
highlighted elements that may be limiting performance.

110

ANALYZER
OUTPUT

RUNTIME
CONFIGURATION

RUNTIME
ENVIRONMENT

Patent Application Publication Aug. 22, 2013 Sheet 1 of 10 US 2013/0219372 A1

OPTIMIZATION FEEDBACK
LOOPFOR AN APPLICATION

110

ANALYZER
OUTPUT

106

TRACER
DATA

104

RUNTIME
CONFIGURATION

RUNTIME
ENVIRONMENT

FIG. I.

APPLICATION

O2 1

Patent Application Publication Aug. 22, 2013 Sheet 2 of 10 US 2013/0219372 A1

RUNTIME
TRACING SYSTEM
YSTEM COMMUNICATIONS
S S. 268 28 MANAGER

RACER
2782 COMMUNICATIONS O

GENERATOR MANAGER APPLICATION RUNTIME
CONFIGURATION 264- 262

INSTRUMENTED 260 EXECUTION RUNTIME
EXECUTION TRACER ENVIRONMENT MAS

ENVIRONMENT
270

HARDWARE PLATFORM

OPTIMIZER
DEVICE
236

ANALYSIS
DEVICE
202

MEMORY C D C) SETTINGS
RUNTIME OPTIMIZER

ANALYZER CONFIGURATION

244
OUTPUT PROCESS

SCHEDULER
OPTIMIZER OPTIMIZER

O

C d OTHER
ANALYZER OPTIMIZERS
OUTPUT

COMMUNICATIONS
MANAGER

HARDWARE PLATFORM 238

24

2041N1 200
HARDWARE NETWORK NETWORKENVIRONMENT
PLATFORM INTERFACE WITH TRACING DATA

BASED OPTIMIZATION

Patent Application Publication Aug. 22, 2013 Sheet 3 of 10 US 2013/0219372 A1

GATHERING AND
ANALYZING TRACER

START APPLICATION 302 DATA
300

304

STORE TRACER DATA 306

308

310
312

FOREACH CODE
ELEMENT

COLLECT PERFORMANCE DATA 314

IDENTIFY WAIT STATES/LOCKS 316

IDENTIFY MEMORY USAGE 318

SUMMARIZE OPERATIONAL
OBSERVATIONS 320

IDENTIFY MESSAGE PASSING
RELATIONSHIPS 322

IDENTIFY SHARED MEMORY
RELATIONSHIPS 324

326
FOREACH

RELATIONSHIP

COLLECT OPERATIONAL DATA 328

SUMMARIZE OPERATIONAL 330
OBSERVATIONS

CHARACTERIZE RELATIONSHIP 332

PERFORM NETWORKANALYSIS 334

POST PROCESS NETWORKANALYSIS
RESULTS 336

STORE ANALYZER OUTPUT 338

FIG. 3

Patent Application Publication

PATTERNSIDENTIFIED
USING NETWORK

ANALYSIS
400

OUTEOUND NODE
STAR

PATTERN
414

- 1 N. N O X
f

NODE |

NODE W V
402 v O / - 1 N

V Y / n

C 412
NODE

e -s.

420 O \
NODE N

N
N

426 422/N
PIPELINE
PATTERN NODE

Aug. 22, 2013 Sheet 4 of 10 US 2013/0219372 A1

NBOUND STAR
PATTERN M l’s

Y N u1434
W A.

4321 N- a ^ N-436
OUTEOUND Y 1 NODE

STAR PATTERN

PARALLELISM s a

PATTERN

FIG. 4

Patent Application Publication Aug. 22, 2013 Sheet 5 of 10 US 2013/0219372 A1

NETWORKANALYSIS

BEGIN PROCESSING NETWORK 502 OF TEASERDATA
ANALYSIS RESULTS

IDENTIFY STAR PATTERNS 504

FOREACH STAR
PATTERN

506 IDENTIFY AND LABEL HUB 508

IDENTIFY AND LABEL SPOKES 510

ANALYZE INDEPENDENCE OF
SPOKES 512

514 516
INCOMING OUTGOING OUTGOING NDEPENDENTYES

INCOMING NO

IDENTIFY AND LABELLAGGARDS /518

IDENTIFY AND LABEL PATIENT
ELEMENTS 520

IDENTIFY PIPELINE PATTERNS 522

FOREACH PIPELINE
PATTERN

524 IDENTIFY AND LABELLAGGARDS

IDENTIFY PARALLELISM PATTERNS 528

FOREACH
PARALLELISM PATTERN

530 IDENTIFY AND LABELLAGGARDS

IDENTIFY AND LABEL PATIENT
ELEMENTS

IDENTIFY CLUSTERS 536

FOREACH
CLUSTER

538 CHARACTERIZE COHESIVENESS 540

CHARACTERIZE RELATIONSHIPS
TO OTHER CLUSTERS 542

IDENTIFY AND LABELLAGGARDS 544

IDENTIFY AND LABEL PATIENT 546
ELEMENTS

548 FIG. 5

Patent Application Publication Aug. 22, 2013 Sheet 6 of 10 US 2013/0219372 A1

OPTIMIZATION
FORRUNTIME

602 CONFIGURATION
600

DENTIFYLABELEDCODEELEMENTS FOR WHICHMORE DATAISDESIRED 1604
SEND RECQUEST TO TRACER l
TO GATHER ADDITIONAL DATA 1606

FOREACH
LAGGARD

IDENTIFY PROCESS ALLOCATION
AND SCHEDULER SETTINGS 616

IDENTIFY MEMORY ALLOCATION,
USAGE, AND GARBAGE 618
COLLECTION SETTINGS

STORE SETTINGS IN RUNTIME
CONFIGURATION 620

622
FOREACH

PATIENTELEMENT

IDENTIFY PROCESS ALLOCATION
AND SCHEDULER SETTINGS 624

IDENTIFY MEMORY ALLOCATION,
USAGE, AND GARBAGE 626
COLLECTION SETTINGS

STORE SETTINGS IN RUNTIME 628
CONFIGURATION

630

FOREACH GROUP

IDENTIFY PROCESS ALLOCATION
SETTINGS 632

IDENTIFY MEMORY ALLOCATION 634
SETTINGS

STORE SETTINGS IN RUNTIME
CONFIGURATION 636

DEPLOY RUNTIME CONFIGURATION 638

FIG. 6

Patent Application Publication Aug. 22, 2013 Sheet 7 of 10 US 2013/0219372 A1

RUNTIME EXECUTION
SYSTEM

RECEIVE APPLICATION 702 700

RECEIVE RUNTIME CONFIGURATION 704

BEGINEXECUTINGAPPLICATION 7O6

DETECT CODE ELEMENT IS READY
FOR EXECUTION

LOOKUPN RUNTIME CONFIGURATION
712

708

YES RETRIEVE SET PARAMETERS
RUNTIME PER - CONFIGURATION r CONFIGURATION

NO

LAUNCH CODE ELEMENT 718

FIG. 7

Patent Application Publication Aug. 22, 2013 Sheet 8 of 10 US 2013/0219372 A1

METHOD FOR
INCORPORATING RUNTIME
CONFIGURATION DURING

COMPLATION
802 800 RECEIVE APPLICATION

RECEIVE RUNTIME CONFIGURATION

BEGIN COMPLING

DETECT CODE ELEMENT

LOOKUPN RUNTIME CONFIGURATION

804

806

808

810

816

TAG CODE ELEMENT FOR
RUNTIME CONFIGURATION

INSERT RUNTIME CONFIGURATION
SETTINGS IN EXECUTABLE

820

ANOTHER
ELEMENTP

NO;
LAUNCH APPLICATION 822

FIG. 8

Patent Application Publication Aug. 22, 2013 Sheet 9 of 10 US 2013/0219372 A1

DISTRIBUTION MECHANISM
FOR APPLICATIONS AND

RUNTIME CONFIGURATIONS

902 906

904 - ANALYSIS
908

DEVELOPER EV2 OPTIMIZATION
TRACER
SYSTEM

v | PROGRAMMING
- - - - ENVIRONMENT

910

CUSTOMER
PROVIDED
TRACER
DATA

914
APPLICATION

PRODUCT RUNTIME
DISTRIBUTION UCONFIGURATION

SYSTEM
912

918
922
APPLICATION

920 RUNTIME
RUNTIME CONFIGURATION

924 926

CUSTOMER LIGHTWEIGHT
DEVICES TRACER

FIG. 9

ENVIRONMENT

Patent Application Publication Aug. 22, 2013 Sheet 10 of 10 US 2013/0219372 A1

DEVICE WITH ANALYSIS
AND OPTIMIZATION

SYSTEM
1000

DEVICE
1002

TRACER ANALYZER
DATA

OPTIMIZER

APPLICATION
RUNTIME

CONFIGURATION

TRACER RUNTIME
ENVIRONMENT

HARDWARE PLATFORM 1004

US 2013/0219372 A1

RUNTIME SETTINGS DERVED FROM
RELATIONSHIPSIDENTIFIED IN TRACER

DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This patent application claims the benefit of and
priority to U.S. Provisional Patent Application Ser. No.
61/801.298 filed 15 Mar. 2013 by Ying Li, the entire contents
of which are expressly incorporated by reference.

