

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/149641 A1

(43) International Publication Date

22 September 2016 (22.09.2016)

WIPO | PCT

(51) International Patent Classification:
H04L 29/06 (2006.01) *H04W 76/02* (2009.01)
H04L 29/10 (2006.01)

(74) Agents: AHN, Dohyun et al.; Fenwick & West LLP, 801 California Street, Mountain View, CA 94041 (US).

(21) International Application Number: PCT/US2016/023199

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date: 18 March 2016 (18.03.2016)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/135,007 18 March 2015 (18.03.2015) US
15/073,398 17 March 2016 (17.03.2016) US

(71) Applicant: LATTICE SEMICONDUCTOR CORPORATION [US/US]; 111 SW 5th Avenue, Suite 700, Portland, OR 97204 (US).

(72) Inventors: BABBAGE, David, Noel; c/o Lattice Semiconductor Corporation, 111 SW 5th Avenue, Suite 700, Portland, OR 97204 (US). DOAN, Chinh, Huy; c/o Lattice Semiconductor, 111 SW 5th Avenue, Suite 700, Portland, OR 97204 (US). FORBES, Mark, Graham; c/o Lattice Semiconductor Corporation, 111 SW 5th Avenue, Suite 700, Portland, OR 97204 (US). JOHN, Brian, Henry; c/o Lattice Semiconductor Corporation, 111 SW 5th Avenue, Suite 700, Portland, OR 97204 (US). KUMAR, Nishit; c/o Lattice Semiconductor Corporation, 111 SW 5th Avenue, Suite 700, Portland, OR 97204 (US).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: MULTI-GIGABIT WIRELESS TUNNELING SYSTEM

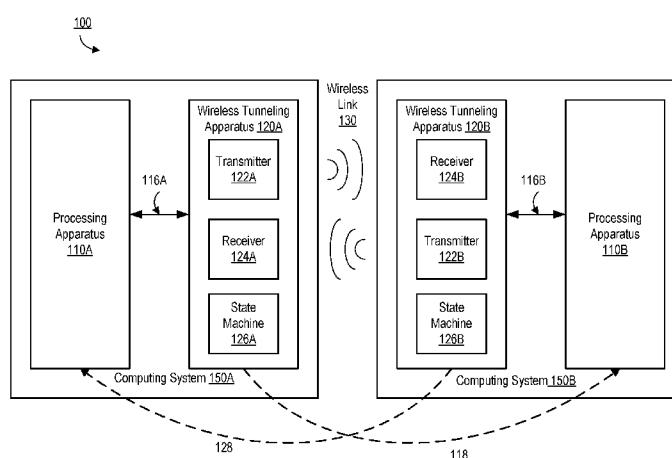


FIG. 1

(57) Abstract: A disclosed wireless tunneling system tunnels communications between two processing apparatuses through a wireless link, while maintaining compliance of the communications between the two processing apparatuses with a wired communication protocol. In one embodiment, the wireless tunneling system includes two wireless tunneling apparatuses that communicate with each other through the wireless link. A local wireless tunneling apparatus is coupled to a local processing apparatus through a wired connection and a remote wireless tunneling apparatus is coupled to the remote processing apparatus through another wired connection. In one aspect, the local wireless tunneling apparatus predicts a state of the remote processing apparatus, and mirrors the predicted state of the remote processing apparatus. Mirroring the state based on the prediction enables high speed data rate tunneling between the two processing apparatuses through the wireless link without a delay associated with the wireless tunneling apparatuses affecting the high speed data rate tunneling.

WO 2016/149641 A1

MULTI-GIGABIT WIRELESS TUNNELING SYSTEM

BACKGROUND

1. FIELD OF THE DISCLOSURE

[0001] Embodiments of the present disclosure generally relate to the field of wireless communication and, more particularly, to wireless tunneling of a wired communication protocol.

2. DESCRIPTION OF THE RELATED ART

[0002] In a wireless tunneling system, data that is traditionally communicated over a wired communication link is instead tunneled through a wireless channel. Conventionally, wireless communications are substantially slower than communications over wired links. Accordingly, conventional wireless systems are incapable of tunneling high speed protocol, for example, Universal Serial Bus (USB), High-Definition Media Interface (HDMI), and DisplayPort (DP) having multi-Gigabit data rates.

SUMMARY

[0003] A disclosed wireless tunneling system tunnels communications between two processing apparatuses through a wireless link, while maintaining compliance of the communications between the two processing apparatuses.

[0004] In one embodiment, the wireless tunneling system includes two wireless tunneling apparatuses that communicate with each other through the wireless link. A local wireless tunneling apparatus is coupled to a local processing apparatus through a wired connection and a remote wireless tunneling apparatus is coupled to the remote processing apparatus through another wired connection. The two processing apparatuses may communicate with each other through the low-latency wireless link using the two wireless tunneling apparatuses as if the two processing apparatuses were connected through wired connections.

[0005] In one embodiment, the local wireless tunneling apparatus includes a wireless receiver, a processing component state machine, and an interface circuit. The wireless receiver is configured to receive a wireless receive signal from the remote wireless tunneling apparatus, and downconvert the wireless receive signal to generate a baseband signal from the wireless receive signal. The processing component state machine is configured to predict a remote processing state of the remote processing apparatus based on the baseband signal. The interface circuit is coupled to the local processing apparatus and configured to (i) generate an output signal conforming to the wired communication protocol based on the

predicted remote processing state and the baseband signal and (ii) provide the output signal to the local processing apparatus through the wired communication protocol.

[0006] In one or more embodiments, the local wireless tunneling apparatus further includes a wireless transmitter configured to (i) receive an input signal from the local processing apparatus to generate another baseband signal, (ii) upconvert said another baseband signal to generate a wireless transmit signal and (iii) transmit the wireless transmit signal. The processing component state machine may control a power state of the receiver or the transmitter based on one or more of: (a) current state of the processing component state machine, (b) inputs received from the local processing apparatus, and (c) the predicted remote processing state. The processing component state machine may be further configured to map one or more local processing states of the local processing apparatus to a single state of the processing component state machine, and generate a state signal indicative of a local processing state of the local processing apparatus based on the single state. The transmitter may be further configured to encode the baseband signal with the state signal indicative of the local processing state of the local processing apparatus.

[0007] In one or more embodiments, the local wireless tunneling apparatus further includes a wireless component state machine configured to determine a wireless component state of the wireless receiver based on its own current state and the predicted remote processing state of the remote processing apparatus. The wireless component state machine may control an operation mode of the wireless receiver according to the wireless component state determined based on its own current state and the predicted remote processing state of the remote processing apparatus.

[0008] In one or more embodiments, the baseband signal is encoded with a state signal indicative of a prior state of the remote processing apparatus. The processing component state machine may be configured to predict the remote processing state of the remote processing apparatus based on the state signal of the baseband signal.

[0009] In one or more embodiments, the processing component state machine is configured to predict the remote processing state of the remote processing apparatus based on a portion of the baseband signal corresponding to the wireless receive signal.

[0010] In one or more embodiments, the processing component state machine is configured to predict the remote processing state of the remote processing apparatus based on one or more local processing states of the local processing apparatus.

[0011] In one or more embodiments, a method of wirelessly tunneling communications between a local processing apparatus and a remote processing apparatus while maintaining

compliance of the communications between the local processing apparatus and the remote processing apparatus with a wired communication protocol is disclosed. The method includes: receiving, by a wireless receiver, a wireless receive signal from a remote wireless tunneling apparatus; downconverting, by the wireless receiver, the wireless receive signal to generate a baseband signal from the wireless receive signal; predicting, by a processing component state machine, a remote processing state of the remote processing apparatus based on the baseband signal; generating, by an interface circuit coupled to the local processing apparatus, an output signal conforming to the wired communication protocol based on the predicted remote processing state and the baseband signal; and providing, by the interface circuit, the output signal to the local processing apparatus through the wired communication protocol.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The teachings of the embodiments disclosed herein can be readily understood by considering the following detailed description in conjunction with the accompanying drawings.

[0013] Figure (FIG.) 1 illustrates one embodiment of a wireless tunneling system.

[0014] FIG. 2 illustrates an example process of a local wireless tunneling apparatus tunneling communication received from a remote processing apparatus to a local processing apparatus, according to one embodiment.

[0015] FIG. 3 illustrates an example process of a local wireless tunneling apparatus tunneling communication received from a local processing apparatus to a remote processing apparatus, according to one embodiment.

[0016] FIG. 4 illustrates a detailed architecture of a wireless tunneling apparatus, according to one embodiment.

[0017] FIG. 5 illustrates an example state transition diagram of a wireless tunneling apparatus, according to one embodiment.

[0018] FIG. 6 illustrates a detailed architecture of the wireless tunneling apparatus conforming to the USB3.0 protocol, according to one embodiment.

DETAILED DESCRIPTION

[0019] The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and

instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.

[0020] The Figures (FIG.) and the following description relate to the preferred embodiments by way of illustration only. It should be noted that from the following discussion, alternative embodiments of the structures and methods disclosed herein will be readily recognized as viable alternatives that may be employed without departing from the principles of the present invention.

[0021] Reference will now be made in detail to several embodiments of the present invention(s), examples of which are illustrated in the accompanying figures. It is noted that wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict embodiments for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.

SYSTEM OVERVIEW

[0022] Embodiments herein are primarily described in the context of a tunneling system that can be plugged into an arbitrary node in a connected topology, comprising hosts, devices, and hubs. In some embodiments, the tunneling system may operate in the context of a USB 3.0 system. However, the embodiments herein may also be used to communicate using other communication protocols such as different versions of the USB standard or entirely different protocols such as HDMI, DisplayPort, or other serial communication protocols.

[0023] FIG. 1 illustrates an embodiment of a wireless tunneling system 100. The wireless tunneling system 100 comprises a first computing system 150A communicating with a second computing system 150B via a wireless link 130.

[0024] In one embodiment, the wireless link 130 comprises a 60GHz wireless link. The wireless link 130 may be limited to short range communications where the wireless tunneling apparatuses 120 are in very close proximity to each other (e.g., within a few millimeters). Data transmissions over the wireless link 130 may have a data rate of, for example, 6 Gigabits per second or higher. In other embodiments, the wireless link may be suitable for a long range communications and/or implemented for other frequency bands.

[0025] The first computing system 150A includes a processing apparatus 110A coupled to a wireless tunneling apparatus 120A through a wired connection 116A, and the second computing system 150B includes a processing apparatus 110B coupled to a wireless tunneling apparatus 120B through a wired connection 116B. The wireless tunneling

apparatuses 120A and 120B (herein also referred to as “wireless tunneling apparatuses 120” or “transceivers 120”) communicate with each other through the wireless link 130, and tunnel communications between the processing apparatuses 110A and 110B (herein also referred to as “processing apparatuses 110” or “source apparatuses 110”). A processing apparatus can include an electronic apparatus able to exchange data (unidirectional or bidirectional) compliant with a wired communication protocol with another electronic apparatus. Examples of a processing apparatus include a source device, a sink device, an intermediate device between the source device and the sink device, USB host/device, a storage device, etc. In one embodiment, the wireless tunneling apparatus 120 is embodied as a removable dongle that can couple to a port or cable of the processing apparatus 110 (e.g., a USB port or cable, a HDMI port or cable, or a DisplayPort port or cable). In other embodiments, the wireless tunneling apparatus 120 is internally coupled to the processing apparatus 110 (e.g., via traces on a printed circuit board) or may be fully integrated with the processing apparatus 110 (e.g., in an integrated circuit).

[0026] The computing system 150 (and the components thereof) may be implemented using analog circuit components, digital logic, software, or a combination thereof. In one embodiment, one or more components of the computing system 150 may be implemented as a processor and a non-transitory computer-readable storage medium storing instructions that when executed by the processor cause the processor to carry out the functions attributed to the components. Alternatively, or in addition, digital components may be implemented as an application specific integrated circuit (ASIC), field-programmable gate array (FPGA), or using a combination of implementations.

[0027] In one embodiment, the wireless tunneling system 100 provides a replacement for conventional wired communications such as USB, HDMI, DisplayPort, or other serial communication protocols. For example, rather than the processing apparatuses 110A, 110B communicating directly to each other via a traditional cable, the processing apparatuses 110A, 110B instead communicate with their respective wireless tunneling apparatuses 120A, 120B, which then tunnel the data over a high-speed point-to-point serial wireless link 130 at speeds exceeding those that can be achieved using traditional wired communications.

