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BELIEF PROPAGATION PROCESSOR

Cross-Reference to Related Applications

[001] This application claims the benefit of U.S. Provisional Application No.
61/156,792, titled “Belief Propagation Processor,” filed March 2, 2009, and U.S.
Provisional Application No. 61/293,999, filed January 11, 2010, which are

incorporated herein by reference.

[002] This application is related to U.S. Provisional Patent Application Serial No.
61/156,794, titled “Circuits for Soft Logical Functions,” filed March 2, 2009, and
U.S. Provisional Patent Application Serial No. 61/156,721, titled “Signal Mapping”,
filed March 2, 2009, and U.S. Provisional Patent Application Serial No. 61/156,735,
titled “Circuits for Soft Logical Functions,” filed March 2, 2009. This application is
also related to U.S. Application Serial No. 12/537,060, titled “Storage Devices with
Soft Processing,” filed August 6, 2009. The contents of the above applications are

incorporated herein by reference.

Background

[003] This document relates to an analog belief propagation processor.

[004] “Belief Propagation” (BP) is an efficient approach to solving statistical
inference problems. The approach exploits underlying structure of a network of
stochastic elements and its constraints and Bayesian laws of probabilities to find the
most optimal set of valid outputs that satisfy constrains and network structure

requirements.

[005] Belief Propagation includes a class of techniques for performing statistical
inference using a system model that is in the form of a graph. The term “graph” here
refers to the mathematical definition of a graph, which represents the connectedness

of a set of abstract objects. The objects are often referred to as “nodes” and the
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connections between objects are often referred to as “edges.” One common type of
graph used in such models is referred to as a “factor graph.” In a factor graph (a
particular style of factor graph called a “Forney factor graph”) the nodes represents
statistical relationships between values, which are represented as edges. Other types
of graphs, such as Bayesian networks, and Markov random fields are also commonly

used for statistical inference.

[006] Examples of Belief Propagation approaches operate by passing messages
between nodes in the graph, where each message represents a summary of the
information known by that node through its connections to other nodes. Such
approaches are known by various names, including belief propagation, probability
propagation, message passing, and summary-product algorithms, among others.
Particular forms of these approaches include sum-product, max-product, and min-

sum.

[007] A large variety of approaches to coding, signal processing, and artificial
intelligence may be viewed as instances of the summary-product approach (or
belief/probability propagation approach), which operates by message passing in a
graphical model. Specific instances of such approaches include Kalman filtering and
smoothing, the forward backward algorithm for hidden Markov models, probability
propagation in Bayesian networks, and decoding algorithms for error correcting codes
such as the Viterbi algorithm, the BCJR algorithm, and the iterative decoding of turbo

codes, low-density parity check codes, and similar codes.

[008] Graphs on which belief propagation may operate include two types: graphs
with loops (cyclic graphs) and graphs with no loops (acyclic graphs). Graphs with no
loops are also known as “trees.” Belief propagation procedures differ fundamentally
between these two types of graphs. For a tree, belief propagation approach can
proceed in a well-defined order with a well-defined number of steps to compute the

result. And assuming ideal computation, this result is always known to be correct. For
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a graph with loops, on the other hand, belief propagation approaches are generally
iterative, meaning the same set of computations must be repeated successively until a
result is reached. In this case, the computation typically converges to a useful result,
but does not always do so. In some cases, the computation may not converge to a
single result, or if it does, the result in some cases is inaccurate. For a cyclic graph,
the performance of belief propagation can depend on the order in which the

computations are performed, which is known as the message passing ‘schedule.’

[009] In one particular application mentioned above, Belief Propagation has been
adopted as an efficient method of implementing decoders for various forward error
correcting codes. In this case BP uses structure of the code and constraints to infer
the correct valid codeword from the input codeword that contains noise, for instance,
with each element (e.g., bit) of the input codeword being represented as a distribution
rather than a discrete value. In some implementations of Belief Propagation for
forward error correction a Digital Signal Processor is used to perform various
arithmetic computations required by the algorithm with all the statistical data being

processed in digital format.

[010] Observing the fact that “soft”- probabilistic data is continuous in nature, i.¢.,
represented by real values in a finite interval, it is possible to implement belief
propagation algorithm using analog electrical circuits. Since only one signal is
associated with the unit of statistical data rather than multiple signals for different
digits (e.g., binary digits, bits) of the digital signal representing the same data, the

savings in hardware and power dissipation can be very significant.

[011] Several architectures had been proposed that utilize analog circuits to perform
efficient decoding of various codes, including convolutional codes, Low Density
Parity Check Codes (LDPC) or linear block codes. These include analog
implementations that use a so-called full flat architecture, where each input data

symbol is associated with dedicated computing element.
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Summa

[012] In one aspect, in general, an analog processor has a first memory module and a
second memory module. The first memory module is for storing a first set of storage
values in respective storage elements each representing a respective input to the
processor. The second memory module is for storing a second set of storage values in
analog form in respective storage eclements. The second set of storage values includes
intermediate values determined during operation of the processor. The analog
processor also includes an analog computation module coupled to the first and the
second memory modules. This processor is configurable such that in each of a set of
operation cycles the analog module determines values for at least some of the second
set of storage values based on at least some of the first and the second sets of storage
values. An output module is use for generating a set of outputs from at least some of

the second set of storage values.
[013] Aspects may include or more of the following features.

[014] The first storage module is configured to store the first set of storage values in

analog form.

[015] The analog computation module is linked to the first and the second memory
modules via analog signal paths. For example, the analog signal paths are each
configured to carry a value on a conductor represented as at least one of a voltage and

a current proportional to the value.

[016] The analog module is configurable to determine values for a different subset

of the second set of storage values in each of a plurality of operation cycles.

[017] The processor includes input selection circuitry configurable to couple the
analog computation module to outputs of selected memory elements of the first and

the second memory modules.
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[018] The processor further includes, for each analog computation module, a
plurality of signal busses, each bus providing an input value to the analog
computation module and being switchably coupled to a plurality of the storage

elements of the second memory module.

[019] The storage elements are coupled to switchably provide a current
representation of a storage value stored in the storage element such that the input
value provided to the analog computation module is represented as a current that is
substantially proportional to a sum of the currents representations provided by the

storage elements.

[020] The processor further include output section circuitry configurable to accept
outputs of selected memory elements of the first and the second memory modules,

and to determine outputs of the analog processor.

[021] The processor includes multiple analog computation modules being
concurrently operable to determines values for different subsets of the second set of

storage values in each operation cycle.

[022] The second memory module includes a plurality of section, each associated
with a corresponding different one of the analog computation modules for storing

values determined by the associated computation module.

[023] The second memory module is configured such that in a single operation
cycle, each storage element can provide a storage value to one or more of the analog
computation modules and can accept a determined value to storage in the storage

element for providing in a subsequent operation cycle.

[024] Each storage element is associated with two storage locations such that in any
one cycle, one storage location is used for accepting a determined value and one

storage location is used for providing a value.
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[025] Tthe second memory module includes multiple memory sections. Groups of
the sections form banks, wherein for each of the analog computation modules each of
a set of inputs to the module is associated with a different bank of the memory

sections.

[026] The processor is configurable such that in each cycle, each memory section
includes memory elements that either provide values to one ore more analog
computation modules or memory elements that are updated with values from one or

more analog computation modules.
[027] The processor is configured to implement a belief propagation computation.
[028] The processor of claim is configured to implement a factor graph computation.

[029] The analog computation module is configured to accept and provide analog
signals that are substantially logarithmic representations of at least one of

probabilities, likelihoods, and likelihood ratios.

[030] The processor is configured to implement a decoder for a low density parity

check (LDPC) code.

[031] The processor further includes a controller configured to control operation of
the processor to perform a set of iterations of computation, each iteration comprising a

set of computation cycles.

[032] The set of computation cycles is substantially the same in each iteration, each
cycle being associated with a configuration of the first and the second storage

modules to provide inputs and output to one or more analog computation modules.

[033] The processor is configured and/or configurable to implement a decoder parity
check code, and each cycle is associated with one or more parity check constraints,
and wherein the cycles of each iteration are together associated with all the parity

check constraints of the code.
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[034] The analog computation module implements a network of analog processing

elements.

[035] The analog processing elements include elements that represent soft logical

operations. For example, the soft logical operations include soft XOR operations.
[036] The network of elements is acyclic.

[037] The network of elements includes at least one cycle of elements, the analog

computation module being configured to implement an relaxation computation.

[038] The analog computation module includes inputs for configuring one or more

gain characteristics in the network of processing elements.

