
(12) United States Patent

USOO7334109B1

(10) Patent No.: US 7,334,109 B1
Anvin et al. (45) Date of Patent: Feb. 19, 2008

(54) METHOD AND APPARATUS FOR (58) Field of Classification Search None
IMPROVING SEGMENTED MEMORY See application file for complete search history.
ADDRESSING

(56) References Cited

(76) Inventors: H. Peter Anvin, 4390 Albany Dr., #46, U.S. PATENT DOCUMENTS
San Jose, CA (US) 95129; Alex
Klaiber, 231 Sierra Vista Ave., 5,596,735 A 1/1997 Hervin et al.
Mountain View, CA (US) 94.043; 5,734,858 A * 3/1998 Patrick et al. T11 208
Guillermo J. Rozas, 104 Magneson 5,787,495 A * 7/1998 Henry et al. 711,208
Ter, Los Gatos, CA (US) 95032; Parag 5,864,877 A * 1/1999 Henry et al. T11 208
Gupta, 909 Del Avion La., San Jose, 6,349,380 B1* 2/2002 Shahidzadeh et al. T12/211
CA (US) 95138 6,457,115 B1* 9/2002 McGrath 711 (220

6.463,517 B1 * 10/2002 McGrath ... 711,208
(*) Notice: Subject to any disclaimer, the term of this 7,124,286 B2 * 10/2006 McGrath et al. 71.2/229

patent is extended or adjusted under 35
U.S.C. 154(b) by 321 days.

* cited by examiner
(21) Appl. No.: 11/026,623 Primary Examiner Donald Sparks
(22) Filed: Dec. 30, 2004 Assistant Examiner Mehdi Namazi

e a V8

Related U.S. Application Data (57) ABSTRACT

(63) Continuation of application No. 09/930,625, filed on
Aug. 15, 2001, now Pat. No. 6,851,040. A method and apparatus for breaking complex X86 segment

s s sy- a-- us operations and segmented addressing into explicit Sub
(51) Int. Cl. operations so that they may be exposed to compiler or

G06F 12/00 (2006.01) translator-based optimizations.
(52) U.S. Cl. 711/220; 711/206: 711/208;