[0028] From the perspective of the processing apparatuses 110A, 110B, the communications may be implemented in the same way as if the processing apparatuses 110A, 110B were directly connected in a conventional configuration. Thus, no modification to a conventional processing apparatus 110A, 110B is necessarily required (e.g., no software modification is necessary). In other words, the wireless tunneling apparatuses 120A, 120B and the wireless

link 130 between them may operate as a direct replacement for a conventional cable. For example, each wireless tunneling apparatus 120A, 120B includes an interface that enables it to plug directly into a conventional cable interface of its respective processing apparatus 110A, 110B and the wireless tunneling apparatuses 120A, 120B facilitate communication such that it appears to the processing apparatuses 110A, 110B that they are directly connected. In alternative embodiments, the wireless tunneling apparatuses 120A, 120B may be integrated with their` respective processing apparatuses 110A, 110B.

[0029] Taking USB as an example, traditional wireless apparatuses with USB interfaces terminate the USB protocol in the wireless apparatus and re-encode data into a different wireless protocol for transmission. The traditional wireless apparatuses are visible as nodes (USB hubs, USB devices or USB repeaters) in the USB tree topology. In contrast, a wireless tunneling apparatus allows for USB link-layer data traffic to be transmitted without modifications at very low latency and without terminating the USB protocol layers. Such wireless tunneling apparatuses are not visible in the USB topology.

[0030] In one embodiment, each wireless tunneling apparatus 120 communicates with its connected processing apparatus 110 to mirror the states and operations of a counterpart of the processing apparatus 110 to which the wireless tunneling apparatus 120 is coupled. Thus, for example, the wireless tunneling apparatus 120A mirrors the states of the processing apparatus 110B as indicated by an arrow 118, and the wireless tunneling apparatus 120B mirrors the processing apparatus 110A as indicated by an arrow 128. Accordingly, the data communicated from the wireless tunneling apparatus 120A to the processing apparatus 110A mirror communications from the processing apparatus 110B to the wireless tunneling apparatus 120B, and data communicated from the wireless tunneling apparatus 120B to the processing apparatus 110B mirror communications from the processing apparatus 110A to the wireless tunneling apparatus 120A.

[0031] Specifically, each of the wireless tunneling apparatuses 120 predicts an operating state (e.g., a power state or other operational state) of its remote (i.e., counter-part) processing apparatus 110, and interfaces with its local processing apparatus 110A according to the predicted state through a wired connection 116. For example, the processing apparatus 110B operates in one of multiple processing states according to a wired communication protocol (e.g., USB) depending on a speed of data or power management state. The wireless tunneling apparatus 120A predicts the operating state of the processing apparatus 110B, and mirrors the predicted state of the processing apparatus 110B to interface with the processing apparatus 110A through the wired connection 116A. The mirrored state may be identical or

substantially similar to the operating state of the processing apparatus 110B. In one aspect, a set of processing states of the processing apparatus 110 can be mapped or collapsed into a single state or a fewer number of states of the wireless tunneling apparatus 120, as described in further details with respect to Table 4.

[0032] The wireless tunneling apparatus 120 comprises a transmitter 122, a receiver 124, and a state machine 126. The transmitter 122 receives data from the processing apparatus 110 and transmits the data over the wireless link 130 to a receiver 124 of a different computing system 150. The receiver 124 receives data over the wireless link 130 from a transmitter 122 of another computing system 150 and provides the received data to the processing apparatus 110. The state machine 126 controls the power state of the wireless tunneling apparatus 120 by switching the wireless tunneling apparatus 120 between a high power state for transmitting high frequency data and one or more low power states as will be described in further detail below. The wireless tunneling apparatuses 120 furthermore mimic low-power states signaled within the tunneled protocol. In an embodiment, the wireless tunneling apparatus 120 is capable of full-duplex communication so that it may transmit and receive data over the wireless link 130 simultaneously.

[0033] For example, in the illustrated embodiment, the processing apparatus 110A is configured as an upstream apparatus and operates according to the state machine 126A as a “host,” where the processing apparatus 110B is configured as a downstream apparatus and operates according to the state machine 126B as a “device.” The processing apparatus 110A functioning as the “host” controls operations of or communication with the processing apparatus 110B functioning as the “device.” The upstream wireless tunneling apparatus 120A interfaces the upstream processing apparatus 110A (or “host”) through the wired connection 116A, and similarly the downstream wireless tunneling apparatus 120B interfaces the downstream processing apparatus 110B (“device”) through the wired connection 116B. The wireless tunneling apparatuses 120A and 120B exchange data including status, states, or control information of respective processing apparatuses 110 over the wireless link 130.

[0034] In one embodiment, the wireless tunneling apparatuses 120A, 120B are substantially identical apparatuses. Alternatively, the wireless tunneling apparatuses 120A, 120B are different complementary apparatus types that have similar high level architectures, but differ in certain architectural or operational characteristics as described herein. For example, in one embodiment, the first wireless tunneling apparatus 120A comprises a first apparatus type configured to operate with a processing apparatus 110A embodied as a docking station, while the second wireless tunneling apparatus 120B comprises a second apparatus type configured

to operate with a processing apparatus 110B embodied as a mobile apparatus. In one embodiment, in order to implement full-duplex communication, complementary wireless tunneling apparatuses 120 of different types have different antenna polarization so that two different transmitter/receiver antenna pairs can simultaneously operate in both directions. For example, the wireless tunneling apparatus 120A may have a type X transmit antenna and a type Y receive antenna, while the wireless tunneling apparatus 120B has a complementary type Y transmit antenna and a type X receive antenna. Furthermore, wireless tunneling apparatuses 120 of different types may operate according to different control schemes in order to optimize the power efficiency of one of the wireless tunneling apparatuses 120 in the pair. For example, when the first wireless tunneling apparatus 120A is configured for operating with a docking station and the second wireless tunneling apparatus 120B is configured for operating with a mobile apparatus, the wireless tunneling apparatuses 120A, 120B may operate asymmetrically in order to lower the power consumption of the wireless tunneling apparatus 120A hosted by the mobile apparatus at the expense of the wireless tunneling apparatus 120B hosted by the docking station. This tradeoff may be desirable because a docking station is typically connected to a continuous power source, while a mobile apparatus depends on a battery with limited power.

[0035] In one embodiment, the apparatus type associated with a wireless tunneling apparatus 120 (and the operation associated therewith) may be permanently designed into the wireless tunneling apparatus 120. Alternatively, a wireless tunneling apparatus 120 may be configurable between two or more apparatus types based on a switch, a control pin (i.e., control input of a chip) or register setting. Architectural and/or operational differences between the different configurations of the wireless tunneling apparatuses 120A, 120B in a complementary pair are described in further detail below.

[0036] FIG. 2 illustrates an example process of a local wireless tunneling apparatus 120A tunneling communication from a remote processing apparatus 110B to a local processing apparatus 110A, according to one embodiment.

[0037] The local wireless tunneling apparatus 120A receives 210 a wireless receive signal from the remote wireless tunneling apparatus 120B through the wireless link 130. The wireless receive signal is received at a first frequency (e.g., ~60 GHz). The wireless receive signal is generated by the wireless tunneling apparatus 120B according to a remote data signal from the remote processing apparatus 110B. The remote data signal contains content information to be transmitted to the local processing apparatus 110A, and conforms to a wired communication protocol (e.g., USB protocol).

[0038] Responsive to receiving the wireless receive signal, the local wireless tunneling apparatus obtains a baseband signal based on the wireless receive signal. Specifically, the local wireless tunneling apparatus 120A downconverts 220 the wireless receive signal to a second frequency (e.g., a few Gbps) lower than the first frequency. The downconverted wireless receive signal is a baseband signal.

[0039] In one aspect, the local wireless tunneling apparatus 120A predicts 230 a state of the remote processing apparatus 110B based on the baseband signal. The baseband signal may be encoded with a state signal indicative of a prior state of the remote processing apparatus 110B. The local wireless tunneling apparatus 120A can decode the baseband signal to obtain the state signal of the remote processing apparatus 110B, and predict a state of the remote processing apparatus 110B based on the prior state of the remote processing apparatus 110B. In another aspect, the local wireless tunneling apparatus 120A predicts the remote processing state of the remote processing apparatus based on a portion of the baseband signal corresponding to the wireless receive signal. For example, in the context of USB, the local wireless tunneling apparatus 120A may predict the remote processing state by analyzing the received USB data packets. Yet in another aspect, the local wireless tunneling apparatus 120A predicts the remote processing state of the remote processing apparatus based on local event (e.g., current or one or more prior local processing states of the local processing apparatus such as timeout events).

[0040] The local wireless tunneling apparatus 120A mirrors 240 the state of the remote processing apparatus 110B. Specifically, the local wireless tunneling apparatus 120A interfacing the local processing apparatus 110A mirrors the predicted state of the remote processing apparatus 110B, and generates 250 a mirrored remote data signal based on the mirrored state and the baseband signal. The mirrored remote data signal is identical or substantially similar to the remote data signal generated at the remote processing apparatus 110B. For example, the local wireless tunneling apparatus 120A provides the mirrored remote data signal to the local processing apparatus 110A according to the predicted state. Accordingly, tunneling of communication from the remote processing apparatus 110B to the local processing apparatus 110A can be achieved.

[0041] FIG. 3 illustrates an example process of a local wireless tunneling apparatus 120A tunneling communication from the local processing apparatus 110A to the remote processing apparatus 110B, according to one embodiment.

[0042] The local wireless tunneling apparatus 120A receives 310 a local data signal from the local processing apparatus 110A. The local data signal contains information to be transmitted

to the remote processing apparatus 110B, and conforms to a wired communication protocol (e.g., USB protocol).

[0043] In one aspect, the local wireless tunneling apparatus 120A obtains one or more states of the local processing apparatus 110A, and maps 320 the one or more states of the local processing apparatus 110A to one or more corresponding states. The local wireless tunneling apparatus 120A receives a signal indicating a current operating state of the local processing apparatus 110A from the local processing apparatus 110A. Alternatively, the local wireless tunneling apparatus 120A determines the operating state of the local processing apparatus 110A, according to the local data signal received (e.g., values thereof) and/or prior operating states of the local processing apparatus 110A.

[0044] The local wireless tunneling apparatus 120A generates 330 a baseband signal at the second frequency (e.g., a few Gbps) based on the local data signal and the mapped state. In one aspect, the local wireless tunneling apparatus 120A encodes the baseband signal according to the mapped state. For example, the local wireless tunneling apparatus 120A encodes the baseband signal with a state signal indicating a mapped state of the local wireless tunneling apparatus 120A.

[0045] The local wireless tunneling apparatus 120A upconverts 340 the baseband signal at the second frequency (e.g., a few Gbps) to generate a wireless transmit signal at the first frequency (e.g., 60 GHz), then transmits 350 the wireless transmit signal to the remote wireless tunneling apparatus 120B through the wireless link 130.

[0046] Advantageously, the wireless tunneling apparatus 120 predicts an operating state of a remote processing apparatus 110, and mirrors the operation of the remote processing apparatus 110. Hence, any delays for converting data in a wired communication protocol to another protocol (e.g., wireless communication protocol) or transitioning between different states of the wireless tunneling apparatus may be reduced. Thus, seamless tunneling of communication between the two processing apparatuses 110A, 110B with a high speed data rate (e.g., multi-Gbps) through the wireless link 130 can be achieved.

DETAILED WIRELESS TUNNELING APPARATUS ARCHITECTURE

[0047] FIG. 4 shows a detailed architecture of a wireless tunneling apparatus 120, according to one embodiment. While the diagram in FIG. 4 may correspond to the wireless tunneling apparatuses 120 illustrated in FIG. 1, it illustrates an example in further detail in order to better explain operation of the apparatuses 120 in accordance with one embodiment. In one embodiment, the wireless tunneling apparatus 120 includes a full-duplex high speed data-path capable of tunneling at USB 3.0 speeds. In one implementation, the wireless tunneling

apparatus 120 includes a USB PHY 402, USB digital 404, an encoder 416, a transmitter 420, a wireless component state machine 480, a decoder 454, and a receiver 440. Additional components may be implemented for a proper communication conforming to USB protocol. Together, these components operate to tunnel communications between two processing apparatuses 110.

[0048] The USB PHY 402 is a mixed-signal interface circuit that is in one embodiment fully compliant with USB 3.0 electrical specification and supports all four different USB speeds: super-speed (5Gbps), high-speed (480Mbps), full-speed (12Mbps), and low-speed (1.5Mbps). It supports the full range of USB 3.0 host and peripheral applications. The USB PHY 402 provides digital interfaces compliant with PIPE3.0 (for SS) and UTMI+ (for HS/FS/LS). The UTMI+ provides two interfaces for FS/LS: standard 8-bit/16-bit interface or bit-serial interface. An embodiment of the tunneling architecture described herein uses the bit-serial interface in order to minimize end-to-end latency across the two wireless tunneling apparatuses 120. The bit-serial interface saves time to serialize and de-serialize bit data, and thereby reducing latency.