[039] In another aspect, in general, a decoder includes a first memory for storing
code data having a length in bits, and a second memory for storing intermediate data
in analog form. The decoder includes an analog decoder core coupled to the first
memory and to the second memory. The decoder core has an input length less than
the length of the code data and an output length less than a number of constraints
represented in the code data. The decoder further includes a controller for, in each of
a set of cycles, coupling the inputs of the decoder code to selected values from the
first and the second memories, and coupling outputs of the decoder core for storage in
the second memory. An output section of the decoder is coupled to the second

memory for providing decoded data based on values stored in the second memory.

[040] In another aspect, in general, a method is used for forming a data
representation of an analog processor. The method includes forming: a data
representation of a first memory module for storing a first set of storage values in
respective storage elements each representing a respective input to the processor; a
data representation of a second memory module for storing a second set of storage
values in analog form in respective storage elements, the second set of storage values
including intermediate values determined during operation of the processor; a data
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representation of an analog computation module coupled to the first and the second
memory modules, the processor being configurable such that in each of a set of
operation cycles the analog module determines values for at least some of the second
set of storage values based on at least some of the first and the second sets of storage
values; and a data representation of an output module for generating a set of outputs

from at least some of the second set of storage values.

[041] In some examples, forming the data representations includes forming Verilog

representations of the processor.

[042] The method can further include fabricating a integrated circuit implementation

of the analog processor according to the formed data representation.

[043] In some examples, the method further includes accepting a specification of a
parity check code and forming the data representations to represent an implementation

of a decoder for the code.

[044] In another aspect, in general, software stored on a computer readable medium
includes instructions for and/or data imparting functionality when employed in a
computer component of an apparatus for forming an integrated circuit implementation

of any of the analog processor described above.

[045] In another aspect, in general, decoding method includes, in each of a series of
cycles of a decoding operation, applying a portion of code data and a portion of an
intermediate value data to an analog decoder core, and storing an output of the
decoder coder in an analog storage for the intermediate data. Data, including
intermediate value data from the analog storage, are combined to form decoded data

representing an error correction of the code data.

[046] In some examples, each of the series of cycles is associated with a

corresponding subset of less that all of a plurality of parity-check constraints of the
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code. The intermediate value data may include values each associated with a different

one of the parity check constraints of the code.

[047] In another aspect, in general, a processor includes a first memory module for
storing a first set of storage values each representing a respective input, and a second
memory module for storing a second set of storage values in analog form. An analog
module is coupled to the first and the second memory modules. The analog module is
configured to, in each operation cycle of at least one iteration, update at least some of
the second set of storage values based on the first and the second sets of storage
values. An output module is for generating a set of outputs from at least some of the

second set of storage values.

[048] The analog module may be configured for updating a different subset of the

second set of storage values in each of at least two operations cycles of an iteration.

[049] The analog module may include a set of distributed components each
configured to update a different subset of the second set of storage values using a

different subset of the first set of storage values and the second set of storage values.

[050] In another aspect, in general, a decoder includes a first memory for storing
code data having a length in bits, and a second memory for storing intermediate data
in analog form. An analog decoder core is coupled to the first memory and to the
second memory, the decoder core having an input length less than the length of the
code data and an output length less than a number of constraints represented in the
code data. A controller in the decoder is for, in each of a plurality of cycles, coupling
the inputs of the decoder code to selected values from the first and the second
memories, and coupling outputs of the decoder core for storage in the second
memory. An output section is coupled to the second memory for providing decoded

data based on values stored in the second memory.
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[051] In another aspect, in general, a decoding method includes, in each of a number
of cycles of a decoding operation, applying a portion of code data and a portion of an
intermediate value data to an analog decoder core, and storing an output of the
decoder coder in an analog storage for the intermediate data. Data, including
intermediate value data from the analog storage, is then combined to form decoded

data representing an error correction of the code data.
[052] Advantages of one or more aspects may include the following:

[053] Use of analog computations and/or analog storage of intermediate values
provides lower power and/or smaller circuit area implementations as compared to a
digital implementations, for instance in applications of iterative decoding or error

correcting codes.

[054] Iterative use of one or more analog computation cores provides lower power
and/or smaller circuit area as compared to fully parallel relaxation implementations of
similar decoding algorithms. In some examples, a partially relaxation implementation
in which parts of a computation are implemented in relaxation from in each of a
succession of cycles may also provide similar advantages over a fully parallel relation

implementation.

[055] Approaches are applicable to decoding of block codes without requiring that
the size and/or power requirements of an implementation grow substantially with the

length of the code.

[056] Other features and advantages of the invention are apparent from the

following description, and from the claims.
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Description of Drawings

[057] FIG. 1 is an example factor graph for a length 8 LDPC code;

[058] FIG. 2A is a diagram that illustrates transformation of a variable node with
bidirectional links to a set of variable nodes with directed links, and FIG. 2B is a

diagram that illustrates a similar transformation for a constraint node;
[059] FIG. 3 is a portion of the graph shown in FIG. 1;

[060] FIG. 4 is a portion of a directed graph corresponding to the portion of the

bidirectional graph shown in FIG. 3;

[061] FIG. 5 is a diagram illustrating a module implementation corresponding to the

portion of the graph shown in FIG. 4;
[062] FIG. 6 is a diagram illustrating output calculation;

[063] FIG. 7A is a diagram that shows a relationship between input and outputs or a

module, and FIG. 7B illustrates the corresponding code matrix;

[064] FIG. 8 is a diagram of an implementation of a decoder for a length 8 LDPC

code using a shared module;

[065] FIG. 9 is a table that specifies inputs and outputs for the shared module shown

in FIG. §;
[066] FIG. 10 is a block diagram of a decoder with two shared modules;

[067] FIG. 11 is a tabular representation of a parity matrix for a (1056, 352) LDPC

code;

[068] FIG. 12 is a diagram of a shared module for use with the code shown in FIG.
11

-11-
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[069] FIG. 13 is a block diagram of a decoder for a (1056, 352) LDPC code with

cight shared modules (of which two are illustrated);

[070] FIG. 14 is a circuit implementation of a variable node;

[071] FIG. 15A is a circuit implementation of a constraint node;
[072] FIG. 15B is an alternative implementation of a constraint node;

[073] FIG. 16 is a diagram that illustrates a distributed bus implementation of a

variable node;
[074] FIG. 17 is a diagram of an alternative shared module;

[075] FIG. 18 is a block diagram of a decoder that uses distributed bus

implementations of variable nodes;

[076] FIG. 19 is a block diagram of an alternative architecture for a decoder for a

(1056, 352) LDPC code;

[077] FIG. 20 is a block diagram that shows multiple update modules in the

architecture shown in FIG. 17; and

[078] FIGS. 21A-B are a block diagram of an implementation of a decoder.

Description

[079] Referring to FIG. 1, in one example of an analog-based implementation of a
belief propagation processor, a decoder for a Low Density Parity Check (LDPC) code
is based on a factor graph 100 in which one variable node 110 is associated with each
different input bit (5; ), and one check (constraint) node 120 is associated with each
constraint. In FIG. 1, an example with eight input bits with four checks (constraints)
on the input bits is shown. The code can be represented in matrix form in which each
column is associated with a different input bit, and each row is associated with a

different check or constraint. An (i, j) entry is 1 if the /™ input is used in the /™
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constraint and 0 otherwise. In the LDPC example, the constraint is that the XOR of
the inputs for a constraint is 0. This example length 8 LPDC code can be represented
according to the following check matrix (note that the rows are dependent modulo 2
in this illustrative example, which is not necessarily true in general):

01011001
11100100
00100111
10011010

[080] In FIG. 1, each edge is bidirectional. Referring to FIGS. 2A-B, an equivalent
directed (unidirectional) graph can be formed by replacing each n-edge node with »
separate nodes, each of the » nodes having #-1 inputs and one output, and forming
unidirectional edges between the nodes to achieve the connectivity of the original
graph. Referring to FIG. 2A, for instance, each 3-edge variable node 110 can be
replaced with three 2-input/1-output variable nodes 210, 212. Referring to FIG. 2B,
cach 4-edge check node 120 can be replaced with four 3-input/1-output check nodes
220.

