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(57) Abstract: Automated devices provide methodologies for determining sleep conditions, which may be in conjunction with 
treatment of sleep disordered breathing by a pressure treatment apparatus such as a continuous positive airway pressure device. 
Based on a measure of respiratory airflow, respiratory characteristics are extracted to detect arousal conditions, sleep stability, 
sleep states and/or perform sleep quality assessments. The methodologies may be implemented for data analysis by a specific pur­
pose computer, a monitoring device that measures a respiratory airflow and/or a respiratory treatment apparatus that provides a 
respiratory treatment regime based on the detected conditions.
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DETECTION OF SLEEP CONDITION

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of the filing date 
of United States Provisional Patent Application No. 
61/226,069 filed July 16, 2009, the disclosure of which is 
hereby incorporated herein by reference.

FIELD OF THE TECHNOLOGY
[0002] The present technology relates to methods and 
apparatus for detection of a condition of sleep and related 
characteristics .

BACKGROUND OF THE TECHNOLOGY
[0003] Patients with OSA may experience recurrent apnoeas or 
hypopnoeas during sleep that are only terminated by the 
patient arousing. These recurrent respiratory dysfunction 
events cause sleep fragmentation and stimulation of the 
sympathetic nervous system. This can have severe 
consequences for the patient including day-time sleepiness 
(with the attendant possibility of motor-vehicle accidents), 
poor mentation, memory problems, depression and hypertension. 
Patients with OSA are also likely to snore loudly, thus also 
disturbing their partner's sleep.
[0004] Patients may also experience other events that may 
interrupt sleep. For example, Periodic Limb Movement (PLM) 
is a repeated cramping or spasm of the legs during sleep. 
These leg movement events may be considered a sleep disorder 
when they disrupt sleep and lead to daytime sleepiness.
[0005] Patients with OSA are typically treated with constant 
positive airway pressure (CPAP). The positive pressure 
prevents collapse of the patient's airway during inspiration, 
thus preventing recurrent respiratory system events (e.g., 
apnoeas or hypopnoeas) and their sequelae. Such a 
respiratory treatment apparatus can function to supply the 
patient with a supply of clean breathable gas (usually air,

1



WO 2011/006199 PCT/AU2010/000894

with or without supplemental oxygen) at the therapeutic
pressure or pressures, at appropriate times during the
subject's breathing cycle.
[0006] Respiratory treatment apparatus typically include a 
flow generator, an air filter, a mask or cannula, an air 
delivery conduit connecting the flow generator to the mask, 
various sensors and a microprocessor-based controller. The 
flow generator may include a servo-controlled motor and an 
impeller. The flow generator may also include a valve 
capable of discharging air to atmosphere as a means for 
altering the pressure delivered to the patient as an 
alternative to motor speed control. The sensors measure, 
amongst other things, motor speed, gas volumetric flow rate 
and outlet pressure, such as with a pressure transducer, flow 
sensor or the like. The apparatus may optionally include a 
humidifier and/or heater elements in the path of the air 
delivery circuit. The controller may include data storage 
capacity with or without integrated data retrieval/transfer 
and display functions.
[0007] While these devices may typically be configured to 
detect sleep disordered breathing events of the apnea or 
hypopnea type, they do not usually provide more detailed 
information to the user about sleep. Thus, it may be 
desirable to develop methods and apparatus for detecting 
these and other conditions of sleep to more completely assess 
sleep quality.

