wo 2014/001801 A1 [N I PF V00O A 0O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/001801 A1

(51

eay)

(22)

(25)
(26)
(30)

1

1

(72

74

3 January 2014 (03.01.2014) WIPOIPCT
International Patent Classification: (81)
GO6F 9/445 (2006.01)
International Application Number:

PCT/GB2013/051692

International Filing Date:
26 June 2013 (26.06.2013)

Filing Language: English
Publication Language: English
Priority Data:

1211423.7 27 June 2012 (27.06.2012) GB

Applicant: NORDIC SEMICONDUCTOR ASA [NO/
—1]; Otto Nielsens veg 12, N-7004 Trondheim (NO).

Applicant (for MG only): WILSON, Timothy James
[GB/GB]; St Bride's House, 10 Salisbury Square, London,
Greater London EC4Y 8ID (GB).

Inventor: STAPLETON, Joel David; Sandgata 12C, N-
7012 Trondheim (NO).

Agent: DEHNS; St Bride's House, 10 Salisbury Square,
London EC4Y 8JD (GB).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: INTEGRATED-CIRCUIT RADIO

RAM

0x2000 000 +
SizeOfRAM

Call Stack

Region 1
(Application}

RLENRO

Region 0
(Firmware)

0x2000 0000

Flash e 13
SizeOfProgMem

Region 1
(Application)

Application Vector Table
CLENRO

Region 0
(Firmware)

Figure 3

Firmware Vector Table

0x000C 0000

(57) Abstract: An integrated-circuit radio com-
munication device (1) comprises a processor (7),
memory (13), and radio communication logic
(17). The memory (13) has a firmware module
(23) stored at a firmware memory address, the
firmware module (23) comprising instructions
for controlling the radio communication logic
(17) according to a predetermined radio pro-
tocol. The processor (7) is configured to receive
supervisor call instructions, each having an as-
sociated supervisor call number, and to respond
to a supervisor call instruction by (i) invoking a
supervisor call handler in the firmware module
(23), and (ii) making the supervisor call number
available to the call handler. A software applica-
tion (27) is loaded into the memory (13) of the
device (1), and stored at a predetermined applic-
ation memory address. It is arranged to invoke a
radio communication function from the firm-
ware module (23) by issuing a supervisor call
instruction having an associated predetermined
supervisor call number corresponding to the
function to be invoked.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

Integrated-Circuit Radio

This invention relates to integrated-circuit radio-communication devices and

methods of configuring such devices.

Integrated-circuit radio-communication devices typically integrate a processor,
memory and radio communication logic on a silicon chip. An antenna may be
fabricated on the silicon or may be connecting externally. The device will have pins
for connecting to a power supply, clock source and any external peripherals such
as sensors, timers, digital-to-analog converters and output devices. The processor
interfaces with the radio communication logic in order to supervise the sending

and/or receiving of radio messages.

Such radio-communication devices, or chips, can be used in a wide range of
wireless products, such as wireless mice and keyboards, controllers for game
consoles, bicycle speedometers, remote controls, garage-door openers, wireless

loudspeakers, etc.

The processor on such a device may run software directly from non-volatile
memory in order to control the radio communication logic according to a

predetermined radio protocol, such as Bluetooth (RTM) or ZigBee (RTM).

The manufacturing of a complete product, such as a wireless mouse, that
incorporates such a radio-communication chip typically involves the manufacturer of
the radio chip supplying it to a product manufacturer, who will integrate the chip into
the rest of the product. The chip manufacturer may also provide a development kit,
containing tools, such as a cross compiler, loader and debugger, and
documentation that allow the product manufacturer to develop, install and debug
custom application software for the radio device. The custom application software
may, for instance, include routines for receiving input from a movement sensor on a
wireless mouse and for transmitting suitable radio messages according to a desired

protocol.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

-2-

A development kit may additionally include source code for a software library and/or
operating system, written by the chip manufacturer. The product manufacturer can
then compile and link the supplied source code with its own custom software
application, to create a single object file for loading to a predetermined address in

the memory of each chip.

The library or operating system may contain instructions that implement a particular
radio protocol. It could include other functions, such as memory management,
processor scheduling, inter-process communication, etc. The application developer
can call these supplied functions from its application code, rather than having to
write them from scratch. This can make development of the application software
simpler and quicker. It can also ease portability between different models of the

radio chip.

The applicant has come to realise, however, that such traditional approaches can

be improved upon.

From one aspect, the invention provides a method of configuring an integrated-
circuit radio communication device, wherein:

the device comprises a processor, memory, and radio communication logic;

the memory has a firmware module stored at a firmware memory address,
the firmware module comprising instructions for controlling the radio communication
logic according to a predetermined radio protocol; and

the processor is configured to receive supervisor call instructions, each
having an associated supervisor call number, and to respond to a supervisor call
instruction by (i) invoking a supervisor call handler in the firmware module, and (ii)
making the supervisor call number available to the call handler,
the method comprising loading a software application into the memory of the
device, such that the application is stored at a predetermined application memory
address, wherein the software application is arranged to invoke a radio
communication function from the firmware module by issuing a supervisor call
instruction having an associated predetermined supervisor call number

corresponding to the function to be invoked.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

-3-

Thus it will be seen by those skilled in the art that, in accordance with the invention,
a software application can be loaded onto a radio-communication chip so as to
interface via supervisor call instructions with a firmware module that provides radio

control functions.