711/209 10 Claims, 5 Drawing Sheets

AGENS PROPERTIES CHECK

"F"---- LIMIT PROP. SELECTOR

SEGMENT
BASE

GDT BASE 37

LDTBASE 38

SEGMENT DESCRIPTOR PARSNG

CONEXT

X86 SEGMENT DESCRIPTOR X86 SEGMENT SELECTOR

U.S. Patent

BEGINSEGCHK

GET LIMIT 8
PROPERTIES FOR

SPECIFIED SEGMENT

GET OFFSET

GET ACCESS SIZE

CHECK OFFSET 8
ACCESS SIZE AGAINST

LIMIT

CHECK PROPERTIES

FIGURE 1

Feb. 19, 2008 Sheet 1 of 5

BEGINAGENS

GET SELECTOR

GET LOCAL
DESCRIPTOR TABLE

BASE, LIMIT,
PROPERTIES

GET
ALTERNATE

INPUT

SELECTOR
LOCAL

CHECK LIMIT

CHECK PROPERTIES

ADD SELECTOR
OFFSET TO LOCAL
DESCRIPTOR TABLE

BASE

FIGURE 2A

US 7,334,109 B1

U.S. Patent Feb. 19, 2008 Sheet 2 of 5

BEGINAGENSG

GET SELECTOR

GET GLOBAL
DESCRIPTOR TABLE

BASE, LIMIT,
PROPERTIES

SELECTOR
GLOBAL2

CHECK LIMIT

CHECK PROPERTIES

ADD SELECTOR
OFFSET TO GLOBAL
OESCRIPTOR TABLE

BASE

FIGURE 2B

US 7,334,109 B1

GET
ALTERNATE

INPUT

NO 1OETES ILNE W5DES 98X

US 7,334,109 B1 Sheet 3 of 5 Feb. 19, 2008 U.S. Patent

XMOEIHO SEILL?JEdOnHd

ESVE J1NEW5) ES 5£. BSVg LCIT 75 ESV8 LG9 NOLLOT)||1SNI SNESOV

U.S. Patent Feb. 19, 2008 Sheet 4 of 5 US 7,334,109 B1

AGENSL destreg altAdd SELECT

AGENSG desrReg atAdd so
SEGCKX segNum OFFSET ACCSIZE

FIGURE 4

U.S. Patent Feb. 19, 2008 Sheet S of 5 US 7,334,109 B1

BEGIN

EMIT SEGCK
INSTRUCTION

IS SEGMENT
BASE ZERO7

EMT BASE ADD
USING INTEGER
ADD NSTR.

YES

EMIT NON-SEGMENTED
LOAD OPERATION

FIGURE 5

US 7,334,109 B1
1.

METHOD AND APPARATUS FOR
IMPROVING SEGMENTED MEMORY

ADDRESSING

CROSS REFERENCE TO RELATED
APPLICATIONS

This patent application is a continuation of and claims the
benefit of U.S. patent application Ser. No. 09/930,625
entitled “Method and Apparatus for Improving Segmented
Memory Addressing”, by Anvin et al., filed on Aug. 15,
2001, now U.S. Pat. No. 6,851,040.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to computers and, more particu
larly, to a methods and apparatus for increasing the speed of
access of segmented memory.

2. History of the Prior Art
Modern general purpose computers are typically designed

to manipulate large amounts of data under control of a large
number of application programs. To accomplish this, both
the application programs and a large portion of the data are
stored in some form of memory which may be viewed as a
part of the computer. This memory includes main memory
which is typically some form of random access memory that
the processor accesses to execute the instructions of each
application program; various caches which provide faster
access for the processor to instructions and data that typi
cally have been more recently used; and longer term
memory Such as hard drives, floppy disks, and other devices
typically associated with the processor by way of an input/
output bus.
Any of these different forms of memory may store the

instructions and data which are necessary to execute an
application program. However, each of these individual
parts of memory is a different structure usually physically
separated from the other parts which make up the storage
system of the computer. At some times, a particular piece of
data or an instruction may reside in any one or more of these
parts. Where the data or instruction resides is typically
controlled by a memory control portion (unit) of the com
puter. The memory control unit decides where the informa
tion should be stored depending on whether the information
is currently being manipulated by a program, the size of the
various parts of the storage system, and other factors. In
order to access data and instructions, a processor uses an
address which is unique to the physical position at which the
data or instruction is stored in each part. This is referred to
as a physical address.

Since the storage systems of individual computers vary in
type and size and since both data and instructions may be
stored at various physical addresses at different times while
a program is being executed by a single computer, a pro
grammer does not know when writing a program where any
element of data or any instruction will be stored in any
computer that is to execute the program. As a consequence,
a programmer and the compiler Software use what are
referred to as logical addresses in designating storage
addresses for elements of the various operations that are
being programmed. These logical addresses must then be
translated into physical addresses by the memory control
unit of each computer in order to access the data and
instructions in the parts of the storage system of a computer
as the program is being executed.

10

15

25

30

35

40

45

50

55

60

65

2
Various computers accomplish address translation in dif

ferent ways. Computers designed to run more advanced
operating systems such as Unix utilize what is often referred
to as a flat system of addressing for memory. A flat memory
system essentially starts at address Zero and runs sequen
tially to an end address. Usually, the memory storage which
is addressable is larger than main memory so that the
physical addresses of main memory usually only take up
Some limited portion of the addresses of the storage system.
The memory control unit controls the information that is to
reside in main memory through a memory control system
called paging.
Main memory may be logically divided into fixed-sized