BACKGROUND

0002 Increasing performance of a computer software
application may have benefits in different scenarios. On one
end of the scale, large applications that may execute in par
allel on many server computers may benefit from decreased
hardware costs when an application executes faster, as fewer
instances of the application may be deployed to meet demand.
On the other end of the scale, applications that may execute on
battery-powered devices, such as mobile telephones or por
table computers may consume less energy and give a better
user experience when an application executes faster or other
wise has increased performance.

SUMMARY

0003. An analysis system may perform network analysis
on data gathered from an executing application. The analysis
system may identify relationships between code elements and
use tracer data to quantify and classify various code elements.
In some cases, the analysis system may operate with only data
gathered while tracing an application, while other cases may
combine static analysis data with tracing data. The network
analysis may identify groups of related code elements
through cluster analysis, as well as identify bottlenecks from
one to many and many to one relationships. The analysis
system may generate visualizations showing the interconnec
tions or relationships within the executing code, along with
highlighted elements that may be limiting performance.
0004. A settings optimizer may use data gathered from a
tracer to generate optimized settings for executing an appli
cation. The optimizer may determine settings that may be
applied to the application as a whole, as well as settings for
individual code elements, such as functions, methods, and
other sections of code. In some cases, the settings may be
applied to specific instances of code elements. The settings
may include processor related settings, memory related set
tings, and peripheral related settings such as network settings.
The optimized settings may be distributed in the form of a
model or function that may be evaluated at runtime by a
runtime manager. In some embodiments, the optimized set
tings may be added to source code either automatically or
manually.
0005. A runtime system may use a set of optimized set
tings to execute an application. The optimized settings may
have specific settings for the application, groups of code
elements, individual code elements, and, in some cases, spe
cific instances of code elements. The runtime system may
detect that a code element is about to be executed, then apply
the optimized settings for that code element. In some embodi
ments, the optimized settings may be determined by some
calculation or algorithm that may be evaluated. Some opti
mized settings may be determined using parameters con
Sumed by a code element as well as other parameters not

Aug. 22, 2013

consumed by the code element. The runtime system may
apply settings to a process scheduler, memory manager, or
other operating system component.
0006. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0007. In the drawings,
0008 FIG. 1 is a diagram illustration of an embodiment
showing a system for optimizing an application from tracing
data.
0009 FIG. 2 is a diagram illustration of an embodiment
showing a network environment for optimization from trac
ing data.
0010 FIG. 3 is a flowchart illustration of an embodiment
showing a method for gathering and analyzing tracing data.
0011 FIG. 4 is a diagram illustration of an example
embodiment showing patterns that may be recognized from
tracer data.
0012 FIG. 5 is a flowchart illustration of an embodiment
showing a method for network analysis of tracer data.
0013 FIG. 6 is a flowchart illustration of an embodiment
showing a method for optimization for runtime configuration.
0014 FIG. 7 is a flowchart illustration of an embodiment
showing a method for a runtime execution system.
0015 FIG. 8 is a flowchart illustration of an embodiment
showing a method for incorporating runtime configuration
during compilation.
0016 FIG. 9 is a diagram illustration of an embodiment
showing a process for developing and distributing applica
tions.
0017 FIG. 10 is a diagram illustration of an embodiment
showing a device with self-learning and self-optimizing
execution of an application.

DETAILED DESCRIPTION

Analyzing Tracer Data Using Network Analysis
0018. An analyzer may use network analysis techniques
on tracer data from an application. A tracing system may
gather performance and other data while an application
executes, from which relationships between code elements
may be identified. The relationships may be derived from
message passing relationships, shared memory objects,
dependencies, spawn events, function calls, and other data
that may be available. The tracing data may include perfor
mance and resource usage measurements.
0019. The network analysis may examine the relation
ships between code elements and the characteristics of those
relationships. In many embodiments, the relationships may
include data passed over a relationship, frequency and direc
tionality of communications, and other characteristics.
0020. In many cases, the tracer data may include perfor
mance or dynamic data for the code elements and the rela
tionships. For example, the tracer data may include resource
consumption data for a code element, such as processor uti
lization, memory consumed, network or other peripheral
accesses, and other data. The resource consumption may
include idle time waiting for resources to become available or

US 2013/0219372 A1

waiting for other code elements to complete execution. Some
embodiments may include memory consumption informa
tion Such as heap allocation, heap changes, garbage collection
information, and other memory related data. Relationship
data may include frequency and size of data passed across a
relationship, speed of communication, latency, idle time, and
other dynamic factors.
0021. The network analysis may identify individual code
elements or groups of code elements that may affect the
performance of an application. In some cases, the analysis
may identify bottlenecks, choke points, or other code ele
ments that may have significant contributions to the perfor
mance of an application.
0022. In many cases, the static analysis of an application
may not reveal actual bottlenecks in an application. For
example, a programmer may not be able to fully understand
an application created with several disjointed components.
However, analysis of tracer data may reveal one or more
unexpected bottlenecks.
0023. Such a situation may occur when using object ori
ented programming models, where different executable com
ponents may be joined together in manners that may never
have been contemplated during design of the components. As
Such, the performance of the components themselves, as well
as the overall application may be difficult to predict.
0024. Such a situation may also occur when using func
tional programming models, where messages may be passed
between independent sets of code and many processes
spawned. The effects of spawning many processes may not be
fully comprehended when an application may be under load
and the bottlenecks may not be predictable when program
ming the application.
0025. The network analysis may identify several catego
ries of code elements, such as elements that are depended
upon by other elements, branch points that spawn many other
elements, collection points that depend on many other ele
ments, groups of elements that frequently interact, pipelines
of related code elements that may process things in series,
code elements that operate largely independent of other ele
ments, and other categories.
0026. A programmer may use the network analysis to
understand the interacting parts of an application to identify
areas to improve performance, reliability, or for Some other
use. In some embodiments, the network analysis output may
identify specific code elements that may fall in the various
categories, and the programmer may refactor, improve, or
otherwise improve the application in different ways.
0027. In some embodiments, a network analyzer may per
form a two-stage analysis. The first stage may collect high
level performance data that may, for example, take a Snapshot
of various performance counters at a regular interval. A first
analysis may be performed to identify candidates for deeper
tracing. The second stage may gather more detailed data, Such
as capturing every message passed by a specific code element.
The detailed data may be used for further analysis, optimiza
tion, or other uses.