This removes the need for the software application developer to link the application
code with a library or operating system supplied by the chip manufacturer, thereby
resulting in a simpler and more efficient development process. By avoiding the
need for link-time dependencies, the chances of bugs arising during development of
the software application can be reduced. Because there is no need to keep re-
linking the firmware module that provides radio control functions at successive
development stages, the location of member objects in memory can remain
unchanged during the development process. This continuity in memory location

can avoid bugs occurring and can also aid debugging if errors do arise.

In preferred embodiments, the firmware module, stored at the firmware memory
address, is a linked binary. Thus no linking between the firmware module and the
software application is required, or is even possible. It is envisaged that the
firmware module will usually be a compiled binary module (e.g. compiled from the C
programming language), although it is possible that it could be assembled directly

from machine code.

In order to develop the software application, the only non-standard information (i.e.
not determined by the processor or device architecture) that the application
developer need know is: the predetermined software-application memory address;
information relating to the amount of any data memory (e.g. in RAM) available for
the software application to use, and the predetermined correspondence between
supervisor call numbers and radio communication functions in the firmware module.
This information can be sufficient to write, compile and load a software application
for the device. Itis envisaged that the application developer could conveniently be
provided with a header file (e.g. in the C programming language) which would
contain this information. (Such a header file may, of course, optionally contain

other, additional features to provide further assistance to the application developer.)

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

-4-

Another advantage of configuring a device according to methods of the invention is
that the device manufacturer need not reveal confidential source code in its

firmware module to the application developer.

The integrated-circuit device may be provided to a developer of the software
application with the firmware module already pre-loaded on the device. This can
further increase the security of any confidential information contained in the
firmware module. However, this is not essential. The application developer may
instead receive the firmware module as a binary image of pre-compiled instructions

and load the firmware module onto the device.

Thus, from a further aspect, the invention provides a method of configuring an
integrated-circuit radio communication device, wherein the device comprises a
processor, memory, and radio communication logic, the method comprising:

loading a software application into the memory of the device, such that the
application is stored at a predetermined application memory address; and

loading a firmware module into the memory of the device, such that the
firmware module is stored at a predetermined firmware memory address, the
firmware module comprising instructions for controlling the radio communication
logic according to a predetermined radio protocol,
wherein:

the processor is configured to receive supervisor call instructions, each
having an associated supervisor call number, and to respond to a supervisor call
instruction by (i) invoking a supervisor call handler in the firmware module, and (ii)
making the supervisor call number available to the call handler; and

the software application is arranged to invoke a radio communication
function from the firmware module by issuing a supervisor call instruction having an
associated predetermined supervisor call number corresponding to the function to

be invoked.

The firmware module and the software application may be loaded onto the device in
any order or substantially simultaneously. It will be appreciated that loading the two
simultaneously is still fundamentally different from loading a single, linked software

application and library as the skilled person might have done in the past. As before,

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-5-

the firmware module is preferably a compiled and linked binary module (but without

being linked to the software application).

The invention also extends to an integrated-circuit radio communication device

itself.

Thus, from a third aspect, the invention provides an integrated-circuit radio
communication device, wherein:

the device comprises a processor, memory, and radio communication logic;

the memory has a firmware module stored at a firmware memory address,
the firmware module comprising instructions for controlling the radio communication
logic according to a predetermined radio protocol; and

the processor is configured to receive supervisor call instructions, each
having an associated supervisor call number, and to respond to a supervisor call
instruction by (i) invoking a supervisor call handler in the firmware module, and (ii)
making the supervisor call number available to the call handler,;

the memory has a software application stored at a predetermined
application memory address, the software application being arranged to invoke a
radio communication function from the firmware module by issuing a supervisor call
instruction having an associated predetermined supervisor call number

corresponding to the function to be invoked.

From further aspects, the invention provides a firmware module, and a transitory or
non-transitory medium storing the same, for loading on an integrated-circuit radio
communication device comprising a processor, memory, and radio communication
logic, at a firmware memory address, the firmware module comprising:

instructions for controlling the radio communication logic according to a
predetermined radio protocol; and

a supervisor call handler arranged to respond to a supervisor call instruction
being issued by a software application by performing a radio communication
function corresponding to a supervisor call number associated with the supervisor

call instruction.

The firmware module is preferably a linked binary module.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

-6-

From still further aspects, the invention provides a software application, and a
transitory or non-transitory medium storing the same, for loading on an integrated-
circuit radio communication device comprising a processor, memory, and radio
communication logic, at a predetermined software application memory address, the
software application being arranged to invoke a radio communication function by
issuing a supervisor call instruction having an associated, predetermined supervisor

call number corresponding to the function to be invoked.

In preferred embodiments of any of the above aspects, the firmware module is
arranged so that all the radio communication functions provided by the firmware
module are invoked by supervisor call instructions having respective supervisor call
numbers according to a predetermined correspondence between numbers and
functions. In this way, no other mechanism for invoking firmware functions need be
supported by the device, thereby avoiding substantial static or run-time link
dependencies, and simplifying the device and development of the software

application.