SUMMARY OF THE TECHNOLOGY
[0008] A first aspect of some embodiments of the present 
technology is to provide methods and devices to detect sleep 
quality.
[0009] Another aspect of some embodiments of the present 
technology is to provide methods and devices to detect sleep 
state .
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[0010] A further aspect of some embodiments of the present
technology is to provide methods and devices to detect sleep
stability.
[0011] A still further aspect of some embodiments of the 
present technology is to provide methods and devices to 
detect arousal from sleep.
[0012] Some embodiments include a method for controlling a 
processor to detect a sleep state from a measured flow of 
breathable gas. The method of the processor may involve 
determining a plurality of respiratory characteristics from a 
measure of respiratory flow. It may also involve detecting a 
state from potential sleep states comprising a Non-REM sleep 
state and a REM sleep state. The detecting of the state may 
be based on the determined respiratory characteristics. The 
processor may then indicate the detected state.
[0013] In some embodiments, the potential sleep states may 
further include an awake state. Similarly, the REM sleep 
state may be a light REM state and the potential sleep states 
may also include a deep REM state.
[0014] In some embodiments, the processor determines the 
detected state by calculating probabilities representative of 
transitions between each potential sleep state with data from 
the plurality of respiratory characteristics, and determines 
the detected state as a function of a most probable one of 
the calculated probabilities. Optionally, the plurality of 
respiratory characteristics may include one or more of a 
measure of inspiratory peak flow variation, a measure of 
expiratory peak flow variation, a measure of a ratio of an 
expiratory peak flow location and expiratory time, a measure 
of an expiratory peak flow location variation, a measure of 
an area of an expiratory peak flow, a measure of an area of 
an expiratory peak flow variation, a measure of a time from 
expiratory peak flow to inspiration start, a measure of a 
time since last confirmed breath variability, a measure of a
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high breath frequency period, and a measure of inspiratory
time variability.
[0015] One or more of the aforementioned methods may be 
implemented as a sleep state detection apparatus including a 
controller configured with the method(s). The controller may 
optionally be coupled with a flow sensor to measure the flow 
of breathable gas. The controller may then also include a 
processer controlled flow generator to provide a controlled 
respiratory pressure treatment regime based on the detected 
state .
[0016] Some embodiments of the present technology may include 
method for controlling a processor to classify a sleep 
arousal condition from a measured flow of breathable gas. 
The method of the processor may include determining a 
plurality of respiratory characteristics from a measure of 
respiratory flow. The processor may detect a disturbance 
from the plurality of respiratory characteristics. The 
disturbance may be indicative of an arousal condition. The 
processor may then assess whether the disturbance is a non­
respiratory related arousal. The processor may then indicate 
that the detected disturbance represents an arousal based 
from an event other than a symptom of respiratory 
dysfunction.
[0017] In some embodiments, the assessment may involve 
determining a measure indicative of respiratory flow 
limitation, such as flow flattening detection. The assessing 
may also involve detecting an absence of respiratory flow 
limitation. In some such embodiments, the plurality of 
respiratory characteristics may include one or more of a 
measure of time to reach a proportion of inspiratory peak 
flow, a measure of area above a proportion of inspiratory 
peak flow, a measure of area above a proportion of 
inspiratory peak flow variation, and a measure of time 
between a proportion of inspiratory peak flow and expiratory
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peak flow. Optionally, the aforementioned assessing of
whether the disturbance is a non-respiratory related arousal
may be based on a detection of a sleep state. The assessing
may also involve detecting mask leak so that an arousal due
to mask leak may be detected.
[0018] One or more of the aforementioned methods may be 
implemented as a sleep arousal state classifying apparatus 
including a controller configured with the method(s). The 
controller may optionally be coupled with a flow sensor to 
measure the flow of breathable gas. The controller may then 
also include a processer controlled flow generator to provide 
a controlled respiratory pressure treatment regime based on 
the detected sleep arousal state.
[0019] In still further embodiments, a method may be 
implemented to control a processor in assessing sleep 
stability from a measured flow of breathable gas. The method 
of the processor may include determining a plurality of 
respiratory characteristics from a measure of respiratory 
flow. The method may also include detecting a disturbance 
from the plurality of respiratory characteristics, the 
disturbance indicative of an arousal condition. The method 
may also include determining a degree of the disturbance. 
The degree may be indicative of an extent to which the 
arousal condition has interrupted sleep. The processor may 
then indicate the degree of the disturbance.
[0020] In some embodiments, the determining of the degree of 
disturbance may involve calculating a ratio of a respiratory 
characteristic attributable to the disturbance with a common 
respiratory characteristic attributable to flow data prior to 
an occurrence of the disturbance. In such an example, the 
flow data may represent a plurality of breathing cycles. In 
some examples of this embodiment, the respiratory 
characteristic (s) attributable to the disturbance may be at 
least one of a measure of time to reach a proportion of
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inspiratory peak flow, a measure of area above a proportion
of inspiratory peak flow, a measure of area above a
proportion of inspiratory peak flow variation, and a measure
of time between a proportion of inspiratory peak flow and
expiratory peak flow.
[0021] Optionally, a determination of the degree of 
disturbance may involve calculating an average of ratios of a 
variance of a plurality of respiratory characteristics 
attributable to the disturbance with a variance of a common 
plurality of respiratory characteristics attributable to flow 
data prior to an occurrence of the disturbance where the flow 
data represents a plurality of breathing cycles.
[0022] Moreover, in some embodiments the method of the 
processor may further involve determining a level of 
autonomic activation from the determined degree of the 
disturbance and patient characteristic data. For example, 
the autonomic activation may include a data value of a heart 
rate variability and/or a data value of a pulse transit time. 
Thus, the determining of the level of autonomic activation 
may involve selecting at least one of a heart rate 
variability value and a pulse transit time value. This 
selecting may include accessing a data structure indexed by 
the determined degree of disturbance and the patient 
characteristic data, such as a patient age and a patient 
weight.
[0023] One or more of the aforementioned methods may be 
implemented as a sleep stability assessment apparatus 
including a controller configured with the method(s). The 
controller may optionally be coupled with a flow sensor to 
measure the flow of breathable gas. The controller may then 
also include a processer controlled flow generator to provide 
a controlled respiratory pressure treatment regime based on 
the assessed sleep stability.
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[0024] In some embodiments of the present technology, 
a method for controlling a processor determines a sleep 
quality indicator from a measured flow of breathable gas. In 
the method, processor determines a plurality of respiratory 
characteristics from a measure of respiratory flow. It also 
determines a sleep state measure and a sleep stability from 
the plurality of respiratory characteristics. It then 
determines and indicates a sleep quality index from the sleep 
state measure and the stability measure.
[0025] The sleep quality index may be derived by the 
processor with a ratio of a determined sleep time of a 
treatment session and the sleep stability measure. In some 
embodiments, the sleep quality index may be derived as a 
function of a ratio of sleep time during a treatment session 
and the sleep stability measure. The sleep quality index may 
also be derived as a function of a duration of awake periods 
during the treatment session. In some embodiments, the sleep 
state measure may include at least one of a REM state, a non- 
REM state and an awake state and a measure of duration for 
the sleep state measure. Moreover, the sleep stability 
measure may be derived as a function of a determined flow 
disturbance and flow data preceding the flow disturbance. In 
addition, the determination of the sleep stability measure 
may include detecting an arousal from sleep based on the flow 
disturbance.
[0026] One or more of the aforementioned methods may be 
implemented as a sleep quality detection apparatus including 
a controller configured with the method(s). The controller 
may optionally be coupled with a flow sensor to measure the 
flow of breathable gas. The controller may then also include 
a processer controlled flow generator to provide a controlled 
respiratory pressure treatment regime based on the detected 
sleep quality.
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[0027] Still further embodiments of the present technology- 
may involve a method for detecting periodic breathing. The 
method may include determining a set of respiratory features 
from a measure of respiratory flow. It may further include 
thresholding the set of respiratory features. It may further 
include detecting a periodic breathing state based on the 
thresholding. In some such embodiments, the set of 
respiratory features may include an area of an inspiratory 
flow curve. For example, the set of respiratory features may 
include a ratio of a measure of ventilation and a breath 
time. The method may also involve setting the periodic 
breathing state as a function of a counter. The counter may 
optionally represent a number of processed breaths.
[0028] In some embodiments, the method may be implemented 
as a device to detect periodic breathing. For example, a 
processor may be configured to determine a set of respiratory 
features from a measure of respiratory flow, to threshold the 
set of respiratory features and to detect a periodic 
breathing state based on the thresholding.
[0029] Some additional embodiments of the technology may 
involve a method for detecting sleep onset. The method may 
include determining a set of respiratory features from a 
measure of respiratory flow. The method may also include 
thresholding the set of respiratory features. The method may 
then include determining a sleep state score based on the 
thresholding. This sleep state score may be indicative of a 
sleep state. The method may then involve detecting sleep 
onset as a function of the thresholding and the determined 
sleep state score. In some such embodiments, the set of 
respiratory features may include a function of a determined 
expiratory peak flow location. Optionally, the function may 
be a difference between (a) a ratio of the expiratory peak 
flow location and an expiratory time and (b) an average of a 
plurality of the ratios determined over a number of breaths.
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Moreover, the method may also involve, based on the 
detecting, outputting a sleep onset index representing a 
transition into a first sleep period for a treatment session. 
[0030] In some embodiments, the method may be implemented as 
a device to detect sleep onset. For example, a processor may 
be configured to determine a set of respiratory features from 
a measure of respiratory flow. The processor may also be 
configured to threshold the set of respiratory features, to 
determine a sleep state score based on the thresholding and 
to detect a sleep onset state based on the thresholding and 
the determined sleep state score.
[0031] In still further embodiments, the technology involves 
a respiratory treatment apparatus. The apparatus may include 
a flow generator to generate a flow of breathable gas at a 
pressure above atmospheric pressure to a patient interface. 
It may further include a flow sensor to measure a flow of the 
breathable gas attributable to patient respiration. It may 
further include a controller coupled to the flow generator 
and the flow sensor. This controller, such as one or more 
processors, may be configured to detect one of a plurality of 
sleep states substantially based on data from the measure of 
flow from the flow sensor. The controller being further 
configured to control a respiratory pressure treatment regime 
based on the detected sleep state.
[0032] For example, this respiratory pressure treatment 
regime may include control of an expiratory pressure relief 
where the controller reduces a pressure reduction amount of 
the expiratory pressure relief when the detected one of the 
plurality of sleep states is a state attributable to sleep. 
Moreover, the respiratory pressure treatment regime may 
include an expiratory pressure relief control where the
controller increases a pressure reduction amount of the
expiratory pressure relief when the detected one of the
plurality of sleep states is a state attributable to
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wakefulness. Still further, the respiratory pressure 
treatment regime may include a detection of events from data 
of the measure of flow where the events include at least one 
of an apnea and a hypopnea and where the events are scored 
when the detected one of the plurality of sleep states is a 
state attributable to sleep. Optionally, the detected events 
may be separately reported in association with detected sleep 
states .
[0033] In some embodiments, the respiratory pressure 
treatment regime may include automatic adjustment of a 
therapeutic pressure level where the controller increases the 
therapeutic pressure level in response to a detection of a 
respiratory abnormality and reduces the therapeutic pressure 
level in response to a comparison of a sleep stability index 
and a threshold.
[0034] Still further the respiratory pressure treatment 
regime may include a detection of cardiogenic flow from the 
measure of flow where the detection of cardiogenic flow is 
controlled when the detected one of the plurality of sleep 
states is a state attributable to sleep. This respiratory 
pressure treatment regime may also include a detection of a 
central apnea based on the detection of a presence of 
cardiogenic flow. In such cases, the detected one of the 
plurality of sleep states may be an NREM state.
[0035] Additional features of the present respiratory 
technology will be apparent from a review of the following 
detailed discussion, drawings and claims.
BRIEF DESCRIPTION OF DRAWINGS
[0036] The present technology is illustrated by way of 
example, and not by way of limitation, in the figures of the 
accompanying drawings, in which like reference numerals refer 
to similar elements including:
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[0037] FIG. 1 is a block diagram of an example controller for
a sleep condition detection apparatus of the present
technology;
[0038] FIG. 2 is an illustration of inspiratory and 
expiratory peak flow variation characteristics of a 
respiratory flow signal;
[0039] FIG. 3 is an illustration further characteristics of a 
respiratory flow signal including an expiratory peak flow 
location to expiratory time ratio and area under a proportion 
of an expiratory peak;
[0040] FIG. 4 is an illustration of further characteristics 
of a respiratory flow signal· including a time from a 
proportion of expiratory peak flow and time since last 
confirmed inspiration;
[0041] FIG. 5 is an illustration of an high breath frequency 
characteristic of a respiratory flow signal;
[0042] FIG. 6 is an illustration of further characteristics 
of a respiratory flow signal including a time to reach a 
proportion of inspiratory peak flow, area above a proportion 
of inspiratory peak flow and a time between a proportion of 
peak flow and an expiratory peak flow location;
[0043] FIG. 7 is a flow diagram of an example embodiment of a 
methodology for controlling an apparatus to detect a sleep 
state based on data from a flow sensor;
[0044] FIG. 8 is a flow diagram of an example embodiment of a 
methodology for controlling an apparatus to detect a non- 
respiratory related arousal with data from a flow sensor; 
[0045] FIG. 9 is a flow diagram of an example embodiment of a 
methodology for controlling an apparatus to detect a sleep 
stability measure with data from a flow sensor;
[0046] FIG. 10 is a flow diagram of an example embodiment of 
a methodology for controlling an apparatus to detect a sleep 
quality measure with data from a flow sensor;
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[0047] FIG. 11 shows an example sleep condition detection
apparatus of the present technology;
[0048] FIG. 12 is a block diagram of a controller in a 
hypopnea detection apparatus including example components 
thereof suitable for implementing the detection methodologies 
of the present technology;
[0049] FIG. 13 is a block diagram illustrating processing 
methodologies of an example arousal detection module in some 
embodiments of the technology;
[0050] FIG. 14 shows an example graph of a generic threshold 
function with example input and output values for 
thresholding features in an example arousal detector of the 
technology;
[0051] FIG. 15 is a block diagram illustrating processing 
methodologies of an example sleep stability detection module 
in some embodiments of the technology;
[0052] FIG. 16 shows a graph of an example function for 
adjusting sleep stability scoring to account for leak in an 
example sleep stability detector;
[0053] FIG. 17 shows an example graph of a generic threshold 
function with example input and output values for 
thresholding features in an example sleep stability detector; 
[0054] FIG. 18 is a block diagram illustrating processing 
methodologies of an example periodic breath state detection 
module in some embodiments of the technology;
[0055] FIG. 19 shows an example graph of a generic threshold 
function with input and output values for thresholding 
features in an example periodic breath state detector of the 
technology;
[0056] FIG. 20 illustrates a processing methodology of an 
example sleep state detector;
[0057] FIG. 21 shows a finite state machine state diagram for 
implementing detectable sleep condition states in an example 
embodiment of a sleep state detector;
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[0058] FIG. 22 is a graph of a typical respiratory airflow
signal from a person while he is awake;
[0059] FIG. 23 is a graph of a typical respiratory airflow 
signal from a person who is asleep;
[0060] FIG. 23-A is a graph of a respiratory flow signal that 
may be characterized as a non-REM sleep transition;
[0061] FIG. 24 shows an example graph of a generic threshold 
function for features analyzed by a sleep state detector of 
the technology;
[0062] FIG. 25 includes tables with example input and output 
values for thresholding features with the graph of FIG. 24; 
[0063] FIG. 26 has three tables with example values of rules 
that govern the state transition probabilities used for 
determining sleep state;
[0064] FIG. 27 has four tables with example values of
additional rules that govern the state transition
probabilities used for determining sleep state;
[0065] FIG. 28 is a block diagram of the processing
components of an example sleep quality assessment module; 
[0066] FIG. 29 is a graph illustrating a sleep state
thresholding function for the sleep quality assessment module 
of FIG. 28;
[0067] FIG. 30 is a graph illustrating a sleep stability 
index thresholding function for the sleep quality assessment 
module of FIG. 28; and
[0068] FIG. 31 is graph illustrating an arousal data 
thresholding function for the sleep quality assessment module 
of FIG. 28.
DETAILED DESCRIPTION .
[0069] As illustrated in FIG. 1, embodiments of the present 
technology may include a sleep condition detection device 102 
or apparatus having a controller 104 that may have one or 
more processors to implement particular sleep state and/or 
sleep arousal detection methodologies such as the algorithms
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described in more detail herein. In the example embodiment, 
the system of the controller may have multiple components or 
modules that control the various aspects of the controller. 
The components or modules may be implemented with integrated 
chips, a memory and/or other control instruction, data or 
information storage medium. For example, programmed
instructions encompassing such detection methodologies may be 
coded on integrated chips in the memory of the device or 
apparatus to form an application specific integrated chip 
(ASIC). Such instructions may also or alternatively be 
loaded as software or firmware using an appropriate data 
storage medium in which they reside to then control one or 
more programmable processors.
[0070] In the illustrated embodiment of FIG. 1, the 
controller 104 may have access to data from a respiratory 
flow signal or may otherwise include an optional flow 
measurement module 105. With such a module, the controller 
may directly measure respiratory flow. Thus, the processor 
may control the assessment or detection of sleep conditions 
as described in more detail herein based on previously 
recorded respiratory flow data from a prior sleep session. 
Alternatively, the detection may be performed during a sleep 
session contemporaneously with the measuring of a respiratory 
flow signal using a present measuring of flow data with a 
flow sensor. Thus, in some embodiments, the device itself 
may optionally be implemented with a flow sensor for 
measuring a respiratory flow signal for use with implemented 
methodologies. For example, flow to or through a nasal 
cannula or mask may be measured using a pneumotachograph and 
differential pressure transducer or similar device such as 
one employing a bundle of tubes or ducts to derive a flow 
signal. Optionally, a flow signal may be inferred from other 
sensors, such as, a motor current sensor as described in 
PCT/AU2005/001688 filed on Nov. 2, 2005, the entire
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disclosure of which is incorporated herein by cross
reference .
[0071] As discussed in more detail herein, flow data may be 
processed by optional modules such as a flow limitation 
detection module 106, apnea and/or hypopnea (AHI) detection 
module 108, respiratory flow characteristic or feature 
extraction module 110 and leak detection module 112. The AHI 
detection module 108 may also utilize input from the sleep 
state detection module 114 in the determination of apnea 
and/or hypopnea events. Output signals or data from the flow 
limitation detection module 106, AHI detection module 108 and 
respiratory feature extraction module 110 may be processed by 
the arousal detection module 114. Similarly, output from the 
leak detection module 112 and respiratory feature extraction 
module 110 may be processed by the sleep state detection 
module 118. Still further, output signals or data from the 
arousal detection module 114 and patient characteristics data 
store 122 may be processed by the sleep stability detection 
module 116. A sleep quality detection/assessment module 120 
may then process output data or signals from the sleep 
stability detection module 116, the patient characteristics 
data store 122 module and the sleep state detection module 
118. Output signals or data from the sleep quality 
assessment module 120 may then be displayed with a user 
interface module 124 and/or serve as input to a feedback 
control module 126, which serves to modify or make 
adjustments to the settings of a therapy control processing 
module 128, such as a pressure treatment therapy setting. 
[0072] In some embodiments of the present technology, the 
detectors and modules of the controller may be implemented 
with to the following features and functions.
A. Patient Characteristic (s) Store Module
[0073] This module may control the storing of data and 
information characteristics of patients utilizing the sleep
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condition detection device 102. The data may be input via 
the user interface module 124, which may optionally include a 
keyboard, buttons of a panel, touch screen etc. For example, 
under the control of the module, the device may prompt a 
patient or clinician to select or enter one or more patient 
characteristics such as: age, sex, weight, height, BMI and/or 
pre-existing condition data (e.g., a health condition that 
may potentially affect heart rate variability, a health 
condition that may potentially be involved in creating 
differences in airflow patterns, other current physiological 
condition, etc.). Such health conditions may include asthma, 
emphysema, chronic cardiovascular disease, for example. The 
stored data may in turn be utilized by other modules of the 
device .
[0074] These patient characteristics may be utilized to 
weight an output of the methodologies described herein. For 
example, there may not be an absolute airflow feature that 
can be used as a mean for every patient to compare to in 
detection of different sleep states. Thus, the patient 
characteristics may be used to adjust sensitivity of the 
feature extractor (or the thresholds to which the respiratory 
characteristics are compared). In this way, the significance 
of the characteristics of the airflow may be more accurately 
assessed for different patients. For example, a patient who 
is above the age of 50 will naturally have lesser stability 
in the upper airway. Therefore, a system or method of the 
present technology may be selectively less severe on 
assessing flow stability for such patients.
[0075] Other uses of the patient characteristics by the 
system are described in more detail herein.
B. Flow Limitation Detection Module
[0076] The respiratory flow limitation detection module 106 
may be configured to detect a measure of a limitation of 
respiratory flow from flow signal data. For example, the
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device may be configured to detect a measure of flow 
limitation, such as a fuzzy flow limitation measure as 
disclosed in PCT/AU08/000647, filed on May 9, 2008, 
(published as International Patent Application Publication 
No. WO/2008/138040) and U.S. Provisional Patent Application 
No. 60/965,172 filed on August 17, 2007, the disclosures of 
which are hereby incorporated herein by reference. 
Optionally, it may be configured to detect flow limitation by 
analysis of flattening of the flow data. For example, the 
flattening may be determined by the method disclosed in U.S. 
Patent no. 5,704,345, the entire disclosure of which is 
incorporated herein by cross reference.
C. AHI Detection Module
[0077] In some embodiments, the flow data may be processed to 
detect or score hypopneas and/or apneas (e.g., obstructive 
apneas and/or central apneas). For example, the device may 
be configured to detect an obstructive apnea, partial 
obstruction and/or central apnea by any of the methods 
described in U.S. Patent Nos. 6,138,675 and 6,029,665, the 
entire disclosures of which are incorporated herein by cross 
reference .
[0078] In some embodiments, the AHI detection module 108 may 
be modified to exclude scoring of events based on the leak 
detection module 112. For example, if leak is detected, it 
may disable any contemporaneously scored event until leak is 
not detected. In this way, the AHI may be calculated with 
respect to total mask-on time. That is, the time the actual 
mask is worn by the patient rather than total sleep time of 
the patient. This can result in avoiding an overestimate in 
the performance of a flow generator (FG).
[0079] Thus, in some embodiments, the AHI may optionally be 
combined with a flattening indicator and leak indicator to 
provide a simple sleep quality score that may yield an 
elementary insight into sleep quality.
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D. Leak Detection Module
[0080] Accordingly, in some embodiments, the flow data may be 
processed to detect the presence of a leak, such as a leak 
associated with the dislodgement of a mask or a high leak. 
For example, a high leak may be considered a leak in excess 
of a certain quantity threshold (e.g., a leak of greater than 
about 0.4 Liters per second (1/s)). By way of further 
example, the device may be configured to detect when a leak 
is occurring or has occurred by any of the methods described 
in U.S. Patent Nos. 6,152,129 and/or 6,532,957, the entire 
disclosures of which are incorporated herein by cross 
reference. Leak detection may optionally serve to assist in 
classifying arousal from sleep that is due to mask leak as 
well as to exclude AHI scoring in the presence of leak as 
previously mentioned.
E. Feature Extraction Module
[0081] One or more respiratory flow characteristics may be 
determined by the feature extraction module 110. In typical 
embodiments, the features may be determined by processing 
respiratory flow data. The features may optionally be 
calculated on a breath-by-breath basis or by use of a sliding 
window comprising several breath cycles. The features may 
then serve as indicators or input for the other modules of 
the system. For example, depending on the data from one or 
more of the measured characteristics, various conclusions may 
be drawn in other modules about sleep conditions with the 
flow data. The following are example features that may be 
detected or determined from the flow data.