portions referred to as pages. When a computer running Such
a system begins operating, it places those system processes
necessary to control computer operations in main memory at
predetermined addresses. When a particular application pro
gram is started, the memory controller determines the
addresses of the instructions of that program necessary to
operate the program at a starting level and copies page-sized
portions of those instructions into portions of main memory
not in use by the operating system. As more data and
instructions are required to execute the application program,
the memory control unit copies the additional information
from long term memory to main memory in page-sized
portions. The determination of memory address is made
through the use of page tables which are stored in main
memory as part of the operating system. These page tables
respond to a logical look-up address by providing a physical
address at which a page in which the data and instructions
are actually stored. The page table entries which provide
physical addresses also furnish the various properties of the
pages Such as whether. They are readable and writable, and
the level of priority necessary for an access among other
things. Sometimes information already in main memory
must be removed to provide space for new pages of infor
mation being copied from long term memory. In Such a case,
the memory controller makes Sure that any newly-changed
information being removed from main memory is updated in
long term memory before it is removed.
The process of determining a physical address from a

logical address is relatively easy for a processor to accom
plish rapidly with a flat memory system because the manipu
lations necessary to the address conversion are so simple.
On the other hand, by far the largest number of computers

in existence allow the use of a different type of memory
control. These computers are based on the X86 family of
computers designed and built by (amongst others) Intel
Corporation of Santa Clara, Calif. The original X86 proces
sors were quite simple and designed to make use of a very
Small amount of memory storage. All of that storage was in
main memory. The operating system and any application
program to be executed were loaded to main memory from
floppy disks and then run from main memory.
A complicating factor of early X86 machines was the

need to keep different parts of the information necessary to
a program isolated from other parts during operation so that
data and instructions would not be corrupted. This required
that some form of priority system be adopted which would
allow different portions of main memory to be isolated from
one another. The system used, called segmentation, was
largely derived from the segmentation scheme used by the
computers running the Multics operating system from Hon
eywell Corporation. The segmentation system continues
today with legacy code written for certain operating systems
such as Microsoft Windows 3.1 and its successor systems.

US 7,334,109 B1
3

With segmentation, different portions of main memory
can be designated as segments having different properties.
Thus segments can be assigned for data, for instructions, and
for stacks. Different segments can be made accessible only
by the system, by the system and application programs, and
so on. The different segments can be made read-only,
read/write, and given other properties. By placing different
types of information in different segments, interference can
be reduced.

In order to make this system work, segments are assigned
physical addresses beginning at Some offset from the start of
main memory and continuing for Some predetermined
length. Then, a memory address for information stored in a
segment includes another offset from the beginning of the
particular segment to the position at which the addressed
information is stored.
The use of segmentation in the memory design of early

X86 processors designed by Intel and others required that
logical addresses be translated into the physical addresses
assigned by a memory controller implementing the segmen
tation system. This required the memory controller to keep
track of where each segment began and the length of the
segment in order to enable Such a translation. The same
requirement continues for legacy code written to utilize the
segmentation process.
The memory controller utilizes a series of descriptors

stored in tables, a global descriptor table and one or more
local descriptor tables. Each such descriptor table is itself a
segment with a beginning (base address), a length, and
properties. The descriptors in each table indicate where the
related segment begins in memory, its length, and its prop
erties. A descriptor is accessed and stored in one of a limited
number of descriptor registers so that the segment informa
tion is available for use by a processor for address transla
tion.

To utilize this information to access memory, the logical
addresses provided in the X86 system includes a reference
to the segment in which the information is stored and an
offset into the segment. A typical instruction is assumed to
refer to a segment; for example, an access of data is assumed
to be to the standard data segment stored in the DS descrip
tor register. A reference to a segment having a descriptor
already stored in a descriptor register allows an immediate
access to the base using the beginning and length informa
tion once a properties check has been done. Additional sets
of descriptor registers are provided which can be explicitly
selected by the referencing instruction.

In most cases, before a descriptor can be used for a
memory reference, it needs to be loaded into a segment
descriptor register. A segment descriptor to be loaded into a
segment register is identified by a segment selector which
can be determined from an explicit instruction to index into
one of the descriptor tables to access a descriptor. A segment
selector includes an indication which of two descriptor
tables is to be used for deriving a descriptor; it also includes
an index into the designated table and a priority level for the
addressed memory. The descriptor found indicates where a
segment begins and ends and its characteristics.