It will be appreciated that the firmware module may provide other functions, not
necessarily related to radio communication, which the software application can
invoke; for example, an encryption algorithm. Preferably the device is configured
so that the invoking of all such functions is carried out by the issuing of supervisor

call instructions.

Because embodiments of the device need not contain a traditional, full operating
system, the application developer can be free to develop the software application
as a native application for the processor architecture, without having to learn how to
interface with a proprietary operating system supplied by the chip manufacturer.
Especially when the processor is well-known in the art, this is a particularly

attractive feature for the application developer.

If the device has a hardware abstraction layer in addition to the firmware module,
the software application may interface directly with this layer. Application-specific

drivers may also be loaded onto the device.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-7-

Configuring the device may comprise using the correspondence between
supervisor call numbers and radio communication functions when compiling the
software application. Compiling or loading the software application may make use
of the predetermined software-application memory address. In some embodiments,
configuring the device may comprise receiving the correspondence between
supervisor call numbers and radio communication functions and/or receiving the
predetermined software-application memory address, e.g. as a header file. Such

information may then be used when compiling the software application.

The device is preferably configured so that no run-time linking is required when

executing the software application on the device.

The processor may implement the supervisor call instructions in any appropriate
way. In one set of preferred embodiments, the processor is an ARM Ltd. (RTM)
processor, such as a processor from the Cortex-M family, and the supervisor call

instructions are then SVC instructions, supported by the processor.

The software application may issue a supervisor call instruction by executing a
dedicated SVC processor instruction. Such an instruction may be generated by a
compiler when compiling the software application, e.g. by the developer including a

specific pre-processor directive in the source code for the software application.

The number associated with the supervisor call may be made available to the call

handler via a register or via the call stack or via any other appropriate mechanism.

Preferably, the processor and/or software application are configured to make the
values of one or more arguments available to the supervisor call handler. In this
way, the software application can pass arguments to a radio communication

function, such as data to be transmitted. The call handler may be able to pass a

return value from the radio communication function to the software application.

The processor is preferably configured to handle a supervisor call instruction from
the software application as an exception (software interrupt). In this way, the
software application can interrupt less time-critical processing when a time-critical

radio communication function needs to be invoked.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

The processor preferably supports a plurality of interrupt priorities. In some
embodiments, some event-driven functions in the firmware module are assigned a
relatively high priority, while others are assigned a relatively low priority. Preferably,
functions associated with time-critical radio communication operations are assigned

the relatively high priority.

The software application may be arranged to handle interrupts (forwarded by the
firmware module, as explained below) and may have a relatively high priority for
some event-driven functions and a relatively low priority for others. The software
application priorities are preferably interleaved with those of the firmware module.
The highest firmware priority level is preferably higher than the highest software-
application priority level, so that critical radio communication operations,
implemented in the firmware module, can always take precedence over the
software application. This can provide protection against careless programming in

the software application.

The firmware module is preferably configured to invoke a function in the software
application in response to the firmware module receiving an interrupt. Such an

interrupt may arise, for example, from a peripheral, such as a movement sensor.

The firmware module and the software application may each have a respective
interrupt vector table. The two tables preferably use the same interrupt-vector-
address offsets as each other. The offsets of interrupt vector addresses in the
firmware module's vector table (and hence the software application's vector table,
when the two use the same offsets) are typically fixed by the processor
architecture. The device is preferably configured to use the firmware module's

vector table when processing an interrupt (i.e. as the system interrupt vector table).

However, the firmware module is preferably configured so that all interrupts that the
firmware module is not programmed to handle itself are passed on to the software
application. This may be implemented by the firmware module causing execution
to branch to the address contained in the corresponding offset in the software
application's vector table whenever it is not configured to handle a particular

interrupt. This is possible because the software application is loaded to a

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-9-

predetermined memory address, so that the firmware module can know, in
advance, where to find the software application's vector table once the application

has been loaded onto the device.

For example, in some embodiments the RESET interrupt handler address is always
placed at offset = O by the compiler. Therefore, the RESET handler address in the
firmware module's vector table will be at address 0x0000 0000 + 0 = 0x0000 0000
in the memory. The RESET handler address in the software application's vector
table is at address CLENRO + 0 = CLENRO, where CLENRQO is the predetermined

base memory address at which the software application is located.

This interrupt forwarding mechanism conveniently allows the software application to
be programmed to handle hardware interrupts in substantially the same way as if
no firmware module were present on the device. |.e. the firmware module can be
invisible to the software application for the purposes of receiving interrupts. The
forwarding is preferably implemented in such a way that it adds latency of fewer
than about 30 instructions or less than about 3 microseconds, compared with a

direct hardware interrupt to a software application.

The firmware module may be arranged to be substantially disabled. Such disabling
may be carried out via a call to the firmware module (preferably using the SVC
mechanism). Disabling the firmware module may cause the firmware module to
reset the protocol stack and to disable any memory protection (if present) in order
to give resources back to the software application. When disabled, the firmware
module preferably forwards all interrupts to the software application (even those

which it might otherwise have handled itself).