1. Inspiratory Peak Flow Variation
[0082] This respiratory flow characteristic may be determined 
by calculating a variance of the Inspiratory Peak Flow. Such 
a characteristic is illustrated in FIG. 2. The variation may 
be determined with a sliding window including a plurality of 
breaths (e.g., 5 breaths). As illustrated in FIG. 2, the
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calculation utilizes the inspiratory peak flow values 202 for
a group of consecutive breaths. When assessed by the state
detector with suitable thresholds, this value may be
indicative of different sleep states as follows:

(a) Awake State: exhibits high levels of 
Inspiratory Peak Flow Variation.
(b) REM Sleep State: exhibits moderate levels of 
Inspiratory Peak Flow Variation.
(c) NREM Sleep State: exhibits minimal levels of 
Inspiratory Peak Flow Variation.

This inspiratory peak flow variation feature may be labeled 
herein as "IPFV'’.

2. Expiratory Peak Flow Variation
[0083] This respiratory flow characteristic may be determined 
by calculating a variance of the Expiratory Peak Flow. Such 
a characteristic is illustrated in FIG. 2. The variation may 
be determined with a sliding window including a plurality of 
breaths (e.g., 5 breaths). As illustrated in FIG. 2, the
calculation utilizes the expiratory peak flow values 204 for 
a group of consecutive breaths. When assessed by the state 
detector with suitable thresholds, this value may be 
indicative of different sleep states as follows:

(a) Awake State: exhibits high levels of Expiratory 
Peak Flow Variation
(b) REM Sleep State: exhibits moderate levels of 
Expiratory Peak Flow Variation
(c) NREM Sleep State: exhibits minimal levels of 
Expiratory Peak Flow Variation.

This expiratory peak flow variation feature may be labeled 
herein as "EPFV".

3. Expiratory Peak Flow Location/Expiratory 
Time Ratio
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[0084] As illustrated in FIG. 3, this respiratory flow 
characteristic may be calculated as a ratio between a time 
taken to reach Expiratory Peak Flow (TPE) from the beginning 
of expiration to the total Expiratory Time (TE) . The ratio 
is illustrated in FIG. 3. When assessed by the state 
detector with suitable thresholds, this value may be 
indicative of different sleep states as follows:

(a) Awake State: exhibits a large Expiratory Peak 
Flow Location/Expiratory Time Ratio compared to 
sleep states
(b) REM Sleep State: exhibits a small Expiratory 
Peak Flow Location/ Expiratory Time ratio compared 
to awake state.
(c) NREM Sleep State: exhibits a small Expiratory 
Peak Flow Location/ Expiratory Time ratio compared 
to awake state.

4. Expiratory Peak Flow Location/Expiratory Time 
Ratio Variation

[0085] This respiratory flow characteristic may be calculated 
as a variation (e.g., variance) of the ratio of the prior 
characteristic. The variation may be determined with a
sliding window including a plurality of breaths (e.g., 5
breaths). When assessed by the state detector with suitable 
thresholds, this value may be indicative of different sleep 
states as follows:

(a) Awake State: exhibits a large Expiratory Peak 
Flow Location/Expiratory Time ratio Variation from 
one breath to another.
(b) REM Sleep State: exhibits small Expiratory Peak 
Flow/Expiratory Time ratio Variation from one 
breath to another.
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(c) NREM Sleep State: exhibits small Expiratory 
Peak Flow/Expiratory Time ratio Variation from one 
breath to another.

5. Area Under 75% Expiratory Peak Flow
[0086] This respiratory flow characteristic may be calculated 
as a proportion of the area of the Expiratory Flow curve 
(e.g., between 75% and 100%) of Expiratory Peak Flow. An 
example of the expiratory peak flow area 306 is illustrated 
in FIG. 3. When assessed by the state detector with suitable 
thresholds, this value may be indicative of different sleep 
states as follows:

(a) Awake State: exhibits a larger area below 75% 
Expiratory Peak Flow.
(b) REM Sleep State: exhibits a small area below 
75% Expiratory Peak Flow
(c) NREM Sleep State: exhibits a small area below 
75% Expiratory Peak Flow

6. Area Under 75% Expiratory Peak Flow Variation
[0087] This respiratory flow characteristic may be calculated 
as a variation (e.g., variance) of the area of the prior 
characteristic. The variation may be determined with a 
sliding window including a plurality of breaths (e.g., 5
breaths). When assessed by the state detector with suitable 
thresholds, this value may be indicative of different sleep 
states as follows:

(a) Awake State: exhibits a larger variation in the 
area below 75% Expiratory Peak Flow from one breath 
to another.
(b) REM Sleep State: exhibits a small variation in 
the area below 75% Expiratory Peak Flow from one 
breath to another.

. (c) NREM Sleep State: exhibits a small variation in
the area below 75% Expiratory Peak Flow from one 
breath to another.
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7. Time From 75% Expiratory Peak Flow to Start 
Inspiration

[0088] This respiratory flow characteristic may be calculated 
as a time between a proportion (e.g., 75%) of Peak Flow of
the rising part of the Expiratory Peak Flow and a start of 
the next Inspiration. This characteristic is illustrated in 
FIG. 4. When assessed by the state detector with suitable 
thresholds, this value may be indicative of different sleep 
states as follows:

(a) Awake State: exhibits a slower rise time from 
75% Expiratory Peak Flow to Start Inspiration
(b) REM Sleep State: exhibits a faster rise time 
from 75% Expiratory Peak Flow to start Inspiration
(c) NREM Sleep State: exhibits a faster rise time 
from 75% Expiratory Peak Flow to start inspiration

8. Time Since Last Confirmed Breath
[0089] This respiratory flow characteristic may be calculated 
as a time from the last confirmed inspiration. The
characteristic is illustrated in FIG. 4. Such a
characteristic may be assessed with suitable thresholds by 
the arousal detector described in more detail herein.