In earlier versions of the Microsoft Windows desktop
operating system, segmentation was used to overcome the
limited address space available on early X86 processor
implementations. Ultimately, it was found necessary to
implement paging in order to make the system viable for
applications of larger sizes (which were easily digested by
its processor competitors). When paging was added, the
segmentation system was maintained so that legacy Software
could run on the more modern X86 systems.

10

15

25

30

35

40

45

50

55

60

65

4
Keeping the segmentation memory system requires that

two address translations be done when paging is enabled.
First, segmentation cannot be disabled so logical addresses
assigned in an application program have to be translated to
“linear addresses' using the segmentation system. In prior
art systems, this translation is accomplished by processor
hardware through a relatively complicated set of steps that
are an integral part of each individual memory reference.
Then once the segmentation process has completed, the
linear addresses are translated to physical addresses. This
makes the process of memory addressing a very tedious one
in modern X86 systems.

Furthermore, the act of loading a segment descriptor from
memory into a segment register (which needs to be done
prior to using that descriptor) is itself complicated, involving
using a segment selector to determine a descriptor table to be
utilized, indexing into the table determined to derive a
segment descriptor, determining from the selector whether
the properties of the access match the properties of the
descriptor derived, and finally placing the descriptor into the
desired segment register.
The X86 architecture has two fundamental segmentation

related operations: ordinary (segmented) memory references
that use a segment descriptor already loaded into the pro
cessor, and instructions to load a segment descriptor into the
processor.

In prior art X86 implementations, loading a segment
descriptor is carried out by a single complex instruction.
Likewise, all memory references always include the steps of
checking the limit and permission of the accessed segment,
and adding the segment base address to the logical address
in order to form a linear address.

In practice, not all of these steps are always needed. For
example, many modern operating systems use primarily a
“flat address model, where the base address of most seg
ments is Zero. Adding a base address is unnecessary in this
case, yet the hardware to perform the base add still con
Sumes power, complicates the hardware design, and con
tributes to the cycle time of what is likely a critical path in
the processor.

Likewise, a given sequence of X86 instructions may
contain several memory references to the same segment.
Even barring any a priori knowledge about that segments
properties, it is in principle Sufficient to check the segments
access permissions once, rather than redundantly for each
memory reference in the sequence.

Thus, a problem faced by modern X86 systems utilizing
segmentation is that the number of steps required for the
segmentation based addressing and loading operation are
numerous and slow the operation of the computer signifi
cantly. It is therefore desirable to provide improved methods
and apparatus for accelerating the segmentation-based
addressing process in an X86-based computer.

SUMMARY OF THE INVENTION

The present invention is realized by a method for imple
menting a segmentation addressing operation by providing a
first logical address and a segment, deriving a linear address
from the logical address and the segment in a first discrete
Sub-step in which the properties of a logical address are
checked to determine whether those properties are consistent
with the criteria for addressing the segment, and a second
discrete Sub-step of performing a base add operation to
determine the linear address.

In an embodiment of the invention, the derivation of a
linear address of a segment descriptor is divided into a first

US 7,334,109 B1
5

discrete Sub-step in which the properties of a segment
selector are first checked to determine whether those prop
erties are consistent with the criteria for addressing a first
descriptor table, and a second discrete Sub-step of perform
ing a base add operation to determine a linear address.

Dividing the derivation of segmented addresses into a
series of individual discrete sub-steps allows those sub-steps
to be scheduled and optimized by a compiler, and even
completely eliminated in many instances in which prior art
arrangements are forced to carry out a complete accessing
operation.

These and other features of the invention will be better
understood by reference to the detailed description which
follows taken together with the drawings in which like
elements are referred to by like designations throughout the
several views.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart illustrating a method in accordance
with the present invention.

FIGS. 2A and 2B are flow charts illustrating another
method in accordance with the present invention.

FIG. 3 is a block diagram of circuitry designed in accor
dance with the present invention.

FIG. 4 is diagram illustrating new instructions utilized in
implementing the present invention.

