C. R. BOWMAN ET AL

LOCKING DEVICE FOR CARBURETORS

Filed Dec. 22, 1921

Fig. 1

Fig. 2

Inventor
and C. Robert Bowman

Chris. E. Yates

[Signature]

Attorney
To all whom it may concern:

Be it known that we, CORNELIUS ROBERT BOWMAN and CHARLES E. YATES, citizens of the United States, residing at Allentown, in the county of Lehigh and State of Pennsylvania, have invented certain new and useful Improvements in Locking Devices for Carburetors; and we do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the art to which it appertains to make and use the same.

This invention relates to new and useful improvements in locks, and more particularly to a device for locking the controlling valve between the carburetor and the cylinders of an internal combustion engine, the main object of the present invention being the provision of a lock which will securely lock the controlling valve disposed between the carburetor and the cylinder of an internal combustion engine whereby to prevent the passage of gas to the cylinder whereby to protect the motor vehicle from being used by an unauthorized person or from being stolen, as the locking of the controlling valve will prevent the entrance of gas into the cylinders for operating the engine.

Another object of the present invention is the provision of a lock which can be quickly and readily mounted upon any well known make of motor vehicle using an internal combustion engine, and which can be readily locked the valve which controls the inlet of gas from the carburetor to the cylinders of the engine when the motor vehicle is left standing any length of time so as to prevent the same from being stolen.

With the above and other objects in view, the invention consists in the novel features of construction, combination and arrangement of parts hereinafter more fully set forth, pointed out in the claim and shown in the accompanying drawings, in which:

Figure 1 is a side elevation of our improved locking device showing the same in its applied position, and

Figure 2 is a sectional view taken on the line 2—2 of Fig. 1, looking toward the locking device.

Referring now more particularly to the drawings, attention is called to the construction of the improved locking device, which includes a plate 1, said plate having one end disposed between the flange 2 which is formed on the outer end of the inlet pipe or conduit 3 coming from the carburetor 4, and the flange 5 on the inlet manifold 6. This plate 1 is securely held in position by having the bolts 7 which retain the flange 2 in position with respect to the manifold 6, extend through portions of the plate 1 as illustrated in the accompanying drawing.

This plate 1, is provided at its lower end with a suitable opening forming direct communication between the inlet pipe 3 and the intake manifold 6. Supported upon the upper end of the plate 1 is a housing 8 which contains a lock of any well known make or a special make of lock, if so desired, having the usual key way 9 through which the key is inserted to manipulate the lock. The lock contained within the housing 8 includes a locking bolt generally indicated by the numeral 10, said locking bolt 10 extending across a slot or passageway in the housing and being adapted to cooperate with the finger piece 11 on the arm 12 to lock communication between the inlet pipe 3 and the manifold 6. This is carried out by having the arm 12 mounted upon the transverse shaft 13 upon which the butterfly valve 14 is mounted within the inlet pipe 3. The usual controlling rod 15 is connected to the arm 12 whereby to actuate the valve 14 to open and close communication between the inlet pipe 3 and the manifold 6.

In the drawings, we have illustrated the valve member 14 in its locked position, the arm 12 being disposed in a substantially vertical plane and the locking bolt 10 arranged in front of the arm 12 and beneath the finger piece 11. In order to unlock the valve to permit actuation of the same through the medium of the rod 15, a key is inserted through the key way 9 and by manipulating the lock, the bolt 10 may be reciprocated to withdraw the same from in front of the arm 12. The arm 12 can then be readily actuated through the medium of the controlling rod 15, the forward movement of the arm 12 rotating the shaft 13 upon which the valve member 14 is mounted, said valve member being moved toward a horizontal position to open communication between the carburetor and the cylinder of the engine. When it is desired to stop the engine, and lock the same against further control, the arm 12 is moved to a substantially upright position as shown in Fig. 1, moving the valve member 14 to a closed po-
position as illustrated. The lock contained within the housing 8 is then actuated to move the bolt 10 in front of the arm 12 and beneath the finger 11, thus preventing any movement on the part of the arm 12 for manipulating the valve 14. From this it will be apparent that any unauthorized person will be unable to operate the engine in view of the fact that the fuel supply to the cylinders of the engine is entirely cut off and cannot be opened until the locking bolt 10 has been withdrawn from its present position in front of the arm 12.

This device is extremely simple in construction and operation and can be quickly and readily applied to any well known make of motor vehicle in use at the present time for locking the same against use by an unauthorized person and thus prevent the taking and using of motor vehicles without the permission of the owner.

What we claim is:

A valve lock for internal combustion engines comprising a plate having parallel plane faces and an orifice adapting a part of said plate to be used as a gasket in association with the junction of the intake fuel conduit and the engine, a housing on said plate adapted to receive the operative lever of a valve in the intake fuel conduit and locking means in said housing adapted to coact with said operative lever when in said housing to prevent the withdrawal of same.

In testimony whereof we affix our signatures.

CORNELIUS R. BOWMAN.
CHARLES E. YATES.