The processor preferably supports seamless transitions from one interrupt priority
level to another. This is sometimes referred to as tail-chaining. This provides an
elegant means of transferring control between the software application and the

firmware module (and vice versa) so as to allow time-critical radio communication

functions to take precedence when necessary.

The device preferably comprises memory protection logic arranged to intercept

memory access instructions. This logic may be located between the processor and

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-10 -

the memory. It may use the location of a memory-access instruction (i.e. where the
processor has read the instruction from) to determine whether to allow access. The
memory protection logic is preferably configured to prevent the software application

from reading or overwriting the firmware module (or both).

Such memory protection can provide benefits in protecting sensitive information in
the firmware module from being read by the developer of the software application.
It can also minimise potential damage from programming errors in the software
application, as well as aiding the detection and correction of bugs in the software

application.

The memory protection logic may be configured to protect RAM associated with the

firmware module from being read or written to by the software application (or both).

The processor, memory, and radio communication logic are preferably integrated
on a single silicon chip. However, they may alternatively be integrated in a multi-

chip module.

The memory is preferably a non-volatile memory such as EEPROM or flash. It
preferably supports random-access reading, so that the firmware module and

software application can be executed directly from the memory.

The skilled person will appreciate that the device will typically also comprise volatile
memory. It may additionally comprise one or more peripherals. It may have
connections for receiving power and a clock signal. It may have a connection for an
antenna. It may have one or more input and/or output interfaces such as a serial

connection.

Optional or preferred features of one aspect or embodiment described herein may,

wherever appropriate, be applied to any other aspect or embodiment.

Certain preferred embodiments of the invention will now be described, by way of
example only, with reference to the accompanying drawings, in which:
Figure 1 is a schematic drawing of a microcontroller embodying the

invention;

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-11 -

Figure 2 is a schematic drawing showing major software components within
the microcontroller architecture;

Figure 3 is a schematic memory map for the microcontroller;

Figure 4 is a figurative diagram of different processor interrupt priority levels;

Figures 5a - 5¢ are figurative diagrams illustrating various interrupt
scenarios;

Figure 6 is a figurative diagram of source code elements illustrating the
software application calling a function in the firmware module;

Figure 7 is a figurative diagram of source code elements illustrating the
software application using a system call to invoke an internal function; and

Figure 8 is a figurative diagram of source code elements illustrating the

software application receiving a hardware interrupt.

Figure 1 shows an integrated-circuit microcontroller 1, sometimes known as a
system-on-chip, which comprises clock logic 3, which may include a resistor-
capacitor oscillator and/or may receive an input from an off-chip crystal oscillator
(not shown), power management circuitry 5, a processor 7 (e.g. an ARM (RTM)
Cortex-M0), memory protection logic 9, RAM 11, non-volatile flash memory 13, one

or more peripherals 15, radio communication logic 17 and input/output circuitry 19.

These components are interconnected in a conventional manner, e.g. using lines
and buses (not shown). The memory protection logic 9 is situated so as to intercept
instructions from the processor 7 to the RAM 11 and flash memory 13. When
installed in a product, the microcontroller 1 may be connected to a number of
external components such as a power supply, radio antenna, crystal oscillator,

sensors, output devices, etc.

Figure 2 shows the microcontroller 1, above which sits an optional hardware
abstraction layer 21, such as the ARM (RTM) Cortex Microcontroller Software
Interface Standard. The architecture also includes a firmware module 23, drivers
25 and software application 27. The drivers 25 may be specific to the software

application 27.

The firmware module 23 is a binary application comprising a number of embedded

software blocks. A radio protocol block 31 implements one or more wireless

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-12 -

protocol stacks. A radio event manager 33 provides access scheduling for the
radio communication logic 17 and event multiplexing. A library 35 provides shared
hardware resource management and functions such as random number generation,
configuring interrupts and priority, power management (e.g. for enabling and
disabling peripherals), encryption functions, etc. A firmware manager 37 supports
enabling and disabling the firmware module, and enabling and disabling the

wireless protocol stack.

The firmware module 23 owns the system vector table and is the entry point for the

program on all resets.

An application programming interface (API) 29 for the firmware module 23 allows
the software application 27 to invoke functions in the firmware module 23. Itis
implemented entirely using system calls. When using an ARM (RTM) processor,
each API function prototype is mapped to a firmware function via an associated
supervisor call (SVC) number at compile time. This mapping can be provided to the

developer of the software application 27 to allow the functions to be called correctly.

The firmware module 23 can communicate events to the software application 27 as
software interrupts, the content of which is buffered until read (polled) by the

software application 27. The reading is done through an API call (e.g. event_get()).

The software application 27 can access the microcontroller (1) hardware directly or
via a hardware abstraction layer 21, e.g. by means of application-specific drivers
25, in addition to being able to use the firmware module 23 to use the hardware

indirectly.

