5/020104 A1 | IV Y 0O OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
3 March 2005 (03.03.2005)

(10) International Publication Number

WO 2005/020104 A1l

(51) International Patent Classification’: GO6F 17/30
(21) International Application Number:
PCT/US2004/026754

(22) International Filing Date: 17 August 2004 (17.08.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/496,166 18 August 2003 (18.08.2003) US

(71) Applicant (for all designated States except US): SAP
AKTIENGESELLSCHAFT [DE/DE]; Neurottstrasse
16, 69190 Walldorf (DE).

(72)
(75)

Inventors; and

Inventors/Applicants (for US only): WU, Yuh-Cherng
[—/US]; 1382 Buckthorne Way, San Jose, CA 95129 (US).
GONG, Huiling [CN/US]J; 479 La Conner Drive, Apt. #4,
Sunnyvale, CA 94087 (US).

(74) Agent: BERDIE, Raymond, R.; Fish & Richardson P.C.,
P.A., 60 South Sixth Street, Suite 3300, Minneapolis, MN
55402-1104 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
—  with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: USER-REQUESTED SEARCH OR MODIFICATION OF INDICES FOR SEARCH ENGINES

I

ac
S

Configuraion

f’

B2
£

| Mapping among Applicafions, Knowledge Bases and Search Engines I

128,

Administration Ul

0% Application t

Application I
102b

Application Il
102¢

106a

110b
=
Knowledge Base il |-{Plug-In]

Knawledge Base IV

Knowledge Sevice

S

106¢

(57) Abstract: One implementation provides a method included in performing an action on a searchable index of content that is
& electronically stored in a knowledge base. The method includes receiving an input indicating a request that a computer-implemented
& process be performed that acts upon a specified index of content that is searchable using a predefined one of multiple search engines,
wherein the content resides within a specified one of multiple electronic knowledge bases. The method further includes performing a
computer-implemented process that composes, using the received request, a request to perform the computer-implemented process,
wherein the request has a format that is compatible with the predefined one search engine. The composed request is submitted to the

predefined one search engine for execution.



10

15

20

25

WO 2005/020104 PCT/US2004/026754

USER-REQUESTED SEARCH OR MODIFICATION OF INDICES FOR SEARCH ENGINES

RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Patent Application Serial
No. 60/496,166, which was filed on August 18, 2003.

TECHNICAL FIELD
This document describes a system that provides, within an enterprise computing
system, the ability to use an existing or third-party search engine software application

with a new software application being implemented.

BACKGROUND

In today's ever more complex enterprise computing systems, it is often desirable,
and even necessary in many cases, to have within a single enterprise computing system
various different software applications from different software vendors. In such a case,
the enterprise computing system is referred to as having a heterogeneous system
landscape. Integrating various software applications from different vendors, and
sometimes applications from the same vendor, is a challenging and often costly task.

There are many software applications where it is helpful for a user, when using the
software application, to perform a search for content electronically stored in a knowledge
base. One example of such a software application is a customer interaction center
software application. A customer interaction center application is a software application
that is used in a customer interaction center, for example, a call center. A customer
interaction center software application assists a human being agent (that is, a user) in
interacting with a customer. During the course of a customer interaction, it may be
helpful for the interaction center agent to search for information that is stored in a
knowledge base, for example, to find a solution to a customer's problem.

It is possible that search engine functionality may be built in, or pre-configured, to
operate with a particular software application. Such may be the case, for example, when
both the software application and the search engine functionality are provided by the

same software vendor. Even where a software application and a search engine application



10

15

20

25

WO 2005/020104 PCT/US2004/026754

are not designed to work with one another, because for example the two are provided by
different software vendors, it may be possible to integrate the search engine application
with the software application so that functionality from both software applications may be
executed as an integrated software solution where, from the user's perspective, it appears
that a single software application is being executed. Although such integration may be
possible, it typically has required a costly and time-consuming software integration effort.
As a result, in many cases where there is implemented, in a single computing
environment, both a software application and a search engine application that may be
needed in combination with the software application, the two applications operate entirely
separately. As such, a user will need to switch between the two applications, for example,
by switching between different windows. Particularly in a customer interaction center
application, where timeliness is typically essential, this switching between the interaction
center application and the search engine application may take too much time, and as such
may be unacceptable from a customer care perspective. In addition, where the two
functions are not integrated, various functions that may be possible with an integrated

solution may not be possible.

SUMMARY

One implementation provides a framework that allows a software application to
be easily integrated with a search engine application. In addition, one implementation
provides a recording function that is made possible by the software application and the
search engine application being integrated.

One implementation provides a method included in performing an action on a
searchable index of content that is electronically stored in a knowledge base. The method
includes receiving an input indicating a request that a computer-implemented process be
performed that acts upon a specified index of content that is searchable using a predefined
one of multiple search engines, wherein the content resides within a specified one of
multiple electronic knowledge bases. The method further includes performing a
computer-implemented process that composes, using the received request, a request to

perform the computer-implemented process, wherein the request has a format that is



10

15

20

25

WO 2005/020104 PCT/US2004/026754

compatible with the predefined one search engine. The composed request is submitted to
the predefined one search engine for execution.

The details of one or more implementations are set forth in the accompanying
drawings and the description below. Other features, objects, and advantages will be

apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG 1 is a functional block diagram of an enterprise computing system including
a search engine framework that integrates multiple different search engines into the
system.

FIG 2 is a diagram depicting mappings between components of the enterprise
computing system and the multiple different search engines.

FIGS. 3-8 are flowcharts of example processes that may be executed in response
to a search engine framework receiving a request to either perform an index search or to
perform one of various different index actions.

FIG. 9 is a flowchart of an example design-time process that may be executed to
create mappings among applications, knowledge bases, and search engines.

FIG. 10 is a block diagram of a computing device that may be used to provide the
environment for the search engine framework shown in FIG. 1, according to one

implementation.

DETAILED DESCRIPTION

An enterprise computing system 100, shown in FIG. 1, includes several software
applications, there being three such applications 102a, 102b and 102c in this example.
Each software application 102a-102c makes use of services that enable users to search for
electronically stored knowledge base information. Several search engines — in this
example, three such engines 104a, 104b, 104c — are included, and may be search engines
of different types and, for example, offered by different software vendors. Searchable
indexes 106a, 106b and 106¢ are each associated with one of the search engines 104a-
104c, and each may include more than one index. A knowledge base index being

associated with a particular one of the search engines 104a-104c¢ means that the index is



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

created and maintained in a format that enables it to be searched using the particular
search engine with which the index is associated. When a user wishes to search for
content stored in a particular knowledge base, it is an index of that knowledge base
content that is searched by the applicable search engine, and in response, a “hit list” of
content may be provided that meets certain user-specified search criteria. Thereafter, a
user may initiate the retrieval of content identified in the “hit list” directly from a
knowledge base or other data source. In one implementation, the “hit list” of content
includes content that is directly provided by the knowledge base or data source. In this
implementation, the run-time environment 124 collects information provided by the
search engine services 126 to determine which content is to be retrieved from the
knowledge repository 108 and included within the “hit list”. The run-time environment
124 sends a request to the knowledge service 114 and receives, in return, information that
is contained within one of the knowledge bases 110a-d or contained within an external
data source.

By way of example, the software applications 102a-102¢ may be 1) a customer
call center application, 2) an internet-accessible self-service customer interaction center
application, and 3) a field-service technician application. In a call center application, a
call center agent may search for a solution to a customer problem with a purchased
product in a solution database (that is, in a knowledge base of product problem solutions).
In such an example, the call center agent may be on the telephone with the customer, and
may access the solution and describe it to the customer over the telephone. The call
center agent may also, for example, retrieve a solution and electronically transmit a
document containing the solution to the customer, for example, via electronic mail. The
call center software application may also record solutions being retrieved and sent to a
customer, as a record of interactions with the customer for future reference if necessary.
A self-service customer interaction center may enable a customer to enter information
about a problem, initiate a search for a solution, and retrieve information explaining the
solution for the customer. As with the call center application, a record may be made of
the customer interaction and the solution material that was identified and retrieved by the
customer. A field service software application may enable a field technician that makes

on-site calls to retrieve solutions to problems encountered when making a field repair.



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

Again, such an application may include recording functionality to record the solutions
being retrieved by the technicians, and on behalf of specified customers whose equipment
is being repaired. Of course many other software applications make use of knowledge
base search functionality, and these examples are to be understood as only a few of the
many possibilities.