Optimized Settings for Code Elements
0028. A settings optimizer may generate optimized set
tings for code components of an application from tracer data.
The settings optimizer may operate with an analyzer to high
light certain code elements, then determine a set of execution
parameters to improve overall execution of an application.
The execution parameters may be applied at runtime with an

Aug. 22, 2013

automated system, or may be manual settings that a program
mer may add to executable code.
0029. The settings optimizer may vary parameters relating
to operating system-level functions, such as memory settings,
processor settings, peripheral settings, and other lower level
functions. In some embodiments, such functions may be
made available to an application through a virtual machine,
which may be a system virtual machine or process virtual
machine. By varying operating system-level parameters, the
settings optimizer may determine how to run an application
faster or with less resources without changing the application
itself.
0030. In some cases, the settings optimizer may generate
optimized parameters that may be implemented by a pro
grammer or other human. The optimized parameters may
highlight areas of an application that may be refactored, rede
signed, or otherwise improved to address various issues such
as performance, reliability, and other issues. In one use sce
nario, the settings optimizer may identify hardware and soft
ware settings that may an administrator may use to determine
when to deploy an application and on which hardware plat
form to deploy an application.
0031. The settings optimizer may determine optimized
settings using tracer data gathered while monitoring a run
ning application. In some cases, the tracer data may be raw,
tabulated data that may be processed into a mathematical
model that may be used to predict the behavior of an appli
cation when a specific parameter may be changed. In other
cases, the tracer data may be analyzed to find maximums,
minimums, standard deviation, median, mean, and other
descriptive statistics that may be used with an algorithm or
formula to determine optimized settings.
0032. The term “optimized as used in this specification
and claims means only "changed’. An "optimized setting
may not be the absolute best setting, but one that may possibly
improve an outcome. In many cases, a settings optimizer may
have algorithms or mechanisms that may improve or change
application behavior, but may not be “optimized' in a narrow
definition of the word, as further improvements may still be
possible. In some cases, an “optimized setting create by a
settings optimizer may actually cause performance or
resource utilization to degrade. Throughout this specification
and claims, the term “optimized' shall include any changes
that may be made, whether or not those changes improve,
degrade, or have no measurable effect.
0033. The settings optimizer may classify a code element
based in the behavior observed during tracing, then apply an
optimization mechanism based on the classification. For
example, the memory consumption and utilization patterns of
a code element may cause a code element to be classified as
one which may use a steady amount of memory but may
create and delete memory objects quickly. Such a code ele
ment may be identified based on the memory usage and a set
of optimized settings may be constructed that identify a gar
bage collection algorithm that optimizes memory consump
tion.

0034. In many cases, the behavior of a code element or
groups of code elements may not be known prior to running
an application. In addition, the behavior may be effected by
load. For example, a first code element may spawn a second
code element, where the second code element may indepen
dently process a data item. While designing the Software, a
programmer may intend for the second code element to be
lightweight enough that it may not adversely affect perfor

US 2013/0219372 A1

mance on a single processor. Under load, the first code ele
ment may spawn large numbers of the second code element,
causing the behavior of the system under load to be different
than may be contemplated by a programmer. An example
optimized setting may be to launch the independent second
code elements on separate processors as a large number of the
second code element's processes may consume too many
resources on the same processor as the first code element.
0035. The settings optimizer may operate with a feedback
loop to test new settings and determine whether or not the new
settings had a desired effect. In such embodiments, the set
tings optimizer may operate with a tracer or other monitoring
system to determine an effect based on a settings change.
Such embodiments may use multiple feedback cycles to
refine the settings.
0036) A set of optimized settings may be stored in several
different forms. In some cases, the optimized settings may be
a human readable report that may include Suggested settings
that may be read, evaluated, and implemented by a human. In
Such cases, the report may include references to Source code,
and one embodiment may display the source code with the
optimized settings as annotations to the Source code.
0037. The optimized settings may be stored in a computer
readable form that may be evaluated at runtime. In such a
form, the settings may be retrieved at runtime from a file or
other database. Such a form may or may not include refer
ences to source code and may or may not be human readable.

Runtime Use of Analyzed Tracing Data
0038 A runtime system may apply metadata generated
from earlier tracing data to enhance the performance of a
computer application. Code elements may be identified for
non-standard settings during execution, then the settings
applied when the code element is executed.
0039. The code element may be a function, routine,
method, or other individual code blocks to which a setting
may be applied. In some cases, a library or other group of
code elements may have a set of settings applied to the entire
group of code elements. The code element may be a process,
thread, or otherindependently executed code element in some
embodiments.
0040. In some embodiments, individual instances of a
code element may be given different treatment than other
instances. For example, an instance of a process that may be
created with a specific input parameter may be given one set
of execution settings while another instance of the same pro
cess with a different input parameter value may be given a
different set of execution settings.
0041. The execution settings may be generated from ana
lyzing tracing data. The tracing data may include any type of
data gathered during execution of the application, and may
typically include identification of code elements and perfor
mance parameters relating to those elements.
0042. The analysis may include identifying specific code
elements that may be bottlenecks, then identifying execution
settings that may cause those code elements to be executed
faster. In an environment with multiple processors, some code
elements may serve as dispersion points or collection points
for other code elements.
0043. In a simple example, a central or main process may
spawn many independent processes that may be performed by
on different, independent processors. In the example, the
main process may execute on a single processor and while the
main process is executing, the remaining processors may be

Aug. 22, 2013

idle, awaiting the spawned processes. In such an example, the
overall performance of the application may be largely
affected by the performance of the main process, so any
performance increases that may be realized on just the main
process may dramatically increase the performance of the
overall application.
0044. Such an example may highlight that some code ele
ments may have a greater effect on overall performance than
others. Such code elements may be identified by analyzing an
application as a network of code elements, where the network
contains code elements that communicate with each other.
Network analysis techniques may analyze dependencies
between code elements to identify bottlenecks, which may
include bottlenecks that spawn other processes or that may
collect data or otherwise depend on multiple other processes.
0045. The network analysis techniques may identify com
munication paths or dependencies between code elements,
then attempt to identify execution settings that may speed up
the dependencies. In some embodiments, the analysis may
identify parallel dependencies where several independent
processes may feed a collection point, then identify the slow
est of the processes to increase performance of that process.
In some Such embodiments, the fastest process of the parallel
processes may be identified to lower the performance of the
process so that resources may be allocated to one or more of
the slower processes.
0046 Throughout this specification and claims, the terms
“profiler”, “tracer', and “instrumentation” are used inter
changeably. These terms refer to any mechanism that may
collect data when an application is executed. In a classic
definition, “instrumentation” may refer to stubs, hooks, or
other data collection mechanisms that may be inserted into
executable code and thereby change the executable code,
whereas “profiler” or “tracer” may classically refer to data
collection mechanisms that may not change the executable
code. The use of any of these terms and their derivatives may
implicate or imply the other. For example, data collection
using a “tracer” may be performed using non-contact data
collection in the classic sense of a “tracer” as well as data
collection using the classic definition of “instrumentation'
where the executable code may be changed. Similarly, data
collected through “instrumentation” may include data collec
tion using non-contact data collection mechanisms.
0047. Further, data collected through “profiling”, “trac
ing, and “instrumentation' may include any type of data that
may be collected, including performance related data such as
processing times, throughput, performance counters, and the
like. The collected data may include function names, param
eters passed, memory object names and contents, messages
passed, message contents, registry settings, register contents,
error flags, interrupts, or any other parameter or other collect
able data regarding an application being traced.
0048. Throughout this specification and claims, the term
“execution environment may be used to refer to any type of
Supporting Software used to execute an application. An
example of an execution environment is an operating system.
In some illustrations, an “execution environment may be
shown separately from an operating system. This may be to
illustrate a virtual machine. Such as a process virtual machine,
that provides various Support functions for an application. In
other embodiments, a virtual machine may be a system virtual
machine that may include its own internal operating system
and may simulate an entire computer system. Throughout this
specification and claims, the term "execution environment'