Figure 3 shows how the RAM 11 and flash 13 are shared between the firmware
module 23 and the software application 27 (including any application-specific
drivers 25). When using an ARM (RTM) Cortex-MO processor 7, the flash 13 is
assigned addresses from zero (0x0000 0000) upwards, to its capacity,
SizeOfProgMem and the RAM 11 is assigned addresses from 0x2000 0000
upwards to (0x2000 0000 + SizeOfRAM). Different address values may be used if

a different type of processor is used.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-13 -

The flash 13 comprises two distinct regions either side of address CLENRO (code
length region 0). Region 0, between zero and CLENRO, is where the firmware
module 23 is loaded. Its interrupt vector table is stored at address zero. Region 1,
extending upwards from CLENRO, is where the software application 27 is loaded. It
too has an interrupt vector table, at address CLENRO, the purpose of which is
explained below. It will be appreciated that the device 1 may have other non-
volatile memory (not shown) which may be used for other purposes, such as storing

configuration information or flags.

The RAM 11 similarly has a Region O, from the base address 0x2000 000 to
RLENRGO, and a Region 1, extended upwards from RLENRO. RAM Region 0
provides data storage for the firmware module 23 while RAM Region 1 provides
data storage for the software application 27. A call stack is shared between the
firmware module 23 and the software application 27 and grows downwards, e.g.
from 0x2000 0000 + SizeOfRAM. The memory allocated to the call stack must be
big enough for the needs of both the software application 27 and the firmware

module 23.

The firmware module 23 call-stack usage requirement may be published for the
device 1 by the chip manufacturer. The developer of the software application 27
must then define an initial stack pointer and reserve sufficient stack memory for
both the firmware module 23 and his software application 27. The firmware module

23 will initialize the main stack pointer on reset.

The memory protection logic 9 is arranged to intercept all memory access requests
(e.g. read requests) from the processor 7 to the flash 13 and the RAM 11. It
determines the source of the access request instruction (e.g. whether the request is
from the firmware module 23 or from the software application 27). It also accesses
memory protection configuration data (e.g. stored in one or more dedicated
registers) which specifies respective access permissions for the various sources,

and allows or denies the access request accordingly.

In some preferred embodiments of the invention, the software application 27 is
denied read and/or write access to flash Region 0 and to RAM Region 0. This

protects confidentiality for the firmware module 23 and can prevent inadvertent or

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-14 -

malicious writing by the software application 27 to memory locations allocated to
the firmware module 23, thereby increasing robustness and security. The software
application flash Region 1 may also be protected from read access, e.g. to protect

against read back via an external debugging interface.

This means that the initial stack pointer cannot be in RAM Region

0 as the software application 27 does not have write access to this region. In other
embodiments of the invention, the call stack may be in two parts, where the
firmware module 23 call stack is located in RAM Region 0 and the software

application 27 call stack is located in RAM Region 1.

Figure 4 shows the different interrupt levels 41 provided by an ARM (RTM) Cortex-
MO processor, with increasing priority in the direction of the arrow, and how these
levels are mapped to the interrupt levels 43 used by the firmware module 23 and

software application 27.

Above the Main background context are four interrupt priorities which are used as
follows, in increasing order of priority: software application low priority, firmware
module low priority, software application high priority and firmware module high
priority. The high-priority software application interrupt is used for critical interrupts

where low latency is required.

Figures 5a - 5¢ show various examples of possible changes in priority level.

Figure 5a illustrates a background main process being interrupts by the software
application at low priority, e.g. by a serial driver. The software application 27 then
makes an API call to the firmware module 23 (by triggering an supervisor call (SVC)
exception). The firmware module 23 handles the call at the low-priority firmware
level before returning to the application low-priority level. Finally, the software
application 27 completes its operation and execution returns to the main

background level.

Figure 5b illustrates an API call to the firmware module 23 being made from the
main context (by triggering an SVC exception). The execution of the API function in

firmware low-priority is interrupted by a high-priority software application exception.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

-15 -

This may be to service a sensor input, for example. Once the software application
finishes its high-priority execution, the firmware API call can continue at the lower

priority level, before finally returning to the background main process.

Figure 5c illustrates a high-priority interrupt of a background main process by the
firmware module 23. This could be due to a time-critical radio communication
interrupt, such as an incoming radio packet, to which the radio event manager 33
must respond. The interrupt service routine in the firmware module 23 sets a low-
priority firmware exception flag to signal to the higher levels of the radio protocol
stack. On completion of the high-priority routine, the low-priority routine is
executing immediately due to the tail-chaining capabilities of the processor 7 (i.e.
without having to revert to the background main level in between). The low-priority
firmware routine in turn sets an exception flag to signal the software application 27
that a radio data packet has been received. This exception is chained after
completion of the low-priority firmware module routine. In this example, the
software application 27 then makes an API call to the firmware module 23 via an
SVC which completes and returns context from the SVC to the software application
27. Finally, the software application low-priority operation completes and execution

returns to the main level.

Figures 6 - 8 illustrate by example how control can pass between the software
application 27 and the firmware module 23. Uncompiled C language code extracts
are used for illustration. Of course, in reality, binary instructions from the flash
memory 13 are executed by the processor 7. The numbered arrows indicate

successive execution steps.