Search engines are important components for business operations in an enterprise
system, such as the system 100, to efficiently locate records or information needed to
complete business transactions. For example, in the area of customer service, locating a
customer using various search criteria, such as an address, a name, past interaction
records, is very helpful in providing quality service. The search engine designed for the
enterprise system can quickly locate a specific record from millions of records or
documents. Such a search engine can provide powerful search capabilities, such as fuzzy
text searches, or traditional database retrievals. With increasing Internet access, more
search engines are developed to provide Internet search capabilities.

There are various different reasons why it may be desirable for an enterprise
computing system 100 to make use of multiple different search engines. For example, it
may be that significant time and expense has already been expended to get a particular
search engine application implemented so that it works well with a particular software
application and with a particular existing knowledge base. In such an example, it may be
desirable to maintain that application as it is while implementing other applications that
use other search engines. This may be particularly useful, for example, when two
companies with different software solutions and search engines are combined, for
example, through a corporate merger. Another example of why it may be desirable for an
enterprise computing system 100 to make use of multiple different search engines is that
it may be desirable to implement a certain search engine application that may not be
standard with a particular software application, for example, to improve the performance
of search services.

The enterprise computing system 100 has a knowledge repository 108, which
includes a number of separate knowledge bases, there being in this example four such
knowledge bases 110a-110d. Electronically stored in the knowledge bases 110a-110d is

content that a person interacting with software applications 102a-102¢ may wish to



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

retrieve. The knowledge bases in an enterprise system, such as the knowledge bases
110a-d in the system 100, may include any business information that is needed for
business operation. For example, a solution knowledge base may be used to provide
solutions or steps to fix a problem for a service company. A product knowledge base may
contain product-related specifications and descriptions. A business partner knowledge
base may contain customer information that has been collected and processed over time.
An interaction record knowledge base may contain interaction history information for a
company and its customers. Of course, a knowledge base can have combined data
sources (e.g., interaction records with customer information, product information and
related documents). In addition, there may be various other types of knowledge bases
that may be included within a knowledge repository, such as the repository 108 shown in
FIG 1.

The electronically stored content in the knowledge bases 110a-110d is indexed in
the previously discussed indexes 106a-106c¢ to enable the previously mentioned index
searching. Each knowledge base 110a-110d has an associated plug-in 112a-112d to
external data sources that provide the data for the knowledge bases 112a-112d. When
information is retrieved from a search index (such as from one of the indexes 106a-c),
some basic information can be presented in a “hit-list” to a user, but the detailed
information may be from the search index or from a data source via the knowledge base
plug-ins 112a-d. If the display details are from the search index, the speed may be fast,
but the information may not be completely up-to-date (depending on when the indexes
106a-c were last updated). Thus, in one implementation, details are retrieved from an
original data source to obtain the most recent information when such is requested or
required, and information directly from the search index can also be used in certain
situations when speed of information retrieval is a premium. A rule-based engine
contained within the search engine services 126 or the run-time environment 124 may be
used, in one implementation, to determine whether to retrieve content information for the
“hit-list” from one of the indexes 106a-c, directly from an external data source coupled to
the knowledge repository 108 via the plug-ins 112a-d, or from a combination thereof.
The rules used by the rule-based engine may be configured by the design-time



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

environment 122 or by the run-time environment 124 upon receipt of input from the
applications 102a-c.

As is shown in FIG. 1, the application programming interface 120 may be directly
coupled to the knowledge service 114 within the knowledge repository 108. The
knowledge service 114 is capable of providing information from the knowledge
repository 108 directly to the applications 102a, 102b, or 102¢ through the application
programming interface 120. Thus, in one implementation, the applications 102a, 102b,
and/or 102c are capable of directly retrieving information from the knowledge repository
108. The knowledge repository 108 may also be provided with information from one or
more external data sources through the plug-ins 112a-d.

The knowledge repository 108 also has a knowledge service component 114,
which provides services related to the knowledge bases 110a-110d and provides an
interface for access and interaction with the knowledge bases 110a-110d.

A search engine framework 116 is part of the enterprise computing system 100.
The search engine framework 116 interfaces with the software applications 102a-102c,
the search engines 104a-104c, and the knowledge repository 108. For each of the search
engines 104a-104c, the framework 116 includes an associated plug-in 118a, 118b and
118c, which translates search engine functions specified in a common, or generic, format
into a format usable by the associated search engine 104a-104c. In one example, XML
(the Extensible Markup Language) is used to define a generic interface that can be
consistently shared and translated from different search engines. In another example, a
programming application interface is used to make sure the different search engines are
implemented via the standard interface. As such, the plug-ins 108a-118c enable search
engine functions to be performed within the framework 116 in a generic way, while
enabling the use of different search engines. This offers the flexibility, for example, to
continue the use of search engines that are included in legacy computing solutions, or
search engines that may already have be adapted to be used with a particular software
solution.

Each of the plug-ins 118a-118c consists of executable software code that
integrates the particular search engine with which the plug-in is associated into the

enterprise computing system 100. Each plug-in, for example, may include code that,



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

when executed, takes a command (for example, an index search command or an index
action command) that is expressed in the generic format of the search engine framework
116, and composes from that generically expressed command a similarly functioning
command that is in a format that can be executed by the specific search engine associated
with the plug-in. This may be implemented, for example, using object-oriented
programming methods, wherein the plug-in functions to instantiate, from a generic
command provided by the search engine services component 126, an object for a
command that is to be used by the applicable search engine. In addition, for example,
each of the plug-ins 118a-118c may include configuration information for the associated
search engine and that is needed by the search engine services component 126. Such
configuration information may include, for example, an identification of default fields
used by the particular search engine in executing an index search request, an
identification of information that must be stripped from a command when executing an
index search request, etc. Default field values may be provided by a plug-in when a
search engine requires a value not provided by the software application. The plug-in may
strip away values that are provided by the software application but not required by, or
relevant to, the search engine.

The search engine framework 116 also includes an application programming
interface 120 for the software applications 102a-102c¢ that enables communication
between the applications 102a-102¢ and the framework 116. The framework 116 also has
a design-time environment 122, a run-time environment 124, and a search engine services
component 126. The design-time environment 122 is a software environment that, among
other functions, provides the ability for an administrator, using an administration user
interface (UI) 128, to create a configuration database 130. The configuration database
130 includes electronically stored mappings 132 among the applications 102a-102c, the
knowledge bases 110a-110d, and the search engines 104a-104c. For example, the stored
mappings 132 specify the particular one of the search engines 104a-104c that is to be
used to execute a search request received from a particular one of the applications 102a-
102c and that includes a request for an identification of certain content that is stored in a
specified one, or more, of the knowledge bases 110a-110d. The design-time environment

122 also provides the ability for an administrator to perform actions related to the indexes



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

106a-106c, for example, to create an index of content that is stored in a specified one, or
more, or the knowledge bases 110a-110d, and to associate that index with one of the
search engines 104a-104¢. In one implementation, an automated process within the
design-time environment 122 or, more generally, within the search engine framework
116, can perform actions related to the indexes 106a-106¢ without user intervention using
various rules and a rule-based engine.

The search engine services component 126 is a software application that includes
a common, or generic, version (that is, not necessarily adapted for a particular search
engine) of various services related both to the execution of a search request and to the
performance of various indexing actions. As such, for example, when the design-time
environment 122 receives an input from the administration UI 128 requiring that a certain
specified knowledge base index be created and associated with a particular specified one
of the search engines 104a-104c, the design-time environment 122 may invoke an index
creation service included in the search engine services component 126. The index
creation service may, in turn, initiate and control the various actions involved in creating
the index. In this example, the actions may include initiating a translation of the index
creation request into a format that is usable by a specified one of the search engines 104a-
104c, sending the request to the specified search engine to be executed, and controlling
communications with the knowledge repository 108. More detail of an example of how
an index may be created is provided later.

The run-time environment 124 is a software environment that performs various
actions in response to an index search request received from one on the software
applications 102a-102c. For example, the run-time environment 124, in response to the
receipt of an index search request, may determine, using the configuration database 130,
which one of the search engines 104a-104c has been mapped to be used to execute the
received index search request. After doing this, the run-time environment 124 may then
invoke an appropriate service within the search engine services component 126, which
service may initiate and control the various actions involved in executing the index search
request. In this example, the actions performed by the service may include initiating a
translation of the index search request into a format that is usable by the specified one of

the search engines 104a-104c, sending the translated index search request to the specified



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

search engine to be executed, and initiating the return of a “hit list” to the software
application 102a-102¢ from which the index search was received. More detail of an
example of an index search request is executed is provided later.