US 2013/0219372 A1

includes operating systems and other systems that may or
may not have readily identifiable “virtual machines' or other
Supporting Software.
0049. Throughout this specification, like reference num
bers signify the same elements throughout the description of
the figures.
0050. When elements are referred to as being “connected”
or “coupled, the elements can be directly connected or
coupled together or one or more intervening elements may
also be present. In contrast, when elements are referred to as
being “directly connected” or “directly coupled, there are no
intervening elements present.
0051. The subject matter may be embodied as devices,
systems, methods, and/or computer program products.
Accordingly, some orall of the Subject matter may be embod
ied in hardware and/or in Software (including firmware, resi
dent software, micro-code, State machines, gate arrays, etc.)
Furthermore, the subject matter may take the form of a com
puter program product on a computer-usable or computer
readable storage medium having computer-usable or com
puter-readable program code embodied in the medium for use
by or in connection with an instruction execution system. In
the context of this document, a computer-usable or computer
readable medium may be any medium that can contain, Store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa
ratus, or device.
0052. The computer-usable or computer-readable
medium may be, for example but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc
tor system, apparatus, device, or propagation medium. By
way of example, and not limitation, computer readable media
may comprise computer storage media and communication
media.
0053 Computer storage media includes volatile and non
volatile, removable and non-removable media implemented
in any method or technology for storage of information Such
as computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired
information and which can accessed by an instruction execu
tion system. Note that the computer-usable or computer-read
able medium could be paperor another Suitable medium upon
which the program is printed, as the program can be electroni
cally captured, via, for instance, optical scanning of the paper
or other medium, then compiled, interpreted, of otherwise
processed in a suitable manner, if necessary, and then stored
in a computer memory.
0054 When the subject matter is embodied in the general
context of computer-executable instructions, the embodiment
may comprise program modules, executed by one or more
systems, computers, or other devices. Generally, program
modules include routines, programs, objects, components,
data structures, etc. that perform particular tasks or imple
ment particular abstract data types. Typically, the functional
ity of the program modules may be combined or distributed as
desired in various embodiments.
0055 FIG. 1 is a diagram of an embodiment 100 showing
a sequence for optimizing the execution of an application
based on tracer data. Embodiment 100 is an example of a

Aug. 22, 2013

sequence through which an application may be automatically
sped up with or without any human intervention.
0056. Embodiment 100 illustrates a high level sequence
where data observed from executing an application may be
used to generate optimized settings that may be applied to
future runs of the application. The analysis and optimization
steps may find specific types of patterns within the observed
data, then apply optimizations based on those patterns. A
runtime configuration may contain optimized parameter set
tings that may be applied to specific code elements, such as
functions, methods, libraries. The optimized parameter set
tings may increase, decrease, or otherwise change various
resources consumed by the code elements to maximize or
minimize an optimization goal.
0057. A simple example of a use scenario, an analyzer
may identify a small set of functions within an application
that cause the application to run slowly. These functions may
be bottlenecks that, if sped up, may result in a large perfor
mance improvement.
0058. The bottleneck functions may be found by analyz
ing an application as if the application were a network of
interconnected code elements. The network may have com
munications that pass between code elements, and Such com
munications may be explicit or implicit. An example of
explicit communications may be messages passed within a
message passing framework. An example of implicit commu
nications may be shared memory objects that may be used to
pass data from one code element to another.
0059. In many programming technologies, the interaction
between code elements may not be easily predictable. For
example, many object oriented languages allow libraries of
code elements to be joined together in different manners. In
another example, many programming technologies allow for
processes or threads to be spawned as a result of new input.
The resource usage when spawning many independent pro
cesses or threads may not be predictable when writing the
application.
0060. The tracer data consumed by an analyzer may reflect
observed behavior of an application. The observed behavior
may show how an application actually behaves, as opposed to
a static code analysis that may not show responses to loads
placed on the application. In some embodiments, a system
may use a combination of tracer data and static code analysis
to identify various patterns and generate optimized settings
for the application.
0061 The analysis may include clustering analysis. Clus
tering analysis may identify groups of code elements that may
be somehow interrelated, as well as identify different groups
that may not be related. An optimization strategy for groups
of code elements may be to place all the members of a group
Such that they share resources, such as processor or memory
resources. The strategy may further identify groups that may
be separated from each other. An example result of such
analysis may place one group of code elements on one pro
cessor in one memory domain and a second group of code
elements on another processor in another memory domain.
0062. The analysis may also include identify pipeline pat
terns. A pipeline pattern may be made up of multiple code
elements that may operate in series. Once identified, a pipe
line may be analyzed to determine whether one or more of the
code elements may be sped up.
0063 Parallel patterns may also be identified through net
work analysis. A parallel pattern may identify two or more
code elements that execute in parallel, and an optimization

US 2013/0219372 A1

strategy may be to attempt to speed up a laggard. In some
cases, a patient code element may be identified, which may be
a code element that finishes executing but waits patiently for
a laggard to finish. An optimization strategy for a patient code
element may be to decrease the resources assigned to it,
which may free up resources to be allocated to a laggard code
element.
0064. An application 102 may be traced using a tracer 104,
which may generate tracer data 106. The application 102 may
be any set of executable code for which a set of optimized
settings may be generated. In some cases, the application 102
may contain a main application as well as various libraries,
routines, or other code that may be called from the main
application. In some cases, the application 102 may be merely
one library, function, or other software component that may
be analyzed.
0065. The tracer 104 may collect observations that reflect
the actual behavior of the application 102. In some embodi
ments, a load generator may create an artificial load on the
application 102. In other embodiments, the application 102
may be observed in real-world conditions under actual load.
0066. The tracer data 106 may identify code elements that
may be independently monitored. The code elements may be
functions, methods, routines, libraries, or any other section of
executable code. For each of the code elements, the tracer data
106 may include resource usage data, Such as the amount of
memory consumed, processor usage, peripheral device
accesses, and other usage data. Many embodiments may
include performance data, such as the amount of time to
complete a function, number of memory heap accesses, and
many other parameters.
0067. The tracer data 106 may have different levels of
detail in different embodiments. Some embodiments may
collect data over a time interval and create Summary statistics
for actions over a time interval. For example, a tracer may
report data every two seconds that Summarize activities per
formed during the time period. Some embodiments may trace
each memory access or even every processor-level command
performed by an application. Other embodiments may have
different monitoring mechanisms and data collection
schemes.
0068 A network representation of an application may be
created by an analyzer 108. In one embodiment, an applica
tion may be represented by nodes representing code elements
and edges representing communications or other relation
ships between code elements. The network may change as the
application executes, with nodes being added or removed
while the application responds to different inputs, for
example.
0069. The analyzer 108 may identify certain code ele
ments, memory objects, or other elements for which addi
tional tracer data may be useful. In some embodiments, the
analyzer 108 may send a request to the tracer 104 for such
additional tracer data.
0070 The analyzer output 110 may include those code
elements, memory objects, or other application elements that
may be of interest. An element of interest may be any element
that, if changed, may have an effect on the overall application.
In many embodiments, the elements of interest may be a
small portion of the overall code elements, but where improv
ing resource usage for these elements may improve the appli
cation as a while.
0071. An optimizer 112 may apply various optimization
algorithms to the elements of interest. In many cases, an

Aug. 22, 2013

analyzer 108 may assign specific classifications to code ele
ments that may indicate which optimization algorithm to
apply. For example, an analyzer 108 may identify an outgoing
Starpatternand the various components of the pattern. In turn,
an optimizer 112 may apply optimization algorithms to each
of the labeled code elements according to their classification.
0072 A runtime configuration 114 may be the output of an
optimizer 112 and an input to a runtime environment 116. The
runtime configuration 114 may identify various code ele
ments and the runtime settings that may be applied to the code
elements, which the runtime environment 116 may apply as it
executes the application 102.
0073. The runtime configuration 114 may be a database
that contains a code element and its corresponding settings
that may be referenced during execution. In some embodi
ments, the runtime configuration 114 may be a simple tabu
lated file with predefined settings for certain code elements.
In other embodiments, the runtime configuration 114 may be
a mathematical model or algorithm from which an optimized
setting may be computed at runtime. In Such embodiments, an
optimized setting may change from one condition to another.
0074 Embodiment 100 illustrates an optimization cycle
that may use observations of application behavior to identify
potential code elements for optimization. Such a system may
not necessarily optimize every code element, but may identify
a subset of code elements that may be bottlenecks or have
Some other characteristic that may be addressed at runtime to
improve the application.
0075 FIG. 2 is a diagram of an embodiment 200 showing
a network environment that may optimize an application
using tracing data. Embodiment 200 illustrates hardware
components that may implement the process of embodiment
100 in a distributed version.