Figure 6 shows the software application 27 calling a function through the API 29 of
the firmware module 23. The application 27 calls a function with a prototype
imported from the firmware API 29 using a firmware header file supplied to the
software-application developer by the chip manufacturer. The __SVC(x) pragma
causes the compiler to insert an instruction in the object code which causes a
supervisor call (SVC) exception when the function is called by the software

application 23.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-16 -

The processor 7 invokes the SVC handler via the firmware module's interrupt vector
table (which acts as the system interrupt vector table). The SVC number
associated with the function called by the software application 27 is passed to the
SVC handler, along with any arguments. Such arguments may be passed via
registers or via the call stack, depending on the processor. The SVC handler uses
the SVC number to call the correct firmware module function. This could be a radio
control function (e.g. an instruction to transmit data by radio), or a firmware
management function (e.g. to disable the firmware module), or a library function
(e.g. to generate a random number). The function executes and then returns to the
software application 27. A return value may be available in a register or on the call

stack.

Figure 7 shows the software application 27 invoking one of its own functions via a
system call. It might do this in order to change from a low priority to a high priority
execution level. Similarly to the situation in Figure 6, the software application 27
triggering a SVC so as to cause execution to pass to an SVC handler in the
firmware module 27. However, in this case, the instruction uses an SVC number in
a range that is reserved for the software application's own use. The firmware
module 23 thus causes execution to branch to a handler function
(app_systemcall_function()) in the software application 27, potentially at a different

priority level to that of the preceding operation.

Figure 8 shows how a hardware interrupt can be received by the software
application 27. The firmware module 23 is arranged to forward interrupts to the
software application 27 by default, unless they are interrupts that the firmware
module 23 is configured to handled. Additionally, if the firmware module 23 has
been disabled by the software application 27 (e.g. via a suitable API call to the
firmware manager 37), then the firmware module will forward all interrupts to the

software application 27.

On receiving an interrupt, e.g. from a motion sensor, an interrupt handler in the
firmware module 23 is vectored to. This checks whether the firmware module 23 is
enabled and whether it is an interrupt that the firmware module 23 is set up to deal
with. If so, the firmware module 23 handles the interrupt. If not, it branches

execution to an interrupt handler routine in the software application 27. The

WO 2014/001801 PCT/GB2013/051692

-17 -

firmware module 23 can know where to find this routine because the location of the
software application vector table (at CLENRO) is predetermined, and the offsets into

this vector table are the same as the offsets into the firmware module's vector table.

5 Inthis way, a firmware module implementing radio control logic, programmed to a
firmware memory address on an integrated radio communication chip, can be

configured and used both securely and conveniently.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

-18 -

Claims

1. A method of configuring an integrated-circuit radio communication device,
wherein:

the device comprises a processor, memory, and radio communication logic;

the memory has a firmware module stored at a firmware memory address,
the firmware module comprising instructions for controlling the radio communication
logic according to a predetermined radio protocol; and

the processor is configured to receive supervisor call instructions, each
having an associated supervisor call number, and to respond to a supervisor call
instruction by (i) invoking a supervisor call handler in the firmware module, and (ii)
making the supervisor call number available to the call handler,
the method comprising loading a software application into the memory of the
device, such that the application is stored at a predetermined application memory
address, wherein the software application is arranged to invoke a radio
communication function from the firmware module by issuing a supervisor call
instruction having an associated predetermined supervisor call number

corresponding to the function to be invoked.

2. A method of configuring an integrated-circuit radio communication device,
wherein the device comprises a processor, memory, and radio communication
logic, the method comprising:

loading a software application into the memory of the device, such that the
application is stored at a predetermined application memory address; and

loading a firmware module into the memory of the device, such that the
firmware module is stored at a predetermined firmware memory address, the
firmware module comprising instructions for controlling the radio communication
logic according to a predetermined radio protocol,
wherein:

the processor is configured to receive supervisor call instructions, each
having an associated supervisor call number, and to respond to a supervisor call
instruction by (i) invoking a supervisor call handler in the firmware module, and (ii)

making the supervisor call number available to the call handler; and

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

-19 -

the software application is arranged to invoke a radio communication
function from the firmware module by issuing a supervisor call instruction having an
associated predetermined supervisor call number corresponding to the function to

be invoked.

3. A method as claimed in claim 1 or 2, wherein the firmware module is a

linked binary module.

4. A method as claimed in any preceding claim, wherein the firmware module
is arranged so that all radio communication functions provided by the firmware
module are invoked by supervisor call instructions having respective supervisor call
numbers, according to a predetermined correspondence between numbers and

functions.

5. A method as claimed in any preceding claim, further comprising compiling
the software application and using the correspondence between supervisor call

numbers and radio communication functions in said compiling.

6. A method as claimed in any preceding claim, further comprising using the
predetermined software-application memory address when compiling and/or

loading the software application.

7. A method as claimed in any preceding claim, wherein the software
application is arranged to issue a supervisor call instruction by executing a

dedicated SVC processor instruction.

8. A method as claimed in any preceding claim, wherein the firmware module
and the software application each has a respective interrupt vector table, wherein
the device is configured to use the vector table of the firmware module when

processing an interrupt, and wherein the firmware module is configured so that all
interrupts that the firmware module is not programmed to handle itself are passed

on to the software application.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-20 -

9. A method as claimed in claim 8, wherein the interrupt vector tables of the
firmware module and the software application use the same interrupt-vector-

address offsets as each other.