FIG. 5 is a flow chart illustrating operation of a compiler
in accordance with the present invention.

DETAILED DESCRIPTION

As described above, in prior art X86 systems, the seg
mentation addressing process has been accomplished in
response to a single instruction the steps of which are
inevitably carried out each time a logical address is pre
sented. The process is very expensive.
By breaking up some of the segment-related operations

into their respective Sub-operations, it is possible to expose
these Sub-operations to compiler optimization, and eliminate
redundant or unnecessary operations. This approach relies
on a trusted compiler (or other translation or code generation
system) to insert enough checks to maintain the original X86
segmentation semantics, especially the segment protections.
It is especially useful with a processor such as the CrusoeTM
processor designed by Transmeta Corporation of Santa
Clara, Calif. which performs the trusted translation dynami
cally and in software. However, the spirit of the present
invention is equally applicable to systems where translation
or code generation is performed Statically, or in hardware.
The various properties of a flat memory system allow

improvements to be made in the process of accessing
memory. In a flat memory system, the number of steps
needed for implementing a memory access even when
segmentation is functioning may be significantly reduced.
For example, if a segment uses the entire memory available,
then the usual segment checks for segment size may be
eliminated. Furthermore, if a flat segment is (in general)
both readable and writable, the other checks typical to a
memory access are also unnecessary. Moreover, with seg
ment base addresses being Zero in a flat system, no base add
step is required.

With prior art hardware implementations of the memory
access process, it has been impossible to make use of the
ability to eliminate portions of the segmentation process.
However, the present invention presents a method and

10

15

25

30

35

40

45

50

55

60

65

6
apparatus by which both the processes of (segmented)
memory access and segment descriptor loading may be
accelerated.
As a part of the implementation of the present invention,

the single instruction utilized by prior art hardware imple
mentations for accomplishing a (segmented) memory access
is separated into three individual parts, a segment check
operation (implemented by a SEGCK instruction), a base
add operation (implemented by one or more general math
ematical instructions), and a traditional RISC-processor
style (non-segmented) memory access. In other words, the
Sub-operations of segment size and permissions checking,
and segment base addition, which in prior art X86 systems
are an integral part of a memory access instruction, have
been split off into individual instructions that can execute in
the processor's general arithmetic (rather than memory)
unit(s).
The segment check instruction (which appears in a num

ber of forms depending on the particular segment and type
of access involved) carries out the various checks which are
required for that particular segment and type of access.
These checks include permission checks which determine
that the type of access is allowed, and that the access
attempted is allowed by the segment properties; and a limit
check which determines that the access is within the seg
ment limits. The base add operation simply performs the
arithmetic to add the offset to the segment base. All sub
operations are available for compiler optimizations, includ
ing but not limited to common Subexpression elimination,
loop invariant removal, and strength reduction. Furthermore,
in a system that allows recovery from out-of-order or overly
conservative exceptions, segment checking can be further
optimized by replacing multiple checks for individual
accesses to the same segment but at different offsets relative
to a given base register with a single check for an access that
encompasses all offsets and sizes of the individual accesses.
For example, three memory references of four bytes each at
offsets 4, 8, and 12 relative to the stack pointer can be
checked by a single SEGCHK of 12 bytes at offset 4 relative
to the stack pointer.

If it is known a priori that the segment being accessed
includes all of memory, that the segment is (in general) both
readable and writable, and that the priority level of the
access is Sufficient, then the steps of the segment check can
be eliminated. If it is known that the base of the segment is
Zero, then the individual steps of the base add operation can
be eliminated. In order to allow elimination of these steps,
provision is made for storing context from which the present
operating state of the processor may be determined. A
special context register is provided in which is stored, for
each of a number of segment registers, information referred
to as “base Zero” and information referred to as “friendly.”
In one embodiment, each of the base Zero and friendly
information requires a single bit in the register.

In a first condition, the base Zero information for a given
segment register indicates that the segment being held in that
segment register has a segment base of Zero. In a second
condition, the base Zero information indicates that the seg
ment does not have a base address of Zero.