9. Time Since Last Confirmed Breath Variability
[0090] This respiratory flow characteristic may be calculated 
as a variation (e.g., variance) of the time from last 
confirmed inspiration of the prior characteristic. The 
variation may be determined with a sliding window including a 
plurality of breaths (e.g., 5 breaths). When assessed by the 
state detector with suitable thresholds, this value may be 
indicative of different sleep states as follows:

(a) Awake State: exhibits a large variation in the 
Time Since Last Confirmed Breath from one breath to 
another .
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(b) REM Sleep State: exhibits a moderate variation 
in the Time Since Last Confirmed Breath from one
breath to another.
(c) NREM Sleep State: exhibits a small variation in 
the Time Since Last Confirmed Breath from one
breath to another.

This Time Since Last Confirmed Breath Variability feature may 
be labeled herein as "TSLBV".

10. High Breath Frequency Periods
[0091] This respiratory flow characteristic may be calculated 
by a scan for any small sections of high frequency breathing 
over a sliding breath epoch (e.g., 15 breaths). The feature 
is illustrated in FIG. 5. When assessed by the state 
detector with suitable thresholds, this value may be 
indicative of REM breathing.

11. Inspiratory Time Variability
[0092] This respiratory flow characteristic may be calculated 
as a variation (e.g., variance) in the inspiratory time. The 
variation may be determined with a sliding window including a 
plurality of breaths (e.g., 5 breaths). When assessed by the 
state detector with suitable thresholds, this value may be 
indicative of different sleep states as follows:

(a) Awake State: exhibits large variation in 
Inspiratory Time
(b) REM Sleep State: exhibits moderate variation in 
Inspiratory Time
(c) Sleep State: exhibits small variation in 
Inspiratory Time

12. Breath Consistency Checker
[0093] This feature may be implemented to determine whether 
there is consistency in the following respiratory flow 
characteristics from breath to breath over a period of a 
number of breaths (e.g., 5 breaths). The consistency check
considers Inspiration Time, Inspiratory Peak Flow Location,
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Expiration Time, Expiratory Peak Flow Location. Minor
differences in the characteristics may be deemed consistent.

13. Feature Consistency Checker
[0094] This feature checks for a variation in the respiratory 
flow characteristics previously identified (e.g., 
characteristics 1-12) over a multiple breath period (e.g., 30 
breaths). For example, an automated analysis of any of the 
features over a period of a number of breaths (e.g., 30) may 
identify whether any feature is consistent or has significant 
variation. For example, in an awake period, a Peak Flow 
Variability feature will be on average higher than in a sleep 
period. Such a value may not be above a required awake 
threshold each time it is calculated, such as over a period 
of 30 breaths, but there may be a significant proportion 
above the threshold that may be evaluated.

14. Time To Reach 95% Inspiratory Peak Flow
[0095] This respiratory flow characteristic may be calculated 
as a time it takes for a breath to reach a proportion (e.g., 
95%) of inspiratory peak flow from the beginning of 
inspiration. This 95% time characteristic is shown in FIG. 6 
with reference character T_95. This respiratory flow 
characteristic feature may be utilized in the assessment by 
the arousal detection module 114.

15. Area above 75% Inspiratory Peak Flow
[0096] This respiratory flow characteristic may be calculated 
as the area of the inspiratory peak flow curve above a 
proportion (e.g., 75%) of Inspiratory Peak Flow. This
respiratory flow characteristic feature may be utilized in 
the assessment by the arousal detection module 114. A 75% 
time characteristic (T_75), which is a time at which a breath 
reaches a proportion (e.g., 95%) of inspiratory peak flow,
may be determined to then calculate the area as shown by the 
shaded region of FIG. 6. This Area above 75% Inspiratory 
Peak Flow feature may be labeled herein as "IP75A".
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16. Area above 75% Inspiratory Peak Flow Variation
[0097] This respiratory flow characteristic may be calculated 
as the variance in the area of the preceding respiratory flow 
characteristic. The variance may be determined with a 
sliding window including a plurality of breaths (e.g., 5
breaths). This respiratory flow characteristic feature may 
be utilized in the assessment by the arousal detection module 
114. This Area above 75% Inspiratory Peak Flow Variation 
feature may be labeled herein as "I75AV".

17. Time between 95% Inspiratory Peak Flow and 
Expiratory Peak Flow

[0098] This respiratory flow characteristic may be calculated 
as a time between a proportion (e.g., 95%) of the rising side 
of the Inspiratory Peak Flow curve and the Expiratory Peak 
Flow location. This respiratory flow characteristic may be 
utilized in the assessment by the arousal detection module 
114 .

18. Current Breath 3mvTtot Ratio to previous 
Breath 3mvTtot

[0099] A 3mvTtot Ratio may be calculated as the 3mvTtot from 
the current breath divided by the 3mvTtot from a previous 
breath. The 3mvTtot may be determined as the ratio between 
the average minute ventilation (e.g., a three minute 
ventilation) and a total breath period (e.g., time period for 
the duration of the current breath). The minute ventilation 
may be determined as the average ventilation taken during 
preceding minutes (e.g., in a range of about two to five 
minutes, but preferably three minutes) .

19. Current breath IPkFlow to a Portion of current 
breath IPkFlow:

[00100] A ratio of the peak inspiratory flow (IPkFlow) and a 
portion (e.g., 75%) of the peak inspiratory flow (IPkFlow)
from the current breath of the inspiratory flow. This 
feature may be labeled herein as "PF75PF".
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F. Sleep/Awake Detection Module

[00101] An example methodology associated with the sleep state 
detection module 118 is illustrated in FIG. 7. Essentially, 
the detector may be implemented with a methodology to detect 
a sleep state from data representing a measured flow of 
breathable gas. At 770, the method may involve determining a 
plurality of respiratory characteristics from a measure of 
respiratory flow. Although the extraction of such 
respiratory characteristics may be integrated with the sleep 
state detector, this extraction may correspond with data 
provided from the feature extraction module 110. At 772, the 
method of the sleep detector may also involve detecting a 
state from potential sleep states such one or more of a Non- 
REM sleep state, a REM sleep state, Phasic REM state, Tonic 
REM state, a Deep REM sleep state and/or a Light REM sleep 
state. At 774, the detecting of the state may be based on 
the determined respiratory characteristics. In such 
embodiments, this state detection is substantially based on 
the determined respiratory characteristics in the sense that 
any of these states may be detected from data taken by a 
respiratory flow sensor and without traditional sleep stage 
sensor determination techniques (i.e., data analysis from 
electroencephalogram (E.E.G.), electromyography (E.M.G.) and 
electrooculography (E.O.G.) sensors.) or respiratory effort 
bands. A processor may then indicate the detected state. 
For example, it may store the detected state in memory, apply 
it to the input of another module (e.g., the sleep quality 
assessment module 120) and/or produce it as output such as on 
a display of the user interface module 124.
[00102] In one example embodiment, the respiratory 
characteristics extracted from the flow signal may be 
processed to classify the sleep state as a Markov 
Classification system. In such an embodiment, a Non-
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Stationary Markov Classification system may be employed to
identify the sleep state of the patient.
[00103] The name Markov model is derived from one of the 
assumptions which allows this system to be analyzed; namely 
the Markov property. The Markov property states: given the 
current state of the system, the future evolution of the 
system is independent of its history. At each step the 
system may change its state from the current state to another 
state, or remain in the same state, according to a certain 
probability distribution. The changes of state are called 
transitions, and the probabilities associated with various 
state-changes are called transition probabilities.
[00104] Mathematically, the Markov property can be represented
as :

Pr(Xn+l ZpCi «£·η j ■ ■ · j J'l) Pl(-^n+l -Ui)·

Where :
X - is a random variable
N - is a number representing a particular state

[00105] Pr(Xn+i = x | Xn = xn) is more commonly represented as 
Pi,j ( i = xn, j = x) . These computations determine the 
probability of the state transitioning from state xn to x. A 
state transition matrix may contain probabilities of a state 
changing to any one of the other states (or simply remaining 
in its current state) . In the context of some of the 
embodiments of the current technology, the sleep state may be 
the random variable and there may be a number of possible 
states (e.g., three states in the case of a Non-REM Sleep 
state, Awake state and a REM sleep state). In this example, 
therefore, a three dimensional state transition matrix would 
be calculated. With additional states the matrix and 
calculations would be increased suitably.

27



WO 2011/006199 PCT/AU2010/000894

[00106] Accordingly, some embodiments, the following
methodology may be implemented to determine a sleep state
from the respiratory characteristics or features that may be
input from the feature extraction module.

(1) Calculate the state transition table.
[00107] The state transition table can be non-stationary
(e.g., vary with time) due to the direct dependence that the 
transition probabilities have on the features extracted from 
the flow signal (which also vary over time). Certain 
features are characteristic of specific sleep stages as 
previously described. Any number of combinations of such 
features (e.g., from the feature extractor module) may be 
used to derive these state transition probabilities. The 
probabilities may be determined from a set of thresholds for 
each of the respiratory characteristics. The set of 
thresholds may be determined through empirical analysis and 
recorded in the device for the probability assessment. 
Therefore, at every update of the sleep state, the transition 
table may be recalculated. This may be performed on a 
breath-by-breath basis. In the case of three states, there 
would be nine transitions representing a transition from each 
state to the other states and from each state to itself.

(2) Calculate the probabilities of the current 
state (e.g., Non-REM Sleep, Awake and REM 
Sleep) based on the previous state.

[00108] An output from the leak detection module 112 may
optionally provide a conditioner of the probabilities of the
matrix. For example, if there high level of detected leak,
it may be expected that the flow signal will be less stable
or otherwise less indicative of any particular sleep state.
It may even be indicative of an awake state. Thus, in some
embodiments, the methodology may modify the weighting of the
sleep state probability suitably to reduce the affect of
leak.

(3) Output the most likely Sleep State.
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[00109] Accordingly, the sleep state detection module may 
produce a Sleep/Awake indicator or index indicative of 
various detected states by breaking down and analyzing the 
respiratory flow signal to associate them with certain stages 
of sleep (e.g., l=awake, 2=non-REM, 3=REM or l=awake, 2=non- 
REM, 3=light REM, 4=deep REM etc.). An advantage of such an 
approach is that it may be used to provide an indication of 
the total sleep time when the method is used to log the 
duration of each state. It may also be implemented to 
provide information on a patient's sleep structure (e.g., a 
timing, frequency and duration of awake intervals, Non-Rapid 
Eye Movement (NREM) sleep intervals, Rapid Eye Movement (REM) 
sleep intervals, Deep Rapid Eye Movement (DREM)
intervals and/or Light Rapid Eye Movement (LREM)
intervals, etc.). Furthermore, it may also be implemented 
for an improved AHI calculation when such an index is used 
with the AHI detection module so as to permit AHI 
determination with particular reference to the total sleep 
time as previously discussed.