In one implementation, the search engine framework 116 includes an internal
search engine (which is not shown in FIG. 1). In this implementation, the internal search
engine is coupled to the search engine services 126. The internal search engine is known
to and provided within the framework 116. For example, the internal search engine may
be managed or maintained by the same company that manages or maintains the
framework 116. No plug-in is required for the search engine services 126 to invoke the
internal search engine, because all interface, configuration, data format, etc., relating to
the internal search engine is controlled by the search engine services 126. The internal
search engine is also coupled to and uses an internal index, which is also contained within
the framework 116.

In one implementation, the applications 102a-c may send requests to the
framework 116 that cause multiple indexes to be searched. In this implementation, an
individual request that is received from one of the applications 102a-c includes
information that is used to identify multiple knowledge bases. The request may explicitly
identify these knowledge bases, or it may contain information that the framework 116 can
use to identify these knowledge bases (such as specific attribute information that is
associated with a particular knowledge base). The framework 116 accesses the mapping
information 132 to determine which of the search engines 104a-c are to be used for search
operations with respect to the identified knowledge bases. The framework 116 is then
capable of creating search requests that are sent to the determined search engines 104a-c
and providing search results to the one application 102a-c that had sent the original
request.

An example enterprise computing system 200, shown in FIG. 2, illustrates an
example of mappings, such as the mappings 132 stored in the configuration database 130
shown in FIG 1, that may be specified among software applications, knowledge bases,
and search engines. In this example, the enterprise computing system 200 has three
enterprise servers 210, 230 and 240. In one example, the different enterprise servers may

provide different software functions. For example, one enterprise server may contain and

10



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

execute a customer relationship management (CRM) software solution, another enterprise
server may contain and execute a supply chain management (SCM) software application,
and another enterprise server may contain and execute an enterprise resource planning
(ERP) software application.

In addition, each of the enterprise servers 210, 230 and 240 may be sub-divided
into multiple client systems that contain and execute a sub-set of functions provided by
the software application provided on the enterprise server. For example, enterprise server
210, in this example, has three client systems 212, 214 and 216. In one example, the
different client systems may correspond to different departments of an enterprise, for
example, one client system may be provided for a customer service department, another
for a marketing department, another for an accounting or financials department, and
another for a human resources department. In another example, multiple clients may be
used by different companies in a hosting solution where small and medium-scaled
companies may pay usage fees to a hosting solution without managing the data. It will be
appreciated that enterprise servers 230 and 240 may similarly be sub-divided into
multiple client systems, although not shown in FIG. 2.

The client system 212, in this example, has two software applications 102a and
102b, which are the software applications also shown in FIG. 1. As discussed previously,
these software applications 102a and 102b each make use of knowledge base search
services. In particular, Application I 102a provides the ability to search three knowledge
bases 110a, 110b and 110c, whereas Application IT 102b provides the ability to search
only two of the knowledge bases, namely knowledge bases 110b and 110c.

FIG. 2 depicts mappings that show which one of the search engines 104a-104d are
used to execute an index search depending on the software application from which the
index search was requested and the specified knowledge base for the index search. In
addition, the mapping takes into account the language specified for the search, for
example, English, German, Japanese, Chinese, etc., in that different searches may be used
for the same software application and knowledge base, but where the specified language
differs.

FIG. 2 shows that Application I 102a and Knowledge Base I 110a are mapped to
Search Engine I 104a, regardless of the language specified. Knowledge Base I 110b for

11



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

searches originating from either Application I 102a or Application II 102b is mapped to
Search Engine II 104b, where the specified language is English or German, and is
mapped to Search Engine III 104c, where the specified language is Japanese or Chinese.
FIG. 2 also shows that all software applications included in client systems 214 and 216
are mapped to Search Engine IV 104d, software applications within Enterprise Server 11
230 are mapped to either Search Engine I 104a or Search Engine II 104b, and software
applications within Enterprise Server III 240 are mapped to either Search Engine II 104b,
Search Engine III 104c, or Search Engine IV 104d. In another implementation (not
shown in FIG. 2), distinguishing of languages may not be needed for a search engine that
can automatically interpret languages and distribute requests and/or information into
different indexes. In this implementation, such a search engine contains added
functionality and intelligence to analyze textual input and automatically interpret this
input using a language-based, content analysis engine.

FIG 3 is a flowchart that shows a computer-implemented process 300 that occurs,
within the search engine framework 116 shown in FIG. 1 for example, when a request is
initially received, which begins at block 305. The request may be either a request that an
indexing action be performed, received for example from either the administration UI 128
or one of the applications 102a-102c, or a request that an index search be performed,
received for example from one of the applications 102a-102c. In the FIG 1 example, the
initial processing depicted in FIG. 3 may be carried out, for example, by the design-time
environment component 122 and the run-time environment component 124.

As shown in FIG. 3, the initial action that is taken in response to the receipt of a
request depends on the type of request that is received. For example, if it is determined at
blocks 310 and 315 that the request is one for either a delta index update or a full index
update, then the processing proceeds to block 320 where the processing of the indexing
request is started (an example of which is shown in FIG. 5). Generally, a delta index
update is one where the update only takes into account modifications to the knowledge
base that have occurred after the most recent update or creation of the index, whereas a
full index update is one that in essence compiles data into an existing index or a new
index every time an update is performed. If it is determined at blocks 325, 330 or 335

that the request is one either to create an index, delete and index, or retrieve information

12



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

about an index, then the processing proceeds to block 340 where an index maintenance
process is started (an example of which is shown in FIG. 8).

Next, if it is determined at block 345 that the request is one for index clustering,
then the processing proceeds to block 350 where a content clustering process is started
(an example of which is shown in FIG. 6). Generally, clustering involves the grouping of
indexed content into groups, or clusters, retrieving characteristic features from each
cluster, and storing the characteristic cluster features, for example in a file or a database
table. A feature-cluster table may then be used to filter out non-essential features and to
compare the differences between old relevant cluster feature sets and new relevant cluster
feature sets. Clustering processes may further involve more advanced clustering, such as
hierarchical clustering or other structures with sub-structures.

Further, if it is determined at block 355 that the request is one for content
classification, then the processing proceeds to block 360 where a content classification
process is started (an example of which is shown in FIG. 7). A classification can match
the similarity between a text-based content, such as contained within an email message,
and clusters created from the clustering process. The input text then can be classified into
one or more of the pre-defined clusters. Finally, if it is determined at block 365 that the
request is one requesting that an index search be executed, then the processing proceeds
to block 370 where an index search process is started (an example of which is shown in
FIG. 4).

In one example of the FIG. 3 process, the initial processing of index actions in the
FIG. 1 system are performed by a dispatch unit to determine whether the request should
be submitted to the design-time environment component 122, or by the run-time
environment component 124. Thus in this example, blocks 310, 315, 325, 330, 335, 345,
355 and 365 are processed by the dispatch unit that will determine whether the request
should be performed by the design-time environment component 122, or the run-time
environment component 124. The processes represented by the blocks 340 and 350 are
processed by the design-time environment component 122, and the processes represented
by the blocks 360 and 370 are processed by the run-time environment component 124.

The distinction between the design-time environment component 122 and the run-time

13



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

environment component 124 can avoid the interference between indexing actions and
search actions, according to one implementation.

Referring now to FIG. 4, there is shown a flowchart that shows a process 400 that
is performed when a request is received that is determined, for example at block 365 of
the FIG. 3 process, to be an index search request. In one example of the FIG. 1 system,
some of the blocks of the process 400 are performed by the search engine framework 116,
while other blocks are performed by a specified one of the search engines 104a-104c.

The process 400 begins at block 405 where an application (such as one of the applications
102a-102c) submits a search query that identifies a set of one or more targeted knowledge
bases. In one example, the knowledge base or bases are identified because a user
interacting with the application 102a-102c has explicitly selected the knowledge base to
be searched, while in another example, the knowledge base or bases are identified by a
process that determines the applicable knowledge base or bases to be searched for certain
search criteria (e.g., terms or attributes) that a user has specified in the search request.