In a first condition, the friendly information for a given
segment register indicates that the segment held in that
segment register can be both read and written (or else is a
code segment and can be read; code segments are usually not
writable in the X86 architecture), that the segment is “grow
up.' and that it is present and unlimited. In a second
condition, the friendly information indicates that the seg
ment does not have these attributes.

US 7,334,109 B1
7

Therefore, when generating code to be run in a specific
processor context (see FIG. 5), a test of the context “base
Zero' and “friendly' indicators determines whether the
individual operations necessary for a (segmented) memory
access can be eliminated. Using this context information, the
compiler can immediately eliminate redundant or unneces
sary base add and segment check operations, as described
above.

Since the prior art method of carrying out a memory
access in hardware requires that each of the permission
checking and base add steps be accomplished whenever any
access is attempted, the ability provided by the invention to
eliminate these steps drastically reduces the time required
for executing code in systems which utilize segmentation
processes in addressing memory.

It should be noted that the effect of a SEGCHK instruction
could be emulated by a sequence of traditional RISC-style
compare and branch instructions. However, by providing
segment check instructions in hardware, the present inven
tion allows the cost of segment limit and access checking to
be drastically reduced in comparison. And unlike the prior
art hardware process which requires that all of the steps of
segment checking and base addition be carried out without
fail, the present commands allow each individual portion of
the process to be optimized and even entirely eliminated.

Again, other embodiments may choose to aggregate dif
ferent Sub-steps into a single operation, e.g., they could
provide an instruction that performs the work of both a
SEGCHK and base-add in one step. Another embodiment
might combine the base-add and (non-segmented) memory
access into one instruction.

Finally, it is possible for an embodiment to use the
“friendly' and “basezero information to dynamically Sup
press segment checks and/or segment base additions in
hardware and thus save power or accelerate processor opera
tion. (This is in contrast to the methods discussed above,
which statically omit redundant operations, by not generat
ing instructions for them in the first place.)

Another complex X86 operation related to segmentation
is the loading of a segment descriptor into a segment
register. That operation consists of the following steps: given
a segment selector, decide which of two tables contains the
segment descriptor identified by the selector, compare the
selector against the limit of the chosen table segment, raising
an exception if necessary; check the access permissions to
the selected table segment, raising an exception if necessary;
compute the linear address of the descriptor in the chosen
table; load the descriptor from memory; and parse the
descriptor and store it (and/or information derived from the
descriptor) in a specified segment register.
As described above, since the process of providing a new

segment which may be accessed in itself requires an access
of a discrete segment in memory (i.e., a descriptor table), the
new commands described above can be used to accelerate
the segmentation process. However, an additional improve
ment allows the process to be even further accelerated.

This additional improvement relates to the provision of
another new instruction, an address generation instruction
called AGENS. The new address generation instruction, like
the other new instructions, provides a hardware implemen
tation of a process which otherwise is quite time consuming.
As described above, in prior art X86 systems, the process

of loading a segment descriptor into a segment register has
been accomplished by accessing a memory address in a
descriptor table which is stored in its own individual
memory segment to derive a descriptor defining a newly
accessible memory segment. Typically, the process is
accomplished by a single instruction the steps of which are
carried out in hardware. Although the particular instruction
may vary, the instruction carries out the individual steps by

10

15

25

30

35

40

45

50

55

60

65

8
using a segment selector to determine a descriptor table to be
utilized, indexing into the table determined to derive a
segment descriptor, determining from the selector whether
the properties of the access match the properties of the
descriptor derived, loading the raw descriptor from memory,
and finally placing the descriptor (and/or derived informa
tion in a segmentation register of the descriptor cache).
To accomplish this in software, the lookup code has to be

conditioned on the table in which the descriptor is found. So
the process has to look at the selector for the table indicator,
compare that indicator with two possibilities to see which
table is involved, and then branch to the one of two sets of
code for the particular table, and execute the particular code
selected.
To facilitate scheduling and software-pipelining of seg