Example Sleep State Detector Embodiment

sleep
sleep

[00110] In a further example embodiment of the technology, a 
sleep state detection module 119 may be configured with the 
processing illustrated in the block flow diagram of FIG. 20. 
The processing represents a calculation of a sleep state of 
the patient. To this end, traditional R&K PSG based scoring 
divides sleep into 6 stages:

i. ) Awake
ii. ) NREM Stage 1
iii. ) NREM Stage 2
iv. ) NREM Stage 3
v. ) NREM Stage 4
vi. ) REM

[00111] This type of sleep stage scoring is based on many 
different biosignals including EEG, EOG and respiratory
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effort bands. In the current embodiment, sleep stage is 
estimated primarily based on analysis of the respiratory flow 
signal. For this reason, characterizing the detailed sleep 
architecture with all of the stages of R&K PSG is not 
implemented with this module. Rather, sleep state detection 
by the present embodiment is compressed into the following 
four states:

i. ) Awa ke
ii. ) NREM Sleep Transition (effectively Stage 1 sleep)
iii. ) NREM Sleep (Stages 2,3,4)
iv. ) REM

[00112] To this end, the Awake state and REM sleep state may 
be considered to be similar to the R&K sleep scoring. These 
states in relation to the respiratory flow are illustrated in 
FIG. 22 (awake) and FIG. 23 (NREM). The NREM Sleep state may 
be considered to be stages 3 and 4 (slow wave sleep) and 
parts of stage 2. Respiratory flow is steady and metronomic 
during this stage as illustrated in FIG. 23. The NREM SLEEP 
state 2114 in relation to respiratory flow is illustrated in 
the NREM sleep region (shown as box NRS) of FIG. 23. This 
region may be characterized by the detector as NREM SLEEP 
state 2114.
[00113] The NREM Sleep T (Transition) is effectively stage 1 
sleep where there is the transition from Awake to Sleep. At 
sleep onset, there is typically some level of ventilator 
sleep instability (due to a change in CO2 set point from awake 
to sleep). This is usually associated with stage 1 of sleep 
and sometimes can extend to stage 2 (as may typically be seen 
in an EEG) . The respiratory flow will tend to be arrhythmic 
during this period. Examples of the arrhythmic periods (AP) 
of an awake state are illustrated in FIG. 22. This pattern 
of ventilator instability is not limited to only the first 
awake-sleep transition of the night. It can potentially
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occur in later parts of the night if or when the patient
arouses and attempts to transition back into sleep.
[00114] In the detection of the above referenced states, the 
detector of the current embodiment will process one or more 
features of the feature extractor 110 previously discussed, 
which are based on the data representing respiratory airflow 
from a flow sensor. The state decision may be further based 
on Patient Characteristics (e.g., Age, BMI, Sex, Current 
Physiological Condition) from the patient characteristics 
data 122, data from the arousal module 144 and/or data from 
the leak detection module 112.
[00115] In this embodiment, a finite state machine is 
implemented to classify sleep stages. As illustrated in FIG. 
21, three fundamental states are defined: an Awake state 
2110; a REM Sleep state 2112; and a NREM Sleep State 2114. A 
new sleep state is determined at the end of each breath cycle 
by calculating transition probabilities. The transition from 
one state to the next or to the same state is based on the 
most probable of the transition probabilities shown in FIG. 
21 (labeled as Transition Probability Til, T12, etc).
[00116] Theoretically, a patient has a probability to 
transition from any one state to another at any point in 
time. However, the physiology of sleep is such that it is a 
dynamic quantity and there is an element of randomness to the 
whole process. Thus, the transition probabilities should be 
conditioned and updated at the end of each breath cycle. A 
sleep state is then calculated based on these transition 
probabilities. Further, conditioning may be implemented to 
account for the instability (sometimes seen as periodic 
breathing) that can occur in sleep. An additional state of 
the finite machine, a NREM Sleep Transition state 2116, is 
also defined and if a sustained amount of sleep instability 
is detected, the state machine will transition to this NREM 
Sleep Transition state. This NREM SLEEP T state 2116 in
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relation to respiratory flow is illustrated in FIG. 23-A. In
the graph, an example sleep instability region (shown as box
SOI) occurring at sleep onset can be characterized by the
detector as NREM SLEEP T state 2116.
[00117] The processing methodology of this example sleep state 
detection module 119 will now be described in regard to FIG.
20. The detection of sleep state by the module may be based 
on an analysis of one or more of the features of the feature 
extractor 110 as discussed above. Based on a measure of 
respiratory flow, the feature extractor 110 may determine one 
or more of the features. In this example embodiment, the 
IPFV (Inspiratory Peak Flow Variability), EPFV (Expiratory 
Peak Flow Variability), TSLBV (Time Since Last Breath 
Variability) and I75AV (Area above 75% Inspiratory Peak Flow 
Variability) features may be analyzed.
[00118] Each feature is provided to a thresholder 2010 where 
one or more threshold function(s) such as the examples 
illustrated in FIGS. 24 and 25 are applied to each feature of 
the feature subset. However, depending on the number of 
states, each feature will typically be applied to a threshold 
for each possible fundamental sleep state as illustrated in 
the tables of FIG. 25.
[00119] For example, when thresholding of the IPFV feature, 
the function of graph 2450 of FIG. 24 may be implemented with 
the example input values IA, IB, IC and ID and example output 
values OA, OB, OC and OD taken from table IPFV (shown as 
table at reference character 2540A in FIG. 25) for each 
possible sleep state. As previously mentioned in these 
tables, the input values IA, IB, IC etc. represent 
consecutive ranges for the output values. Thus, for table 
IPFV (shown as table at reference character 2540A in FIG. 
25), IA is a range from less than 0.001 up to and including 
0.001. IB is a value of a range greater than the range of IA 
up to and including 0.003. IC is a value of a range greater
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than the range of IB up to and including 0.009. ID is a 
value of a range greater than the range of IC up to and 
including 10, which may be considered a maximum possible 
input value. For example, in the case of the IPFV feature 
having a determined value of 0.003, an output value, which 
may be considered a sleep state weight, of 0.1 is selected as 
the output that is attributable to the Awake state for the 
IPFV feature. Further, an output value of 0.8 is selected as 
the output that is attributable to the NREM state for the 
IPFV feature and an output value of 0.1 is selected as the 
output that is attributable to the REM state for the IPFV 
feature. Similarly, output weights are selected for the 
EPFV feature. However, in the case of the EPFV feature, the 
input and output values for function of graph 2450 for each 
state will be based on the values of the EPFV table (shown as 
table at reference character 2540B in FIG. 25) . Similarly, 
weights attributed to the fundamental sleep states will be 
determined for the TSLBV feature and I75AV feature with their 
respective tables (shown as table TSLBV at reference 
character 2540C and table I75AV at reference character 2540D 
in FIG. 25) .
[00120] Although specific values are illustrated in the 
tables of FIG. 25 it will be understood that these are merely 
examples. Other values may be implemented and may be 
empirically determined either from a group of patients or for 
a particular patient. Thus, these values may be learned with 
processing based on machine learning and pattern recognition 
techniques. Examples of techniques that may be adopted 
include cluster analysis, support vector machines and
Bayesian classification.
[00121] The output weights are then provided to a pattern
applier 2014. In this processing, data for patterns of 
various individual features are combined. To this end,
weights associated with several subsets of features are
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likely to contain information more indicative of sleep stage 
than compared to individual features. Thus, a pattern may be 
considered one or more features that collectively represent 
information indicative of sleep stage. Moreover, a range of 
patterns may be collectively utilized to identify sleep 
stage. In this regard, an ideal set of these patterns will 
contain information that meet the following conditions:
[00122] i. ) The patterns contain sleep stage specific 
information.
[00123] ii.) Any two patterns do not contain the same 
information about a sleep stage.
[00124] While the first condition can be satisfied relatively 
easily, the second condition can be more challenging. Given 
the nature of the respiratory flow signal and subsequently 
calculated features, it is a difficult task to produce 
patterns with little or no overlap. Thus, a judicious 
combination of these patterns may be implemented in order to 
obtain the necessary information.
[00125] For example, in one embodiment, the pattern applier
may implement the following patterns
(Pl, P2, P3, P4 and P5) :

Pattern ID Feature Subset
Pl IPFV, EPFV, TSLBV
P2 IPFV, EPFV
P3 TSLBV
P4 IPFV
P5 IPFV, I7 5AV

[00126] Based on the patterns, the feature weights from the 
thresholder for each sleep state are combined, for example, 
by summing the weights. Thus, for each pattern (Pi...PN), and 
each state (Si...Si) there will be I x N pattern scores 
produced. For the above five pattern example, and in the 
case of three states, there will be twenty pattern scores
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(i.e., Pl_awake, Pl_NREM_sleep, Pl_rem, ..., P5_awake,
P5_NREM_sleep, P5_nrem).
[00127] An example of the overall pattern weight calculation
follows :

Features used: IPFV, EPFV, TSLBV
Feature weights (wn) from threshold functions:

Awake Score:
IPFV: wll
EPFV: wl2
TSLBV: wl3 

NREM Sleep Score:
IPFV: w21
EPFV: w22
TSLBV: w23 

REM Sleep Score:
IPFV: w31
EPFV: w32
TSLBV: w33

Patterns used:
Pattern ID Feature Subset
Pl
P2
P3

IPFV, EPFV, TSLBV 
IPFV, EPFV 
TSLBV

Calculate Pattern Weights:
Pl_awake = a*(wll + wl2 + wl3) 
P1_NREM sleep = β*(w21 + w22 + w23) 
Pl_rem = μ*(w31 + w32 + w33) 
P2_awake = al*(wll + w 12)
P2_NREM sleep = βΐ*(w21 + w22) 
P2_rem = μΐ* (w31 + w32)
P3_awake = a2* wl3
P3_NREM sleep = β2*ν23 
P3_rem - μ2* w33
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[00128] In this calculation, biasing factors α, β, μ, al, βΐ, 
μΐ, a2, β2 and μ2 may be implemented as shown above. The 
factors may permit some adjustment to the pattern scoring 
based on one or more of the patient characteristics of the 
patient characteristics data 122. For example, one or more 
of these may be set to 1 if none of the particular patient 
characteristics would tend to make the particular pattern 
more or less indicative of a particular state. However, 
other values may used and may be determined empirically based 
on the patient characteristics.
[00129] The raw sleep state calculator 2016 would then 
generate a particular raw sleep state score for each state by 
combining the respective state scores. In the above example, 
the raw sleep state calculator 2016 would then produce the 
following Raw Awake Scores:

Awake = Pl_awake + P2_awake + P3_awake;
NREM_Sleep = Pl_NREM_sleep + P2_NREM_sleep + 

P3_NREM_sleep;
REM = (Pl_rem + P2_rem + P3_rem) * (REM_Enhancer_Index); 