Next, at block 410, it is determined whether there is a converter for the particular
software application from which the index search request was received. For example, if
the software application from which the index search request was received has a search
request format that differs from the standard format for the search engine framework 116,
then the format used by the software application will need to be translated into the format
used by the search engine framework 116. This block 410 may be performed by the
application programming interface 120. If it is determined that there is a converter, then
processing proceeds to block 415 where text and attribute formats for the received search
request are converted into the standard, or generic, text and attribute format that is used
by the search engine framework 116. This block 415 may include, for example, the
translation of, or inclusion of, default values included in the search request, mapping
attributes to corresponding names in the standard query format, managing attribute
dependencies (such as city/zip code/country), or the stripping away of attributes that have
no correspondence in the standard search query format.

After the conversion block 415, or if it is determined at block 410 that there is no
converter, processing proceeds to block 420, where the search engine, or engines, that are

associated, or mapped, to the targeted knowledge base or bases are determined. In one

14



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

example of the FIG. 1 system, the run-time environment component 124 performs this
block by making a call to the configuration database 130, where the applicable search
engine is specified for the particular software application from which the index search
request was received and for the specified knowledge base. In that a search request may
involve more than one knowledge base, more than one search engine may be identified,
where, for example, the knowledge bases are mapped to different search engines. Also,
as discussed in connection with FIG. 2, the identification of the search engine, or engines,
may take into account the language (for example, English, German, etc.) that has been
specified for the index search.

Next, at block 430, search-related configuration information for the identified
search engine, or engines, is retrieved. In one example of the FIG. 1 system, this search-
related configuration information passed from the plug-in 118a-118c for the identified
search engine 104a-104c. In another example of the FIG. 1 system, the configuration
information may be stored in the configuration mapping 132 and it is the search engine
services component 126 that retrieves the configuration information. The search-related
configuration may include the location of a search engine, the return attribute values of
search requests, the maximal number of returned “hits”, the degree of fuzziness used for
the search, or other parameters related to different fuzzy search algorithms. Following
block 430, it is determined at block 435 whether information security is required for the
search. Information security provides techniques that are implemented to prevent certain
users from viewing or accessing certain knowledge base content. If it is determined that
information security is required, processing proceeds to block 440 where information
security processing is triggered. Next, at block 445, the information security is converted
into a format of an attribute search query, and at block 450, that information security
query is merged with the existing attribute search query. As such, the additional attributes
converted from the information security serve to filter content from being identified in the
index search.

Processing then proceeds to block 455, where it is determined if language-specific
settings are required. If it is determined that they are, then processing proceeds to block
460, where the proper language-specific settings are determined. For example, the

standard fuzzy search to allow spelling errors in alphabet-based languages cannot be used

15



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

for other specific languages, such as Japanese, Chinese and Korean. In these cases,
different language-specific settings may be needed to manage fuzzy searches. Next, at
block 465, it is determined whether multiple index searching is needed, and whether that
is supported. This may occur if multiple knowledge bases are specified by virtue of the
originally received index search request, which means that multiple indexes would need
to be searched. Ifit is so determined at block 465, then processing proceeds to block 470
where a multi-index definition is prepared. In one example, the multi-index definition
defines the indexes to be searched and the attributes to be searched in each of the indexes.
This may be done whether the indexes are being searched by the same search engine, or
by different search engines.

After the multi-index definition has been prepared, or after it is determined that a
multi-index search is not supported, processing proceeds to block 475, where requested
return attributes are prepared. The functionality of requested return attributes can provide
an efficient way to present the matched hits with additional details. In one example,
different business applications, such as the applications 102a-c shown in FIG 1, may need
to present different details when searching a common index. In other example, different
roles of users even using the same business application may require to view details, for
example, in different fashions. For example, one user may have permission to view the
details of all search results, while another user has only have permission to view the
details of a sub-set of search results (possibly related only narrowly to this user’s entry-
level job function).

Next, at block 480, the applicable search engines are instantiated via a plug-in
framework. As discussed previously, this may be implemented, for example, using
object-oriented programming methods, wherein the plug-in functions to instantiate, from
a generic index search query, or command, an index search object that is usable by the
applicable search engine. As such, the index search object is instantiated within the
applicable search engine. Then, at block 485, a call is made of a search method of each
identified search engine. In the FIG. 1 system for example, this may be called by the
search engine services component 126, and the method may be executed by the applicable
search engine, and using the index search object that was instantiated in block 480. As

such, a search of the applicable index, or indexes, is performed by the applicable search

16



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

engine, or engines, to identify indexed content that meets the user-specified search
criteria.

Finally, at block 490, the search results are prepared, and returned. The search
results may comprise a list of content stored in the applicable knowledge base that meets
the search criterion. In the FIG. 1 example, the results may be returned, firstly, to the
search engine framework 116, and from there to the software application from which the
index search request was received. As such, a “hit list” of content that meets the search
criteria may be displayed for a user interacting with the software application. As such,
the user may then review the list of content, and if desired, initiate a retrieval command to
retrieve the content — in the form of an electronic document or the like — from the
applicable knowledge base. Thereafter, the user may review the electronic document, for
example, and in the example of a call center software application, may forward the
retrieved electronic document to a customer by electronic mail.

Referring now to FIG. 5, there is shown a process 500 that is performed when an
index update request is received, for example, as determined at blocks 310 and 315 of
FIG 3. In one implementation, the index update request identifies the knowledge bases
for which associated indexes are to be updated. In another implementation, all
knowledge base indexes will be periodically updated. After the process has been started
at block 320, processing proceeds to block 505 where it is determined whether or not the
update of a particular knowledge base is to be a delta type of update. If not, which means
a full index update is to be performed, then processing proceeds to block 510 where the
data source for the particular knowledge base is scanned for all of the knowledge entities
from the original data source. In one implementation of the FIG. 1 system, block 510
may be initiated by the design-time environment component 122 of the search engine
framework 116 and performed by the knowledge service component 114 of the
knowledge repository 108. Because the meta-definitions of knowledge bases 110a-d are
previously defined, the knowledge service component 114 may trigger a scanning action
by either directly checking all knowledge entities from the original data sources, or
communicating with the external data source (via one or more of the plug-ins 112a-d) to

request information of all knowledge entities.

17



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

If it is determined at block 505 that a delta type of update process is to be
performed, then processing proceeds to block 515 where it is determined whether or not
data source scanning is required. Whether data source scanning is required may depend
on whether a “push” or a “pull” methodology has been employed for modifications to
knowledge entities. For example, a push methodology means that when a knowledge
entity is modified in any way (that is, when it is created, revised or deleted), that the
information of the knowledge entity is automatically “pushed” from the data source to the
knowledge base, which in the FIG. 1 example means that it is pushed from an external
data source (not shown in FIG. 1) into one of the knowledge bases 110a-110d via one of
the data source plug-ins 112a-112c. When this occurs, the identities of modified
knowledge entities may be stored in a buffer table, which for example may be maintained
in the knowledge repository 108. Alternatively, a pull methodology may be employed,
which means that a modification of a knowledge entity in the data source is not
automatically pushed into the knowledge base, but instead must be pulled to the
knowledge base, for example, as initiated by the knowledge repository 108 of the FIG. 1
system to check timestamps and determine which knowledge entity is created, modified,
or marked for deletion.

Accordingly, where data source scanning is required, which means a pull
methodology is employed, processing proceeds to block 520 where the applicable data
source is scanned for modified knowledge entities. Then, at block 525, an update of the
identities of the modified entities is provided into the previously described buffer table.
As mentioned, in one implementation of the FIG. 1 system, the buffer table is provided in
the knowledge repository 108. Next, at block 530, the buffer table is scanned to
determine the identity of the knowledge entities that need to be updated into the search
engine index.

Next, starting at block 535, batches of knowledge entities are retrieved from the
applicable data source and indexed. In particular, at block 535, first a batch of knowledge
entities is retrieved from the applicable data source. For example, in a database
management system, the retrieval step may be a SQL (Structured Query Language) select
statement for a database table with master key or ID information that will retrieve a set of

knowledge entities with a fixed size. In many instances, a knowledge base (such as the

18



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

knowledge bases 110a-d) may include many database tables, (e.g., a service order may
have more than twenty database tables including linked documents). After the keys or
ID’s for a batch are obtained, entity details are retrieved by passing those ID’s to trigger
the knowledge base plug-ins 110a-d to get detailed information at block 540.