[081] One approach to analog implementation of a decoder corresponding to the
factor graph shown in FIG. 1 is to implement a circuit element for each node of the
equivalent unidirectional graph. Referring to FIG. 3, a portion of the graph shown in
FIG. 1 is illustrated showing check node 0 (120), the bidirectional edges and variable
nodes 1, 3, 4 and 7 (110) linked to that check node, as well as the other check nodes 1,
2 and 3 (120) linked to those variable nodes. Referring to FIG. 4, a portion of the
corresponding directed graph is shown in which check node 0 (120) is expanded as
four 3-input/1-output check nodes 220, for instance, labeled “0/1” to indicate that this
is part of the expansion of check node 0 with the output link coupled to variable node
1. Similarly variable node 1 (110) is shown in its expansion into three 2-input/1-

output nodes 210, 212, for instance, labeled “1/0” to indicate that this is part of the
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expansion of variable node 1 with the output link coupled to check node 0, or labeled

“1/out” to indicate that the output link provides an output of the factor graph.

[082] In the example, which is partially illustrated in FIG. 4, a full implementation
has four circuit elements for each check node (i.c., 16 total expanded unidirectional
check nodes 220), and three circuit elements for each variable node (i.e., 24 total
expanded unidirectional variable nodes 210, 212). Out of the three circuit elements
for a variable node, two (i.e., 16 total expanded variable nodes 210 for all variable
nodes) are used for message passing in an iterative stage of decoding operation, and
one (i.c., 8 total expanded variable nodes 212 for all variable nodes) is used for
generating the decoder output (i.e., the “belief”) in an output stage of decoding

operation, as will be described further below.

[083] In operation, input signals y; are used to determine corresponding analog
representations of input messages, which may be determined in a signal mapping
circuit. In some examples, the inputs messages form representations of the
probabilities corresponding to bits b;, but the reader should recognize that the
discussion below with respect to computations involving representations of bit
probabilities is illustrative of a particular form of input and internal messages that are
stored or passed during computation. These messages are provided to the inputs of
the variable nodes 210, for example, as outputs of analog input registers 260. As
discussed further below, in some embodiments the representations of the bit
probabilities are provided as analog signals from the input registers 260 encoding a
(prior) log likelihood ratio (LLR) which is typically of the form
logKPraai =0|yz->] ,
Pr(b; =11 y;)
In the case of equal prior bit probabilities P(b; =0) =P(h; =1) is equal to
IOgKP(yi |b; = 0)] ‘
P(y;|b; =1)
In some examples, these bit probabilities are encoded as voltage or current in single-
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ended or differential form (e.g., using a pair of conducting paths for each

unidirectional signal).

[084] The approach partially illustrated in FIG. 4 is one of a number of approaches
to implementation of a decoder corresponding to the graph shown in FIG. 1 that
involve introducing an analog memory element 230 to break some or all cycles in the
directed graph. In the approach shown in FIG. 4, the memory elements are introduced
at the outputs of the check nodes. Other versions have such memory elements
introduced at the output of the variable nodes instead of or in addition to the memory
clements at the outputs of the check nodes. Note that in yet other embodiments, some
or all cycles remain without memory elements, and operation is at least partially based
on a “relaxation” form of computation as signals propagate through the cycles. In
some embodiments, as combination of relaxation and memory based computation is

used.

[085] As illustrated in the example partially illustrated in FIG. 4, memory elements
230 in this embodiment store values in analog form, and are introduced at each output
of the check nodes 220; that is, 16 memory elements are introduced. For notational

simplicity, these locations are indexed as (7, j) and labeled “Ci,j”, for the output from

check node i that is linked to variable node j. Note that each location corresponds to
one of the non-zero entries in the check matrix of the code. The (i, j) memory
location corresponds to the row 7, column j, non-zero entry of the check matrix of the

code.

[086] In a number of approaches that make use of analog memory elements, the
memory is introduced in the circuit implementation of the graph such there remain no
cycles in the directed graph by breaking all cycles in the directed graph. The circuit
implementation is then operated in a series of clocked cycles, such that at each cycle
analog values read from some or all of the analog memory elements are propagated

through analog circuit elements to inputs of some or all of the memory elements
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where they are stored at the end of the clock cycle. As discussed in detail below, such
clocked (“discrete time”) implementation can be used to decode with a result that is
similar to that which would result from a relaxation (“continuous time’)

implementation.

[087] Referring to FIG. 5, another partial illustration of the example shown in FIG. 4
includes outputs of the four expanded check nodes 220 associated with the original
check node 0 (120). A circuit block 390 forms an analog computation module that
includes implementations of the expanded variable nodes 1/0, 3/0, 4/0, and 7/0 (210)
which have outputs to the four expanded check nodes 220. Note that check node 0
corresponds to row 0 of the matrix representation of the code, which is reproduced in
FIG. 7B. Note that the outputs of the circuit block 390 correspond to the memory
locations row 0 of the matrix representation, as illustrated in FIG. 7A. The inputs of
the circuit block 390 correspond to the non-zero entries in each column of the matrix
representation that has a non-zero entry in row 0, omitting those entries in row 0. In
this illustration, the inputs correspond to the non-zero entries in columns 1, 3, 4 and 7
inrows 1, 2 and 3. This results in four memory cell inputs, C1,1, C3,3, C3,4 and

C2,7, in addition to the inputs from the input bit probabilities, B1, B3, B4, and B7.

[088] An example of a full clocked circuit implementation of a decoder for the
length 8 LDPC has a memory element 230 at the output of each unidirectional check
node 220, and four copies of the circuit block 390, one corresponding to each row of
the code matrix. In the first stage of decoding operation, each unidirectional variable
node 210 (i.c., a total of 16 circuit elements) takes its input from an output of a
memory element 230, and one of the input bit probabilities 260. (Note that in general
for other size codes, the variable nodes are associated with more than two check
nodes, and therefore variable nodes would take as input values from multiple memory
elements). The memory cells 230 as a whole form a memory that is configured so

that effectively all the values are updated at once at the end of each clock cycle. One
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implementation of such a memory uses a “double buffering” approach in which two
banks of memory are used, and in each clock period, one bank is read from and the

other bank is written to, with the banks switching role between each clock period.

[089] In some examples, the decoder may perform memory updates in successive
clock cycles, each clock cycle corresponding to a full update of all memory cells of
the memory 250. The number of clock cycles to be performed in the first stage of
decoding operation may be pre-determined, for example, based on design preference,
or depend upon the satisfaction of certain convergence conditions, for example,
satisfaction of the code constraints (i.c., full error correction) or a condition based on

a rate of change of output values between iterations..

[090] Referring to FIG. 6, in some examples, once the iterations of memory updates
are completed, the decoder proceeds to the output stage of decoding operation to
generate decoder outputs representing bit estimates. Here, the decoder outputs are
denoted as b ; » cach being an estimate of a corresponding input bit (5; ) based on the
entire input signal. In some examples, as illustrated in FIG. 6, the variable node 212
outputs a message that includes a representation of the bit probability after decoding,
for example, as an LLR, which can be considered to approximate
IOgKP(bi =0| y\»]
P(b; =1]y.;)
where y.; denotes the observations not including y;. The output of variable node 212
is combined in a combination element 312 with the input bit probability
representation from input register 260 to form the representation of the bit probability
based on all the inputs and the constraints between the decoded bits. Recall that the
output of input register 260 can be considered to represent
logKPraai =0| y»]
Pr(b; =11 y;)
and therefore the combined probability output from combination element 312 is

computed as a sum approximates
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tog| P& =01»)
Pr(b; =1 y)

where y represents all the input values. Optionally the combined bit probability is

passed through a hard decision, which in the case of binary outputs and logarithmic
representations determines b ;to take on the value of either 0 or 1 based on a

thresholding of the combined log likelihood ratio as either greater or less than zero.
For example, the output element that uses memory elements C0,1 and C1,1 and the

input B1 to generate bit estimate [;1 . In some implementations, the set of eight output

elements may be configured to operate in a parallel fashion to generate the full set of
bit estimates & ;1n a single clock cycle. Note that as illustrated in FIG. 6, clements
212 and 312 are drawn as separate. However, each effectively computes a sum of its

inputs, and the two summations may be combined into a single circuit element 315.

[091] Referring to FIG. 8, in another example of a clocked circuit implementation
cach of the nodes of the directed graph is not required to correspond to a different
circuit element. That is, certain circuit elements form analog computation modules
“cores”) that are reused multiple times with different input and output connections
(i.e., shared) within each iteration. The functions performed by multiple modules 390
in one clock cycle in the previous example are carried out in a series of clock cycles
such that at in each of the series of clock cycles, only some of the memory elements
230 are updated, with all the memory elements being updated at the end of the series
of clock cycles. Similarly, in the output stage of decoding operation, one or more
shared circuit elements (e.g., element 315) may be reused in an output section 395 for
generating one or more bit estimates in each of a series of clock cycles. In the
discussion below, the entire series of clock cycles that updates all the memory

elements in FIG. 3 is referred to as an “iteration.”