[00130] In this embodiment, a REM enhancer factor (designated 
"REM_Enhancer_Index") may be utilized. This factor is 
produced by the REM State Enhancer 2030 shown in FIG. 20. 
The processing of the REM State Enhancer 2030 is discussed in 
more detail herein. This essentially provides an additional 
weight for adjusting (e.g. by multiplication) the raw REM 
sleep score.
[00131] Generally, in this processing, the weights are 
calculated only for pattern-based scores such as the NREM 
state, REM state or Awake state. The NREM Sleep T state of 
the graph of FIG. 21 may be considered a "state" dependant 
score rather than a pattern dependant score. In this regard, 
any values for this transition state are based on a Periodic 
State and Arousal State at the time of probability
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process
of FIGs

calculation as discussed in more detail herein with regard to
the transition probabilities of FIGs. 27.
[00132] The raw state scores are then processed by the state 
transition probability calculator 2018. This processing 
generally involves a determination of state transition 
probabilities such as the transition probabilities identified 
in the chart of FIG. 21 according to the probability methods 
discussed herein. These probabilities may be considered a 
further conditioning step in the sleep stage calculation 

Example probability values are shown in the tables 
26 and 27. Generally, the transition probabilities

may be combined with the raw score for a given state, for 
example, by multiplication, to generate a modified sleep 
state score. In this way, the raw sleep scores may be biased 
by the transition probabilities. However, for purposes of 
the NREM Sleep T state, its raw state score may be assumed to 
be 1 such that the transition probabilities will become the 
modified state score for this state.
[00133] In this regard, given the nature of the physiology of 
sleep, there is an element of randomness that is taken into 
account in determining sleep state. For example, the first 
awake phase (i.e., prior to the onset of sleep) is more 
likely to be larger (e.g., a longer time period) than 
subsequent awake states throughout the night. The first 
sleep stage of the night should not be a REM phase unless the 
patient has a specific REM sleep disorder. Thus, certain 
rules may be applied in determining the state transition 
probabilities to account for some of these conditions. 
Examples of these transition conditions and their associated 
probabilities are discussed in more detail herein in 
reference to FIGs. 26 and 27.
[00134] Moreover, some of the transition probabilities may be 
based on a Sleep Onset Index, which is discussed in more 
detail herein. Generally, the sleep onset index may be a
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binary index. For example, if it reads a value 1, this 
represents that the patient is in sleep (either NREM Sleep or 
NREM Sleep T) . Similarly, if it reads 0, this represents 
that the patient is in Awake State. However, if the patient 
is in the first Awake state for the night and this index 
reads 0, all transition probabilities that govern a state 
change to any of the three sleep states will be zero, (e.g., 
T12, T13 and T14 will be zero if Sleep Onset Index is 0). 
[00135] Based on the modified sleep state scores, a state 
selector 2020 may then determine the next sleep state. By 
comparison of the modified sleep state scores, a next state 
may be selected. For example, the modified sleep state score 
with the greatest score may be considered the detected state 
of the states of the state machine of FIG. 21.
[00136] The process of the detection methodologies discussed 
for sleep state detection may be considered by the following 
example :

Example
Current Sleep State of Finite Machine = Awake State 2110
Calculated Raw Sleep State Scores:

Awake = 0.1 
NREM_Sleep = 0.5 
REM_Sleep = 0.2 
NREM_Sleep_T = 1

Transition Probabilities needed based on current sleep 
state are Til, T12, T13, T14. Reference may be made to table 
2600A for Til, T13 and T14 and it may be assumed that Rule 6 
applies for this example. Reference to table 2700A may be 
made for T12 and it may be assumed that Rule 2 applies.

Til = 0.45
T12 = 0
T13 = 0.45
T14 = 0.1

Modified Sleep State Score:
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Awake= Awake*Tll = 0.045
NREM_Sleep_T = T12 = 0
NREM_Sleep = NREM_Sleep*T13 = 0.225 
REM_Sleep = REM_Sleep*T14 = 0.02

Since NREM_Sleep has the highest score, the next sleep state 
can be set to the NREM_Sleep state 2114.
G. REM State Enhancer
[00137] REM state is the most difficult sleep state to detect 
when analyzing only the respiratory airflow signal. 
Therefore, some specialized features can be specifically 
implemented to capture features of "REM-type" airflow so as 
to enhance REM sleep detection. The combined output of these 
features provides an Enhanced REM State and may be, in part, 
implemented by the processing of the REM State Enhancer 2030 
shown in FIG. 20.
[00138] For example, the following additional features may be 
determined, which may optionally, at least in part, be 
implemented by the processing feature extractor 110. To this 
end, a respiratory airflow is captured and processed to 
calculate the following REM-specific features:
[00139] 1.) VtRat - This is a simple ratio between the current 
breath inspiratory tidal volume (Vtcurr) and the previous 
breath tidal volume (Vtprev) · In some embodiments, this ratio 
may be calculated according the following equation.

(yicurr

[00140] 2.) Deviation from Sinusoidal Curve - This feature 
determines a sinusoidal waveform based on amplitude and 
frequency of the current inspiratory breath. Then a 
subtraction is performed between the estimated sinusoidal 
curve and the actual inspiratory breath profile and the 
result is stored in a buffer. The variance of the values in 
the buffer is then calculated. The sinusoidal curve may be
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modified based on the patient's breathing profile. For 
example, machine learning or pattern recognition processing 
may be employed. Examples of techniques which may be adopted 
for this may include cluster analysis, support vector 
machines and Bayesian classification. In an example 
implementation, a simple square-root sinusoidal profile with 
variable amplitude and frequency may be used. Thus, based on 
this profile, the example calculation can be represented 
mathematically as follows:

vcir( V(a. sin(ci>t + φ) - InspFlowVec ) )
Where a is the amplitude, ω is the frequency, t is time (in 
continuous domain and sample number in discrete time) and ψ 
is the phase.
[00141] 3. ) Feature Consistency Index - This index is a 
measure of how consistently the feature set exceeds a set 
threshold. The following steps are involved with calculation 
of this index:

i. A collection of breaths is taken and the above 
referenced features are calculated for each breath and 
stored in threshold buffer. For example, five breaths 
may be taken and the determined features associated with 
those breaths are stored in a threshold buffer.

ii. The features are applied to threshold 
functions. The threshold functions are similar to those 
described previously. Each time that a feature value of 
the feature set exceeds a set threshold, a consistency 
counter is incremented (e.g., by 1). For example, in a 
set of 5 breaths, if a feature is above the threshold 
for 4 of the breaths, the consistency counter would be 
4 .

iii. The Feature Consistency Index is then derived 
by taking the ratio between feature consistency counter 
and the total breath collection sample size. For

40



WO 2011/006199 PCT/AU2010/000894

example, if the counter was 4 and total collection of 
breaths used was 5, then the Feature consistency Index 
will be 80%.

[00142] The Feature Consistency Index may then be output by 
the REM State Enhancer 2030 to serve as the RemEnhancer Index 
as previously discussed.
H. Transition probability Rules
[00143] As previously mentioned, transition probabilities 
condition raw sleep scores in order to produce the modified 
sleep score. However, prior to defining how these 
probabilities are calculated, some general points about the 
natural sleep cycle may be considered:

(a) The first awake period of the night (i.e., Sleep 
Onset) is more than likely going to be the longest awake 
period for the night.
(b) Subsequent Awake periods will not last for more than 
120 seconds unless there are external causes for 
awakening (e.g., Mask readjustment, going for a toilet 
break, being woken up by someone else or any medical 
conditions, such as nocturnal asthma attacks).
(c) The first sleep transition from awake state will not 
be REM sleep unless the patient has a REM sleep 
disorder.
(d) As part of the natural sleep cycle, a patient having 
been in deep sleep for more than 20 to 30 minutes is 
getting closer to a small awakening.

[00144] Based on the above, the following rules have been 
defined. However, there are many ways to interpret the above 
information ((a) to (d)) and to define corresponding rules. 
Thus, the following rules and the transition probabilities 
values associated therewith are merely examples. Other rules 
and values may be derived by machine learning or pattern 
recognition techniques. Examples of such techniques which
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may be adopted include cluster analysis, support vector
machines and Bayesian classification.

RULES:
Rule 1 - Patient is in 1st awake period for the

night and has been in awake for less than or equal to 10 
minutes .

Rule 2 - Patient is in 1st awake period for the
night and has been in awake for greater than 10 minutes 
but less than or equal to 20 minutes.

Rule 3 - Patient is in 1st awake phase for the
night and has been in awake for greater than 20 minutes.

Rule 4 - Patient is in the 2nd awake phase for the 
night and has been in this state for less than or equal 
to 10 minutes.

Rule 5 - Patient is in the 2nd awake phase for the 
night and has been in this state for greater than 10 
minutes and less than or equal to 20 minutes.

- Rule 6 - Patient is in the 2nd awake phase for the
night and has been in this state for greater than 20 
minutes .

Rule 7 - Patient is in the 3rd or a later phase of 
awake state and has been in this state for less than or 
equal to 60 seconds

Rule 8 - Patient is in 3rd or later phase of awake 
state and has been in this state for greater than 60 
seconds .

Rule 9 - Time since start of therapy is less than 
or equal to 20 minutes.

Rule 10 - Time since start of therapy is greater
than 20 minutes and patient has been in NREM sleep state
for less than or equal to 20 minutes.

Rule 11 - Time since start of therapy is greater
than 20 minutes and patient has been in NREM sleep state
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for greater than 20 minutes and less than or equal to 30 
minutes .

Rule 12 - Time since start of therapy is greater 
than 20 minutes and patient has been in NREM sleep state 
for greater than 30 minutes.

Rule 13 - Patient has been in REM sleep state for 
less than or equal to 10 minutes.

Rule 14 - Patient has been in REM sleep state for 
greater than 10 minutes and less than or equal to 20 
minutes .

Rule 15 - Patient has been in REM sleep state for 
greater than 20 minutes.

[00145] The tables of FIG. 26 (i.e., Table 2600A, Table 2600B 
Table 2600C and Table 2600D) summarize the association of 
these rules with probability values that may be implemented 
to govern the state transition probabilities. In this 
embodiment, only one specific rule may be applicable at any 
one time. Based on which rule satisfies the current 
conditions (e.g., the current sleep state, the time spent in 
the present sleep state and the overall point in time of the 
night's sleep), the output of the tables may be applied as 
the transition probabilities as previously discussed. For 
example, if processing determines that Rule 5 is true and the 
current state of the machine is Awake, then the transition 
probability Til will be 0.9, T13 will be 0.05 and T14 will be 
0.05. The remaining transition probabilities of the tables 
may be similarly determined.
I. Periodic Breathing & Arousal Based Transition 

Probabilities

[00146] As illustrated in FIG. 20, another set of rules in the 
determination of transition probabilities by the state 
transition probability calculator 2018 may be based on the 
output of the periodic breathing detector and the arousal
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detector. For example, the periodic state detector controls
the transitions to and from NREM Sleep T state. To this end,
the following example rules and the related values that are
illustrated in the tables of FIG. 27 may also govern the
state transition probability values.

RULES

[00147] Rule 1 - Patient current state is Awake
Periodic State Counter is 0 (i.e., patient has 

been in periodic State for 0 breaths).
[00148] Rule 2 - Patient current state is Awake

Periodic State Counter is greater than 0 but 
less than or equal to 50 (i.e., patient has been in
Periodic State for greater than 0 but less than or equal 
to 50 breaths).