Then, at block 545, it is determined whether the index is being updated for an
external search engine, or in other words, a search engine that has been integrated into the
system via a plug-in (such as the plug-ins 118a-118c shown in the FIG. 1 example). In
performing this action, it may first need to be determined from a configuration mapping
database (such as database 130 in the FIG. 1 example) which of the search engines is
mapped to be used in searches of the knowledge base for which an index is to be created.
In addition, it may be that more than one search engine may be used to search for content
in a particular knowledge base, for example, if one software application uses one search
engine to search for content in the knowledge base, whereas another software application
uses a different search engine to search for content in the same knowledge base. In such a
case, more than one index will need to be created for the knowledge base to be updated,
although not all search engine indexes for a particular knowledge base need be updated at
the same time. If it is determined at block 545 that an external search engine is involved,
then the processing proceeds to block 550 where the applicable plug-in (for example, one
of the plug-ins 118a-118c¢) for the particular search engine for which an index is to be
updated is called to compose an indexing request. In one implementation of the FIG. 1
system, this call is made by the search engine services component 126, and is executed by
the applicable plug-in 118a-118c.

From block 550, processing proceeds to block 555 where search engine
configuration information is retrieved, for example, from the applicable plug-in 118a-
118c and by the search engine services component 126. Next, at block 560,
communication is established (for example, by the search engine framework 116, and in
particular, by the search engine services component 126) with the external search engine
(for example, one of the search engines 104a-104c in the FIG. 1 system). Next, at block
565, the index action request is submitted to the applicable search engine for execution.

Generally in response, the search engine then receives from the framework 116 the batch

19



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

of entities and the entity details and creates an update to the index for the knowledge base
for that search engine to use later in an index search.

After the update index action request has been submitted to the search engine,
processing proceeds to block 570 where it is determined whether or not there remains any
more batches of knowledge entities that require indexing. If so, then processing proceeds
back to block 535 and processing of the next batch of knowledge entities proceeds as
previously described. If it is determined at block 570 that there are no more batches to be
indexed by the search engine, then processing proceeds to block 575 where indexing
information may be logged, for example, as a record of the indexing action that has been
performed. The log may include, for example, the date and time that the index update
was performed, etc.

Referring now to FIG. 6, there is shown a process 600 that is performed when an
process index clustering request is received, for example, as determined at block 350 in
the FIG. 3 process. In one implementation, the request identifies the knowledge base to
which the indexing request relates. From this information it can be determined which of
the search engines (for example, of search engines 104a-104c) may be used by any
software application to search for content in the knowledge base. Again, in the FIG. 1
system, for example, the applicable search engines may be determined from the mapping
information 132 in the configuration database 130.

After the process 600 has been started at block 350, processing proceeds to block
605 where it is determined whether or not a search engine index exists for the specified
knowledge base. If so, then processing proceeds to block 610 where configuration
information of clustering parameters is retrieved. The clustering parameters are part of
search engine configuration stored in the configuration database 130. The parameters, for
example, include selection of clustering algorithms, selection of classification algorithms,
maximal number of clusters, maximal level of hierarchical clusters, threshold to
determine a characteristic features, and/or threshold to merge or divide clusters.

Then, at block 615, it is determined whether the index is being updated for an
external search engine, as in the case of the FIG. 5 process (block 545). Again, in
performing this action, it may first need to be determined from a mapping database (such

as database 130 in the FIG 1 example) which of the search engines is mapped to be used

20



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

in searches of the knowledge base for which an index is to be created. In addition, it may
be that more than one search engine may be used to search for content in a particular
knowledge base, for example, if one software application uses one search engine to
search for content in the knowledge base, whereas another software application uses a
different search engine to search for content in the same knowledge case. In such a case,
more than one index will need to be created for the knowledge base to be updated,
although not all search engine indexes for a particular knowledge base need be updated at
the same time. Ifiit is determined at block 615 that an external search engine is involved,
then the processing proceeds to block 620 where the applicable plug-in (for example, one
of the plug-ins 118a-118c) for the particular search engine for which an index is to be
updated is called to compose an indexing request. In one implementation of the FIG. 1
system, this call is made by the search engine services component 126, and is executed by
the applicable plug-in 118a-118c.

From block 620, processing proceeds to block 625 where communication is
established (for example, by the search engine framework 116, and in particular, by the
search engine services component 126) with the external search engine (for example, one
of the search engines 104a-104c in the FIG. 1 system). Next, at block 630, the clustering
request is submitted to the applicable search engine for execution. Generally in response,
the search engine then divides the indexed content into groups, or clusters, retrieves
characteristic features from each cluster, and stores the characteristic cluster features, for
example in the index created by the search engine 104a-c. A feature-cluster mapping may
then be used to filter out non-essential features and to compare the differences between
old relevant cluster feature sets and new relevant cluster feature sets.

Next, at block 635, it is determined whether the clustering action is finished, and
if so, at block 640 information about the clustering action that has been performed and a
time stamp as to when the clustering action occurred are logged for future reference if
necessary. If it was determined at block 605 that a search engine index does not exist,
then processing skips from block 605 to block 640, and that fact is logged.

Referring now to FIG. 7, there is shown a process 700 that is performed when an
process content classification request is received, for example, as determined at block 350

in the FIG 3 process. In one implementation, the request identifies the knowledge base to

21



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

which the indexing action request relates. From this information it can be determined
which of the search engines (for example, of search engines 104a-104c) may be used by
any software application to search for content in the knowledge base. Again, in the FIG 1
system, for example, the applicable search engines may be determined from the mapping
information 132 in the configuration database 130.

After the process 700 has been started at block 360, processing proceeds to block

" 705 where it is determined whether or not a search engine index exists for the specified

knowledge base. If so, then processing proceeds to block 710 where configuration
information of classification parameters is retrieved. The parameters, for example,
include the type of classification algorithms (e.g., k-mean, support vector machine), the
threshold to determine whether a cluster matches the input text, or other algorithm
specific parameters. The classification parameters are either stored in the configuration
database 130 or passed with the classification request.

Then, at block 715, it is determined whether the index is being updated for an
external search engine, as in the case of the FIG. 5 process (block 545) and of the FIG. 6
process (block 615). Again, in performing this action, it may first need to be determined
from a mapping database (such as database 130 in the FIG. 1 example) which of the
search engines is mapped to be used in searches of the knowledge base for which an
index is to be created. In addition, it may be that more than one search engine may be
used to search for content in a particular knowledge base, for example, if one software
application uses one search engine to search for content in the knowledge base, whereas
another software application uses a different search engine to search for content in the
same knowledge case. In such a case, more than one index will need to be created for the
knowledge base to be updated, although not all search engine indexes for a particular
knowledge base need be updated at the same time. Ifit is determined at block 715 that an
external search engine is involved, then the processing proceeds to block 720 where the
applicable plug-in (for example, one of the plug-ins 118a-118c) for the particular search
engine for which an index is to be updated is called to compose an index action request
(and specifically, an index classification action request). In one implementation of the
FIG. 1 system, this call is made by the search engine services component 126, and is

executed by the applicable plug-in 118a-118c.

22



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

From block 720, processing proceeds to block 725 where communication is
established (for example, by the search engine framework 116, and in particular, by the
search engine services component 126) with the external search engine (for example, one
of the search engines 104a-104c in the FIG. 1 system). Next, at block 730, the index
classification request is submitted to the applicable search engine for execution.
Generally in response, the applicable search engine performs an automated process on the
knowledge base index that classifies the input texts to one or more of the generated
clusters.

Next, at block 735, information related to the identified classes is retrieved. In the
FIG. 1 implementation, for example, it may be the search engine services component 126
that retrieves this information, and the information may be retrieved from clusters by the
applicable search engine. In another example, the detailed descriptions of matched
clusters are returned along with the matched clusters by individual search engine. Then,
this retrieved cluster information is organized based on the degree of matched similarity.
If it was determined at block 705 that a search engine index does not exist, then
processing skips from block 705 to block 740.

Referring now to FIG. 8, there is shown a process 800 that is performed when an
process index maintena;nce request is received, for example, as determined at block 340 in
the FIG. 3 process. In one implementation, the request identifies the knowledge base to
which the indexing action request relates. From this information it can be determined
which of the search engines (for example, of search engines 104a-104c) may be used by
any software application to search for content in the knowledge base. Again, in the FIG 1
system, for example, the applicable search engines may be determined from the mapping
information 132 in the configuration database 130.