[092] Continuing to refer to FIG. 8, a shared module 390 is coupled to input
selection circuitry 370 and output circuitry 380, which together provide interfaces to

the memory elements 230 in the memory 250. For example, the input circuitry 370
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couples each input of a variable node 210 to the output of an appropriate memory cell
230 and to an appropriate input register 260, which collectively form an input
memory module 265, and the output circuitry 380 passes the outputs of the check
nodes 220 to the inputs of appropriate memory cells 230, which collectively form an
intermediate memory module 250. In this example, the shared module 390 includes
all the variable nodes 210 and check nodes 220 needed to compute all the outputs
corresponding to one of the bidirectional check nodes 120 in the factor graph
illustrated in FIG. 1. During each successive clock cycle of an iteration, the input
circuitry 370 and the output circuitry 380 is effectively reconfigured to change the
connection of the variable nodes 210 and check nodes 220 to the memory 250 and the

input bits.

[093] As an example of a multiple cycle iteration using the shared module 390
illustrated in FIG. §, the table shown in FIG. 9 illustrates the configurations during the
four clock cycles of an iteration. Note that the configuration indicated for cycle 0

corresponds to the configuration illustrated in FIG. 5.

[094] In some examples, multiple shared modules 390 are implemented in a single
integrated circuit. For example, the example shown in FIG. 8 may be modified to
have two shared modules, thereby providing eight new values for memory cells 230 in
each clock cycle, with the iteration to update all the memory cells taking a total of two
cycles (i.e., four constraints per iteration divided by two constraints per cycle yielding
two cycles per iteration). Similarly, in some examples, a shared module may update
fewer cells, for example, updating only a single cell in each clock cycle (i.e., using a

single check node 220 and three variable nodes 210).

[095] In the example illustrated above in FIG. 8, the updated values to the memory
250 are not passed through to the outputs of the memory until after the entire iteration
is completed. In some examples, the updated values determined in one clock cycle

may be presented at the output of the memory during subsequence clock cycles within
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the same iteration. In such examples, the order in which the outputs of the check
nodes are computed (the “schedule”) may be significant. Examples of schedules
include a sequential updating of the outputs associated with each of the check nodes
120 (see the factor graph in FIG. 1), and random updating in which different nodes

are updated at each clock cycle.

[096] Referring to FIG. 10, in some examples, multiple modules 390 are used (but
not a sufficient number so that an iteration may be completed in a single cycle), and
the input selection circuitry 370, output selection circuitry 380, and memory 250, are
distributed among a set of local processing elements 490, and each local processing
element 490 has one shared module 390. Each local processing element has a local
output circuitry 480 and a local input selection circuitry 470. The memory is
distributed such that the memory cells 230 in the memory 450 of a local processing
element are those cells that are updated by the shared module 390 in the various clock
cycles of an iteration. As illustrated, each row of memory cells is updated in one
clock cycle. A control input controls the configuration of the input and output
circuitry according to the cycle in the iteration being performed. Note that in general,
a shared module 390 at one local processing element 490 requires outputs of memory
cells 230 in a local memory 470 of its own local processing element and/or another
(or more generally, one or more other) local processing element. The local input
selection circuitry 470 selects the memory cells required by each of the local
processing elements and passes those values onto a global selection unit 440, which
then determines the proper subsets of the memory values to be passed onto each one
of those local processing elements. In the output stage, the memory cells are coupled
through the selection circuitry 470 to the output section 495 to determine the outputs.
The configuration shown in FIG. 10 can also be understood as the function of input
selection logic 370 shown in FIG. 8 is distributed among blocks 470 and 442, and the

output logic 380 is distributed among the blocks 480.
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[097] In some examples, the global selection unit 440 may include a set of selection
units 442, each coupled to inputs of a respective local processing element to provide
the corresponding subset of memory values to the shared module 390. For example,
one selection unit 442 may receive 8 signals representing memory values provided by
the two local input selection circuitries 470 to generate four output signals
representing the memory values to be provided to the local processing element shown

on the left of FIG. 10.

[098] Referring again to FIG. 8, in some examples, the memory 250 as a whole is
configured such that effectively all the values are updated exactly once in an iteration.
In one implementation of such a memory using a “double buffering” approach two
banks of memory are used. In iteration k, the write circuitry always writes into
memory bank #1, and the read circuitry always reads from memory bank #2. By the
end of iteration £, memory bank #1 has achieved a full update. In the next
iteration k + 1, the write circuitry switches to write into memory bank #2, and the read
circuitry reads from memory bank #1 which was just updated in the last iteration. In
this case, the memory 250 would need a capacity twice the amount of the outputs
from the local check nodes to keep two different copies for read and write operations

respectively.

[099] In some examples, system is configured using an incremental “scheduled”
approach such a subset of values is updated and available for use at the end of each
cycle rather than at the end of an entire iteration composed of multiple cycles. In
some such examples, for example using a single block 390 as shown in FIG. 8, there
is no conflict between memory cells that are read in a cycle and locations that are
being written in a cycle. The reason that there is no conflict can be understood with
reference to FIGS. 7A-B. For example, applying a constrain corresponding to row 0,

the memory cells corresponding to non-zero entries in that row are written, while
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memory cells in other rows, specifically in columns that have non-zero entries in row

0, are read.

[0100] Referring again to FIG. 10, when two or more update modules 490 are used, it
is possible that a memory cell being updated in one module is to be read in the same
cycle in another module. This can be understood again with reference to FIGS. 7A-B,
for instance, in a case where one module is applying the constraint associated with
row 0 and another is applying a constrain associated with row 1. The application of
the row 0 constraint writes C0,1 and reads C1,1, while application of the row 1

constraint writes C1,1 and reads CO,1.

[0101] In another implementation a memory 250 for an incremental approach does
not required twice the capacity of the entire memory. Here, in the first half of clock
cycle k, the read circuitry retrieves some values from the memory, some of which
may have been updated in a preceding clock cycle £ —1. The outputs of the XOR
gates are written back into the same memory during the 2™ half of clock cycle & . In
some examples, by using edge-sensitive (instead of level-sensitive) memory, the read

and write operation in the same clock cycle would not interfere with each other.

[0102] The approaches described above in the context of a length 8 code is applicable
to a larger example of an (1056,352) LDPC code, such as is used in IEEE 802.16
based communication. The check matrix of the code can be represented in tabular
form breaking the 0,1 matrix into 8 rows by 24 columns of 44 by 44 blocks, with each
block being either all zero, or being an shifted diagonal with one non-zero entry in
cach row and in each column. This tabular representation of the code is shown in
FIG. 11. The upper-left (0,0) block (showing the number of “0”’) in the tabular
representation is a diagonal matrix. The (0,2) block shown as a “8” is a off-diagonal
block M =| m; ; | such that m; ; =1 if j=i+8 (mod44) and 0 otherwise. The full
factor graph is not illustrated, but can be derived from the matrix representation in the

same manner as the example illustrated in FIG. 1.
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[0103] Referring to FIG. 12, a module 590 is configured to include variable nodes
510 and constraint nodes 520 for the code shown in FIG. 11. Note that the nodes
illustrated in FIG. 12 are unidirectional nodes in which links are either input or output
links. Module 590 is analogous to module 390 for the length 8 code discussed above.
Note that each row in the code matrix shown in FIG. 11 has ten non-zero entries in all
row blocks, except row block 6, which has eleven non-zero entries per block. In order
to implement constraints outside row block 6, the module 590 has ten (unidirectional)
variable nodes 510 and ten (unidirectional) constraint nodes 520, and for rows in row
block 6, eleven (unidirectional) variable nodes 510 and eleven (unidirectional)
constrain nodes 520. Each variable nodes accepts inputs for memory cells
corresponding to non-zero entries in a particular column of the code matrix.
Therefore, variable nodes corresponding to columns in the range 0 through 15 have
four inputs (three inputs for memory cells corresponding to entries in the code matrix
and one input for the bit probability) and one output. Variable nodes for columns 16
through 23 have two or three inputs depending on the column and the block row. In
some examples, the module 590 has the maximum number of variable nodes and
inputs necessary, and is configurable during different cycles to accommodate the
specific number of variable nodes and inputs needed, for instance, by ignoring certain

inputs.