(0076. The distributed nature of embodiment 200 may use
separate devices as an analysis device 202, an optimizer
device 236, a runtime system 268, and a tracing system 254.
In Such a system, tracer data may be captured by the tracing
system 254 and the optimized runtime configuration may be
deployed on a runtime system 268.
0077 One use scenario of such an architecture may be
when tracing operations may use hardware or software com
ponents that may not be available on a runtime system. For
example, Some runtime systems may have a limited amount
of computing resources, such as a mobile computing device
like a mobile telephone or tablet computer. In such an
example, the tracing system may be a high powered computer
system that contains an emulator for the target runtime sys
tem, where the emulator may contain many more monitoring
connections and other capabilities to effectively monitor and
trace an application.
0078. Such a use scenario may also test, optimize, and
refine a set of runtime configuration settings during a devel
opment stage of an application, then deploy the application
with an optimized runtime configuration to various users.
0079. In some use scenarios, the tracing and analysis steps
may be performed as part of application development. In Such
a scenario, the tracing and analysis steps may monitor an
application then identify code elements that may be actual or
potential performance bottlenecks, inefficient uses of
resources, or some other problem. These code elements may
be presented to a developer so that the developer may inves
tigate the code elements and may improve the application.

US 2013/0219372 A1

0080. In some embodiments, the tracing, analysis, and
optimization steps may result in a set of optimized parameters
that a programmer may manually incorporate into an appli
cation.
0081. The diagram of FIG. 2 illustrates functional compo
nents of a system. In some cases, the component may be a
hardware component, a Software component, or a combina
tion of hardware and Software. Some of the components may
be application level software, while other components may be
execution environment level components. In some cases, the
connection of one component to another may be a close
connection where two or more components are operating on
a single hardware platform. In other cases, the connections
may be made over network connections spanning long dis
tances. Each embodiment may use different hardware, soft
ware, and interconnection architectures to achieve the func
tions described.
0082 Embodiment 200 illustrates an analysis device 202
that may have a hardware platform 204 and various software
components. The analysis device 202 as illustrated represents
a conventional computing device, although other embodi
ments may have different configurations, architectures, or
components.
0083. In many embodiments, the analysis device 202 may
be a server computer. In some embodiments, the analysis
device 202 may still also be a desktop computer, laptop com
puter, netbook computer, tablet or slate computer, wireless
handset, cellular telephone, game console or any other type of
computing device.
0084. The hardware platform 204 may include a processor
208, random access memory 210, and nonvolatile storage
212. The hardware platform 204 may also include a user
interface 214 and network interface 216.
0085. The random access memory 210 may be storage that
contains data objects and executable code that can be quickly
accessed by the processors 208. In many embodiments, the
random access memory 210 may have a high-speed bus con
necting the memory 210 to the processors 208.
I0086. The nonvolatile storage 212 may be storage that
persists after the device 202 is shut down. The nonvolatile
storage 212 may be any type of storage device, including hard
disk, Solid state memory devices, magnetic tape, optical Stor
age, or other type of storage. The nonvolatile storage 212 may
be read only or read/write capable. In some embodiments, the
nonvolatile storage 212 may be cloud based, network storage,
or other storage that may be accessed over a network connec
tion.
0087. The user interface 214 may be any type of hardware
capable of displaying output and receiving input from a user.
In many cases, the output display may be a graphical display
monitor, although output devices may include lights and other
visual output, audio output, kinetic actuator output, as well as
other output devices. Conventional input devices may include
keyboards and pointing devices such as a mouse, stylus,
trackball, or other pointing device. Other input devices may
include various sensors, including biometric input devices,
audio and video input devices, and other sensors.
0088. The network interface 216 may be any type of con
nection to another computer. In many embodiments, the net
work interface 216 may be a wired Ethernet connection.
Other embodiments may include wired or wireless connec
tions over various communication protocols.
0089. The software components 206 may include an oper
ating system 218 on which various Software components and

Aug. 22, 2013

services may operate. An operating system may provide an
abstraction layer between executing routines and the hard
ware components 204, and may include various routines and
functions that communicate directly with various hardware
components.
0090. An analyzer 220 may receive tracer data 222 and
generate analyzer output 224. The tracer data 222 may be raw
or preprocessed observations from a tracer that monitors an
application while the application executes. The tracer data
222 may be generated from real-world or artificial loads
placed on the application, and may reflect the behavior of the
application and the various code elements that make up the
application.
0091. The analyzer 220 may have several components that
may perform different types of analysis. For example, a net
work analyzer 226 may analyze the application as if the
application were a network of code elements with communi
cations and other relationships between the code elements.
The network analyzer 226 may attempt to identify patterns,
clusters, groups, and other characteristics from a network
topology, as well as identify specific code elements that may
be causing performance issues.
0092 A performance characterizer 228 may be an analysis
component that evaluates and characterizes or classifies the
performance of various code elements. The classification
may assist a network analyzer 226 or other component in
identifying problem areas or in determining an appropriate
optimization technique.
I0093. One type of characterization performed by a perfor
mance characterizer 228 may compare the performance of a
particular code element to the average performance of other
code elements in a single application or to the average per
formance of code elements observed from multiple applica
tions. The characterization may identify outliers where code
elements have above average or below average performance.
0094. Another type of characterization from a perfor
mance characterizer 228 may identify the type or types of
performance issues observed for a code element. For
example, a characterization may indicate that a code element
had excessive garbage collection, consumed large amounts of
memory, or contended for various locks.
0.095 A relationship characterizer 230 may be an analysis
component that evaluates and characterizes the relationships
between code elements. The classifications may be derived
from the actual behavior of the application. Examples of
relationships characterizations may include message passing
relationships, shared memory relationships, blocking rela
tionships, non-blocking relationships, and other types of
characterizations.
0096. Each type of relationship may assist in classifying a
code element for further evaluation or optimization. For
example, a blocking relationship where one code element
stalls or waits for another code element to finish may have a
different optimization algorithm than a message passing rela
tionship that may use a mailbox metaphor to process incom
ing messages.
0097. The types of characterizations may reflect the
underlying programming logic used for an application. For
example, the relationship characterizations that may be found
in a functional programming paradigm may be much differ
ent than the relationship characterizations from an object
oriented programming paradigm.
0098. A communications manager 232 may be a compo
nent that may manage communications between the various

US 2013/0219372 A1

devices in embodiment 200. The communications manager
232 may, for example, retrieve tracer data 222 from the trac
ing system 254 and may transmit analyzer output 224 to an
optimizer device 236.
0099. In some embodiments, the communications man
ager 232 may automatically collect the tracer data 222 as it
may become available, then cause the analyzer 220 to begin
analysis. The communications manager 232 may also trans
mit the analyzer output 224 to the optimizer device 236 for
further processing.
0100. The optimizer device 236 may operate on a hard
ware platform 238, which may be similar to the hardware
platform 204.
0101. An optimizer 240 may receive analyzer output 242
and create a runtime configuration 228, which may be con
sumed by a runtime system 268. The optimizer 240 may have
a memory settings optimizer 246, a process scheduler opti
mizer 248, as well as other optimizers 250.
0102 The memory settings optimizer 246 may determine
memory related settings that may be appropriate for a specific
code element. The memory settings may include an initial
heap size, garbage collection scheme, or other settings that
may be memory related.
0103) The process scheduler optimizer 248 may identify
processor related settings for a code element. The processor
related settings may include priority settings, processor affin
ity settings, and other settings. In some embodiments, the
ordering or priority of multiple code elements may be
defined. For example, a first process that has a dependency or
lock on a second process may be scheduled to be executed
after the second process.
0104. The optimizer 240 may apply various optimizations
based on the conditions and situations identified by the ana
lyzer 220. Each situation may have a different optimizer
algorithm that may determine runtime settings for an appli
cation. In many embodiments, the optimizer 240 may have
various other optimizers 250 that may be added over time.
0105. The optimizer device 236 may have a communica
tions manager 252 similar to the communications manager
232 on the analysis device 202. The communications man
ager 252 may enable the various components in embodiment
200 to operate as a single system that may automatically
trace, analyze, and optimize an application across the net
work 234.
0106. A tracing system 254 may have a hardware platform
256 that may be similar to the hardware platform 204 of the
analysis device. The tracing system may have an instru
mented execution environment 258 in which a tracer 260 may
monitor an application 262. Some embodiments may have a
load generator 264, which may exercise the application 262
so that the tracer 260 may observe the application behavior
under different use scenarios.
0107 The tracing system 254 may also have a communi
cations manager 266, which like its counterpart communica
tion managers 232 and 252, may serve to automatically
implement a sequence of gathering and analyzing tracer data.
0108. The runtime systems 268 may represent the delivery
hardware for the application 262. In some embodiments, the
runtime systems 268 may have a different hardware platform
270 than the tracing system 254. For example, the instru
mented execution environment 258 may be a virtual machine
that may execute an operating system emulator for a mobile
device, where the mobile device may be the runtime systems
268. In such an example, an application may be distributed