[00149] Rule 3 - Patient current state is Awake
Periodic State Counter is greater than 50 

(i.e., patient has been in Periodic State for greater 
than 50 breaths).

[00150] Rule 4 - Patient current state is NREM Sleep
Periodic State Counter is 0 (i.e., patient has 

been in Periodic State for 0 breaths).
[00151] Rule 5 - Patient current state is NREM Sleep

Periodic State Counter is greater than 0 but 
less than or equal to 50 (i.e., Patient has been in
Periodic State for greater than 0 but less than or equal 
to 50 breaths).

Arousal State Buffer Sum = 0 (This buffer
contains values from the previous 50 Arousal State 
values from the previous 50 breaths - so if sum = 0 then 
no arousal has been detected over the previous 50 
breaths).

[00152] Rule 6 - Patient current state is NREM Sleep
Periodic State Counter is greater than 0 but 

less than or equal to 50 (i.e., patient has been in
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Periodic State for greater than 0 but less than or equal 
to 50 breaths).

Arousal State Buffer Sum > 0 (This buffer 
contains values from the previous 50 Arousal State 
values from the previous 50 breaths. Thus, if the sum 
of the arousals is greater than zero, one or more 
arousals have been detected over the previous fifty 
breaths .)

[00153] Rule 7 - Patient current state is NREM Sleep
Periodic State Counter is greater than 50 

(i.e., patient has been in Periodic State for greater 
than 50 breaths).

Arousal State Buffer Sum = 0 (This buffer 
contains values from the previous 50 Arousal State 
values from the previous 50 breaths. Thus, if the sum = 
0 then no arousal has been detected over the previous 50 
breaths) .

[00154] Rule 8 - Patient current state is NREM Sleep
Periodic State Counter is greater than 50 

(i.e., patient has been in Periodic State for greater 
than 50 breaths).

Arousal State Buffer Sum > 0 (This buffer 
contains values from the previous 50 Arousal State 
values from the previous 50 breaths. Thus, if the sum 
is greater than zero, 1 or more arousals have been 
detected over the previous 50 breaths).

[00155] Rule 9 - Patient current state is NREM Sleep T
Periodic State Counter is 0 (i.e., patient has 

been in Periodic State for 0 breaths).
[00156] Rule 10 - Patient current state is NREM Sleep T

Periodic State Counter is greater than 0 but 
less than or equal to 50 (i.e., Patient has been in 
Periodic State for greater than 0 but less than or equal 
to 50 breaths).
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Arousal State Buffer Sum = 0 (This buffer 
contains values from the previous 50 Arousal State 
values from the previous 50 breaths. Thus, if the sum = 
0 then no arousal has been detected over the previous 50 
breaths).

[00157] Rule 11 - Patient current state is NREM Sleep T
Periodic State Counter is greater than 0 but 

less than or equal to 50 (i.e., patient has been in 
Periodic State for greater than 0 but less than or equal 
to 50 breaths) .

Arousal State Buffer Sum > 0 (This buffer 
contains values from the previous 50 Arousal State 
values from the previous 50 breaths. Thus, if the sum is 
greater than zero, 1 or more arousals have been detected 
over the previous 50 breaths).

[00158] Rule 12 - Patient current state is NREM Sleep T
Periodic State Counter is greater than 50 

(i.e., patient has been in Periodic State for greater 
than 50 breaths).

Arousal State Buffer Sum = 0 (This buffer contains 
values from the previous 50 Arousal State values from 
the previous 50 breaths - so if sum = 0 then no arousal 
has been detected over the previous 50 breaths).

[00159] Rule 13 - Patient current state is NREM Sleep T
Periodic State Counter is greater than 50 (i.e., 

patient has been in Periodic State for greater than 50 
breaths).

Arousal State Buffer Sum > 0 (This buffer contains 
values from the previous 50 Arousal State values from 
the previous 50 breaths. Thus, if the sum is greater 
than zero, 1 or more arousals have been detected over 
the previous 50 breaths).

[00160] Rule 14 - Patient current state is REM Sleep

46



WO 2011/006199 PCT/AU2010/000894

Periodic State Counter is 0 (i.e., patient has
been in Periodic State for 0 breaths).

[00161] Rule 15 - Patient current state is REM Sleep
Periodic State Counter is greater than 0 but

less than or equal to 100 (i.e., patient has been in
Periodic State for greater than 0 but less than or equal 
to 100 breaths).

[00162] Rule 16 - Patient current state is REM Sleep
Periodic State Counter is greater than 100

(i.e., patient has been in Periodic State for greater 
than 100 breaths).

[00163] The tables of FIG. 27 (i.e., Table 2700A, Table 2700B
Table 2700C and Table 2700D) summarize the association of 
these rules with probability values that may be implemented 
to govern the state transition probabilities. Based on the 
assessment of one or more of the rules and depending on the 
particular state that the machine previously detected in the 
last breath, the output of the tables may be applied as the 
transition probabilities as previously discussed. For 
example, if processing determines that Rule 11 is true and 
the current state of the machine is NREM Sleep T state 2116, 
then the transition probability T22 will be 0 (as illustrated 
in Table 2700C). The remaining transition probabilities of 
the tables may be similarly determined.
J. Arousal Detection Module
[00164] An arousal detection module 114 may determine whether 
the respiratory flow data represents an arousal from sleep. 
In this regard, an arousal from sleep can result in a 
disturbance in the flow signal. Thus, a basic function of 
this module is to scan the data from the flow signal for such 
disturbances to indicate whether or not they have occurred. 
For example, if a disturbance is detected from the 
respiratory characteristics of the feature extraction module 
110, the module may generate a signal or data containing the
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passage of flow disturbance to the sleep stability module. 
Optionally, a data packet may be generated to contain data 
from the flow disturbance as well as data from a period of 
the flow signal preceding the disturbance (e.g., up to 
fifteen breaths prior) . The data may be used for further 
classifying the disturbance, such as described in more detail 
herein.
[00165] In addition to optionally utilizing respiratory 
characteristics from the feature extraction module 110 as 
previously discussed, additional respiratory characteristics 
may also be calculated. For example, the following
respiratory characteristics may be determined:

(1) A Time to reach a proportion (e.g., 95%) of
Inspiratory Peak Flow

(2) An Area above a proportion (e.g., 75%) of
Inpiratory Peak Flow

(3) Area above a proportion (e.g., 75%) Inspiratory
Peak Flow Variation

(4) Time between a proportion (e.g., 95%) of
Inspiratory Peak Flow and Expiratory Peak Flow

[00166] An embodiment may then detect the disturbance using 
one or more of the respiratory characteristics. For example, 
a flow disturbance may be detected by assessing respiratory 
characteristics 1-4 recited immediately above. These
features may be considered indicators of a flow disturbance. 
Optionally, these characteristics, with or without the prior 
mentioned respiratory characteristics, may be compared to a 
set of empirically determined thresholds to detect the 
disturbance. If the comparisons show that a sufficient 
disturbance has occurred in the flow signal the module may so
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indicate, for example, by outputting a positive signal or
data indication (e.g., a 1 if yes otherwise a 0 if no).
[00167] Thus, an example methodology of the module may proceed 
on a breath-by-breath basis as follows:

(1) Import features from feature extractor.

(2) Calculate additional feature (1-4) recited 
immediately above).

(3) Import the current sleep state from the sleep 
state detection module.

(4) determine whether a flow disturbance is 
present.

(5) If there is a flow disturbance, check the sleep
state. If the patient is in a sleep state, collect 
flow data from the disturbance and preceding 
breaths (e.g., 15 breaths) and output the data
(e.g., to the sleep quality module). If there is a 
flow disturbance and the patient is NOT in a sleep 
state, no action need be taken. If there is no 
flow disturbance in the breath, no action need be 
taken.

[00168] In some embodiments, the data representing each flow 
disturbance may then be analyzed to determine if there is an 
arousal present or not. If an arousal is detected, further 
analysis may then characterize the arousal into one of the 
following types:

(i) Apnea related arousal
(ii) Hypopnea related arousal
(iii) Respiratory effort related arousal
(iv) Non-Respiratory due to mouth leak
(v) Non-Respiratory due to Periodic Leg Movement (PLM)
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(vi) Non-Respiratory due to High Leak
(vii) Non-Respiratory - Spontaneous arousal.

[00169] For example, with data representing the respiratory 
characteristics discussed above from the feature extraction 
module 110, the features may be applied to a threshold 
function so that a weight may be associated with each 
feature. A flow disturbance feature is derived from the 
weighted outputs of the threshold function. The flow signal 
is further analyzed to see which of the above mentioned 
events preceded the flow disturbance. Subsequently, the flow 
disturbance may be characterized as an arousal. Outputs of 
the module may optionally include (a) Arousal Type and (b) 
Arousal Duration.