After the process 800 has been started at block 340, processing proceeds to block
805 where it is determined whether the index is being updated for an external search
engine, as in the case of the FIG. 5 process (block 545), the FIG. 6 process (block 615),
and of the FIG. 7 process (block 715). Again, in performing this action, it may first need
to be determined from a mapping database (such as database 130 in the FIG. 1 example)
which of the search engines is mapped to be used in searches of the knowledge base for

which an index is to be created. In addition, it may be that more than one search engine

23



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

may be used to search for content in a particular knowledge base, for example, if one
software application uses one search engine to search for content in the knowledge base,
whereas another software application uses a different search engine to search for content
in the same knowledge case. In such a case, more than one index will need to be created
for the knowledge base to be updated, although not all search engine indexes for a
particular knowledge base need be updated at the same time. If it is determined at block
805 that an external search engine is involved, then the processing proceeds to block 810
where the applicable plug-in (for example, one of the plug-ins 118a-118c) for the
particular search engine for which an index is to be updated is called to compose an index
action request (and specifically, an index maintenance action request). In one
implementation of the FIG. 1 system, this call is made by the search engine services
component 126, and is executed by the applicable plug-in 118a-118c.

From block 810, processing proceeds to block 815 where communication is
established (for example, by the search engine framework 116, and in particular, by the
search engine services component 126) with the external search engine (for example, one
of the search engines 104a-104c in the FIG. 1 system). Next, preparation is made to
submit the index action request to the applicable search engine to be executed. If the
index action request is to retrieve certain identified information about the index (for
example, an index log information), as determined at block 820, and if it is determined at
block 825 that the index exists, then processing proceeds to block 830 where the index
information request is submitted to the applicable search engine for execution. Next, if
the index action request is to delete the index, as determined at block 835, and if it is
determined at block 825 that the index exists, then processing proceeds to block 830,
where the index deletion request is submitted to the applicable search engine for
execution. Finally, if the index action request is to create the index in the first instance, as
determined at block 840, and if it is determined at block 845 that the index does not exist,
then processing proceeds to block 830, where the index create request is submitted to the
applicable search engine for execution. After the index action request has been submitted
to the applicable search engine for execution, processing proceeds to block 850 where a

log of the index action that was performed is created.

24



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

FIG. 9 is a flowchart of an example design-time process 900 that may be executed
to create mappings among the applications 102a-c, knowledge bases 110a-d, and search
engines 104a-c. The process 900 may be performed within the enterprise computing
system 100 shown in FIG. 1 to provide mappings to identify which of the several search
engines 104a-c are to be used to execute searches of the indexes 106a-c of electronically
stored knowledge base content. In one implementation, the process 900 may be
performed by the search engine framework 116, which may also access the configuration
database 130 and use one or more of the plug-ins 118a-c.

The process 900 begins at block 908, when the framework 116 configures search
engine hardware-related parameters, such as server, port, and queue server parameters, for
the various search engines 104a-c. The framework 116 may access the configuration
database 130 to retrieve one or more predefined parameters from search engine
configuration information 902 for the search engines 104a-c. In one implementation, the
search engine services 126 may also include a portion of the search engine configuration
information 902. The configuration parameters may include various predefined
parameters used when interfacing with search engines in general. For examples, the
various search engines 104a-c typically reside on one or more servers and have
input/output ports for communication with the framework 116. Therefore, the
configuration parameters would typically include parameters for server and port
information. In addition, the plug-ins 118a-c may provide engine-specific values for
various parameters that are specific to the corresponding engines 104a-c.

At block 910, the framework 116 further configures search indexing, clustering,
and classification related parameters. As described earlier, the framework 116 retrieves
certain indexing, clustering, and classification configuration information from the
database 130 and uses this information to configure the engines 104a-c and the indexes
106a-c. To do so, the framework 116 makes use of the engine-specific plug-ins 118a-c.
In one implementation, the framework 116 is also capable of updating the search engine
configuration information 902 that may be contained within the framework 116 and/or
within the database 130. If the framework 116 has been specifically configured within,

for example, the design-time environment 122, of if the framework 116 obtains any

25



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

configuration information via the administration UI 128, the framework 116 may then
update the search engine configuration information 902.

At block 912 of the process 900, the framework 116 assigns, or maps, each
knowledge base 110a-d to one or more of the search engines 104a-c based upon
identification (by input from the administration UI 128 or by the framework 116 itself) of
information contained within the knowledge bases 110a-d and identification of the
specific search engines 104a-c. In one implementation, the framework 116 uses its
design-time environment 122 to determine the assignments. For example, the design-
time environment 122 may include a rule-based engine that automatically assigns
knowledge bases110a-d to search engines104a-c based upon the rules that are used and
the type of content contained within (or provided by) the knowledge bases 110a-d. In one
implementation, the framework 116 may receive input from the administration UI 128
that specifies the mappings between knowledge bases 110a-d and search engines 104a-c.
An individual search engine that is assigned to a given knowledge base will access and
use an index, such as one of the indexes 106a-c, that contains index entries for electrical
content contained within the given knowledge base. A knowledge base can be assigned to
more than one search engine. For example, the knowledge base 110a may be assigned to
the engines 104a and 104b. In this example, the indexes 106a and 106b will each include
index entries for content contained within the knowledge base 110a.

Once the framework 116 has assigned knowledge bases to search engines, the
framework updates the knowledge base-to-search engine mapping information 904 that is
stored within the database 130. In one implementation, the mapping information 904 is
included within the mappings 132 shown in FIG. 1.

At block 914, the framework 116 assigns knowledge bases 110a-d to business
applications 102a-c and stores assignment information within the application-to-
knowledge base mapping information 906 within the database 130. In one
implementation, the mapping information 906 is included within the mappings 132 shown
in FIG. 1. The assignments are based upon identification (by input from the applications
102a-c, from the administration Ul 128, or by the framework 116 itself) of one of the
knowledge bases 110a-d. For example, one of the applications 102a-c may send a search

request to the framework 116. The search request may include an identification of one of

26



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

the knowledge bases 110a-d. Upon receipt of the request, the framework 116 can store
the mapping information for the application and identified knowledge base within the
mapping information 906 for later use. In another example, the search request may not
explicitly include an identification of one of the knowledge bases 110a-d. In this case, the
framework 116 may dynamically determine a mapping between the application and one
of the knowledge bases 110a-d using a rule-based engine that analyzes the type of
application that has provided the request and attempts to find a match with a specific
knowledge base. Alternatively, the framework 116 may access the mapping information
906 to determine if mapping information exists for the given application. For example, if
the same application 102a-c had previously sent a request identifying one of the
knowledge bases 110a-d, and if the framework 116 captured this identification within the
mapping information 906, the framework 116 may then identify the same knowledge base
upon receipt of subsequent requests from the same application.

In one implementation, the design-time environment 122 may also play a role in
assigning knowledge bases to business applications by receiving input from the
administration UI 128. In this implementation, an administrator may use the
administration UI 128 to send configuration commands to the framework 116 to specify
assignments between knowledge bases 110a-d and applications 102a-c. The design-time
environment 122 may process these configuration commands and provide the assignment
information for storage within the mapping information 132.

When the framework 116 has received a search request from an application 102a-c
and has identified a knowledge base 110a-d, the framework 116 can then access the
mapping information 904 to determine which search engine 104a-c (and corresponding
index 106a-c) that is to be used in processing the search request, as is described above in
reference to earlier figures. The framework 116 also accesses the configuration
information 902 that is used for interfacing with the assigned search engine 104a-c by
way of the plug-ins 118a-c.

FIG. 10 is a block diagram of a computing device 1000 that may be used to
provide the environment for the search engine framework 116 shown in FIG. 1, according
to one implementation. The computing device 1000 includes a processor 1002, a memory

1004, a storage device 1006, an input/output controller 1008, and a network adaptor 1010.

27



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

Each of the components 1002, 1004, 1006, 1008, and 1010 are interconnected using a
system bus. The processor 1002 is capable of processing instructions for execution
within the computing device 1000. In one implementation, the processor 1002 is a single-
threaded processor. In another implementation, the processor 1002 is a multi-threaded
processor. The processor 1002 is capable of processing instructions stored in the memory
1004 or on the storage device 1006 to display graphical information for a graphical user
interface (GUI) on an external input/output device that is coupled to the input/output
controller 1008.

The memory 1004 stores information within the computing device 1000. In one
implementation, the memory 1004 is a computer-readable medium. In one
implementation, the memory 1004 is a volatile memory unit. In another implementation,
the memory 1004 is a non-volatile memory unit.

The storage device 1006 is capable of providing mass storage for the computing
device 1000. In one implementation, the storage device 1006 is a computer-readable
medium. In various different implementations, the storage device 1006 may be a floppy
disk device, a hard disk device, an optical disk device, or a tape device.