[0104] FIG. 13 illustrates one type of implementation of a decoder operable to
perform the iterative stage of decoding operation for use with the (1056, 352) LDPC
code shown in FIG. 11. In such an implementation, the decoder includes an analog
input memory 660 that stores representations of the input bit probabilities (e.g., as
voltages encoding log likelihood ratios) corresponding to the 1056 bits (i.e., 24 blocks
of 44) of the LDPC code illustrated in FIG. 11. These input bits are then distributed
by memory selection circuitry 672 to be processed in a set of local processing
elements 690. Each local processing element 690 has a shared module 590 that

includes the variable nodes and check nodes needed to compute all the outputs
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corresponding to one of the check nodes of the full factor graph. The structure of
each processing element 690 is similar to each processing element 490 shown in FIG.

10 to implement the decoder for a length 8 code.

[0105] Each local processing element 690 also includes a local output circuitry 680,
which directs the output of the local check nodes into appropriate cells 630 of a
memory 650. In this example, the memory is distributed among the set of local
processing elements 690 as a set of local memories 650, each of which includes
memory cells 630 updated by the shared module 590 of its local processing element
690 (not other local processing elements) in the various clock cycles of an iteration.
As described before, in general, each shared module 590 at one local processing
element 690 requires outputs of memory cells in a local memory 650 of its own local
processing element and/or one or more of other local processing elements. These
outputs are obtained by a set of local read circuitry 670 that retrieve values from the
local memory 650 and send them to a global selection unit 640, which then
determines the appropriate combinations of output values to be sent to the individual
local processing elements 690 at various clock cycles. The global selection unit 640
includes a separate input selection unit 642 associated with each of the local
processing elements, and provides as outputs the values stored in the memories 650

required for input that that unit on each iteration.

[0106] Implementations of the type illustrated in FIG. 13 can have different numbers
of processing elements, and use different schedules of applying each of the 352
constraints in different cycles of a decoding iteration. Referring back to FIG. 11 in
the matrix representation of the (1056, 352) LDPC, out of the total 8 blocks of rows,
rows in 7 of the blocks of rows (i.e., row blocks, 0-5, and 7) contains 10 non-zero
entries, and row in one block (row block 6) each contains 11 non-zero entries.

Therefore, of the 192 (i.e., 24*8) blocks of entries, only 81 are non-zero, and each of
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the non-zero blocks has exactly 44 non-zero entries, for a total of 3564 (81 times 44)

entries.

[0107] The exemplary arrangement shown in FIG. 13 uses a set of 8 local processing
elements 690 each configurable to perform the computation associated with one check
node (i.e., one row), of a corresponding block of rows of the check matrix. In other
words, each local processing element 690 is used repeatedly in 44 cycles to compute
the outputs for the 44 constraints represented by the 44 rows of the code matrix in the
corresponding block. For example, the 8 elements apply constraints 0, 44, 88, ... , 308,
respectively, on the first cycle, constraints 1, 45, 89, ..., 309, respectively, and finally

43, 87,131, .., 351, respectively, on the last cycle of an iteration.

[0108] Note that because of differences in each of the row blocks in the code matrix,
the shared module 590 in each local processing element 690 may be have differences.
Consider a shared module 590 for performing the computation associated with a row
in the first (row block 0) block. The corresponding check node in the bidirectional
graph has 10 edges linked to variable nodes. Each of the first § variable node has five
edges, four to check nodes and one to a bit input; the 9™ variable node has four edges,
three to check nodes and one to a bit input, and the 10" variable node has three edges,
two to check nodes and one to a bit input. The shared module 590 therefore has
circuits for 10 (directional) check nodes, each with 9 inputs and one output. The 10
outputs of the check nodes update 10 locations in the local memory. The local
processor has circuits for 10 (directional) variable nodes 510, each with four, three, or
two inputs and one output. Each node 510 provided an input to 9 of the 10
(directional) check nodes 520. Of the inputs for each variable, one input is for an

input bit probability and the remainder are for values from the local memories.

[0109] Shared modules 590 in the other local processing elements have the same
structure as that associated with row block 0, with differences including the shared

module 590 for row block 6 having 11 check nodes, and 11 variable nodes, and the
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share module 590 for blocks 1 through 5 each having two variable nodes with two

inputs and the other variable nodes having four inputs.

[0110] In operation, at each clock cycle, the variable nodes of shared module 590 for
row block 0 reads 10 sets of inputs from the input memory 660, one set for each
variable node and updates 10 locations of the local memory 650. The values from
memory 650 are passed through the blocks 670 of multiple of the local processing
elements 690 and through the control unit 642 associated with the destination
processing element. Over 44 clock cycles of an iteration, the shared module 590

provides updated values for all 440 (44 times 10) locations in the local memory.

[0111] As outlined above, in some embodiments, each one of the shared modules 590
may be implemented as a combination of 10 variable nodes and 10 check nodes (also
referred to as a 10x10 shared module), except for the shared module 590 for row

block 6 which is implemented as a 11x11 module.

[0112] A number of different circuit arrangements and signal encodings can be used
within the approaches described above. For certain soft decoding applications, each
variable node circuit can be formed using a soft Equals gate, and each check node
circuit can be formed by a soft XOR gate. In the example of FIG. 13, each variable
node takes the form of a 4-input (or 3-input or 2-input) soft Equals gate and each
check node takes the form of a 9-input (or 10-input) soft XOR gate. Therefore, for
cach shared module 590, besides reading the 10 (or 11) of input bits (one each soft
Equals gate) from the input memory 660, it also requires 10 (or 11) sets of values
from the local memories 650 (one set for each soft Equals gate). Note that in this
example these values come from the memory cells in the other local processing

element(s), and not from the memory 650 in the same processing element.

[0113] One approach for providing the proper combinations of memory values
needed as input to the shared modules 590 includes forming, in the global control unit

640, a set of 8 individual selection units 642, each of which selects or combines the
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outputs of the local processing elements 690 as needed for the input values for a
corresponding shared module 590. In some examples, each one of the read circuitry
670 is selectively coupled to the set of 8 selection units, for example, using a set of §
buses with each bus containing 10 (or 11) wires for sending a total of 10 (or 11)
output values to an individual selection unit in one clock cycle. The selection unit
642 then chooses a set of 10x3 (or 11x3) output values for input to the shared module

690.

[0114] By arranging the decoder into local processing elements, in some
embodiments, all of the XOR signals become local to the local processing elements in
which they are formed. The inputs to the Equals gates become globally routed signals
that come from multiple local processing elements. In some examples, the local
processing elements 690 can be configured in a way such that each shared module
690 requires only output values from a pre-defined set of three other local processing
elements. As a result, the coupling between each local processing element to the
global control unit 640 can be reduced, for example, with read circuitry 670 now
being coupled to only 3 (instead 8) selection units. In some examples, the local
processing elements 690 can be further arranged such that all of the even-numbered
(i.e., 0, 2, 4, and 6) local processing elements communicate with each other but not
with the odd-numbered (i.e., 1, 3, 5, and 7) local processing elements (except for the

last eight block columns of the check matrix).

[0115] Note that, in some applications relating to soft decoding, the decoder
described above is used for converting input “soft” bits based on individual
measurements of each bit to soft bits each based on the entire block of soft bits, taking
into account the constraints that the original bits of the block satisfied. These output
soft bits can then be further processed, or converted by hard decision into output
“hard” bits taking values 0 or 1. The input soft bits may be provided in the

probability domain, for example, as the probability of a bit being value of 1 or 0.
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Alternatively, the input soft bits may be provided in the log domain, for example, as

the log likelihood ratio of a bit (e.g., as defined by

lgiw]
P(bz' =1| J’z‘)

In either case, the shared module 590 can be implemented using a set of analog circuit
components that perform analog computation functions appropriate for the particular
application. Implementations of some of these analog circuit components (such as
soft Equals and soft XOR) are illustrated in detail in U.S. Patent Application Serial

No. 61/156,794, titled “Circuits for Soft Logical Functions,” filed March 2, 2009.

[0116] Referring to FIG. 14, in some implementations, the soft equals makes use of
differential voltage inputs, each representing a log likelihood ratio to produce a
voltage that is proportional to the sum of the inputs. Each differential voltage input is
passed through a voltage to current converter 712, and the resulting currents are
summed on a bus 714. The current on the bus is passed through a current to voltage
converter 716. The output voltage then branches to the soft XOR circuits that require
the output of this equal node. Exemplary circuit implementations are shown in the
figure. A variety of alternative circuits can be used, including alternative soft Equals

circuits described in U.S. Patent Application Serial No. 61/156,794.