ment descriptor loading operations, we introduce two new
instructions, AGENS and WRSEG
The address generation instruction computes the address

of a descriptor in a descriptor table, given a segment selector.
As has been described above, a segment selector in X86
processors is used to derive a descriptor which provides a
segment address and properties. A selector includes infor
mation regarding the particular descriptor table to be used,
an offset into the descriptor table, and a highest priority level
to be used for accesses to the segment. However, the selector
may not be available in the pipeline soon enough to allow its
contents to be used in the manner described above without
stalling the pipeline.
The AGENS instruction accomplishes the segment check

for a descriptor table and does the base add to obtain the
descriptor address. However, the segment check for a
descriptor segment may be less precise than that for a normal
memory access since a descriptor table never contains more
than 64K bytes, is always “grow up' in nature, and is always
accessed in aligned 8-byte quanta.
The AGENS instruction is actually one of a pair of

instructions illustrated in FIG. 4, one for addressing a local
descriptor table and another for addressing the global
descriptor table. Each of these instructions takes a selector
from a general purpose source register as input. Each
instruction also has an alternate input which is an alternate
input. As may be seen in FIG. 2, an AGENS instruction takes
the selector value and checks the table indicator. If the
indicator is for the table being accessed by the particular
AGENS instruction (i.e., local or global), then the selector is
used to compute the address of the descriptor by adding the
selector offset to the base address of the table, and checking
the selector against the size and access permissions of the
table. If the checks indicate a violation, an exception is
signaled. Otherwise, the descriptor address is then placed in
a destination register for accessing the segment. If the
indicator is not for the table being accessed by the particular
AGENS instruction, the results of the first attempt to execute
the instruction (including any exceptions) are Suppressed;
and the alternate input is placed in the destination register.

For example, if the AGENSG (global) instruction is
executed, and the table indicator of the selector is for the
global descriptor table, then the selector offset is added to
the global descriptor table base found in the global descrip
tor table register (FIG. 3) to provide the descriptor address
for the destination register. However, if the table indicator of
the selector is for the local descriptor table, then the alternate
input is returned in the destination register.
The AGENSL (local) instruction functions in a similar

manner to return (in the destination register) either a descrip
tor address in the local descriptor table if the table indicator
reads local or the alternate input of the instruction if the
indicator reads global.

Thus, after executing both the local and global AGENS
instructions, with the alternate input of the second AGENS

US 7,334,109 B1
9

instruction being fed the output of the first AGENS instruc
tion, either an exception has been raised (indicating that the
selector specified an illegal value), or the destination register
(dest) holds the linear address of the descriptor specified by
the segment selector.

If it can be statically determined which table will be
accessed, one of the AGENS instructions can be eliminated.
At this point, a (non-segmented) load instruction can be

used to load the raw descriptor from memory, at the linear
address computed by the preceding AGENS instructions.
The use of the AGENS instructions provides for very

rapid generation of descriptor addresses so that the addresses
are available well within the time limits set by the system
pipeline.
A final instruction, WRSEG, moves the thus loaded

segment descriptor (and/or information derived from the
descriptor) into a specified segment register. Concurrently,
the WRSEG instruction also examines the raw descriptor
and determines whether the segment's base address (as
specified in the segment descriptor) is Zero, and whether the
segment is “friendly'. That information is then used to
update the processor's above-mentioned context register.

Again it is to be noted that the current invention relies on
a trusted compiler to synthesize the X86 segment descriptor
operation from the available sub-operations (which in this
embodiment include AGENS and WRSEG instructions),
and to insert enough checks to maintain the original X86
semantics.

Finally, note that different embodiments of the current
invention may choose to aggregate different sets of Sub
operations of segment loading into a single instruction. For
example, the functions of AGENS and subsequent load from
the computed linear address might be combined into one
instruction. Yet another embodiment might combine the load
from memory with the WRSEG operation.