[0049] The USB PHY 402 implements reduced power consumptions for all low power states defined in USB 3.0 specification: U0/U1/U2/U3 for super-speed and suspend-resume for HS/FS/LS. It also supports the transmission and reception of Low Frequency Periodic Signaling (LFPS), as defined in the specification, for exiting from low power states.

[0050] The USB digital 404 is a circuit component that interfaces between the USB PHY 402 and wireless components (e.g., transmitter 420 and receiver 440). The USB digital 404 determines operating states of the USB PHY 402 and the wireless components. The USB digital 404 is functional both when tunneling communication from the local processing apparatus 110A to the remote processing apparatus 110B, and when tunneling communication from the remote processing apparatus 110B to the local processing apparatus 110A.

[0051] For tunneling communication from the local processing apparatus 110A to the remote processing apparatus 110B, the USB digital 404 receives a local data signal from the local processing apparatus 110A through the USB PHY 402, and provides the local data signal to the encoder 416. In one aspect, the USB digital 404 generates a state signal of the local processing apparatus 110A indicating a local processing state of the local processing apparatus 110A. The state signal of the local processing apparatus 110A enables a USB digital 404 of a counterpart wireless tunneling apparatus 120B to predict an operating state of the local processing apparatus 110A. The USB digital 404 can identify a state of the local

processing apparatus 110A based on the local data signal. Furthermore, the USB digital 404 generates the state signal according to the mapped state, and provides the local data signal and the state signal of the local processing apparatus 110A to the encoder 416.

[0052] The encoder 416 encodes the local data signal with the state signal of the local processing apparatus 110A, and provides the encoded signal to the transmitter 420. In one aspect, the local data signal may be scrambled to remove undesirable properties such as non-zero DC bias (number of 0's and 1's are not same) before or after encoding by the encoder or a scrambler (not shown for simplicity). USB super-speed data over a USB cable has a raw speed of 5Gbps, out of which 20% is contributed by 8b/10b coding. This is prescribed in the USB standard to protect against cable related bit errors. This overhead is removed for wireless transmission and super-speed data bandwidth is reduced to 4Gbps. Instead error correction codes are added for wireless transmission, so that wireless related bit errors can be detected and corrected. According to the encoding, the receiver side could possibly correct bit errors introduced by wireless transmission. The FEC used in one implementation is a (232, 216) Bose-Chaudhuri-Hocquenghem code (BCH code), which is a cyclic error-correcting code in which each output code-word has 232 bits for a given 216-bit sequence. BCH code beneficially has error correction capability and low encoding and decoding latency. The code may be systematic, which implies that the first 216 bit output is just copied from the input sequence. The last 16 bits can be encoded using a BCH code generator matrix.

[0053] The transmitter 420 receives the encoded signal from the encoder 416, upconverts the encoded signal and transmits the upconverted signal wirelessly. In one aspect, the transmitter 420 includes a high frequency transmitting circuit 422 and a low frequency transmitting circuit 424. The high frequency transmitting circuit 422 is used for upconverting a high data rate (e.g., 6 Gbps) digital baseband signal to an RF frequency (e.g., 60 GHz) and transmitting the upconverted signal. For example, the high frequency transmitting circuit 422 is suitable for upconverting a high data rate signal conforming to USB protocol, an HDMI protocol, a DisplayPort protocol, or other communication protocol, and transmitting the upconverted signal through the wireless link 130. The low frequency transmitting circuit 424 is used for upconverting a low data rate (e.g., ~100 kbps) digital baseband signal to an RF frequency (e.g., 60 GHz) and transmitting the upconverted signal. For example, the low frequency transmitting circuit 424 is suitable for upconverting a low data rate signal including control information for operating in or transitioning between different states of the wireless component state machine 480, or power state of wireless components. While the high frequency transmitting circuit 422 is capable of transmitting a higher data rate signal than the

low frequency transmitting circuit 424, the high frequency transmitting circuit 422 may include more circuit components than the low frequency transmitting circuit 424, and may consume more power than the low frequency transmitting circuit. In one aspect, one of the high frequency transmitting circuit 422 and the low frequency transmitting circuit 424 is selected according to the wireless component state machine 480, for transmission of a suitable data rate signal.

[0054] For tunneling communication from the remote processing apparatus 110B to the local processing apparatus 110A, the receiver 440 receives a wireless receive signal from a transmitter of another wireless tunneling apparatus 120, and downconverts the wireless receive signal to obtain a baseband signal. In one aspect, the receiver 440 includes a high frequency receiving circuit 442 and a low frequency receiving circuit 446. The high frequency receiving circuit 442 is used for downconverting an RF frequency (e.g., 60 GHz) to a high data rate (e.g., 6 Gbps) digital baseband signal. The low frequency receiving circuit 446 is used for downconverting an RF frequency (e.g., 60 GHz) to a low data rate (e.g., ~100 kbps) digital baseband signal. While the high frequency receiving circuit 442 is capable of downconverting a signal with data rate higher than the low frequency receiving circuit 446, the high frequency receiving circuit 442 may include more circuit components than the low frequency receiving circuit 446, and may consume more power than the low frequency receiving circuit 446. In one aspect, one of the high frequency receiving circuit 442 and the low frequency receiving circuit 446 is selected according to the wireless component state machine 480 for receiving a suitable data rate signal.

[0055] The decoder 454 receives the downconverted signal from the receiver 440, and decodes the recovered signal. In one approach, the downconverted signal may be descrambled before or after decoding by the decoder 454 (the descrambler is not shown for simplicity). The decoder 454 can decode the downconverted signal to obtain a remote data signal and a state signal of the remote processing apparatus 110B indicating a prior state of the remote processing apparatus 110B. In one embodiment, a hard-decision based BCH decoder is implemented. The decoder 454 may detect and correct any bit error in the downconverted signal. The (232, 216) BCH code can correct up to two bit errors in a 232-bit code-word. This coding scheme improves bit errors that are independent and random. The decoder 454 provides the remote data signal and the state signal of the remote processing apparatus 110B to the USB digital 404.

[0056] Referring back to the USB digital 404, the USB digital 404 receives a remote data signal and a state signal of the remote processing apparatus 110B from the decoder 454. The

USB digital 404 can predict the operating state of the remote processing apparatus 110B, based on the state signal of the remote processing apparatus 110B. Based on the state signal of the remote processing apparatus 110B, the USB digital predicts an operating state of the remote processing apparatus 110B, for example, by considering the communication delay between the remote processing apparatus 110B and the local processing apparatus 110A, prior operating states of the remote processing apparatus 110B or the local processing apparatus 110A, remote data signal or a combination of both. The USB digital 404 configures the USB PHY 402 according to the predicted state of the remote processing apparatus 110B, and provides the remote data signal to the local processing apparatus 110A through the USB PHY 402 in a manner that any delay of the wireless tunneling apparatuses 120A and 120B can be eschewed.

[0057] In one embodiment, the USB digital 404 includes a processing component state machine 408 for mirroring an operating state of the remote processing apparatus 110B. The processing component state machine 408 can comprise an adapted implementation of Link Training and System Status Machine (LTSSM) from USB 3.0 specification. The Link Training and Status State Machine (LTSSM) in USB 3.0 specification is a state machine defined for link connectivity and link power management. Additionally, the processing component state machine 408 may include a Reset Protocol State Machine (RPSM) from USB 2.0 specification. The processing component state-machine 408 is designed to track the LTSSM state or RPSM state of the USB host/device/hub on the opposite side of the wireless link, as shown in FIG. 1. The processing component state machine 408 predicts an operating state of the remote processing apparatus 110B, and mirrors the state of the remote processing apparatus 110A.

[0058] In one aspect, the processing component state machine 408 maps one or more states of itself to one or more corresponding states of the wireless component state machine 480, and configures the state of the wireless component state machine 480. The wireless component state machine 480 controls the power state of the wireless components of the transmitter 420 and the receiver 440 in order to improve power efficiency of the wireless components. For example, because the power consumption of the high frequency transmitting circuit 422 is relatively high compared to the low frequency transmitting circuit 424, the wireless component state machine 480 can control the high frequency transmitting circuit 422 to operate in a low power state or turn off the high frequency transmitting circuit 422 during a low frequency transmission when the high frequency transmitting circuit 422 is not being used. During high frequency transmissions, the low frequency transmitting circuit

424 may be powered down. Similarly, because the power consumption of the high frequency receiving circuit 442 is relatively high compared to the low frequency receiving circuit 446, the wireless component state machine 480 can control the high frequency receiving circuit 442 to operate in a low power state or turn off the high frequency receiving circuit 442 during a low frequency reception when the high frequency receiving circuit 442 is not being used.

During high frequency reception, low frequency receiving circuit 446 may be powered down.

[0059] Additionally, the wireless component state-machine 480 controls numerous system functions including, for example:

- (1) detect detachment and attachment of USB host/device
- (2) control power state of wireless blocks & USB PHY based on USB power state
- (3) ensure synchronicity of USB host and device by reproducing the link response across the wireless link.

[0060] FIG. 5 illustrates an example state transition diagram for a wireless tunneling system capable of tunneling USB data, according to one embodiment. Each state of the wireless component state machine 480 may be mapped to a corresponding state of the processing component state machine 408 as shown in Table 2 below. In this embodiment, five possible power states are available: a W0 state 502, a W2 state 506, a W3 state 508, a proximity detect state 510, and a sleep state 504. In one aspect, the wireless component state machine 480 operates in one of the power states shown in FIG. 5.

[0061] The W0 state 502 represents the high power state in which the high frequency transmitting circuit 422, high frequency receiving circuit 442, and associated components are enabled, and the wireless tunneling apparatus 120 is actively transmitting, or is available and ready to transmit, high frequency serial data (e.g., USB data). In the W0 state, the high frequency transmitting circuit 422 and the high frequency receiving circuit 442 are turned on and the wireless tunneling apparatus 120 may actively tunnel USB data. If proximity to the other apparatus is lost, the wireless tunneling apparatus 120 transitions to the proximity detect state. In the proximity detect state 510, the high frequency transmitting circuit 422 and high frequency receiving circuit 442 are turned off. The low frequency transmitting circuit 424 and low frequency receiving circuit 446 are turned on to periodically check for proximity to another apparatus and are turned off when not being used. A wireless tunneling apparatuses 120A and 120B may enter the sleep state 504 from the W0 state if proximity detection is successful but the processing apparatus 110 is determined to be not attached. This determination is made in the W0 state 502. In the sleep state 504, only “always-on” blocks are running and other components are turned off for power efficiency. The wireless

tunneling apparatus remains in the sleep state 504 for a pre-defined time, and then goes back to the proximity detect state 510 to make sure that wireless proximity is maintained. If a nearby apparatus is detected, the wireless tunneling apparatus 120 transitions back to the W0 state 502 in which attachment of the processing apparatus is checked. The W2 and W3 states 506, 508 are entered when a wireless tunneling apparatus pair 120A/120B is in wireless proximity, the processing apparatuses 110A/110B are in attached state, but the processing apparatuses 110 are in a low power state or are not actively communicating data. For example, the W2 state 506 is entered when the processing apparatus 110 is in a “U2” low-power state of USB 3.0 Superspeed, and the W3 state 508 is entered when the processing apparatus 110 is either in “U3” state of USB 3.0 Superspeed or in “Suspend” state of USB 2.0 Highspeed.

[0062] Each arc in FIG. 5 represents a possible transition between states. The conditions for transitioning between the states are summarized in the Table 1 and described in more detail below.

ARC	Local apparatus requirements	Remote apparatus requirements
A	USB 2.0 disconnected and USB 3.0 disabled	<i>proposed_link_state == SLEEP</i>
b1	USB 2.0 disconnected or suspended and USB 3.0 in U2 state.	<i>proposed_link_state == W2</i>
b2	USB 2.0/USB 3.0 wakeup event locally or remotely	n/a
c1	USB 2.0 disconnected or suspended and USB 3.0 in U3 state	<i>proposed_link_state == W3</i>
c2	USB 2.0/USB 3.0 wakeup event locally or remotely	n/a
d1	Sleep timer times out	n/a
E	Wireless keep-alive signal not seen for N seconds	n/a
F	Wireless keep alive signal not seen for N seconds	n/a
g2	Into W0: Proximity is detected	n/a
g1	HF wireless Link is lost by HF synchronization state machine.	n/a

Table 1: State Transition for Wireless Tunneling Apparatus

[0063] Transitions out of the W0 state 502 (e.g., via arcs a, b1, c1, and g1) depend both on the state of the local wireless tunneling apparatus as well as the state of the remote wireless

tunneling apparatus in proximity to the local wireless tunneling apparatus. In order to communicate the state of the local apparatus to the remote apparatus, and vice versa, a signal *proposed_link_state* is periodically transmitted between the apparatuses when in the W0 state 502 indicating the transition to a new state dictated by the local apparatus conditions. For example, in one embodiment, the signal *proposed_link_state* is a 2-bit signal encoding a state advertised by the local apparatus based on its conditions (e.g., ‘0’ represents W0, ‘1’ represents W2, ‘2’ represents W3, and ‘3’ represents Sleep). The signal *proposed_link_state* is periodically updated and exchanged over the wireless link when in the W0 state 502.