[0117] Referring to FIG. 15A, in some implementations, the soft XOR circuits make
use of log domain differential voltages as produced by the circuit shown in FIG. 14.
In the exemplary implementation of the soft XOR circuit shown in FIG. 15A, which
approximates an ideal soft XOR function for log domain processing, one differential
voltage input is passed to a circuit 812. The second and further inputs to the soft
XOR circuit are passed to circuits 814, each of which performs an analog computation
that approximates multiplication of the current provided by the previous element
according to that input. The resulting current approximates the ideal soft XOR
function each of the inputs and is passed through a current to voltage converter 816, to

provide the differential voltage output of the soft XOR. Note that unlike the soft
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Equals circuit shown in FIG. 14, the output of the overall soft XOR circuit does not
fan out on any particular cycle, because the output of the soft XOR circuit provides
the input to only a single memory cell. The circuit parameters, for instance, resistance
values, transistor dimensions, and voltage scaling, are chosen to best approximate the
ideal function of a soft XOR and/or to optimize higher level (e.g., overall decoding)

system performance.

[0118] Referring to FIG. 15B, an alternative arrangement 820 of circuit elements to
the soft XOR circuit 520 shown in FIG. 15A implements the directional soft XOR
circuit using a branching tree structure, optionally sharing signals between different
trees associated with a same bidirectional check node. Specifically, groups of circuit
clements 818 effectively form two-input, one-output, voltage based soft XOR circuits
using the circuit elements 812, 814, and 816 introduced with reference to FIG. 15A.
These groups of circuit elements 8§18 are then arranged in a tree structure, preferably a
binary tree structure that is as balanced as possible to form the circuit arrangement
820 shown in the figure. In some implementations, the branching structure shown in
FIG. 15B may have preferable characteristics, for instance, providing a better
approximation of the ideal soft XOR function with LLR representations.
Furthermore, when multiple modules 820 are implemented for a set of unidirectional
XOR circuits, certain computations can be shared, for example, by passing a signal
825 from one module to another where a portion of the tree in that other module can

be eliminated.

[0119] Referring to FIG. 16, in some implementations, the bus 714 associated with
cach equal gate is distributed. Each memory cell 230, which stores its value as a
differential voltage, has at its output a corresponding voltage to current converter 912.
These voltage to current converters are similar to the converters 712 shown in FIG.
14. The current output is passed to a set of switches 913, at most one of which is

enabled if the corresponding cell’s value is to be injected as a current on a current bus
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714 corresponding to that switch 913. Each bus 714 similarly includes a portion onto
which current associated with an appropriate input bit is injected at each cycle to
account for the input to the equal gate corresponding to the bit input. Note that the
bus 714 for each equal node may have a complex structure, for example, having
numerous branches. Nevertheless, all the current injected onto the bus passes to the
current to voltage converter 716 for the equal node, from where it branches to the

unidirectional XOR circuits that require that output.

[0120] Referring to FIG. 17, in some implementations that make use of a distributed
bus 714 to perform a current summation function, the module 590 illustrated in FIG.
12 is replaced by a module 592 in conjunction with distributed busses 714 and
voltage-to-current converters 712. In module 592, each variable node corresponds to
a current-to-voltage converter 716, which outputs a voltage proportional to the total
injected current on the corresponding bus 714, and then that voltage branches to the
appropriate check node circuits 520. Note that in yet other implementations, the
current-to-voltage converters 716 are themselves distributed, and a module 593 (i.e., a
portion of module 592) receives voltage inputs, which are internally distributed to the

appropriate check node circuits.

[0121] Referring to FIG. 18, a second example of an implementation of a decoder
operable to perform the iterative stage of decoding operation for use with the (1056,
352) LDPC code shown in FIG. 11 provides the same or similar functionality to the
implementation shown in FIG. 13. In this example, modules 592 are used, as
illustrated in FIG. 17. The circuitry that implements each soft Equals circuit
associated with a variable node includes a current-to-voltage converter in the module
592, with the distributed busses corresponding to the 10 unidirectional variable nodes
of the module 592 being distributed. Each memory 652 includes circuitry to inject
current to the appropriate busses corresponding to the soft Equal circuits for different

variable nodes via read switching circuits 671. The bus section 644 effectively
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includes 81 busses, each associated with a different current-to-voltage converter 716
at the input of a module 592. Therefore, the soft Equal circuit is distributed in a
manner effectively forms interconnection paths between the memories 652 and the

analog computation modules 592.

[0122] In another implementation of a decoder for the (1056, 352) LDPC code uses a
different arrangement of memory cells, and takes advantage of the distributed current
summing approach to implementing the log likelihood ratio based equals gates. The
implementation makes use of a schedule in which multiple constraints are applied at
each cycle of an iteration, and the updated values are used in the next cycle of the
iteration. Referring to FIG. 11, a previously described approach applies eight
constraints in each cycle, with each constraint being associated with a different row
block. As discussed above, there are situations in which the same cell 230 is both
written and read in the same cycle, and therefore approaches such as double buffering
and multiple phases (update, write, etc.) per cycle are used. In the present
implementation, multiple constraints are applied in each cycle, and these constraints
are selected such that there is no read and write conflict on the memory cells,
permitting a scheduled approach without the need for approaches such as double
buffering. One way to avoid the conflict is for each of the constraints being applied in
a cycle to come from the same row block. The reason this avoids conflicts may be
understood with reference to FIG. 7A, which relates to a simpler length 8 code. As
illustrated, a constraint corresponds to a row in the code matrix, and the cells that are
updated are associated with the non-zero entries in that row. The cells that are read
are in the columns in which that the constraint’s row has non-zero entries. If another
constraint is applied in the same cycle, but the row associated with that constraint as
no non-zero entries in the same columns as the row for the first constraint, then the
cells updated for the second constraint are not read for applying the first constraint,
and the cells read to apply the second constraint are disjoint from those read for the

first constraint. Turning back to the code matrix illustrated in FIG. 11, it is evident
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due to the offset diagonal structure of each non-zero block that multiple rows from the
same row block have the property that no two rows have ones in any of the same
columns. Therefore, multiple constraints corresponding to multiple rows in one row
block can be applied in one cycle without read/write conflicts. As another
observation, two rows one in an even block 2n and one in an odd block 2n+3 mod 8
(or odd block 2n+5 mod 8) similarly cannot have any columns with non-zero entries

in common due to the overall block structure of the code matrix.

[0123] Referring to FIG. 19, a partial illustration of an instance of this approach
arranges the memory cells 230 of the memory 950 into groups 955 of 44 memory
cells. Each of these groups 955 corresponds to a different non-zero block of the code
matrix shown in FIG. 11. Further, these groups are arranged into banks 958 each
corresponding to a column in the same way that they are arranged in the code matrix.
For the first 24 columns, there are exactly four memory groups 955 corresponding to
the four non-zero blocks in each column block. Each of the last eight columns have

two or three memory groups each.

[0124] In FIG. 19, a single module 590 is shown, representing the update logic to
apply a single constraint in a cycle. As discussed previously, each equal node in the
module receives up to four inputs, up to three from the memory cells within the
memory 950 and one from the input registers in memory 960, which is also arranged
into groups 965, each associated with a different column block. The equal node uses
a distributed current bus approach, as described above, onto which the current
encoding log likelihood ratios are injected. FIG. 19 illustrates application of a
constraint in the first row block. In the first bank of memory groups 955, one memory
cell in the first memory group 955 is updated, and one memory cell from each of the
other memory groups 955 is read as well as one input from an input register in a

register group 965 associated with that column block. Each of the 10 (or 11
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depending on the row block) inputs to the module 590 comes from one bank of

memory groups 955.

[0125] As is discussed further below, the off-diagonal structure of the blocks
constrains which combinations of memory cells are coupled to the current bus in any
one cycle. Specifically, the combinations of memory cells must be found in a same
column of the check matrix. Therefore, if the memories 955 are indexed by column
within the block column, then in any particular cycle a same index is applied to each
memory 955 in a bank 958 and the input memory group 965. Note also that with an
arrangement indexed by column, contiguous columns are naturally indexed

contiguously, treating wrapping from the highest index (43) to zero as contiguous.