FIG. 3 illustrates in block form circuitry utilized in one
embodiment of the invention. The circuitry includes what is
often referred to as a descriptor cache 30 including registers
ES, CS, SS, DS, FS, and GS for storing segment descriptor
values. In the particular embodiment, each entry includes a
16-bit segment selector, an 8-bit property indicators, and a
32-bit limit value. In this embodiment, the base values of
each segment descriptor are held in general purpose registers
(not shown) under software control.
The descriptor values held in the registers of the descrip

tor cache are furnished as a result of a segment descriptor
parsing operation whether Software or hardware (shown as
block 32). The manner in which the parsing operations are
carried out is well known to those skilled in the art.
As may be seen, the parsing of the descriptor values is

affected by the context in which the processor is operating,
and in turn affects the context. Context values are stored in
a context register 34 and provide input to the parsing
operation. The results of parsing also often affect the context
of the processor operation and changes may be effected by
input to the context register 34 from the parsing operation.

In addition to the descriptor registers already described,
an additional pair of registers are included in the descriptor
cache 30. These are a register 35 which stores the segment
selector, property indicators, and limit value for the global
descriptor table: and a register 36 which stores similar
values for a local descriptor table. Moreover, two additional
registers 37 and 38 are provided which receive the base
values for the global descriptor table and the local descriptor
table, respectively.

Although the present invention has been described in
terms of a preferred embodiment, it will be appreciated that
various modifications and alterations might be made by
those skilled in the art without departing from the spirit and

5

10

15

25

30

35

40

45

50

55

60

10
scope of the invention. The invention should therefore be
measured in terms of the claims which follow.
What is claimed is:
1. A method of generating computer instructions for a

processor comprising:
accessing stored context of present operating State of said

processor to determine if a segment check operation
can be eliminated when executing a memory access;

issuing a segment check instruction if said stored context
does not indicate said segment check operation can be
eliminated when executing said memory access,
wherein said segment check instruction initiates said
segment check operation;

accessing said stored context to determine whether a base
add operation can be eliminated when executing said
memory access; and

issuing a base add instruction if said stored context does
not indicate said base add operation can be eliminated
when executing said memory access, wherein said base
add instruction initiates said base add operation to
generate a linear address for said memory address.

2. A method as recited in claim 1, further comprising:
determining during execution of said memory access that

said segment check operation can be eliminated; and
in response to said determining during execution, Sup

pressing execution of said segment check operation.
3. A method as recited in claim 2, further comprising:
determining during execution of said memory access that

said base add operation can be eliminated; and
in response to said determining during execution, Sup

pressing execution of said base add operation.
4. A method as recited in claim 2, wherein said determin

ing during execution is based on said stored context.
5. A method as recited in claim 1, further comprising:
determining during execution of said memory access that

said base add operation can be eliminated; and
in response to said determining during execution, Sup

pressing execution of said base add operation.
6. A method as recited in claim 5, wherein said determin

ing during execution is based on said stored context.
7. A method of generating computer instructions com

prising:
issuing a sequence of instructions comprising memory

accesses, said issuing the sequence of instructions
comprising:
issuing segment check instructions that initiate segment

check operations for respective ones of said memory
accesses; and

issuing base add instructions that initiate base add
operations to generate linear addresses for respective
ones of said memory accesses; and

performing an optimizing operation on said sequence of
instructions, said performing the optimizing operation
comprises accessing stored context of present operating
state of a processor.

8. A method as recited in claim 7, wherein said performing
the optimizing operation comprises eliminating at least one
of said base add instructions.

9. A method as recited in claim 7, wherein said performing
the optimizing operation comprises eliminating at least one
of said segment check instructions.

10. A method as recited in claim 9, wherein said perform
ing the optimizing operation comprises eliminating at least
one of said base add instructions.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,334,109 B1 Page 1 of 1
APPLICATIONNO. : 11/026623
DATED : February 19, 2008
INVENTOR(S) : Anvin et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page, item 73, please add --TRANSMETA CORPORATION, Santa Clara, CA (US)-- as the
assignee name and address.

Signed and Sealed this
Thirtieth Day of April, 2013

Teresa Stanek Rea

Acting Director of the United States Patent and Trademark Office