In one implementation, a computer program product is tangibly embodied in an
information carrier. The computer program product contains instructions that, when
executed, perform one or more methods, such as those described above. The information
carrier is a computer- or machine-readable medium, such as the memory 1004, the storage
device 1006, or a propagated signal.

The input/output controller 1008 manages input/output operations for the
computing device 1000. In one implementation, the input/output controller 1008 is
coupled to an external input/output device, such as a keyboard, a pointing device, or a
display unit that is capable of displaying various GUI’s.

The computing device 1000 further includes the network adaptor 1010. The
computing device 1000 uses the network adaptor 1010 to communicate with other
network devices that may be included within the system 100.

A number of implementations of the invention have been described.

Nevertheless, it will be understood that various modifications may be made without

28



WO 2005/020104 PCT/US2004/026754

departing from the spirit and scope of the invention. Accordingly, other implementations

are within the scope of the following claims.

29



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

WHAT IS CLAIMED IS:

1. A method included in performing an action on a searchable index of content that
is electronically stored in a knowledge base, the method comprising:

receiving input indicating a request that a computer-implemented process be
performed that acts upon a specified index of content that is searchable using a predefined
one of multiple search engines, wherein the content resides within a specified one of
multiple electronic knowledge bases;

performing a computer-implemented process that composes, using the received
request, a request to perform the computer-implemented process, wherein the request has
a format that is compatible with the predefined one search engine; and

submitting the composed request to the predefined one search engine for

execution.

2. The method of claim 1, wherein receiving input indicating the request that the
computer-implemented process be performed includes receiving input from a software

application.

3. The method of claim 2, wherein receiving input from the software application
includes receiving input from an administrative software application that is capable of

providing configuration information.

4. The method of claim 1, wherein receiving input indicating the request that the
computer-implemented process be performed includes receiving configuration input from
a software application specifying a specific configuration for the specified index of

content.

5. The method of claim 1, wherein receiving input indicating the request that the
computer-implemented process be performed includes receiving input from a software
application that indicates a search request to search for specific content contained in the

specified index.

30



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

6. The method of claim 5, wherein the search request includes an identification of

the specified one electronic knowledge base.

7. The method of claim 6, further comprising determining the predefined one search

engine upon receipt of the input received from the software application.

8. The method of claim 7, wherein determining the predefined one search engine
upon receipt of the input received from the software application includes using predefined
configuration information that specifies an assignment between the specified one

electronic knowledge base and the predefined one search engine.

9. The method of claim 1, further comprising receiving execution results from the

predefined one search engine subsequent to submission of the composed request.

10.  The method of claim 9, wherein the execution results comprise search results for

content contained within the specified index.

11.  The method of claim 9, further comprising providing the execution results to a

software application.

12.  The method of claim 1, wherein performing the computer-implemented process
that composes, using the received request, the request to perform the computer-
implemented process includes transforming the received request in order to create the

request that has the format that is compatible with the predefined one search engine.

13.  The method of claim 1, wherein receiving input indicating the request that the
computer-implemented process be performed that acts upon a specified index of content
that is searchable using the predefined one of multiple search engines includes receiving

input indicating a specific request to create new entries within the specified index

31



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

corresponding to information contained within the specified one electronic knowledge

base.

14.  The method of claim 13, wherein receiving input indicating the specific request to
create new entries within the specified index includes receiving input from a software

application.

15.  The method of claim 13, further comprising receiving information from the
specified one electronic knowledge base, and wherein the composed request includes a
creation request to create new entries within the specified index by using the received

information from the specified one electronic knowledge base.

16.  The method of claim 13, wherein performing the computer-implemented process
that composes the request to perform the computer-implemented process includes
executing instructions specific to the predefined one search engine that cause the request

to be composed with the format that is compatible with the predefined one search engine.

17.  The method of claim 1, wherein receiving input indicating the request that the
computer-implemented process be performed that acts upon the specified index of content
that is searchable using the predefined one of multiple search engines includes receiving
input indicating a specific request to update existing entries within the specified index
corresponding to information that has been updated within the specified one electronic

knowledge base.

18.  The method of claim 17, further comprising receiving updated information from
the specified one electronic knowledge base, and wherein the composed request includes
an update request to update existing entries within the specified index by using the

updated information received from the specified one electronic knowledge base.

19.  The method of claim 18, further comprising requesting the updated information

from the specified one electronic knowledge base.

32



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

20. The method of claim 18, wherein submitting the composed request to the
predefined one search engine for execution includes submitting the composed request to
cause the predefined one search engine to update only those entries within the specified
index that are affected by the updated information received from the specified one

electronic knowledge base.

21.  The method of claim 1, wherein receiving input indicating the request that the
computer-implemented process be performed that acts upon the specified index of content
that is searchable using the predefined one of multiple search engines includes receiving

input indicating a specific request to delete existing entries within the specified index.

22.  The method of claim 21, wherein receiving input indicating the specific request to
delete existing entries within the specified index includes receiving input indicating the
specific request to delete existing entries within the specified index corresponding to

information that has been deleted within the specified one electronic knowledge base.

23.  The method of claim 1, wherein receiving input indicating the request that the
computer-implemented process be performed that acts upon the specified index of content
that is searchable using the predefined one of multiple search engines includes receiving
input indicating a specific request to create an index cluster within the specified index, the

index cluster being associated with a related set of index entries.
24.  The method of claim 23, wherein receiving input indicating the specific request to
create the index cluster within the specified index includes receiving input from a

software application.

25.  The method of claim 23, further comprising classifying content contained within

the specified one electronic knowledge base with the index cluster for the specified index.

33



10

15

20

25

30

WO 2005/020104 PCT/US2004/026754

26.  The method of claim 25, wherein submitting the composed request to the
predefined one search engine for execution includes submitting the composed request for
creation of an index entry within the index cluster that corresponds to the classified

content.

27. A computer program product tangibly embodied in an information carrier, the
computer program product including instructions that, when executed, perform a method
included in performing an action on a searchable index of content that is electronically
stored in a knowledge base, the method comprising:

receiving input indicating a request that a computer-implemented process be
performed that acts upon a specified index of content that is searchable using a predefined
one of multiple search engines, wherein the content resides within a specified one of
multiple electronic knowledge bases;

performing a computer-implemented process that composes, using the received
request, a request to perform the computer-implemented process, wherein the request has
a format that is compatible with the predefined one search engine; and

submitting the composed request to the predefined one search engine for

execution.

28. A system for performing an action on a searchable index of content that is
electronically stored in a knowledge base, the system being programmed to:

receive input indicating a request that a computer-implemented process be
performed that acts upon a specified index of content that is searchable using a predefined
one of multiple search engines, wherein the content resides within a specified one of
multiple electronic knowledge bases;

perform a computer-implemented process that composes, using the received
request, a request to perform the computer-implemented process, wherein the request has
a format that is compatible with the predefined one search engine; and

submit the composed request to the predefined one search engine for execution.

34



PCT/US2004/026754

WO 2005/020104

1/10

1Ol

80t

N 3s0g sbpapmou

poiLS

fil 9spg abpapmouy

0

(| 8spg abpaymouy

qouf

| 9spg abpapouy

ooi Aoysoday abpapmouy

sauibu3 Ypinag pup sasog abpaspmouy ‘suolpayddy Buowo Buiddoyy

Nm_w

2901 q90L b0l
) § {
soxopu| | | saxapur| | sexapy)
HO0L a0l byOL
) § {
taubugl jisubui| |ieubu
yuss | | yooas | | yomas
9
uil Lm_mé_ L Qm_i.u_\g: h
4 -3 a a
1 |_U|’— _luL _uW_ > \ —ozd
R
S 201
SeIiRS BUU3 LIaS 8 K= truowooddy 0
2 %l 8 geol
% 2 - s K==  11vouooydy 4
g S = 3
w = o = =4
D = 3 - ..m.
5 = g3 g K| 1oty | >l
s N e
E: A4l 124! .
2 K= nuDIsuupY
iomawny aubug Yoiosg gl

000

uolypinbiyuo)

0¢l

SUBSTITUTE SHEET (RULE 26)



WO 2005/020104 PCT/US2004/026754

2/10
200
210
)
Enterprise Server 1 M 24 2%
) )
Client 000 102q 102b Client 100 | (Client 100
Application | Application Il
L I
0 1 ¢
I Gl ]Obl 10 \
Knowledge Base | | | Knowledge Base I { |Knowledge Base Il
1 I
Search Engine | Search Engine |l Search Engine Il Search Engine IV
1040~ | 104~ 104c” 104d’|’
Enterprise Server |l Enterprise Server ll
fJ
230 240
FIG. 2