[0126] In some examples, multiple constraints in a row block are applied in each
cycle. For example, four constraints corresponding to four contiguous rows may be
applied in each cycle. Referring to FIG. 20, as compared to FIG. 19, such an example
has four copies of the module 592, and each distributed equal node has as a separate
input bus. For updates of four contiguous constraint rows within a row block, for
each block column, four contiguous columns are read or written in each bank 958 of
the memory groups 955. As in the example shown in FIG. 19, the memory locations
in a same column are coupled to a same bus, and therefore outputs of four contiguous
columns for a memory 955 are each output to a different of the four busses.
Similarly, the updates to the updates of the memory group 955 in contiguous groups
of four memory cells in one of the groups 955. Each memory group 955 is arranged
in four groups 966 of eleven memory cells each, with each group 966 being coupled
to a corresponding one of the four busses. For instance, one memory group 966 has
memory cells for the within-block column indices 0, 3, 7, ... 40 (i.e., columns indices
0 mod 4), a second for column indices 1, 4, ... 41 (i.e., 1 mod 4), and so forth. In any
cycle, one cell from a group 966 is coupled to the bus or one cell from the group is

written to. In each block column, the column that is applied associated with the first
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module 590 depends on the offset of the block diagonal in the block being updated.
Therefore, if the first constraint row has a non-zero entry in that block column at an
index i, a shifter 970 “rotates” current bus i mod 4 to the 0™ module 590, bus (i+1)

mod 4 to the 1¥ module, (i+2) mod 4 to the 2™, and (i+3) mod 4 to the 3.

[0127] In some examples, the function of a soft Equal circuit is distributed such that
the output of a memory group 966 is a current, which is summed on a bus as
illustrated in FIG. 20. Then the shifter 970 includes a current to voltage conversion
circuit for each bus at its input, and then shifts the resulting voltages to modules when
each voltage encoded input is applied to the inputs of appropriately selected soft XOR
circuits. The module 592 is then replaced with a module 593, which accepts voltage

rather than current inputs.

[0128] Note that a number of further optimizations can be used to take advantage of
structure of the code. For example, four constraints from row block 2n can be applied
at the same time as four constrains from row block (2n+3 mod §), thereby allowing
eight constraints to be applied in each cycle. Note that of the first 16 banks of
memory groups 955, memories in an even block row are updated based on an update
based only on even block rows in the first 16 block columns, and odd block rows in
the last 8 block columns. Similarly, memories in an odd block row are updated based
only on odd block rows in the first 16 block columns and even blocks rows in the last
8 block columns (with the exception of block (6,16) which is used to update block

(0,16) and vice versa.

[0129] In various examples, different schedules for associating sets of constraints
with cycles can be used. For example, with four modules 590, the constraints applied
in each cycle can proceed as {0,1,2,3}, {4,5,6,7}, ... {40,41,42,43}, {44, 45,46,47}, ...
{348,349,350,351}, in 88 cycles for each iteration. As another example using eleven
modules, the cycles can proceed as {0,1,...10}, {11,12, ..., 21}, {341,342,...,351} in

32 cycles in each iteration. As another example, with two sets of four modules 590
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(i.e., eight total, four for block 2n and four for block 2n+3), the constraints applied
can proceed as {0,1,2,3,132,133,134,135}, {4,5,6,7,136,137,138,139%, ...,
{40,41,42,43,172,172,173,174},{88,89,90,91,220,221,222,223}, ... in 44 cycles.

[0130] Referring to FIGS. 21A-B, an overall diagram for an implementation of a
decoder for the code with check matrix shown in FIG. 11 is shown. An input memory
1660 holds the 1056=24x44 input values, represented as voltages proportional to the
LLR inputs. In some examples, these values are loaded, for example, four at a time,
in a serial manner before the iterative stage begins. In some examples, the LLR
values are obtained from a signal mapping circuit that accepts one or more of the
signal values y; and outputs one or more of the LLR values. In some examples, one
signal input generates a set of LLR inputs, for example, when multi-level encoding is
used, such as when four bit values are encoded in a sixteen-level analog signal.
Generally, the architecture shown in FIGS. 21A-B has separate parts for the “even”
and the “odd” block rows, which as introduced above allows concurrent processing of
constraints in different block rows without read-write contention for memory cells. A
set of memory banks 1650 include memories 1652, each holding 44 entries
corresponding to a corresponding block of the check matrix. Each bank includes only
either odd or even block rows in a particular block column of the check matrix.
Together, these banks correspond to the memories 955 shown in FIG. 19. Two parity
check processors 1590 are illustrated. Each implements four analog computation
modules generally of the form of module 593 that is illustrated in FIG. 17. The
memory banks 1650 are coupled to the parity check processors 1590 via rotator
modules 1970. Generally, each rotator module 1970 includes a set of four rotators
cach associated with one of the four analog computation modules that are in the
corresponding parity check processor 1590. Note that these rotator modules include
current to voltage conversion circuits such that the links between the memory banks
1650 and the rotator modules 1970 are differential current encoded, while the links

between the rotator modules 1970 and the parity check processors 1590 are
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differential voltage encoded. The outputs of the parity check processors 1590 are
passed to the appropriate memory banks 1590 where the determined values are stored.
An output section 1400 is coupled to the memory banks 1650 and to the input
memory 1660, and includes the circuitry for computing the output values, which may
be computed multiple outputs at a time an multiplexed. Not shown is the control
logic that coordinates the configurations of the rotators and read and write control

logic within the memory banks.

[0131] It should be understood that the decoder applications described above are only
one example of an application of an analog belief propagation processor. The
techniques employed in these examples are applicable to other uses of belief

propagation.

[0132] Implementations of the belief propagation processors may have different
degrees of customization to particular applications. Generally, a controller (not
shown) sequences the application of different constraints in different cycles of an
iteration, and sequences the series of iterations to complete a computation. The
controller can be a special-purpose controller or sequencer that is configured for a
particular code, for a particular class of codes, or to some other class of computations.
The controller may also be a general purpose controller that may be used to
implement a wide variety of computations. In some implementations, the modules
that include the variable and constraint nodes may have fixed structures, or may be
configurable. Circuit configuration may occur through the operation of the controller
and/or the configuration may be implemented through a field programmable approach
in which certain connections between circuit elements are enabled using personality
data that is applied to the processor. In some cases the controller is implemented on
the same device that implements the analog circuit portions of the processor, while in
other cases, the controller is fully or partially implemented in a separate device that is

in communication with the device implementing the analog processing.
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[0133] The belief propagation processor may be used in many applications. One
application relates to communication systems, where the belief propagation processor
is used as a soft decoder subsequent to a soft demapper that converts signals
transmitted over a noisy communication channel into soft bits. The soft bits may be
represented in the probability domain (e.g., as probabilities or differential
probabilities), or alternatively, in the log domain (e.g., as log likelihood ratios or log-
odds). Examples of soft demappers are described in detail in U.S. Patent Application

Serial No. 61/156,721, titled “Signal Mapping”.

[0134] One application of a decoder implemented in using an analog belief
propagation processor is in a communication system in which blocks of transmitted
information are received, and the decoder performs an error correction of the received
information. Another application of such a decoder is as a component of a data
storage system, for instance a semiconductor memory (e.g., flash memory, which may
include multilevel cell storage) or a disk storage memory, in which the decoder
performs an error correction of the information retrieved in the storage system, for
example, retrieved as storage levels in memory cells or as degrees of magnetization in
a disk storage system. In some examples, the decoder in integrated on the same
device as a semiconductor memory, while in other examples, the decoder is
implemented in a separate device (e.g., on a separate integrated circuit). Some
examples of memory systems that can make use of decoder implementations as
described in the present application are found in co-pending U.S. Application No.
12/537,060, titled “STORAGE DEVICES WITH SOFT PROCESSING,” filed

August 6, 2009, which is incorporated herein by reference.

[0135] It should also be understood that various modifications of the approaches
described are possible. For example, memory elements are not necessarily analog
and/or continuous valued. For example, digital (e.g., storage for binary (base 2)

digits, possibly in “soft” forms) and/or quantized storage may be used. Other
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representations of the values passing between nodes can be used. In some examples,
log likelihood ratios are used. Other possibilities include passing of linear
probabilities. With different representations, different circuit implementations of the
equal and constraint nodes would be used. Various encodings of the representations
may be use. In some examples described above, differential voltage and differential
current encodings are used. Alternatives include stochastic (e.g., dithered)

representation, digital or quantized representations.

[0136] Examples described above are implemented in various ways. In one example,
a particular code, for example, represented as a check matrix, is transformed using a
computer implemented (optionally human assisted) technique that produces a data
representation of switching and interconnect circuitry, and optionally of the circuit
implementations of soft Equals and soft XOR circuits. In some examples, this data
representation (e.g., data structures or instructions) is stored on a machine readable
medium and is later used to impart functionality when employed in a computer-based
device layout and fabrication system. In other words, when employed in such a
system, the data representation is read and determines the physical circuit
implementation. An example of a data representation includes a representation that
follows Verilog-A or Verilog-AMS specifications. In other examples, a specific code
is not specified and the resulting device is configurable to accommodate a variety of
different codes. Furthermore, the approach is not limited to devices used to decode
codes, as many other analog graph-based computations may be implemented using the

techniques described above.