[0064] An apparatus advertises a transition to the sleep state 504 (arc a) when it detects that the processing apparatus 110 is disabled or disconnected. The apparatus advertises a transition to the W2 state 506 (arc b1) when it detects that USB 2.0 has disconnected or suspended and USB 3.0 has gone into U2 low-power state. The apparatus advertises a transition to the W3 state 508 (arc c1) when it detects that USB 2.0 has disconnected or suspended and USB 3.0 has gone into U3 state. The apparatus advertises a transition to the proximity detect state 510 when the HF wireless link (i.e., a wireless link 130 using high frequency transmit and receive data paths) is lost.

[0065] The state change out of W0 occurs only after both sides of the wireless link 130 advertise the same low power state (e.g., SLEEP, W2, or W3). Otherwise, both apparatuses remain in the W0 state 502. In the W0 state 502 the value of *proposed_link_state* is transmitted periodically. After both local and remote apparatuses advertise the same low power state, the apparatuses transition to that state.

[0066] Exiting from the W2 state 506 to the W0 state 502 (arc b2) is triggered by an upstream or downstream processing apparatus sending an exit event. For example, in USB 3.0, the exit event may comprise a U2 exit LFPS (Low Frequency Periodic Signaling) to a wireless tunneling apparatus 120. In order for the W2 exit to occur, the wireless tunneling apparatus 120 transmits back a handshake LFPS with low enough latency to meet the requirements of the underlying serial protocol (e.g., 2ms for USB 3.0 links). In one implementation, the fast W2 exit is facilitated by keeping all phase-locked loops (PLLs) powered when operating in the W2 state 506.

[0067] In one example, states of the processing component state machine 408 are mapped to states of the wireless component state machine 480, as shown below in Table 2.

LTSSM States (from USB3.0 Specification)	Wireless Power States
---	-----------------------

U1	W0
U2	W2
U3	W3
SS.Disabled, SS.Inactive, Rx.Detect	Loop between W0/Sleep
U0 and all other active states	W0

Table 2: Mapping between USB3.0 LTSSM states and wireless power states

WIRELESS TUNNELING APPARATUS ARCHITECTURE FOR USB3.0

[0068] FIG. 6 shows architecture of the wireless tunneling apparatus conforming to the USB3.0 protocol, according to one embodiment. The USB3.0 standard prescribes support for four different transfer speeds: super-speed (herein also referred to as “SS”), high-speed (herein also referred to as “HS”), full-speed (herein also referred to as “FS”), and low-speed (herein also referred to as “LS”). FIG. 6 shows dataflow for all four USB speeds through the USB PHY 402 and USB Digital 404.

[0069] On one side of the USB PHY 402 is the cable interface with the processing apparatus 110. On the other side of the USB PHY 402 is the digital data interface to the USB Digital 404, operating at a frequency lower than that of the cable interface. The USB PHY 402 provides support for all aspects of super-speed USB 601 functionality and interfaces with the USB Digital 404 via the industry standard PIPE interface 611. This bi-directional interface comprises two buses – one each for data going in and out of the USB PHY 402. The bus width in PIPE interface 611 is 16 or 32 bits. In one embodiment, the 16-bit bus width is employed to reduce latency. Likewise the high-speed data 602 from cable interface is interfaced with the USB Digital 404 using industry-standard UTMI interface. In most conventional USB PHY implementations, the full-speed and low-speed data 603 are provided both on UTMI interface 612 and serial interface 613. In one aspect, UTMI interface 612 is employed for designing digital design pipelines. However, the UTMI interface comprises 8 or 16-bit wide buses, and may suffer from large latencies due to cycles for serialization or deserialization of FS/LS data bits, thereby making it unsuitable for low-latency tunneling design. To overcome this large latency, in one embodiment the serial interface 613 is employed to interface FS/LS data 603 with USB digital 404.

[0070] The USB digital 404 comprises components for SS, HS, FS, and LS. The super-speed subsystem 620 comprises SS receive data-path block 622 and SS transmit data-path block 623, and a USB3.0 super-speed state machine 621 that controls the operation of the data-path

blocks, as will be described later. Likewise the HS/FS/LS subsystem 630 comprises HS receive data-path block 632, HS transmit data-path block 633, serial receive data-path 634, serial transmit data-path block 635, and USB2.0 state machine 631. The USB2.0 state machine 631 controls operation of these data path blocks in the HS/FS/LS subsystem 630, as will be described later. In any given session, the tunneling system operates in one of HS, FS, or LS modes, depending on the detection state between the processing apparatus 110 and the wireless tunneling apparatus 120. In certain USB connection topologies, SS and one of HS/FS/LS can be active simultaneously, for example, when a pair of wireless tunneling apparatuses resides between a processing apparatus that is a USB3.0 host and a processing apparatus that is USB3.0 hub.

[0071] The USB digital 404 provides data to the encoder 416 for wireless transmission using two interfaces that are operational in parallel: one for super-speed 651, and another for HS/FS/LS 652. The encoder 416 packs the data from both these interfaces as per a fixed frame structure, and provides a single data stream to transmitter 420 for wireless transmission. Likewise, the interface of USB digital 404 with decoder 454 comprises an interface for super-speed 653 data and another, for HS/FS/LS 654 data. The decoder 454 receives a data stream from the wireless receiver 440, unpacks the data stream as per a fixed frame structure, and provides data simultaneously on both interfaces for super-speed 653 data and HS/FS/LS 654 data.

EXAMPLE STATE MACHINE IMPLEMENTATION FOR USB PROTOCOL

USB 3.0 Super-speed State Machine

[0072] The Link Training and Status State Machine (LTSSM) in USB 3.0 specification is a state machine defined for link connectivity and link power management. The specification defines 12 states with 24 sub-states for specific functionalities, as summarized in Table 3.

LTSSM Sub-states (24)	LTSSM States (12)	Functionality
U0	U0	State in which SS packet transfers in progress
U1	U1	Low power state with short exit latency
U2	U2	Low power state with exit latency more than U1

U3	U3	Low power state with most exit latency
SS.Inactive.Disconnect.Detect	SS.Inactive	Link error state where a link is in a non-operable state and system/software intervention is necessary
SS.Inactive.Quiet		
Rx.Detect.Reset	Rx.Detect	State in which USB port is attempting to determine if SS link partner is present and upon detecting presence the link training is started
Rx.Detect.Active		
Rx.Detect.Quiet		
SS.Disabled.Default	SS.Disabled	Superspeed connectivity is disabled and the link may operate under USB 2.0 mode
SS.Disabled.Error		
Compliance Mode	Compliance Mode	State to allow for transmitter compliance test
Loopback.Active	Loopback	State to allow for bit error test
Loopback.Exit		
Recovery.Active	Recovery	State for retraining link after exiting low power state, or detecting that link is not operating in U0 properly, or a link partner decides to change mode of link operation
Recovery.Configuration		
Recovery.Idle		
Hot Reset.Active	Hot Reset	State defined to allow a downstream port to reset its upstream port
Hot Reset.Exit		
Polling.LFPS	Polling	State defined for two link partners to have their SS transmitters and receivers trained, synchronized, and ready for packet transfer
Polling.RxEQ		
Polling.Active		
Polling.Configuration		
Polling.Idle		

Table 3: LTSSM states and sub-states from USB 3.0 Specification

[0073] The 25-state USB3.0 super-speed state machine 631 inside USB digital 404 is implemented by optimizing the 24-state LTSSM and adapting for wireless tunneling

according to one embodiment. It is shown in Table 4. The USB3.0 super-speed state machine 631 is derived from LTSSM by either one of: collapsing multiple sub-states into one, splitting a single sub-state into multiple states, or adding a new state. That derivation is shown in Table 4.

	USB 3.0 super speed state machine (for wireless tunneling)	LTSSM sub-states from USB3.0 specification	Comments
1	POWER_OFF	SS.Disabled.Default (VBUS)	LTSSM sub-state split
2	SS.Disabled.Default	SS.Disabled.Default (Clock)	LTSSM sub-state split
		SS.Inactive.Quiet	LTSSM sub-state collapsed
		SS.Inactive.Disconnect.Detect	LTSSM sub-state collapsed
3	SS.Disabled.Error	SS.Disabled.Error	
4	Rx.Detect.Reset	Rx.Detect.Reset	
5	Rx.Detect.Active	Rx.Detect.Active	
6	Rx.Detect.Quiet	Rx.Detect.Quiet	
7	Rx.Detect.Remote		New state added
8	Polling.LFPS	Polling.LFPS	
9	Polling.RxEQ	Polling.RxEQ	
10	PollingTraining	Polling.Active	3 LTSSM sub-states collapsed
		Polling.Config	
		Polling.Idle	
11	NonPollingTraining	Recovery.Active	5 LTSSM sub-states collapsed
		Recovery.Configuration	
		Recovery.Idle	
		Hot Reset.Active	
		Hot Reset.Exit	
12	U0	U0	LTSSM sub-state split in 2
13	U0_Exit		

14	U1	U1	LTSSM sub-state split in 2
14	U1_Exit		
16	U2	U2	LTSSM sub-state split in 2
17	U2_Exit		
18	U3	U3	LTSSM sub-state split in 2
19	U3_Exit		
20	Compliance Mode	Compliance Mode	
21	Loopback.Active.Local	Loopback.Active	LTSSM sub-state split in 2
22	Loopback.Active.Through		
23	Loopback.Exit.Local	Loopback.Exit	LTSSM sub-state split in 2
24	Loopback.Exit.Through		
25	IdleTraining		New state added

Table 4: States of USB3.0 super-speed state machine for wireless tunneling

[0074] The USB3.0 super-speed state machine is designed to track the LTSSM state of the USB host/device/hub on the opposite side of the wireless link, as shown in FIG. 1. The state transitions are therefore made based on one of three types of inputs:

- (1) Signaling information received over wireless from USB3.0 super-speed state machine of the remote wireless tunneling apparatus (e.g., *remote.RX_SIG_POWEROFF* from Table 7),
- (2) USB packet data received over wireless from the remote wireless tunneling apparatus (denoted as *remote.data*), and
- (3) locally-generated signals/events such as timeouts (e.g., *timeout_12ms* in Table 7).

[0075] Table 5 summarizes the list of all super-speed signaling information used. Table 6 shows the packet structure for transmitting signaling information over wireless. Super-speed signaling information is encoded and communicated as in-band payload over wireless. The signaling information may be sent over wireless whenever there is no super-speed packet data to be transmitted.

	Signaling	Encoded value (8bit - binary)	Comment
1	RX_SIG_POWEROFF	0000_00xx	0=Rx Valid, 1=Rx

			Electrical Idle, 2=Power Present
2	RX_SIG_LFPS	0000_0100	LFPS start
3	RX_SIG_DATA	0000_0101	Data start
4	RX_SIG_IDLE/RX_SIG_POWERON	0000_0110	Idle start
5	RX_DETECT_SUCCESS	0001_0000	Receive detection pass
6	RX_DETECT_FAIL	0001_0001	Receive detection fail
7	RX_LFPS_POLLING	0010_0000	LFPS end with type Polling LFPS
8	RX_LFPS_PING	0010_0001	LFPS end with type Ping LFPS
9	RX_LFPS_WARMRESET	0010_0010	LFPS end with type Warmreset LFPS
10	RX_LFPS_U1EXIT	0010_0011	LFPS end with type U1 Exit LFPS
11	RX_LFPS_U2EXIT	0010_0100	LFPS end with type U2 Exit LFPS
12	RX_LFPS_U3WAKEUP	0010_0101	LFPS end with type U3 Wakeup LFPS
13	RX_LFPS_ERROR	0010_0110	LFPS end with no valid LFPS type
14	TSEQ_START	0011_0000	Start TSEQ

Table 5: Super-speed signaling information

Byte 3	Byte 2	Byte 1	Byte 0
K23.7 (EPF)	K26.8 (ESC)	K26.8 (ESC)	K26.8 (ESC)
Dxx.x	Dxx.x	Dxx.x	Dxx.x

Table 6: Signaling information packet structure

[0076] In Table 6, Dxx.x is the encoded signaling symbol – one of the encoded values from Table 5. Replicating Dxx.x four times is employed to improve resilience against wireless errors, in one embodiment.