SUBSTITUTE SHEET (RULE 26)



WO 2005/020104 PCT/US2004/026754

3/10
300
305
\1 Retrieve a Request
310
Delta Index
Update 320
Yes Start to Process Indexing 20
No Request
315
Full Index
Update
No
325
Index Creation
No
340
330 Yes | Start o Process Index 4
Index Delefion Maintenance
No
335
Index Information
No 350
345 Yes | Start fo Process Index 4
Index Clustering Clustering
No 360
355 Content Yes  |Start o Pracess Content 4
Classiication Classification
No 370
365 ___Yes Start fo Process Index P
Index Search Search

FIG. 3

SUBSTITUTE SHEET (RULE 26)



WO 2005/020104

4/10

405+

Application Submits Search Query with a
Set of Targeted Knowledge Bases

410

PCT/US2004/026754

415
)

Has a
Converter

Yes

Convert fext and attribute formats into
standard texi/attribute query

420
\

Identily Search Engines Associated fo

Knowledge Bases

¥

430+ |

Retrieve Search Related Configuration
for the Search Engines

435

Require

information Yes

Securi

Trigger Information Security Processing

440
$

450+ |

Y

Merge Information Security Query with

Existing Atiribute Search Query

Convert Information Security into a
Format of Attribute Search Guery

455

Require Language
Specific Settings

Determine Proper Language Specific
Search Settings

Prepare Multi-index Definition

470
y

475
\ Prepare Requested Refurn Attribules  J
Y
480 \| Instantiate Search Engines via Plug-in
Framework

485
\

Y
Call a Search Methad of each Identified
Plug-in Search Engines

K]

490
\

Prepare and Return Search Results

FIG. 4

SUBSTITUTE SHEET (RULE 26)



WO 2005/020104 PCT/US2004/026754
5/10
200
320 "\{ Start to Pracess an Indexing
Request 590
505 e
Require Data Scan Data Source for Modified
Delta update Source Scanning Enfifies
510 Full Indexing 525{ ‘
N Scan Dota Source for Al Scan Buffer Table for Enfities Update Modified Entities IDs
Entities to be Updated into Buffer Table
L |
535 <
L
Retrieve Next Batch of
Entities
540
!
) ; .

550 Refrieve Enfity Details

!

Call Plug-in fo Compose 545 Yes
Indexing Request

TTE External

| { Search Engine

Refrieve Search Engine No 565

Configuration , §

560 Submit Requgsl fo Search

! | Engine

Establish Communication 570
with External Search Engine

Next Batch

Available

575
2

Log Indexing Information

FIG. 5

SUBSTITUTE SHEET (RULE 26)



WO 2005/020104 PCT/US2004/026754

6/10
600
350
Start to Process Index
Clustering
605
610,
Refrieve Configuration of
Clustering Parameters
620z 615
Call Plug-in o Compose Yes External
Clustering Request Search Engine
N
625 630 °
Establish Communication 5 Submit Clustering Request
with External Search Engine to Search Engine
635
640 Yes
Log Clustering Information
And Timestamp -

FIG. 6

SUBSTITUTE SHEET (RULE 26)



WO 2005/020104

720

725

Call Plug-in to Compose
Classification Request

4

Establish Communication
with External Search Engine

PCT/US2004/026754
7/10
200
360
Start to Process
Conteni Classification
705
70 Yes
Refrieve Configuration of
Classification Parameters
715
Yes External
Search Engine
No

730

| Submit Classification Request

to Search Engine

7354,

y

Refrieve Information Related to

|dentified Classes

740

y

Sort and Return Identified
Matched Class Information

FIG. 7

SUBSTITUTE SHEET (RULE 26)



PCT/US2004/026754

8/10

8 OH

uoljpuoju; xapuj 6oy

; V

auibu3 Yooas
0} §sanbay iuugng

a0U3IsIg

auibuz yomas jpuspg uoLDULIOJU| uoyeieq uolpasn
UHIM UODUNUULIO?) YSH0IS3 ~ Xapu| Xopu| x.mnc_
1 c19 o8
jsanbay aJUDUBJUIDYY aubu3 youpas

asodwo) o} u-bng (oo [puspq

WO 2005/020104

o~

ol8 508

8OUDUBJUIDYY X8pU|
S$$9304d 0} |05

e

|

ore

Q
Q
o0

SUBSTITUTE SHEET (RULE 26)



WO 2005/020104 PCT/US2004/026754

9/10

908 N\] Configure search engine
hardware related parametes,
such as server, port, queve
server

902
' Search Engine
| ! Configuration
910 N

Configure search/indexing/
clustering/classification related

f

parameters
y
9]2\ - 904
Assign a knowledge base to R Kgm;dgﬁgm ese ( 7
one or more search engines - L .
mapping
 J
914 906
\ "
Assign a knowledge bases to a / ’ Applldcoh(t))r;
business application :\ nomgpg;g se

FIG. 9

SUBSTITUTE SHEET (RULE 26)



WO 2005/020104 PCT/US2004/026754

10/10
1000
1010 1002
J )
Network
Adaptor Processor
Storage
1/0 Controller Device Memory
10085* 1006} ]004r
FIG. 10

SUBSTITUTE SHEET (RULE 26)



INEERNATIONAL SEARCH REPORT

lnternwnal/Application No

PCT/US2004/026754

A. CLASSIFICATION OF SUBJECT MATTER
1P G06F17/30

According to International Patent Classification (IPC) or to both national classification and 1PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2002/143744 Al (KIM AHRITTA J ET AL) 1-12,27,
3 October 2002 (2002-10-03) 28
figures 1,3,5,6
paragraphs ‘0010!', °‘0011!, °0015!,
‘0018! - ‘0020!, ‘0023! - ‘0025!
X WO 03/005240 A (WIDE COMPUTING AS ; 1,12-28
LOCHERT ALLAN (NO); EGGEN GUDBRAND (NO);
REBERG JA) 16 January 2003 (2003-01-16)
page 3, paragraph 6
page 4, paragraph 4
page 9, paragraph 5 - paragraph 11
figures la-1b
X WO 00/62264 A (METRO ONE 1-12,27,
TELECOMMUNICATIONS I) 28
19 October 2000 (2000-10-19)
figures 1,4,5
-/

Further documents are listed inthe continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

“A" document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or after the international
filing date

“L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention .

X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&° document member of the same patent family

Date of the actual completion of the international search

12 November 2004

Date of mailing of the intemational search report

22/11/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Michalski, S

Form PCT/NSA/210 (second sheet) (January 2004)




INTERNATIONAL SEARCH REPORT

Intern®@®nal Application No

PCT/US2004/026754

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

DREILINGER D ET AL: "EXPERIENCES WITH
SELECTING SEARCH ENGINES USING METASEARCH"
ACM TRANSACTIONS ON INFORMATION SYSTEMS,
ASSOCIATION FOR COMPUTING MACHINERY, NEW
YORK, US,

vol. 15, no. 3, 1 July 1997 (1997-07-01),
pages 195-222, XP000702156

ISSN: 1046-8188

page 200, last paragraph - page 201
figure 2

page 218, last paragraph

page 221, paragraph 3

MENG W ET AL: "Building Efficient and
Effective Metasearch Engines”

ACM COMPUTING SURVEYS, ACM, NEW YORK, US,
us,

vol. 34, no. 1, March 2002 (2002-03),
pages 48-89, XP002284747

ISSN: 0360-0300

page 51, left-hand column

page 55, right-hand column

1-12,27,
28

1-12,27,
28

Form PCT/ISA/210 (continuation of second sheet) (January 2004)




INTHERNATIONAL SEARCH REPORT

Information on patent famity members

Intern3@wnal Application No

PCT/US2004/026754
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2002143744 Al 03-10-2002 US 2004030690 Al 12-02-2004
WO 03005240 A 16-01-2003 NO 20013308 A 06-01-2003
EP 1412878 Al 28-04-2004
Wo 03005240 Al 16~01~2003
WO 0062264 A 19-10-2000 US 2001049676 Al 06-12-2001
AU 4069600 A 14-11-2000
Wo 0062264 A2 19-10-2000

Form PCT/ISA/210 (patent family annex) (January 2004)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