10. A method as claimed in any preceding claim, wherein the device comprises
memory protection logic arranged to intercept memory access instructions and
being configured to prevent the software application from reading or overwriting the

firmware module.

11. An integrated-circuit radio communication device, wherein:

the device comprises a processor, memory, and radio communication logic;

the memory has a firmware module stored at a firmware memory address,
the firmware module comprising instructions for controlling the radio communication
logic according to a predetermined radio protocol; and

the processor is configured to receive supervisor call instructions, each
having an associated supervisor call number, and to respond to a supervisor call
instruction by (i) invoking a supervisor call handler in the firmware module, and (ii)
making the supervisor call number available to the call handler,;

the memory has a software application stored at a predetermined
application memory address, the software application being arranged to invoke a
radio communication function from the firmware module by issuing a supervisor call
instruction having an associated predetermined supervisor call number

corresponding to the function to be invoked.

12. A device as claimed in claim 11, wherein the firmware module is arranged
so that all radio communication functions provided by the firmware module are
invoked by supervisor call instructions having respective supervisor call numbers,

according to a predetermined correspondence between numbers and functions.

13. A device as claimed in claim 11 or 12, wherein the firmware module is
arranged so that all functions provided by the firmware module are invoked by the

issuing of supervisor call instructions.

14. A device as claimed in any of claims 11 to 13, configured so that no run-time

linking is required when executing the software application on the device.

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

-21 -

15. A device as claimed in any of claims 11 to 14, wherein the software
application is arranged to issue a supervisor call instruction by executing a

dedicated SVC processor instruction.

16. A device as claimed in any of claims 11 to 15, wherein the processor and/or
software application are configured to make the values of one or more arguments

available to the supervisor call handler.

17. A device as claimed in any of claims 11 to 16, wherein the processor is
configured to handle a supervisor call instruction from the software application as
an exception, wherein the processor supports a plurality of interrupt priorities, and
wherein some functions in the firmware module are assigned a relatively high

priority, with other functions in the firmware module having a relatively low priority.

18. A device as claimed in claim 17, wherein the software application is
arranged to handle interrupts, assigning a relatively high priority to some event-

driven functions, and a relatively low priority to other event-driven functions.

19. A device as claimed in claim 18, wherein the high and low software
application priorities are interleaved with the high and low firmware module

priorities.

20. A device as claimed in claim 18 or 19, wherein the highest firmware priority

level is higher than the highest software-application priority level.

21. A device as claimed in any of claims 11 to 20, wherein the firmware module
is configured to invoke a function in the software application in response to the

firmware module receiving an interrupt.

22. A device as claimed in any of claims 11 to 21, wherein the firmware module
and the software application each has a respective interrupt vector table, wherein
the device is configured to use the vector table of the firmware module when

processing an interrupt, and wherein the firmware module is configured so that all

WO 2014/001801 PCT/GB2013/051692

10

15

20

25

30

35

-22-

interrupts that the firmware module is not programmed to handle itself are passed

on to the software application.

23. A device as claimed in claim 22, wherein the interrupt vector tables of the

firmware module and the software application use the same offsets as each other.

24. A device as claimed in any of claims 11 to 23, wherein the firmware module
can be substantially disabled via a call to the firmware module, so as to cause the
firmware module to reset the protocol stack and to disable any memory protection
in order to give resources back to the software application, and wherein, when

disabled, the firmware module will forward all interrupts to the software application.

25. A device as claimed in any of claims 11 to 24, wherein the processor

supports seamless transitions from one interrupt priority level to another.

26. A device as claimed in any of claims 11 to 25, comprising memory
protection logic arranged to intercept memory access instructions and being
configured to prevent the software application from reading or overwriting the
firmware module and/or from reading or writing to RAM associated with the

firmware module.

27. A firmware module for loading on an integrated-circuit radio communication
device comprising a processor, memory, and radio communication logic, at a
firmware memory address, the firmware module comprising:

instructions for controlling the radio communication logic according to a
predetermined radio protocol; and

a supervisor call handler arranged to respond to a supervisor call instruction
being issued by a software application by performing a radio communication
function corresponding to a supervisor call number associated with the supervisor

call instruction.

28. A firmware module as claimed in claim 27, being a linked binary module.

29. A software application for loading on an integrated-circuit radio

communication device comprising a processor, memory, and radio communication

WO 2014/001801 PCT/GB2013/051692

-23-

logic, at a predetermined software application memory address, the software
application being arranged to invoke a radio communication function by issuing a
supervisor call instruction having an associated, predetermined supervisor call

number corresponding to the function to be invoked.