Aug. 22, 2013

with a runtime configuration that may allow the application to
execute faster or using less resources.
0109 The runtime system 268 may have a hardware plat
form 270 similar to the hardware platform 204, on which an
execution environment 272 may execute an application 276.
A runtime manager 274 may observe the application 276 as it
executes, and may identify a code element prior to execution.
The runtime manager 274 may look up the code element in
the runtime configuration 280, and cause the code element to
be executed with the settings defined in the runtime configu
ration 280.
0110. In some embodiments, a runtime system 268 may
include a tracer 278, which may collect tracer data that may be
transmitted to the analysis device 202. A communications
manager 282 may facilitate Such a transmission, among other
things.
0111. In some embodiments, the runtime configuration
280 may be incorporated into an application 276 using a just
in time compiler 284. In such an embodiment, the runtime
configuration 280 may be consumed by a compiler 284 to add
runtime settings to the application 276. When the application
276 may be executed, the runtime configuration settings may
be embedded or otherwise incorporated into the compiled
code. Such a compiler may be a just in time compiler,
although in other embodiments, the compiler may be a con
ventional compiler that may compile code ahead of time.
0112 FIG. 3 is a flowchart illustration of an embodiment
300 showing a method for gathering and analyzing tracer
data. The operations of embodiment 300 may illustrate one
method that may be performed by the tracer 104 and analyzer
108 of embodiment 100.
0113. Other embodiments may use different sequencing,
additional or fewer steps, and different nomenclature or ter
minology to accomplish similar functions. In some embodi
ments, various operations or set of operations may be per
formed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations in
a simplified form.
0114 Embodiment 300 may illustrate a generalized pro
cess for gathering and analyzing tracer data. In block 302, an
application may be started. During execution, tracer data may
be gathered in block 304 and stored in block 306. The process
may loop continuously to gather observations about the appli
cation. In many cases, the application may be subjected to
loads, which may be generated in the real world or simulated
using load generators.
0115 The analysis of the tracer data may begin in block
308 when the tracer data is received. Code elements may be
identified in block 310 and then processed in block 312.
0116 For each code element in block 312, performance
data may be collected in block 314. Wait states and locks
encountered by the code element may be identified in block
316, as well as memory usage in block 318. The operational
observations may be summarized in block 320.
0117 While analyzing a code element, any message pass
ing relationships may be identified in block 322 and any
shared memory relationships may be identified in block 324.
Message passing relationships and shared memory relation
ships may link two code elements together. In some cases, a
relationship may be directional. Such as message passing
relationships, where the directionality may be determined
from tracer data. In other cases, the directionality may not be
detectable from tracer data.

US 2013/0219372 A1

0118. In some embodiments, a shared memory object may
indicate a relationship. A directionality of shared memory
relationships may be indicated when one code element
depends on another code element. In Such a case, a lock or
wait state of one of the code elements may indicate that it is
dependent on another code element and may therefore be the
receiver in a directional relationship. In some cases, the tracer
data may not have sufficient granularity to determine direc
tionality.
0119 Each relationship may be analyzed in block326. For
each relationship in block 326, operational data may be col
lected in block 328, which may be summarized in block 330
and used to characterize the relationship in block 332.
0120 In many embodiments, a relationship may be clas
sified using various notions of strength. A strong relationship
may be one in which many messages are passed or where a
large amount of data may be shared. A weak relationship may
have little shared data or few messages. Some such embodi
ments may use a numerical designator for strength, which
may be a weighting applied during network analyses.
0121 Once the code elements and relationships have been
classified, network analysis may be performed in block 334.
A more detailed example of a method for network analysis
may be found later in this application.
0122) The network analysis results may be post processed
in block 336 and Stored in block 338.
0123 FIG. 4 is a diagram illustration of an embodiment
400 showing an example of a network analysis that may be
performed using application trace data. An application may
be analyzed by identifying code elements and relationships
between code elements. In the example of embodiment 400,
the various nodes may represent code elements and the rela
tionships between nodes may be illustrated as edges or con
nections between the nodes. In the example of embodiment
400, the relationships may be illustrated as directional rela
tionships.
0.124. Embodiment 400 is merely an example of some of
the patterns that may be identified through network analysis.
The various patterns may indicate different classifications of
code elements, which may indicate the type of optimization
that may be performed.
0.125 Node 402 may be connected to node 404, which
may spawn nodes 406, 408, 410, and 412. An outbound star
pattern 414 may be recognized through automatic network
analysis. The outbound star pattern 414 may have a hub node
404 and several spoke nodes. In many cases, an outbound Star
pattern may be a highly scalable arrangement, where multiple
code elements may be launched or spawned from a single
element. The spoke nodes may represent code elements that
may operate independently. Such spoke nodes may be placed
on different processors, when available, which may speed up
an application by operating in parallel.
0126. A network analysis may also recognize groups 416
and 418. The groups may include code elements that interre
late, due to calling each other, sharing memory objects, or
Some other relationship. In general, groups may be identified
as having tighter relationships within the group and weaker
relationships outside the groups.
0127 Groups may be optimized by combining the group
members to the same hardware. For example, the members of
a group may be assigned to the same memory domain or to the
same processor in a multi-processor computer, while other
groups may be assigned to different memory domains or other
processors.

Aug. 22, 2013

I0128 Node 402 may be connected to node 420, which
may be connected to node 422, which may be connected to
node 424. The series of nodes 402,420, 422, and 424 may be
identified as a pipeline pattern 426.
I0129. A pipeline pattern may be a sequence of several
code elements that feed each other in series. When analyzing
a pipeline pattern, one or more of the code elements may act
as a bottleneck. By speeding up a slow element in a pipeline,
the overall performance may increase linearly with the
increase.
0.130. A pipeline pattern may also be treated as a group,
where the members may be placed on the same processor or
share the same memory locations. In many cases, a pipeline
pattern may be identified when the relationships between the
code elements are strong and may pass large amounts of data.
By placing all of the pipeline members one the same proces
Sor, each member may be processed in sequence with little lag
time or delay.
I0131 Node 424 may be connected to nodes 426, 428, and
430, each of which may be connected to node 436. The
network analysis may identify an outgoing Star pattern 432,
an inbound star pattern 434, and a parallelism pattern 438.
0.132. The analysis of the outgoing star pattern 432 may be
similar to the outbound star pattern 414.
0.133 An inbound star pattern 434 may indicate a bottle
neck at the hub node 436, which may receive messages or
share memory with several other nodes 426, 428, and 430.
The degree to which node 436 may act as a bottleneck may be
affected by the type of relationships. In the case where node
436 receives and processes messages from multiple nodes,
the node 436 may experience a much higher workload than
other nodes. As such, the amount of processing performed by
node 436 may drastically affect the overall performance of an
application.
I0134. The hub node of an inbound star pattern may limit
the Scaling of an application in a multi-processor System, as
only one processor may perform the actions of node 436. As
Such, the hub node of an inbound star may be flagged for a
programmer to consider refactoring or redesigning the code
in this area.
0.135 A parallelism pattern 438 may have several pro
cesses that may operate in parallel. In applications where the
receiving node 436 may depend on results from all three
nodes 426, 428, and 430 before continuing execution, an
optimization routine may identify the slowest node in the
parallelism pattern for speed improvement.
0.136. In many cases, nodes that may be bottlenecks may
be improved by applying more resources to the code element.
The resources may be in the form of additional processor
resources, which may be achieved by raising the priority of a
code element, placing the code element on a processor that
may be lightly loaded, or some other action. In some cases,
the resources may be memory resources, which may be
improved by increasing memory allocation, changing gar
bage collection schemes, or other changes.
0.137 When a parallelism pattern may be detected, some
of the parallel code element may finish early and may be
patiently waiting for other laggard code elements to finish.
Those patent code elements may be adjusted to consume
fewer resources during their operation. One Such adjustment
may lower the priority for a patient node or assign fewer
memory resources.
0.138 FIG. 5 is a flowchart illustration of an embodiment
500 showing a method for performing network analysis on