[0077] Table 7 summarizes next states and transition conditions for the 25-state USB 3.0 super-speed state machine 631, It is designed to support USB3.0 super-speed link

connectivity and link power management functionalities, according to one embodiment. Towards the bottom of the table are two global conditions that apply to multiple states and enable transition to two fixed states: **POWER_OFF** and **SS.Disabled.Default**.

	State	Condition	Next state
1	POWER_OFF	$(US \&\& power_present) (DS \&\& !remote.RX_SIG_POWEROFF) \&\& wireless_link_up$	SS.Disabled.Default
2	SS.Disabled.Default	$!phy_status$	Rx.Detect.Reset
3	SS.Disabled.Error	$power_on_reset$ – (After “Sleep” event in the wireless apparatus, this is described later)	SS.Disabled.Default
4	Rx.Detect.Reset	$(US \&\& !lfps)$	Rx.Detect.Remote
		$(DS \&\& !lfps)$	Rx.Detect.Active
5	Rx.Detect.Active	rx_detect_fail	Rx.Detect.Quiet
		$(US \&\& rx_detect_pass)$	Polling.LFPS
		$(DS \&\& rx_detect_pass)$	Rx.Detect.Remote
		rx_detect_fatal	SS.Disabled.Error
6	Rx.Detect.Quiet	$timeout_12ms$	Rx.Detect.Active
7	Rx.Detect.Remote	$(US \&\& remote.RX_DETECT_SUCCESS)$	Rx.Detect.Active
		$(DS \&\& remote.RX_DETECT_SUCCESS)$	Polling.LFPS
8	Polling.LFPS	$US \&\& compliance_done \&\& timeout_360ms$	SS.Disabled.Default
		$DS \&\& compliance_done \&\& timeout_360ms$	Rx.Detect.Active
		$!compliance_done \&\& timeout_360ms$	Compliance Mode
		$remote.TSEQ_START$	Polling.RxEQ
		$warm_reset$	Rx.Detect.Reset
9	Polling.RxEQ	$remote.data == TS1_ordered_set$	PollingTraining
10	PollingTraining	$US \&\& remote.RX_SIG_IDLE$	SS.Disabled.Default

		<i>warm_reset</i>	Rx.Detect.Reset
		<i>idle_handshake && TS2_loopback</i>	Loopback.Active
		<i>idle_handshake && TS2_hotreset</i>	NonPollingTraining
		<i>idle_handshake && !TS2_loopback</i> <i>&& ! TS2_hotreset</i>	U0
11	NonPollingTraining	<i>US && remote.RX_SIG_IDLE</i>	SS.Disabled.Default
		<i>warm_reset</i>	Rx.Detect.Reset
		<i>idle_handshake && TS2_loopback</i>	Loopback.Active
		<i>idle_handshake && !TS2_loopback</i> <i>&& ! TS2_hotreset</i>	U0
		<i>lgou1_success</i>	U1
12	U0	<i>lgou2_success</i>	U2
		<i>lgou3_success</i>	U3
		<i>remote.data == TSI</i>	NonPollingTraining
		<i>US && remote.RX_SIG_IDLE</i>	SS.Disabled.Default
		<i>warm_reset</i>	Rx.Detect.Active
		<i>remote.data == TSEQ</i>	PollingTraining
13	U1	<i>warm_reset</i>	Rx.Detect.Active
		<i>timeout_u2</i>	U2
		<i>remote.data == TSI</i>	NonPollingTraining
		<i>Lfps</i>	U2_Exit
15	U2_Exit	<i>warm_reset</i>	Rx.Detect.Reset
		<i>remote.data == TSI</i>	NonPollingTraining
16	U3	<i>Lfps</i>	U3_Resume
		<i>timeout_100ms</i>	U3_RxDetect
17	U3_RxDetect	<i>RxDetectPass</i>	U3
		<i>RxDetectFail</i>	Rx.Detect.Reset
		<i>Lfps</i>	U3_Resume
18	U3_Exit	<i>warm_reset</i>	Rx.Detect.Reset
		<i>remote.data == TSI</i>	NonPollingTraining
19	Compliance Mode	<i>warm_reset</i>	Rx.Detect.Reset
20	Loopback.Active	<i>Lfps</i>	Loopback.Exit

		<i>warm_reset</i>	Rx.Detect.Reset
21	Loopback.Exit	<i>!lfps</i>	Rx.Detect.Reset
		<i>timeout_2ms</i>	SS.Disabled.Default
	Any state	<i>exittoPowerOFF</i>	PowerOFF
	Any state but U1/U2/U3	<i>DS && remote.RX_SIG_IDLE</i>	SS.Disabled.Default
		$DS = (id_dig == 0) \text{ // } id_dig \text{ is UTMI pin}$ $US = (id_dig == 1) \text{ // } id_dig \text{ is UTMI pin}$ $lfps = !rx_electrical_idle \& \& !rx_val \text{ // Both are USB PHY pins}$ $rx_detect_pass = phy_status \&\& (rx_status == 3'b011) \text{ // Both are USB PHY pins}$ $rx_detect_fail = phy_status \&\& (rx_status != 3'b011)$ $warm_reset = US \&\& (DATA == warm_reset) \text{ } DS \&\& (remote.DATA == RX_LFPS_WARMRESET)$ $compliance_done = (state == ComplianceMode) \&\& warm_reset; \text{ // Level signal; once set remains set}$ $idle_handshake = ((DATA == IDLE)*8) \&\& ((remote.DATA == IDLE)*16)$ $TS2_loopback = (DATA == TS2_loopback) \text{ } (remote.DATA == TS2_loopback)$ $TS2_hotreset = DS \&\& (remote.DATA == TS2_hotreset) \text{ } US \&\& (DATA == TS2_hotreset)$ $lgou1_success = LGO_U1 \rightarrow LAU \rightarrow LPMA Timeout$ $lgou2_success = LGO_U2 \rightarrow LAU \rightarrow LPMA Timeout$ $lgou3_success = LGO_U3 \rightarrow LAU \rightarrow LPMA Timeout$ $timeout_u2 = U2 \text{ Inactivity Timeout}$ $tDisabledCount = (count_for_RxDetectFail == 10)$ $exittoPowerOFF = !WirelessLinkUp \text{ } (US \&\& !PowerPresent \text{ } DS \&\& remote.RX_SIG_POWEROFF)$	

Table 7: State transitions for USB3.0 super-speed state machine

[0078] At the bottom of Table 7, the terms used to describe the condition use names and symbols borrowed from the USB 3.0 specification and the PIPE interface specification. Also used in these equations is signaling information from Table 5. For example, *remote.RX_DETECT_SUCCESS* used in Row 7 of Table 7 is the “Receive Detection Pass”

signaling received over wireless link from the remote wireless apparatus.

[0079] Implementing low power states for wireless tunneling apparatus saves power consumption in many usage scenarios, for example, entering low power state while waiting for USB device plugin (Sleep/W0 loop) or entering low power state while waiting for W2 exit or W3 exit. Note that in both these scenarios the low power state could last a long time, since the transitions in and out of these states are usually triggered at human timescale. It is therefore beneficial to design the wireless tunneling apparatus to support low power states for these scenarios.

[0080] In order to wake-up the apparatuses in low-power state, a separate low-frequency (LF) and low-power wireless data-path is implemented. The LF TX circuit 424 is used to transmit asynchronous signals across the wireless link. The USB digital logic asynchronously drives the signal ***SSUWakeup*** (or alternately ***HSUWakeup*** for USB 2.0) high whenever the USB PHY detects LFPS (low frequency periodic signaling) on the cable interface while the apparatuses are in U2 or U3 low power state. This asynchronous signal is transmitted using LF TX circuit 424 and under the control of the wireless component state-machine 480.

[0081] Likewise the signal ***SSWWakeup*** is driven by the LF RX circuit 446 whenever wakeup signal is detected over wireless link. This is used by the wireless component state machine 480 and USB Digital 404 to transition the apparatuses into an operational state U0.

[0082] Tables 8 and 9 describe the exemplary W2 entry/exit sequence and Sleep entry/exit sequence, respectively, according to one embodiment. The Initiator column in the tables use the following notations:

“Host”: USB host or upstream USB hub (e.g., processing apparatus 110A)

“Device”: USB peripheral or downstream USB hub (e.g., processing apparatus 110B)

“US-U”: USB digital 404 on upstream side (e.g., wireless tunneling apparatus 120A)

“US-W”: Wireless blocks on upstream side (e.g., wireless tunneling apparatus 120A)

“DS-U”: USB digital 404 on downstream side (e.g., wireless tunneling apparatus 120B)

“DS-W”: Wireless blocks on downstream side (e.g., wireless tunneling apparatus 120B).

[0083] In W2/W3 states, the digital clocks are stopped and mixed-signal/radio blocks are put in low-power state. However in Sleep mode the entire USB digital 404 (including state machines) and most of wireless blocks lose power. In an embodiment, there is a small always-ON digital state-machine that retains power even during Sleep.

	Event	Initiator	Upstream Link State	Downstream Link State	Wireless Power State
<u>W2 entry sequence</u>					
1	<i>lgou2_success</i>	Host or Device	U0->U2	U0->U2	W0
2	<i>SSUPowerDown = W2</i>	DS-U and US-U	U2	U2	W0
3	W2 request exchange over wireless	DS-W and US-W	U2	U2	W0
4	<i>WLinkW0Mode</i> goes from 1 to 0	DS-W and US-W	U2	U2	W2
<u>W2 exit sequence – Host initiated</u>					
1	<i>lfps</i> (U2 Exit)	Host	U2 -> U2 Exit	U2	W2
2	<i>SSUWakeup</i> = 1	US-U	U2_Exit	U2	
3	Wireless Wakeup request	US-W	U2_Exit	U2	
4	<i>SSWWakeup</i> = 1 <i>drvLfps</i> = 1	DS-W DS-U	U2_Exit	U2->U2_Exit	W0
5	<i>lfps</i> (Handshake)	Device	U2_Exit	U2_Exit	
6	<i>RX_SIG_LFPS</i>	DS-U	U2_Exit	U2_Exit	
7	<i>RX_SIG_LFPS Rx @US</i>	US-W	U2_Exit	U2_Exit	
8	<i>drvLfps</i> = 1	US-U	U2_Exit	U2_Exit	
9	LFPS end sequence				
10	TS1 Training	Host and Dev	U2_Exit -> NonPolling Training	U2_Exit -> NonPolling Training	W0
<u>W2 exit sequence – Device initiated</u>					
1	<i>lfps</i> (U2 Exit)	Device	U2	U2->U2_Exit	W2
2	<i>SSUWakeup</i> = 1	DS-U	U2	U2_Exit	
3	Wireless Wakeup request	DS-W	U2	U2_Exit	
4	<i>SSWAsyncWakeups</i> = 1	US-W	U2->U2_Exit	U2_Exit	W0

	$drvLfps = 1$	US-U			
5	$lfps$ (Handshake)	Host	U2_Exit	U2_Exit	
6	RX_SIG_LFPS	US-U	U2_Exit	U2_Exit	
7	RX_SIG_LFPS Rx @US	DS-W	U2_Exit	U2_Exit	
8	$drvLfps = 1$	DS-U	U2_Exit	U2_Exit	
9	LFPS end sequence				
10	TS1 Training	Host and Dev	U2_Exit -> NonPolling Training	U2_Exit -> NonPolling Training	W0

Table 8: W2 entry/exit sequence for USB3.0 super-speed

	Event	Initiator	Upstream Link State	Downstream Link State	Wireless Power State
<u>Sleep entry sequence</u>					
1	USB Rx detect attempt to disconnect ($SSDisconnect=1$)		Any of Rx.Detect state	Any of Rx.Detect state	W0
2	150ms timeout with $SS.Disconnect=1$	DS-W and US-W	Any of link Init state	Any of Rx.Detect state	W0
3	Sleep request exchange over wireless	DS-W and US-W	Any of Rx.Detect state	Any of Rx.Detect state	W0
4	Entry to sleep state $WirelessLinkUp = 0$		Any of Rx.Detect state -> PowerOFF	Any of Rx.Detect state -> PowerOFF	W0 ->Sleep
<u>Sleep exit sequence – Host initiated</u>					
1	1 sec sleep timeout	DS-W and US-W	No power	No power	Sleep

2	Power up	DS-W and US-W			Sleep ->W0
3	Normal power up sequence	All blocks			W0

Table 9: Sleep entry/exit sequence for USB3.0 super-speed**USB 2.0 State Machine**

[0084] The USB2.0 state machine 631 for HS/FS/LS data is adapted and optimized starting from the Reset Protocol State Machine (RPSM) described in the USB 2.0 specification. It handles high-speed, full-speed, and low-speed operations using the D⁺/D⁻ lines.