[0137] In some examples, the device may have somewhat unpredictable
characteristics, for instance, that depend on particular fabrication time (process) or
run-time conditions. For example, gains of transistors may depend on process
characteristics or on operating temperature of the device. Some designs include

selectable and/or configurable gain elements, for example, to adjust the gains of soft
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XOR circuits, gains of current to voltage conversion circuits, gains of current outputs
of memory cells, etc. In some examples, gain is adjusted by controlling resistance
elements, such as but not limited to, resistive elements in current to voltage converters
716 (see FIG. 14) or circuits 812 and 814 (see FIG. 15A) or circuits 816 (see FIG.
15B), for example, at the last stage of the tree of two-input XOR stages. The gain
control can be provide in digital form, and passed through a digital-to-analog
converter to an analog-controllable resistive element (e.g., an appropriately biased
transistor). In some examples, these gains are adjusted to optimize overall system
performance, for instance, in a system calibration stage before operational use or in an
ongoing (e.g., feedback) adaptation of the elements to maintain optimal or near

optimal performance.

[0138] It is to be understood that the foregoing description is intended to illustrate and
not to limit the scope of the invention, which is defined by the scope of the appended

claims. Other embodiments are within the scope of the following claims.
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What is claimed is:

1. An analog processor comprising:

a first memory module (265; 960) for storing a first set of storage values in
respective storage elements (260) each representing a respective input

5 to the processor;

a second memory module (250; 450; 950) for storing a second set of storage
values in analog form in respective storage elements (230), the second
set of storage values including intermediate values determined during

operation of the processor;

10 an analog computation module (390; 590; 592; 593) coupled to the first and
the second memory modules, the processor being configurable such
that in each of a plurality of operation cycles the analog module
determines values for at least some of the second set of storage values
based on at least some of the first and the second sets of storage values;

15 and

an output module (395; 495) for generating a set of outputs from at least some

of the second set of storage values.

2. The processor of claim 1 wherein the first storage module is configured to

store the first set of storage values in analog form.

20 3. The processor of claim 1 wherein the analog computation module is linked to

the first and the second memory modules via analog signal paths.
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4. The processor of claim 3 in which the analog signal paths are each configured
to carry a value on a conductor represented as at least one of a voltage and a current

proportional to the value.

5. The processor of claim 1, wherein the analog module is configurable to
determine values for a different subset of the second set of storage values in each of a

plurality of operation cycles.

6. The processor of claim 1 further comprising input selection circuitry (370;
470, 440) configurable to couple the analog computation module (390) to outputs of

selected memory elements (260, 230) of the first and the second memory modules.

7. The processor of claim 1 further comprising, for each analog computation
module (592), a plurality of signal busses (714), each bus providing an input value to
the analog computation module and being switchably coupled to a plurality of the

storage elements (230) of the second memory module.

8. The processor of claim 7 wherein the storage elements are coupled to
switchably provide a current representation of a storage value stored in the storage
element such that the input value provided to the analog computation module is
represented as a current that is substantially proportional to a sum of the currents

representations provided by the storage elements.

9. The processor of claim 1 further comprising output section circuitry (395;
495) configurable to accept outputs of selected memory elements (260, 230) of the
first and the second memory modules, and to determine outputs of the analog

Proccssor.
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10.  The processor of claim 1 comprising a plurality of analog computation
modules (390), said modules being concurrently operable to determines values for

different subsets of the second set of storage values in each operation cycle.

11.  The processor of claim 10 wherein the second memory module includes a
plurality of section (450), each associated with a corresponding different one of the
analog computation modules (390) for storing values determined by the associated

computation module.

12.  The processor of claim 10 wherein the second memory module (250) is
configured such that in a single operation cycle, each storage element (230) can
provide a storage value to one or more of the analog computation modules (390) and
can accept a determined value to store in the storage element for providing in a

subsequent operation cycle.

13.  The processor of claim 12 wherein each storage element is associated with two
storage locations such that in any one cycle, one storage location is used for accepting

a determined value and one storage location is used for providing a value.

14.  The processor of claim 10 wherein the second memory module includes a
plurality of memory sections (955), groups of the sections forming banks (958),
wherein for each of the analog computation modules each of a plurality of inputs to

the module is associated with a different bank of the memory sections.

15.  The processor of claim 14 wherein the processor is configurable such that in
each cycle, each memory section includes memory elements that either provide values
to one ore more analog computation modules or memory elements that are updated

with values from one or more analog computation modules.
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16.  The processor of claim 1 configured to implement a belief propagation
computation.

17.  The processor of claim 1 configured to implement a factor graph computation.
18.  The process of any of claims 16 or 17 wherein the analog computation module

is configured to accept and provide analog signals that are substantially logarithmic

representations of at least one of probabilities, likelihoods, and likelihood ratios.

19.  The processor of claim 17 wherein the processor is configured to implement a

decoder for a low density parity check (LDPC) code.

20. The processor of claim 1 further comprising:

a controller configured to control operation of the processor to perform a
plurality of iterations of computation, each iteration comprising a

plurality of computation cycles.

21. The processor of claim 20 wherein the plurality of computation cycles is
substantially the same in each iteration, each cycle being associated with a
configuration of the first and the second storage modules to provide inputs and output

to one or more analog computation modules.

22.  The processor of claim 20 wherein the processor is at least one of configured
and configurable to implement a decoder parity check code, and each cycle is
associated with one or more parity check constraints, and wherein the cycles of each

iteration are together associated with all the parity check constraints of the code.
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23.  The processor of claim 1 wherein the analog computation module implements

a network of analog processing elements.

24. The processor of claim 24 wherein the analog processing elements include

clements that represent soft logical operations.

25.  The processor of claim 24 wherein the soft logical operations include soft
XOR operations.

26.  The processor of claim 23 wherein the network of elements is acyclic.

27.  The processor of claim 23 wherein the network of elements includes at least

one cycle of elements, the analog computation module being configured to implement

an relaxation computation.

28. The processor of claim 23 wherein the analog computation module includes
inputs for configuring one or more gain characteristics in the network of processing

elements.

29. A decoder comprising:
a first memory for storing code data having a length in bits;
a second memory for storing intermediate data in analog form;

an analog decoder core coupled to the first memory and to the second
memory, the decoder core having an input length less than the length
of the code data and an output length less than a number of constraints

represented in the code data;
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a controller for, in each of a plurality of cycles, coupling the inputs of the
decoder code to selected values from the first and the second
memories, and coupling outputs of the decoder core for storage in the

second memory; and

an output section coupled to the second memory for providing decoded data

based on values stored in the second memory.

30.  The decoder of claim 29, wherein the first memory is configured for storing

code data in analog form.

31. A method for forming a data representation of an analog processor, the

method comprising:

forming a data representation of a first memory module (265; 960) for storing
a first set of storage values in respective storage elements (260) each

representing a respective input to the processor;

forming a data representation of a second memory module (250; 450; 950) for
storing a second set of storage values in analog form in respective
storage elements (230), the second set of storage values including

intermediate values determined during operation of the processor;

forming a data representation of an analog computation module (390; 590;
592; 593) coupled to the first and the second memory modules, the
processor being configurable such that in each of a plurality of
operation cycles the analog module determines values for at least some
of the second set of storage values based on at least some of the first

and the second sets of storage values; and

forming a data representation of an output module (395; 495) for generating a
set of outputs from at least some of the second set of storage values.
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32.  The method of claim 31 wherein forming the data representations includes

forming Verilog representations of the processor.

33.  The method of claim 31 further comprising fabricating a integrated circuit

implementation of the analog processor according to the formed data representation.

5 34 The method of claim 31 further comprising;:
accepting a specification of a parity check code; and

forming the data representations to represent an implementation of a decoder

for the code.

35. A method comprising forming a data representation for the analog processor

10  or any one of claims 1 through 27.

36.  Software stored on a computer readable medium comprising instructions for
and/or data imparting functionality when employed in a computer component of an
apparatus for forming an integrated circuit implementation of the analog processor or

any one of claims 1 through 27.

15 37. A decoding method comprising:

in each of a plurality of cycles of a decoding operation, applying a portion of
code data and a portion of an intermediate value data to an analog
decoder core, and storing an output of the decoder coder in an analog

storage for the intermediate data; and

20 combining data, including intermediate value data from the analog storage, to

form decoded data representing an error correction of the code data.
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38.  The method of claim 37 wherein each of the plurality of cycles is associated
with a corresponding subset of less that all of a plurality of parity-check constraints of

the code.

39. The method of claim 38 wherein the intermediate value data includes values

cach associated with a different one of the parity check constraints of the code.

108538
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