US 2013/0219372 A1

tracer data. The operations of embodiment 500 may illustrate
one method that may be performed during the operations of
block 334 of embodiment 300.
0.139. Other embodiments may use different sequencing,
additional or fewer steps, and different nomenclature or ter
minology to accomplish similar functions. In some embodi
ments, various operations or set of operations may be per
formed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations in
a simplified form.
0140 Embodiment 500 illustrates one method for per
forming network analysis on a graph composed of code ele
ments as nodes and relationships between code elements as
edges. Embodiment 500 may be performed on graphs such as
the example graph of embodiment 400.
0141. The network analysis may begin in block 502 using
preprocessed data that may characterize nodes and relation
ships as described in embodiment 300. A graph of the various
components may be constructed.
0142. From the graph, star patterns may be identified in
block 504. Each star pattern may be evaluated in block 506.
For each star pattern, the hub nodes may be labeled in block
508 and the spoke nodes may be labeled in block 510.
0143. The independence of the spokes may be analyzed in
block 512. When the star pattern is an outgoing star pattern in
block 514 and the outbound spokes are independent in block
516, the process may return to block 506 to process another
Star pattern.
0144. When the star pattern is an outgoing star pattern in
block 514 and there may be no independence between the
outgoing spoke nodes in block 516, the laggards of the spoke
nodes may be identified and labeled in block 518, and any
patient elements may be identified and labeled in block 520.
0145 When the star pattern may be an incoming star pat
tern in block 514, the laggards may be identified in block 518
and the patient elements may be identified in block 520. In an
incoming star pattern, the laggard and patient elements may
be useful to know when the hub of the incoming star may be
in a lock state waiting for all of the incoming spokes to
complete their work. In an embodiment where the incoming
star pattern is not dependent on all of the spoke elements, the
laggard and patient elements may not be labeled, but the hub
element may be labeled as an incoming hub.
0146 In block 522, pipeline patterns may be identified.
For each pipeline pattern in block524, the laggard elements in
the pipeline may be identified in block 526. The laggards may
be one or more elements in a pipeline pattern that may con
tribute to a performance bottleneck.
0147 Parallelism patterns may be identified in block 528.
For each parallelism pattern in block 530, the laggards may be
identified in block 532 and the patient elements may be iden
tified in block 534.
0148 Clusters may be identified in block 536. For each
cluster in block 538, the cohesiveness of the cluster may be
identified in block 540.
014.9 The cohesiveness may be a weighting or strength of
the grouping. In some embodiments, groups with weak cohe
siveness may be divided across different processors or
memory domains, while groups with strong cohesiveness
may be kept together on the same hardware components.
0150. The relationships between a given cluster and other
clusters may be characterized in block 542. Clusters with
strong inter-cluster relationships may have a higher likeli

Aug. 22, 2013

hood for remaining together, while clusters with weak inter
cluster relationships may be more likely to be split.
0151. Within the clusters, laggards may be labeled in
block 544 and patient elements may be labeled in block 546.
0152 The network analysis results may be stored in block
548.
0153. The stored network analysis results may be auto
matically consumed by an optimizer routine to generate a
runtime configuration. In some embodiments, the stored net
work analysis results may be used by a programmer to ana
lyze code under development. Such an analysis may assist the
programmer in finding bottlenecks and other areas that may
adversely affect performance of the application.
0154 FIG. 6 is a flowchart illustration of an embodiment
600 showing a method for optimizing tracer analysis results
to create a runtime configuration. The operations of embodi
ment 600 may illustrate one method that may be performed by
the optimizer 112 of embodiment 100.
0.155. Other embodiments may use different sequencing,
additional or fewer steps, and different nomenclature or ter
minology to accomplish similar functions. In some embodi
ments, various operations or set of operations may be per
formed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations in
a simplified form.
0156 Embodiment 600 illustrates one method for deter
mining runtime configurations that may be optimized derived
from patterns observed during network analysis. During net
work analysis, some of the code elements may be identified as
laggards, patient elements, as well as members of groups.
Each classification of elements may be optimized by identi
fying parameters that may speed up certain code elements,
make more efficient usage of code elements, or apply settings
across groups of code elements.
0157. The analyzer output may be received in block 602.
In some embodiments, some code elements may have been
labeled as requesting more data in block 604, and identifiers
for those code elements may be transmitted to a tracer in
block 606.
0158. In some embodiments, additional data may be
requested in order to identify optimized settings. For
example, an initial tracer may capture the various code ele
ments, relationships, and high level performance metrics.
After a network analysis identifies specific code elements as
being a bottleneck, those code elements may be traced again,
but at a more detailed level. The second tracing pass may
gather information Such as memory usage details, messages
passed, processor utilization, or other details from which
optimized runtime configuration may be derived.
0159 For each laggard code element in block 608, process
allocation and Scheduler settings may be identified in block
616. Memory allocation, usage, and garbage collection set
tings may be identified in block 618. The settings may be
stored in a runtime configuration in block 620.
0160 The process allocation settings may assist in placing
the laggardon a specific processor. In many embodiments, the
process allocation settings may include an affinity or relation
ship to other code elements. At runtime, code elements that
may have a strong positive affinity may be placed on the same
processor, while code elements that may have a strong repul
sive affinity may be placed on different processors.
0.161 The scheduler settings may assist a process sched
uler in determining when and how to execute the laggard. In

US 2013/0219372 A1

Some embodiments, the scheduler settings may indicate that
one code element may be executed before another code ele
ment, thereby hinting or expressly determining an order for
processing. The scheduler settings may include prioritization
of the laggard. In many cases, laggards may be given higher
priority so that the laggard process may be executed faster
than other processes.
0162 The memory allocation settings may relate to the
amount of memory allocated to a code element as well as
various settings defining how memory may be managed while
a code element executes. For example, a setting may define an
initial heap allocation, while another setting may define the
increment at which memory may be additionally allocated.
The memory related settings may include garbage collection
schemes, as well as any configurable parameters relating to
garbage collection.
0163 Each patient element may be analyzed in block 622.
For each patient element, process allocation and scheduler
settings may be determined in block 624, and memory allo
cation, usage, and garbage collection settings may be identi
fied in block 626. The settings may be stored in a runtime
configuration in block 628.
0164. With a laggard code element, the optimized settings
may attempt to cause the code element to speed up. Higher
prioritization, more memory, or other settings may help the
code element complete its work faster, thereby causing the
entire application to execute faster.
(0165. With a patient code element, the optimized settings
may attempt to limit the amount of resources. For example,
lowering the priority of the process may cause a patient code
element to be executed slower and may free up processor
resources that may be allocated to laggard processes. Such an
example may illustrate efficient deployment of resources that
may improve an application's performance.
0166 Each group or cluster may be evaluated in block
630. For each group in block 630, process allocation settings
may be identified in block 632 and memory allocation set
tings may be identified in block 634. The settings may be
stored in the runtime configuration in block 636.
0167 For groups, the runtime settings may identify affin

ity between code elements such that group members may be
processed on the same processor, have access to the same
memory domain, or afforded some other similar treatment. In
Some cases, the group designation may permit elements to be
separated at runtime when the group cohesiveness may be
weak, but may otherwise attempt to keep the group together.
0168 FIG. 7 is a flowchart illustration of an embodiment
700 showing a method using runtime configuration as an
application executes. The operations of embodiment 700 may
illustrate one method that may be performed by the runtime
environment 116 of embodiment 100.