[0085] Table 10 shows signaling information generated by the USB 2.0 state-machine. The encoding of the bytes for wireless communication uses the same scheme as super-speed (described in Table 6).

	Signaling	Encoded Value (8bit - binary)	Comment
1	LINE_STATE_SE0	0000_0000	Change of line state to SE0 at remote Slingshot UTMI
2	LINE_STATE_0	0000_0010	Change of line state to differential “0” at remote Slingshot UTMI
3	LINE_STATE_1	0000_0001	Change of line state to differential “1” at remote Slingshot UTMI
4	LINE_STATE_SE1	0000_0011	Change of line state to SE1 at remote Slingshot UTMI
5	HostDisconnect	0001_0001	HostDisconnect 0->1 change at remote Slingshot UTMI. Valid for DS only
6	HostConnect	0001_0000	HostDisconnect 1->0 change at remote Slingshot UTMI. Valid for DS only
7	VBUS_ON	0010_0001	PowerPresent 0->1 transition at remote Slingshot
8	VBUS_OFF	0010_0000	PowerPresent 1->0 transition at remote Slingshot

Table 10: USB 2.0 signaling information

[0086] Table 11 summarizes the next state and transition condition for the 17-state USB 2.0 state machine 631. This state-machine is simpler than the one for super-speed, since super-speed operation implements a more sophisticated power management. The USB 2.0 state machine 631 on the other hand needs different states for supporting HS, FS, and LS – as evident from a few states replicated three times in the Table below. Towards the bottom of the table there are three global conditions that apply to multiple current states. They enable transition to three fixed states: **Poweroff**, **Disconnected**, and **Reset_SE0**.

	Current State	Condition	Next State
1	Poweroff	<i>sigPowerOn</i>	Disconnected
2	Disconnected	<i>sigHostConnect</i>	Connected
3	Connected	<i>sigline_host_SE0</i>	Reset_SE0
4	Reset_SE0	<i>sigline_dev_1</i>	Reset_FS
		<i>sigline_dev_0</i>	LS_Default
5	Reset_FS	<i>sigline_dev_K</i>	Reset_chirpK
		<i>timeout_10ms</i>	FS_Default
6	Reset_chirpK	<i>!sigline_dev_K</i>	Reset_JK_handshake
		<i>timeout_2.5us</i>	FS_Default
7	Reset_JK_handshake	<i>sigline_host_SE0</i>	Reset_SE02
8	Reset_SE02	<i>!sigline_host_SE0</i>	HS_Default
9	HS_Default	<i>idle_more_than_3ms</i>	HS_Suspend
10	FS_Default	<i>idle_more_than_3ms</i>	FS_Suspend
11	LS_Default	<i>idle_more_than_3ms</i>	LS_Suspend
12	HS_Suspend	<i>(Remote.LineState==K)</i> <i> (LineState==K)</i>	HS_Suspend_Exit
13	HS_Suspend_Exit	<i>(Remote.LineState==J)</i> <i> (LineState==J)</i>	HS_Default
14	FS_Suspend	<i>(Remote.LineState==K)</i> <i> (LineState==K)</i>	FS_Suspend_Exit
15	FS_Suspend_Exit	<i>(Remote.LineState==J) </i> <i>(LineState==J)</i>	FS_Default

16	LS_Suspend	$(Remote.LineState == K) \parallel (LineState == K)$	LS_Suspend_Exit
17	LS_Suspend_Exit	$(Remote.LineState == J) \parallel (LineState == J)$	LS_Default
	Any State	<i>sigPowerOff</i>	Poweroff
	Any State	<i>sigHostDisconnect</i>	Disconnected
	Any State other than Reset states	<i>sigline_host_SE0</i>	Reset_SE0
$DS = (IdDig == 0) \text{ // } IdDig \text{ is UTMI pin}$ $US = (IdDig == 1) \text{ // } IdDig \text{ is UTMI pin}$ $sigPowerOn = WirelessLinkUp \&\& (US \&\& PowerPresent \parallel DS \&\& remote.VBUS_ON)$ $sigPowerOff = !WirelessLinkUp \parallel (US \&\& !PowerPresent \parallel DS \&\& remote.VBUS_OFF)$ $sigHostConnect = US \&\& remote.HostConnect \parallel DS \&\& !HostDisconnect$ $sigHostDisconnect = US \&\& remote.HostDisconnect \parallel DS \&\& HostDisconnect$ $sigline_host_SE0 = DS \&\& remote.LINE_STATE_SE0 \parallel US \&\& LINESTATE_SE0$ $sigline_host_1 = DS \&\& remote.LINE_STATE_1 \parallel US \&\& LINESTATE_1$ $sigline_host_0 = DS \&\& remote.LINE_STATE_0 \parallel US \&\& LINE_STATE_0$ $sigline_host_J = (FS \parallel HS) \&\& sigline_host_1 \parallel LS \&\& sigline_host_0$ $sigline_host_K = (FS \parallel HS) \&\& sigline_host_0 \parallel LS \&\& sigline_host_1$ $sigline_dev_1 = DS \&\& LINE_STATE_1 \parallel US \&\& remote.LINE_STATE_1$ $sigline_dev_0 = DS \&\& LINE_STATE_0 \parallel US \&\& remote.LINE_STATE_0$ $sigline_dev_J = (FS \parallel HS) \&\& sigline_dev_1 \parallel LS \&\& sigline_dev_0$ $sigline_dev_K = (FS \parallel HS) \&\& sigline_dev_0 \parallel LS \&\& sigline_dev_1$			

Table 11: States & transitions for USB 2.0 state-machine

[0087] At the bottom of Table 11, the terms used in Condition use names and symbols borrowed from the USB 2.0 specification and the UTMI interface specification. Also used in these equations is USB 2.0 signaling information from Table 10.

[0088] Table 12 and 13 describe W3 entry/exit and Sleep entry/exit sequences for high-speed, full-speed, and low-speed operations. In these tables the “xx_” prefix denotes either one of HS, FS, and LS.

[0089] As described earlier, the wireless design supports the power states: W0, W2, W3, and Sleep. The states W0, W2, and W3 get mapped to USB3.0 super-speed states U0, U2, and U3. In one embodiment, the apparatus does not power down wireless blocks in U1 state since the exit latency requirement for U1 is very short. The “suspend” power state in USB 2.0 is mapped to W3. This is because the “suspend-resume” exit latency requirement is comparable to that of super-speed U3.

[0090] In one embodiment, the wireless tunneling apparatus can be used on upstream side of a USB 3.0 hub, thereby utilizing both USB3.0 super-speed and USB 2.0 data transfers simultaneously. Therefore, in this embodiment, the power state W3 is entered only after checking both the USB 2.0 state machine 631 and the USB3.0 super-speed state machine 621. For example, W3 is entered only if the USB 3.0 super-speed link is in **U3** or **Disabled** state and the USB 2.0 link is in **Suspend** state. Likewise the Sleep state is entered only if USB3.0 super-speed link is in **Disabled** state and USB 2.0 link is in **Disconnected** state.

	Event	Initiator	Upstream Link State	Downstream Link State	Wireless Power State
<u>W3 entry sequence</u>					
1	IDLE > 3ms	Host	xx_Default -> xx_Suspend	xx_Default -> xx_Suspend	W0
2	USB state-machine asserts <i>suspend</i> signal to wireless design	DS-U and US-U	xx_Suspend	xx_Suspend	W0
3	W3 request exchange over wireless	DS-W and US-W	xx_Suspend	xx_Suspend	W0
4	<i>WLinkW0Mode</i> = 1 -> 0	DS-W and US-W	xx_Suspend	xx_Suspend	W0->W3
<u>W3 exit sequence – Host initiated</u>					
1	Linestate == K for 20ms	Host	xx_Suspend -> xx_Suspend_Exit	xx_Suspend	W3
2	<i>HSUWakeup</i> = 1	US-U	xx_Suspend_Exit	xx_Suspend	

3	Wireless Wakeup request	US-W	xx_Suspend_Exit	xx_Suspend	
4	<i>HSWWakeup</i> = 1 <i>drvResume</i> = 1	DS-W DS-U	xx_Suspend_Exit	xx_Suspend -> xx_Suspend_Exit	W3->W0
5	Idle (post resume)	Host	xx_Default	xx_Suspend_Exit	W0
6	<i>sigline_host_J</i>	US-U	xx_Default	xx_Default	W0
<u>W3 exit sequence – Device initiated</u>					
1	Linestate == K for 1-15ms	Device	xx_Suspend	xx_Suspend -> xx_Suspend_Exit	W3
2	HSUWakeup = 1	DS-U	xx_Suspend	xx_Suspend_Exit	
3	Wireless Wakeup request	DS-W	xx_Suspend	xx_Suspend_Exit	
4	WAsyncWakeup = 1 DrvResume = 1	US-W and US-U	xx_Suspend -> xx_Suspend_Exit	xx_Suspend_Exit	W3->W0
5	Idle (post resume)	Device	xx_Suspend_Exit	xx_Default	W0
6	<i>Sigline_host_J</i>	DS-U	xx_Default	xx_Default	W0

Table 12: W3 entry/exit sequence for USB 2.0 suspend-resume

	Event	Initiator	Upstream Link State	Downstream Link State	Wireless Power State
<u>Sleep entry sequence</u>					
1	Host or device disconnects or powers off	Host or Device			W0
2	USB state- machine asserts <i>disconnect</i> signal to wireless design	DS-U or US-U	PowerOff/ Disconnect	PowerOff/ Disconnect	W0

3	150ms timeout with <i>disconnect</i> = 1	DS-W and US-W	PowerOff/ Disconnect	PowerOff/ Disconnect	W0
4	Sleep request exchange over wireless	DS-W and US-W	PowerOff/ Disconnect	PowerOff/ Disconnect	W0
5	Entry to Sleep; <i>WirelessLinkUp</i> = 0		Lose Power		Sleep
<u>Sleep exit sequence – Host initiated (USB 2.0 Poll for Connect)</u>					
1	1 sec sleep timeout	DS-W and US-W	No power	No power	Sleep
2	Power up	DS-W and US-W			Sleep-> W0
3	Normal power up sequence	All blocks			W0

Table 13: Sleep entry/exit sequence for USB 2.0 disconnect-connect

[0091] Upon reading this disclosure, those of skill in the art will appreciate still additional alternative embodiments through the disclosed principles herein. Thus, while particular embodiments and applications have been illustrated and described, it is to be understood that the disclosed embodiments are not limited to the precise construction and components disclosed herein. Various modifications, changes and variations, which will be apparent to those skilled in the art, may be made in the arrangement, operation and details of the method and apparatus disclosed herein without departing from the scope described herein.

What is claimed is:

1. A local wireless tunneling apparatus that operates in conjunction with a remote wireless tunneling apparatus to wirelessly tunnel communications between a remote processing apparatus and a local processing apparatus while maintaining compliance of the communications between the remote processing apparatus and the local processing apparatus with a wired communication protocol, the local wireless tunneling apparatus comprising:
 - a wireless receiver configured to receive a wireless receive signal from the remote wireless tunneling apparatus, the wireless receiver to downconvert the wireless receive signal to generate a baseband signal from the wireless receive signal;
 - a processing component state machine configured to predict a remote processing state of the remote processing apparatus based on the baseband signal; and
 - an interface circuit coupled to the local processing apparatus, the interface circuit configured to (i) generate an output signal conforming to the wired communication protocol based on the predicted remote processing state and the baseband signal and (ii) provide the output signal to the local processing apparatus through the wired communication protocol.
2. The local wireless tunneling apparatus of claim 1, further comprising:
 - a wireless transmitter configured to (i) receive an input signal from the local processing apparatus to generate another baseband signal, (ii) upconvert said another baseband signal to generate a wireless transmit signal and (iii) transmit the wireless transmit signal.
3. The local wireless tunneling apparatus of claim 2, wherein the processing component state machine controls a power state of the receiver or the transmitter based on one or more of:
 - (a) current state of the processing component state machine,
 - (b) inputs received from the local processing apparatus, and
 - (c) the predicted remote processing state.
4. The local wireless tunneling apparatus of claim 2, wherein the processing component state machine is further configured to map one or more local processing states of the local processing apparatus to a single state of the processing component state machine, and generate a state signal indicative of a local processing state of the local processing apparatus based on the single state, and wherein the transmitter is configured to

encode the baseband signal with the state signal indicative of the local processing state of the local processing apparatus.