WO 2014/001801 PCT/GB2013/051692

1/8
A/ 1
3 _ —~
N\ Clock Power \\ 5
~—
v Memory N
\\ Processor Protection ~9
N RAM Flash s
~—
15 : : TN
\\ Peripherals Radio N7
19 —
\ /10

Figure 1

WO 2014/001801

PCT/GB2013/051692

2/8

27 —

_

Application

25 — i | i
\ : Firmware Module \
| 1 23
i | Librar Radio Protocol —~
Drivers | i | Y y\
35— | 31
e ~ !
: Firmware Radio Event Manager \:\
| Manager ~ 33
T | 1
37 +— — ;
Hardware Abstraction Layer \\
21
Microcontroller

Figure 2

WO 2014/001801 PCT/GB2013/051692

11
RAM e
0x2000 000 +
SizeOfRAM Call Stack
Region 1
(Application)
RLENRO
Region O
(Firmware)
0x2000 0000
Flash 13
SizeOfProgMem
Region 1
(Application)
Application Vector Table
CLENRO
Region O
(Firmware)
Figure 3
Firmware Vector Table
0x0000 0000

WO 2014/001801

A

41

Reset

Non-maskable
interrupt

Hard fault

PO

P1

P2

P3

Main

PCT/GB2013/051692

4/8

Figure 4

43

Firmware High

SW Application High

Firmware Low

SW Application Low

Main

WO 2014/001801 PCT/GB2013/051692

5/8

Firmware High

SW Application High

A 4

Firmware Low

\ 4
A 4

SW Application Low

\ 4

Main >

Figure 5a

Firmware High

A 4

SW Application High

\ 4
A 4

Firmware Low

SW Application Low

[
»

\ 4

Main

Figure 5b

A 4

Firmware High

SW Application High

v
A 4

Firmware Low

\ 4
A 4

SW Application Low

\ 4

Main >

Figure 5c

WO 2014/001801 PCT/GB2013/051692

6/8

Application
{

#include firmware.h

inttmp = _SVC(x) firmware_function(a, b, c, d); \

CLENRO +
0x0000 00CO

Application Vector Table

CLENRO
Firmware @
int firmware_function(int arg0, int arg1, int arg2, int arg3)
{
return(e);
}
SVC_Handler
@ switch (SVC_number)
case Xx:

Ret = firmware_function(arg0, arg1, arg2, arg3); —

0X0000 00CO |f---=-=-=-= == - mm oo oo
System/Firmware Vector Table

&SVC_Handler

0x0000 0000

Figure 6

WO 2014/001801

CLENRO +
0x0000 00CO

CLENRO

©)

0x0000 00CO

0x0000 0000

PCT/GB2013/051692

7/8

Application

__SVC(y) app_systemcall_function(); x

}

int app_systemcall_function()

{

Application Vector Table

&SVC_Handler <—
Firmware
SVC_Handler @
switch (SVC_number)
casey:

Branch App_SVC_Handler

System/Firmware Vector Table
&SVC_Handler 4_//

Figure 7

WO 2014/001801

PCT/GB2013/051692

8/8

Application
Interrupt#X_Handler()

{

CLENRO +
0x0000 00CO

Application Vector Table
&lnterrupt#X_Handler
CLENRO *

\
\
Al

‘ Firmware

Interrupt#X_Handler .

4 ,/@
Branch (CLENRO + Int#X_offset)

0x0000 00CO

TR | S vectr Tate

System/Firmware Vector Table
&lnterrupt#X_Handler
0x0000 0000

Figure 8

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2013/051692

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/445
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Embedded Software Development",

Retrieved from the Internet:

[retrieved on 2013-09-18]
the whole document

March 2007 (2007-03), XP0OO2713220,

URL:http://infocenter.arm.com/help/topic/c
om.arm.doc.dai®179b/AppsNotel79.pdf

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2609/318078 Al (GIRARD ERWAN [FR] ET 1-29

AL) 24 December 2009 (2009-12-24)

paragraph [0023] - paragraph [0054]

paragraph [0065] - paragraph [0130]
Y ARM: "Application Note 179 Cortex-M3 1-29

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

19 September 2013

Date of mailing of the international search report

02/10/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kusnierczak, Pawel

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2013/051692

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

page 4, line 20 - page 27, line 23

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A DE 36 32 139 Al (BBC BROWN BOVERI & CIE 1-4.6,
[CH]) 7 April 1988 (1988-04-07) 8-12,14,

21-29

the whole document

A EP 1 014 263 A2 (APPLIED MICROSYSTEMS CORP 1-3,11,
[US]) 28 June 2000 (2000-06-28) 14,27-29
paragraph [0022] - paragraph [0063]

A CA 2 143 488 Al (IBM CANADA [CA]) 1-3,11,
28 August 1996 (1996-08-28) 14,27-29

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2013/051692
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2009318078 Al 24-12-2009 EP 2067099 A2 10-06-2009
FR 2905819 Al 14-03-2008
Uus 2009318078 Al 24-12-2009
WO 2008031855 A2 20-03-2008
DE 3632139 Al 07-04-1988 NONE
EP 1014263 A2 28-06-2000 CA 2292123 Al 14-06-2000
EP 1014263 A2 28-06-2000
JP 2000181725 A 30-06-2000
US 2002073398 Al 13-06-2002
US 2003212983 Al 13-11-2003
CA 2143488 Al 28-08-1996 CA 2143488 Al 28-08-1996
JP HO8339296 A 24-12-1996
us 5916308 A 29-06-1999

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report
	Page 35 - wo-search-report