0169. Other embodiments may use different sequencing,
additional or fewer steps, and different nomenclature or ter
minology to accomplish similar functions. In some embodi
ments, various operations or set of operations may be per
formed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations in
a simplified form.
(0170 Embodiment 700 illustrates one example of how
optimized runtime configuration may be applied. Embodi
ment 700 may be an example of an interpreted or compiled

Aug. 22, 2013

runtime environment that may identify when a code element
may be executed, then look up and apply a setting to the code
element.

0171 An application may be received in block 702, and a
runtime configuration may be received in block 704. Execu
tion of the application may begin in block 706.
(0172. While the code executes, block 708 may detect that
a code element is about to be executed. The code element may
be looked up in the runtime configuration in block 710. When
the code element is present in the runtime configuration in
block 712, the settings may be retrieved in block 714 and any
configuration changes made in block 716. The code element
may be launched in block 718. If the code element is not
found in the runtime configuration in block 712, the code
element may be launched in block 718 with default settings.
0173 Some embodiments may apply the same runtime
configuration settings to each instance of a code element.
Other embodiments may apply one set of runtime configura
tion settings to one instance and another set of runtime con
figuration settings to another instance. Such embodiments
may evaluate the input parameters to a code element to deter
mine which set of settings to apply. Some such embodiments
may evaluate other external parameters or settings to identify
conditions for when to apply optimized configuration set
tings.
0.174 FIG. 8 is a flowchart illustration of an embodiment
800 showing a method for incorporating runtime configura
tion during compiling.
0175 Other embodiments may use different sequencing,
additional or fewer steps, and different nomenclature or ter
minology to accomplish similar functions. In some embodi
ments, various operations or set of operations may be per
formed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations in
a simplified form.
(0176 Embodiment 800 may illustrate one method by
which runtime configuration may be incorporated into a com
piled version of an application. In one mechanism, the com
piled version of an application may be tagged. A tag may
cause a runtime environment to identify that a code element
has optimized settings available, which may cause the set
tings to be retrieved and implemented.
0177. In another mechanism of incorporation using a com
piler, the optimized runtime configuration settings may be
placed into the runtime executable by the compiler. Such
settings may be added to the compiled code Such that the
execution may be performed without a runtime configuration.
0.178 The compilation may be performed as a just in time
compilation. In a typical embodiment, an application may be
compiled into an intermediate language, which may be com
piled at runtime. In other embodiments, the compilation may
be performed prior to execution and the executable code may
be stored and retrieved prior to execution.
0179 An application may be received in block 802 and the
runtime configuration received in block 804. Compiling may
begin in block 806.
0180 A code element may be detected in block 808 and a
lookup may be performed in block 810 to determine whether
or not the runtime configuration may contain settings for the
code element. When the settings are not present in block 812,
the process may skip to block 820. If more elements are
present in block 820, the process may return to block 808.

US 2013/0219372 A1

0181. When the settings are present in block 812, the
runtime configuration may be added to the executable in two
manners. In a tagging manner in block 814, the executable
code may be tagged in block 816 to have a lookup performed
during execution. In a non-tagging manner in block 814, the
runtime configuration settings may be inserted into the
executable code in block 818.
0182. The process may revert to block 808 if more ele
ments exist in block 820. When all the elements have been
compiled in block 820, the application may be launched in
block 822.
0183 FIG. 9 is a diagram illustration of an embodiment
900 showing one development and distribution mechanism
for applications with runtime configurations. Embodiment
900 illustrates one system for using network analysis in an
offline mode, then distributing an application with a runtime
configuration to client devices.
0184. A developer-level tracing system 902 may execute
an application 904, from which analysis 906 and optimization
908 may be performed on the tracer data. The results of the
analysis 906 and optimization 908 may be displayed in a
programming environment 910. A programmer may view the
results in the programming environment 910 and may update
or change the application 904, then re-run the analysis and
optimization.
0185. In some embodiments, the programming environ
ment 910 may include an editor, compiler, and other compo
nents. In some cases, the developer level tracer 902 and the
analysis and optimization components may be parts of the
programming environment.
0186 Once the changes to the application may be com
plete, a product distribution system 912 may distribute the
application 914 and runtime configuration 916 to various
customer devices 918.
0187. The customer devices 918 may have a runtime envi
ronment 920 that executes the application 922 with a runtime
configuration 924. In some embodiments, a lightweight tracer
926 may collect some data that may be transmitted as cus
tomer provided tracer data 928, which may be incorporated
back into the development process.
0188 FIG. 10 is a diagram illustration of an embodiment
1000 showing a single device in which tracing, analysis,
optimization, and execution of an application may occur.
Embodiment 1000 may be a self-contained device that may
learn or adapt to executing a particular application faster or
with better resource utilization.
0189 A device 1002 may contain a hardware platform
1004 on which a runtime environment 1006 may execute an
application 1008. While the application 1008 executes, a
tracer 1010 may collect tracer data 1012. An analyzer 1014
and optimizer1016 may process the tracer data 1012 to gen
erate a runtime configuration 1018. The runtime configura
tion 1018 may then be used to execute the application 1008. In
Some embodiments, a feedback loop may then again trace the
application and continually refine the runtime configuration
1018, thereby continually improving the application.
0190. The foregoing description of the subject matter has
been presented for purposes of illustration and description. It
is not intended to be exhaustive or to limit the subject matter
to the precise form disclosed, and other modifications and
variations may be possible in light of the above teachings. The
embodiment was chosen and described in order to best
explain the principles of the invention and its practical appli
cation to thereby enable others skilled in the art to best utilize

Aug. 22, 2013

the invention in various embodiments and various modifica
tions as are Suited to the particular use contemplated. It is
intended that the appended claims be construed to include
other alternative embodiments except insofar as limited by
the prior art.
What is claimed is:
1. A method performed by a computer processor, said

method comprising:
receiving relationship metadata derived from analysis of

data collected while tracing an application, said relation
ship metadata comprising relationships between code
elements related to said application;

during runtime for said application:
preparing a first code element for execution;
determining a set of settings for said first code element

from said metadata; and
causing said first code element to be executed using said

set of settings.
2. The method of claim 1, said metadata further comprising

relationship strength indicators derived from tracing analysis
of said application.

3. The method of claim 2, said relationship strength indi
cators comprising attractive strength indicators and repulsive
strength indicators.

4. The method of claim3, a first attractive strength indica
tor being used at runtime to cause said first code element to be
executed using a shared resource with a second code element.

5. The method of claim 4, said shared resource being a
memory resource.

6. The method of claim 4, said shared resource being a
processor resource.

7. The method of claim 4, said shared resource being a
peripheral resource.

8. The method of claim 7, said peripheral resource com
prising a network interface.

9. The method of claim 2, said set of settings causing said
first code element to be executed on a first processor, said first
processor executing a second code element, said first code
element and said second code element having an attractive
strength indicator for a first relationship.

10. The method of claim 9, said first relationship being
derived from a dependency observed during tracing said
application.

11. The method of claim 10, said dependency comprising a
commonly shared memory object.

12. The method of claim 10, said dependency comprising a
sequential processing relationship between said first code
element and said second code element.

13. A system comprising:
a processor;
a runtime environment that:

receives relationship metadata derived from analysis of
data collected while tracing an application, said rela
tionship metadata comprising relationships between
code elements related to said application;

during runtime for said application:
prepares a first code element for execution;
determines a set of settings for said first code element

from said metadata; and
causes said first code element to be executed using said

set of settings.
14. The system of claim 13, said metadata further compris

ing relationship strength indicators derived from tracing
analysis of said application.

US 2013/0219372 A1 Aug. 22, 2013
12

15. The system of claim 14, said relationship strength
indicators comprising attractive strength indicators and
repulsive strength indicators.

16. The system of claim 15, a first attractive strength indi
cator being used at runtime to cause said first code element to
be executed using a shared resource with a second code
element.

17. The system of claim 16, said shared resource being a
memory resource.

18. The system of claim 16, said shared resource being a
processor resource.

19. The system of claim 16, said shared resource being a
peripheral resource.

20. The system of claim 19, said peripheral resource com
prising a network interface.

k k k k k