5. The local wireless tunneling apparatus of claim 1, further comprising:
 - a wireless component state machine configured to determine a wireless component state of the wireless receiver based on its own current state and the predicted remote processing state of the remote processing apparatus.
6. The local wireless tunneling apparatus of claim 5, wherein the wireless component state machine controls an operation mode of the wireless receiver according to the wireless component state determined based on its own current state and the predicted remote processing state of the remote processing apparatus.
7. The local wireless tunneling apparatus of claim 6, wherein the wireless component state is determined based on its own current state and the predicted remote processing state.
8. The local wireless tunneling apparatus of claim 1, wherein the baseband signal is encoded with a state signal indicative of a prior state of the remote processing apparatus, and wherein the processing component state machine is configured to predict the remote processing state of the remote processing apparatus based on the state signal of the baseband signal.
9. The local wireless tunneling apparatus of claim 1, wherein the processing component state machine is configured to predict the remote processing state of the remote processing apparatus based on a portion of the baseband signal corresponding to the wireless receive signal.
10. The local wireless tunneling apparatus of claim 1, wherein the processing component state machine is configured to predict the remote processing state of the remote processing apparatus based on one or more prior local processing states of the local processing apparatus.
11. A method for wirelessly tunneling communications between a local processing apparatus and a remote processing apparatus while maintaining compliance of the communications between the local processing apparatus and the remote processing apparatus with a wired communication protocol, the method comprising:
 - receiving, by a wireless receiver, a wireless receive signal from a remote wireless tunneling apparatus;
 - downconverting, by the wireless receiver, the wireless receive signal to generate a baseband signal from the wireless receive signal;

predicting, by a processing component state machine, a remote processing state of the remote processing apparatus based on the baseband signal; generating, by an interface circuit coupled to the local processing apparatus, an output signal conforming to the wired communication protocol based on the predicted remote processing state and the baseband signal; and providing, by the interface circuit, the output signal to the local processing apparatus through the wired communication protocol.

12. The method of claim 11, further comprising:

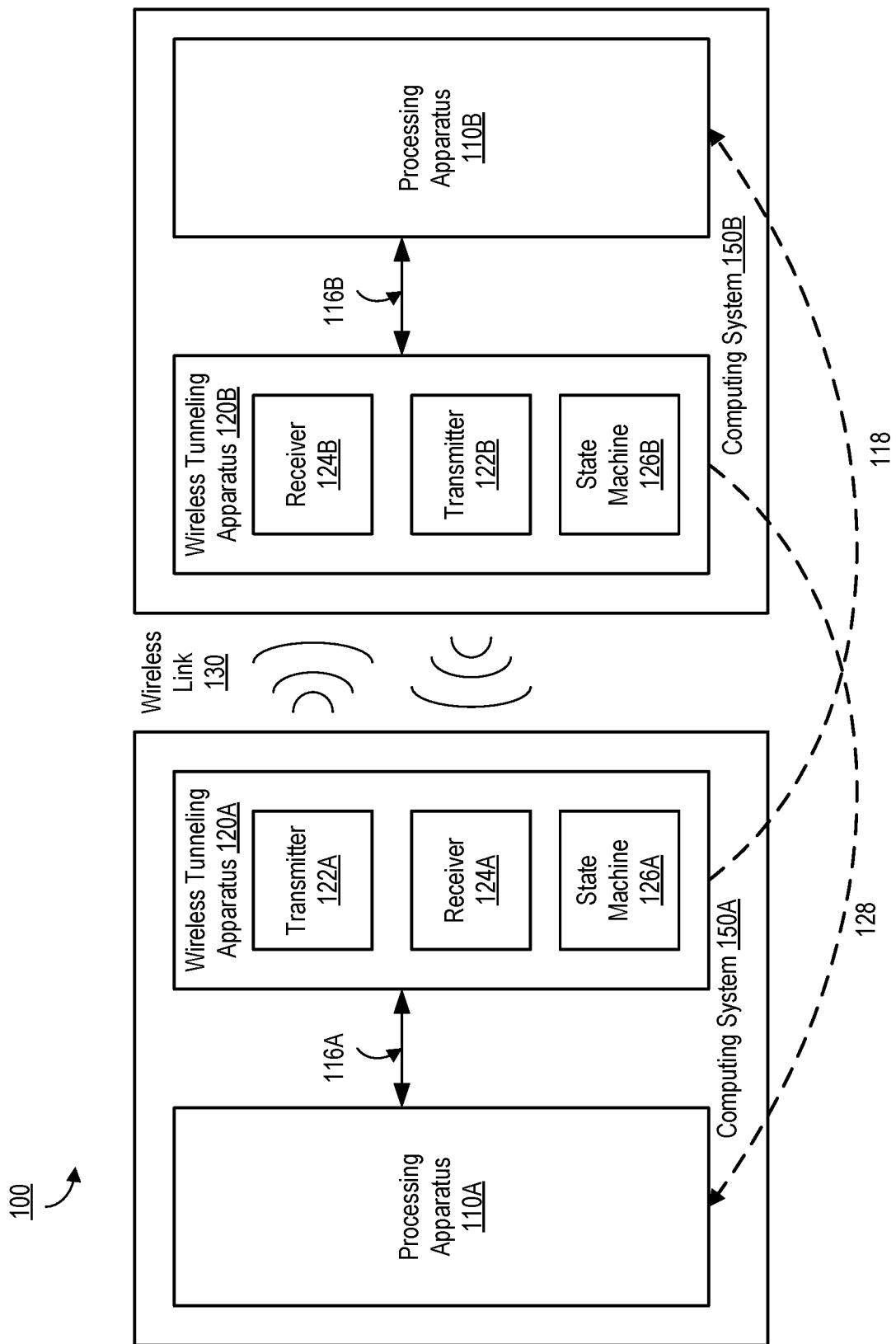
receiving, by a wireless transmitter, an input signal from the local processing apparatus to generate another baseband signal; upconverting, by the wireless transmitter, said another baseband signal to generate a wireless transmit signal; and transmitting, by the wireless transmitter, the wireless transmit signal.

13. The method of claim 12, further comprising:

controlling, by the processing component state machine, a power state of the receiver or the transmitter based on one or more of:
(a) current state of the processing component state machine,
(b) inputs received from the local processing apparatus, and
(c) the predicted remote processing state.

14. The method of claim 12, further comprising:

mapping, by the processing component state machine, one or more local processing states of the local processing apparatus to a single state of the processing component state machine; generate, by the processing component state machine, a state signal indicative of a local processing state of the local processing apparatus based on the single state; and encoding, by the transmitter, the baseband signal with the state signal indicative of the local processing state of the local processing apparatus.


15. The method of claim 11, further comprising:

determining, by a wireless component state machine, a wireless component state of the wireless receiver based on the predicted remote processing state of the remote processing apparatus.

16. The method of claim 15, further comprising:

controlling, by the wireless component state machine, an operation mode of the wireless receiver according to the wireless component state determined based on the predicted remote processing state of the remote processing apparatus.

17. The method of claim 16, wherein the wireless component state is determined based on the predicted remote processing state.
18. The method of claim 11, wherein the baseband signal is encoded with a state signal indicative of a prior state of the remote processing apparatus, and wherein the processing component state machine is configured to predict the remote processing state of the remote processing apparatus based on the state signal of the baseband signal.
19. The method of claim 11, wherein the processing component state machine is configured to predict the remote processing state of the remote processing apparatus based on a portion of the baseband signal corresponding to the wireless receive signal.
20. The method of claim 11, wherein the processing component state machine is configured to predict the remote processing state of the remote processing apparatus based on one or more prior local processing states of the local processing apparatus.

FIG. 1

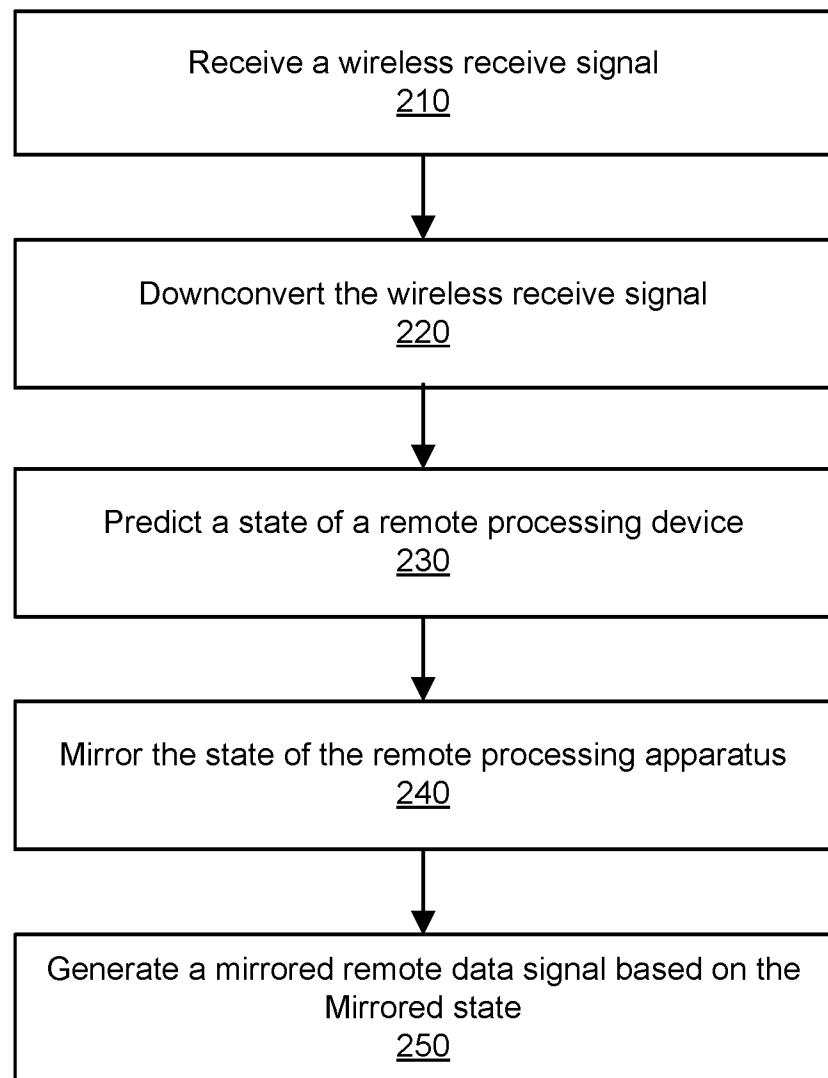


FIG. 2

FIG. 3

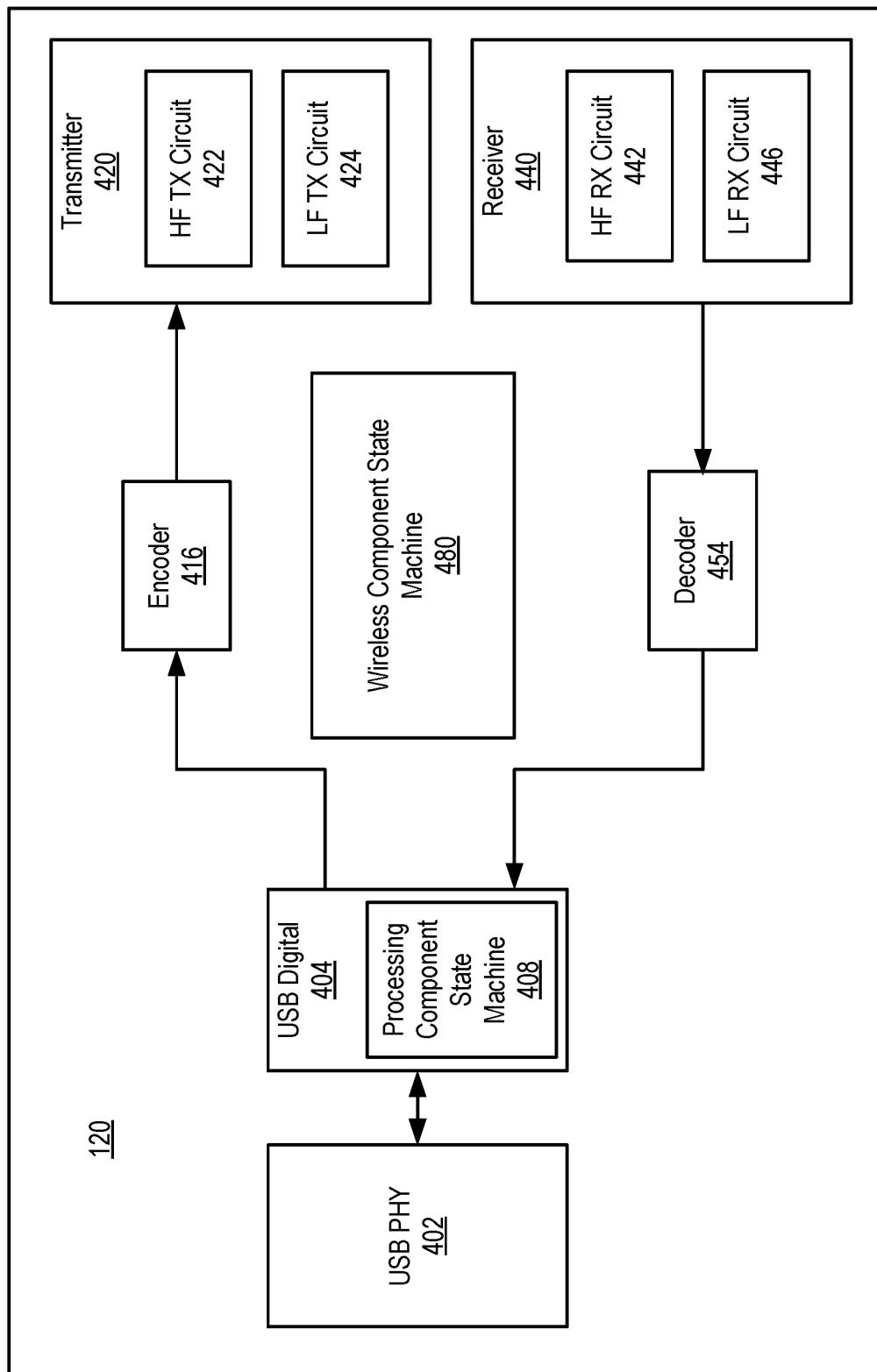


FIG. 4

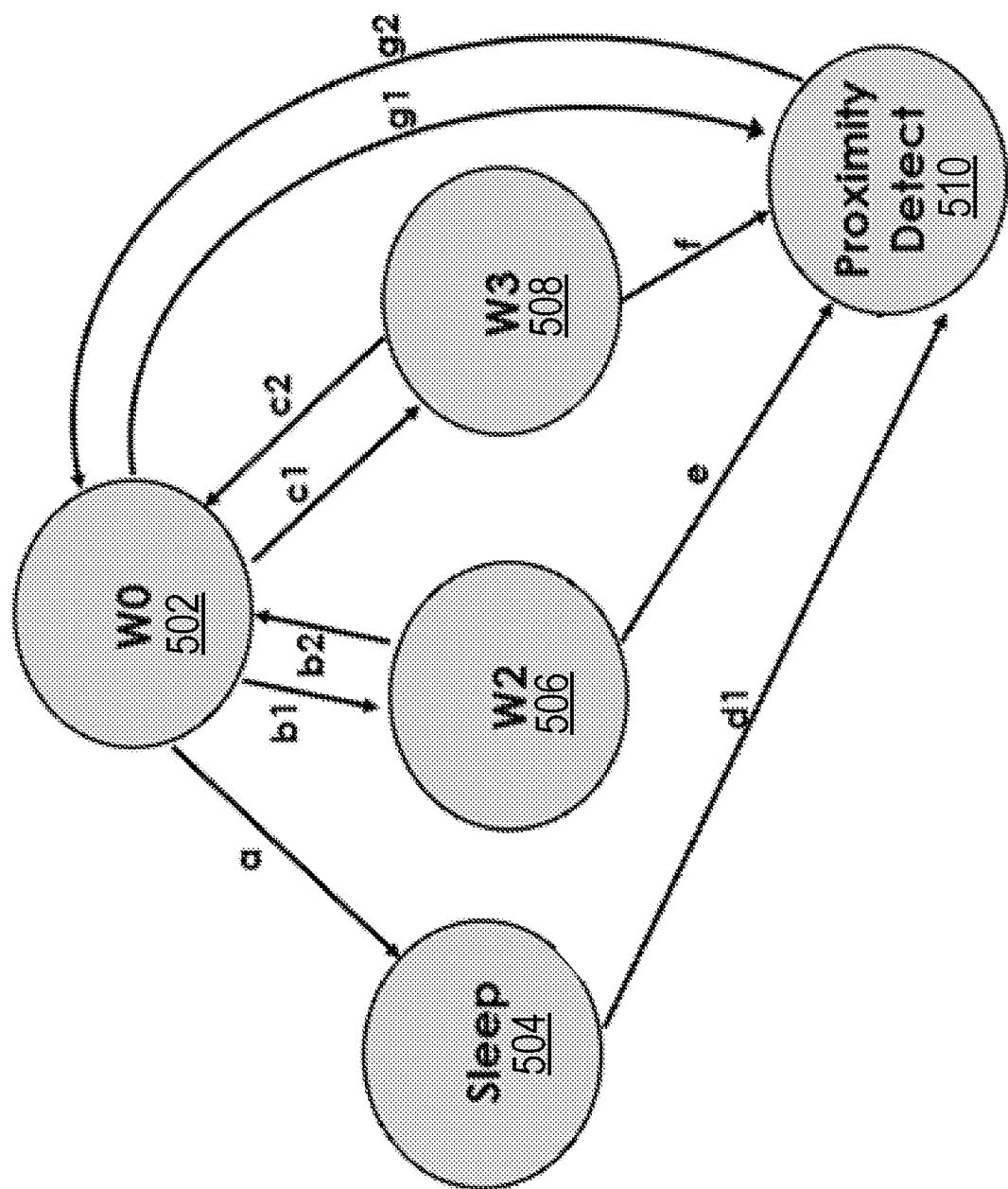


FIG. 5

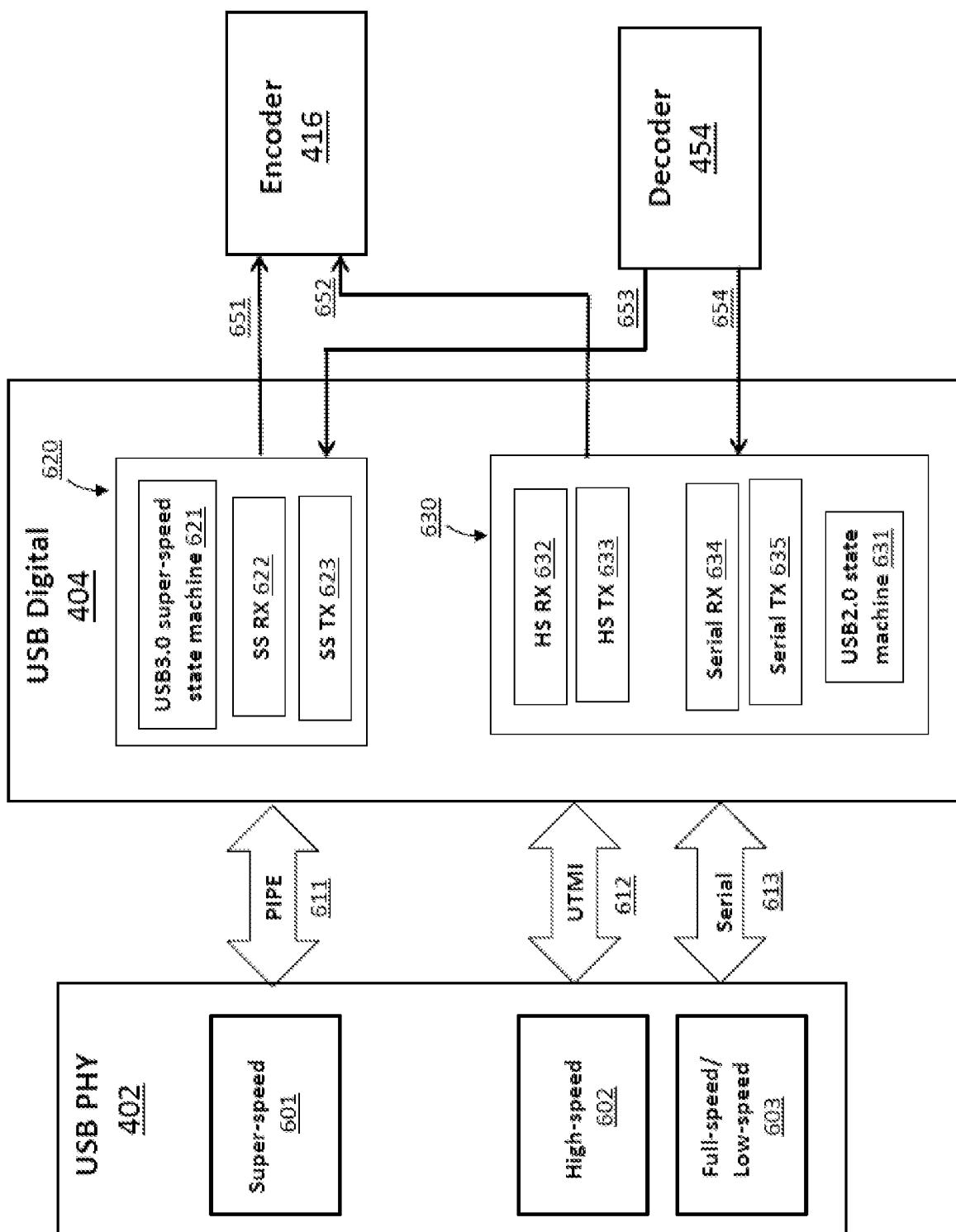


FIG. 6

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2016/023199

A. CLASSIFICATION OF SUBJECT MATTER

H04L 29/06(2006.01)i, H04L 29/10(2006.01)i, H04W 76/02(2009.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04L 29/06; H04L 12/46; H04W 76/02; H04L 25/02; H04L 25/08; H04W 84/12; H04L 29/10Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: wireless, tunneling, protocol, compliance, baseband, signal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2008-0205417 A1 (HUAMIN LI) 28 August 2008 See paragraphs [0006], [0026]-[0029]; and figure 2.	1-20
Y	US 2013-0051440 A1 (BROADCOM CORPORATION) 28 February 2013 See paragraphs [0054]-[0058], [0060]-[0065], [0071], [0092]; and figure 5.	1-20
A	US 2014-0219191 A1 (STRIX SYSTEMS, INC.) 07 August 2014 See paragraphs [0028]-[0037]; and figure 2.	1-20
A	US 2013-0287077 A1 (UDARA C. FERNANDO et al.) 31 October 2013 See paragraphs [0035]-[0038]; and figure 1.	1-20
A	US 2014-0040486 A1 (MICROSOFT CORPORATION) 06 February 2014 See paragraphs [0004], [0023]-[0024]; and figure 4.	1-20

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search 08 July 2016 (08.07.2016)	Date of mailing of the international search report 08 July 2016 (08.07.2016)
Name and mailing address of the ISA/KR International Application Division Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea Facsimile No. +82-42-481-8578	Authorized officer KIM, KI HO Telephone No. +82-42-481-8691

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2016/023199

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2008-0205417 A1	28/08/2008	WO 2008-105777 A2 WO 2008-105777 A3	04/09/2008 04/12/2008
US 2013-0051440 A1	28/02/2013	CN 101848004 A CN 101848004 B EP 2194649 A2 EP 2194649 A3 HK 1148128 A1 TW 201101715 A TW I422169 B US 2010-136927 A1 US 2012-069879 A1 US 8090327 B2 US 8326236 B2 US 8521100 B2	29/09/2010 31/07/2013 09/06/2010 24/12/2014 14/02/2014 01/01/2011 01/01/2014 03/06/2010 22/03/2012 03/01/2012 04/12/2012 27/08/2013
US 2014-0219191 A1	07/08/2014	AU 2003-270648 A1 AU 2003-270648 A8 US 2006-140161 A1 US 2011-007725 A1 US 7835328 B2 US 8634392 B2 US 9191976 B2 WO 2004-025887 A2 WO 2004-025887 A3	30/04/2004 30/04/2004 29/06/2006 13/01/2011 16/11/2010 21/01/2014 17/11/2015 25/03/2004 22/07/2004
US 2013-0287077 A1	31/10/2013	CN 104247275 A EP 2842233 A1 WO 2013-163474 A1	24/12/2014 04/03/2015 31/10/2013
US 2014-0040486 A1	06/02/2014	CA 2533875 A1 CA 2533875 C CA 2836894 A1 EP 1652356 A2 EP 1652356 A4 US 2005-025163 A1 US 2010-115105 A1 US 7646710 B2 US 8644142 B2 US 9191420 B2 WO 2005-011173 A2 WO 2005-011173 A3	03/02/2005 18/02/2014 03/02/2005 03/05/2006 09/11/2011 03/02/2005 06/05/2010 12/01/2010 04/02/2014 17/11/2015 03/02/2005 31/03/2005