Example Arousal Detector Embodiment 
[00170] In a further example embodiment of the technology, an 
arousal detection module 114 may be configured with the 
processing illustrated in the block flow diagram of FIG. 13. 
In the example, a respiratory airflow or filtered flow 
associated with a flow sensor of a flow generator is provided 
to and processed by the feature extractor. In this process, 
a particular subset of the previously described respiratory 
features determined by a feature extractor are utilized. 
This subset of features may optionally only include the IP75A 
(i.e., the area of the inspiratory flow curve above 75% 
inspiratory peak flow) feature, the 3mvTtot (i.e., the ratio 
between current 3 minute ventilation to Ttot (total breath 
time)) feature and the PF75PF (i.e., the ratio between 
inspiratory peak flow and 75% inspiratory peak flow) feature 
discussed above. Each feature is provided to a thresholder 
1310 where one or more threshold function(s), such as the 
examples illustrated in FIG. 14, are applied to each feature 
of the feature subset. Although this example uses particular 
features, it will be understood that other embodiments may be 
based on other sets (e.g., all features) or subsets with any
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combination of the previously mentioned respiratory flow
based features determined by the feature extractor.
[00171] In the example, when thresholding of the IP75A 
feature, the function of graph 1450 of FIG. 14 may be 
implemented with the example input values IA and IB and 
example output values OA and OB taken from table IP75A (shown 
as table at reference character 1440A). In the tables, the 
input values IA, IB, IC etc. represent consecutive ranges for 
the output values. Thus, for table IP75A, IA is a value of a 
range from less than 2.5 up to and including 2.5. IB is a 
value for a range greater than IA or greater than 2.5. For 
example, in the case IP75A feature having a determined value 
of less than or equal to 2.5, an output value, which may be 
considered a disturbance weight, of 0.05 is selected as the 
output that is attributable to the IP75A feature. Similarly, 
output weights are selected for the 3mvTtot feature. 
However, in the case of the 3mvTtot feature, the input and 
output values for function of graph 1450 will be based on the 
values of the 3mvTtot table (shown as table at reference 
character 1440B). Similarly, output weights are selected for 
the PF75PF feature by the function of graph 1450 and based on 
the values of the PF75PF table (shown as table at reference 
character 1440C). It is noted that although specific values 
are illustrated in the tables of FIG. 14 it will be 
understood that these are merely examples. Other values may 
be implemented and may be empirically determined either from 
a group of patients or for a particular patient. Thus, these 
values may be learned with processing based on machine 
learning and pattern recognition techniques. Examples of 
techniques that may be adopted for this include cluster 
analysis, support vector machines and Bayesian 
classification.
[00172] The three weights output from the thresholder are 
combined, such as by summing the weights, in the processing
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of the flow disturbance calculator 1312 to produce a flow 
disturbance feature. The processing of the flow disturbance 
calculator 1312 further compares the weight of the 
disturbance feature to an arousal threshold, which may be 
chosen empirically, to indicate whether or not the 
disturbance feature represents an arousal event. If it does, 
an arousal flag is set.
[00173] Based on the positive indication of the arousal flag, 
the flow data associated with arousal event is evaluated by 
the preceding event classifier 1314, to identify particular 
events that may have led to or caused the arousal. For 
example, the identified preceding event may be respiratory 
related (e.g., an obstructive or central apnea event, an 
obstructive or central hypopnea event, or a flow limitation 
event) or non-respiratory related (e.g., a Periodic Leg 
Movement (PLM) event and/or a Leak event (e.g., mouth leak or 
high leak) ) . If none of these events are found, then the 
arousal may be classified as a spontaneous arousal. In some 
embodiments, the processing for identification of these 
preceding events may be integrated with the processing of the 
classifier 1314. However, as illustrated in FIG. 13, they 
may also optionally be implemented by discrete detectors that 
communicate the detection results to the classifier 1314. 
Finally, the arousal detector 114 will output the arousal 
feature, which may be a signal or data indicating the type 
and/or duration of the arousal. For example, it may be 
identified as a mouth leak related arousal, an apnea related 
arousal, a flow limitation related arousal, a PLM related 
arousal, a spontaneous arousal, etc. The duration of the 
arousal may be determined as the time period from which the 
arousal flag is set to indicate the arousal until the time it 
changes to indicate that no arousal is occurring. 
Alternately, the time period may be a number of breaths.
K. Sleep Stability Detection Module
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[00174] In some embodiments of the technology, the implemented 
sleep stability detection module 116 may be implemented with 
multiple functions. For example, in conjunction with the 
arousal detection module, the module may (1) classify a 
detected flow disturbance, (2) grade the level of flow 
disturbance intensity (e.g., a degree of the arousal) and/or 
(3) infer a level of autonomic activation.
[00175] An example methodology associated with the arousal 
detection module 114 and sleep stability detection module 116 
is illustrated in FIG. 8. Essentially, the modules may be 
implemented with a methodology to detect or classify a sleep 
arousal condition from data representing a measured flow of 
breathable gas. At 880, the methodology may include 
determining a plurality of respiratory characteristics from a 
measure of respiratory flow. This may be integrated with the 
detection modules or provided from another module such as the 
feature extraction module 110. At 882, a disturbance is 
detected from the plurality of respiratory characteristics as 
previously discussed. The disturbance may be indicative of 
an arousal condition. Optionally, at 884, as discussed in 
more detail herein, the methodology may assess whether the 
disturbance is a non-respiratory related arousal. At 886, 
the module may then indicate that the detected disturbance 
represents an arousal based from an event other than a 
symptom of respiratory dysfunction. For example, it may 
store data representing the determination in memory, apply it 
to the input of another module (e.g., the sleep guality 
module 120) and/or produce it as output such as on a display 
of the user interface module 12 4. Such a non-respiratory 
dysfunction related event may be, for example, an event 
associated with a periodic leg movement. Thus, the detected 
non-respiratory arousal may be attributed to a periodic leg 
movement or detected leak. In other words, one or more 
occurrences of periodic leg movement or a period of periodic
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leg movement may be identified from detecting arousals or
disturbances and detecting a contemporaneous or synchronous
absence of respiratory dysfunction symptoms (e.g., no or
insignificant flow limitation, no or insignificant flow
flattening, no or insignificant obstruction etc.).
[00176] A further example methodology associated with the 
arousal detection module 114 and sleep stability detection 
module 116 is illustrated in FIG. 9. Essentially, the 
modules may be implemented with a methodology to assess sleep 
stability from a measured flow of breathable gas. At 990, 
the method may include determining a plurality of respiratory 
characteristics from a measure of respiratory flow. This may 
be integrated with the detection modules or provided from 
another module such as the feature extraction module 110. At 
992, a disturbance is detected from the plurality of 
respiratory characteristics, which may be indicative of an 
arousal condition, as previously discussed. At 994, a degree 
of the disturbance is determined. The degree of the 
disturbance may be indicative of an extent to which the 
arousal condition has interrupted sleep. The processor may 
then indicate the degree of the disturbance. For example, it 
may store data representing a calculated degree of 
disturbance in a memory, apply it to the input of another 
module (e.g., the sleep quality module 120) and/or produce it 
as output such as on a display of the user interface module 
124 .
[00177] In the following example embodiment, the flow 
disturbance is classified, graded and then also used as an 
index to infer a level of autonomic activation for the 
patient. In this embodiment, the following steps may be 
implemented:

(1) Receive flow disturbance data packet from arousal 
detector;
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[00178] This may optionally occur where the module does not
itself process the measured flow signal to detect the
disturbance.

(2) Analyze data of the period prior to occurrence of 
the flow disturbance of the data packet to classify 
the disturbance.

[00179] For example, if there have been detected respiratory 
events such as apneas or hypopneas just prior to the flow 
disturbance, the disturbance of the packet may be regarded as 
a respiratory related arousal. If no such event has occurred 
prior to the flow disturbance, it may be classified as non- 
respiratory such as an arousal attributable to periodic leg 
movement rather than a respiratory dysfunction.
[00180] Optionally, if a leak has also been contemporaneously 
detected by the leak detection module 112, the device may 
classify the arousal or disturbance as non-respiratory but 
attributable to a valve-like leak of the mask.

(3) Calculate the length (e.g., duration) and 
intensity of the flow disturbance.

[00181] For example, the length of the disturbance may be a 
determined or calculated duration or time taken for the 
disturbance (e.g., seconds or minutes). In addition to
determining the length, in some embodiments, the intensity 
(e.g., degree of the disturbance) may be determined. For 
example, an intensity value may be calculated as a ratio of 
the disturbance data and respiratory breath data prior to the 
disturbance. For example, the intensity value may be 
calculated as a ratio of (a) a variance of the flow 
disturbance section of the data packet (e.g., samples from 
the flow signal during the flow disturbance) and (b) a 
variance of the flow data for a number of breaths (e.g., 15
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breaths) prior to the disturbance (e.g., samples from the
flow signal prior to the flow disturbance) . Any of the
respiratory characteristics may also be utilized in the
calculation of such a ratio.
[00182] Optionally, the determined intensity value may be 
utilized to imply autonomic activation for the patient during 
the disturbance. For example, the module may include or have 
access to a memory with a look-up table. The look-up table 
may contain data mappings of flow disturbance intensities to 
levels of autonomic activation (e.g., values for heart rate 
variability, values of pulse transit time (PTT), etc.). 
Thus, the intensity may be utilized as an index to a 
autonomic activation value. Optionally, the table may be 
further indexed by data processed by the patient 
characteristics store module 122. In such a case, the table 
may include data for different classes of patients. Thus, 
the determination of inferred autonomic activation may be 
further indexed according to particular patient 
characteristics, such as the age, body mass index (BMI), 
weight, height, and/or other disease condition or current 
physiological condition, etc. for the particular patient 
utilizing the device. Such a table may optionally be 
developed through a large scale data mining exercise to 
compare and associate flow disturbance intensities and 
subsequent autonomic changes (e.g., Heart Rate Variability 
(HRV) and Pulse Transit Time (PTT)) in different classes of 
patients.

(4) Indicate sleep stability score to Sleep Quality 
Index Module.

[00183] The intensity value, length, autonomic activation 
values, type of disturbance identified, etc. may optionally 
be stored in a memory of the device, used by other assessment 
modules (e.g., the sleep quality assessment module 120)
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and/or displayed on a visual output display of the user
interface module 124.
[00184] In sum, an objective of respiratory treatment (e.g., 
positive airway pressure) therapy is to reduce respiratory 
related disturbances for a patient, and thereby increase 
sleep stability. Thus, embodiments of the sleep stability 
detection module quantify a level of sleep related 
disturbance that occurs during the patient's sleep session. 
For example, a detector with such a module may generate a 
score between 0 and 1 at the end of each breath cycle 
indicating the level of sleep disturbance. In such a case, a 
score of 1 can indicate maximum sleep stability. The score 
may then grade progressively lower levels of sleep stability 
as the score decreases to 0.
[00185] To this end, in some embodiments, by applying some or 
all of the features determined by the feature extractor 106 
to one or more threshold functions, a weight may be applied 
to each feature. Optionally, these threshold functions may 
be adjusted by some or all of the patient characteristics 
from the patient characteristics data 122. A respiratory 
disturbance value may then be calculated from the weighted 
outputs of the threshold function(s). This value may then be 
de-weighted by outputs from the leak detection 112 and 
arousal detection modules 114 discussed herein. A sleep 
stability score may then be calculated as a rolling average 
of the de-weighted values determined over a number of breaths 
(e.g., a range of about 5 to 30 such as a 15 breath rolling 
average).

Example Sleep Stability Detector Embodiment 
[00186] Such an example embodiment of the sleep stability 
detection module 116 may be configured with the processing 
illustrated in the block flow diagram of FIG. 15. In the 
example, a respiratory airflow or filtered flow associated 
with a flow sensor of a flow generator is provided to and
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processed by the feature extractor. In this process, a 
particular subset of the previously described respiratory 
features determined by a feature extractor are utilized. 
This subset of features may optionally only include the IPFV 
(i.e., Inspiratory Peak Flow Variation) feature, the EPFV 
(i.e., Expiratory Peak Flow Variation) feature, the TSLBV 
(i.e., Time Since Last Breath Variation) and the I75AV (i.e., 
Area above 75% Inspiratory Peak Flow Variation) feature, 
which are each previously discussed. Each feature is 
provided to a thresholder 1410 where one or more threshold 
function (s) such as the examples illustrated in FIG. 16 are 
applied to each feature of the feature subset. Although this 
example uses particular features, it will be understood that 
other embodiments may be based on other sets (e.g., all 
features) or subsets with any combination of the previously 
mentioned respiratory flow based features determined by the 
feature extractor.
[00187] In the example, when thresholding of the IPFV feature, 
the function of graph 1650 of FIG. 16 may be implemented with 
the example input values IA, IB, IC and ID and example output 
values OA, OB, OC and OD taken from table IPFV (shown as 
table at reference character 1640A). As previously mentioned 
in the tables, the input values IA, IB, IC etc. represent 
consecutive ranges for the output values. Thus, for table 
IPFV, IA is a range from less than 0.001 up to and including 
0.001. IB is a value of a range greater than the range of IA 
up to and including 0.003. IC is a value of a range greater 
than the range of IB up to and including 0.009. ID is a 
value of a range greater than the range of IC up to and 
including 10, which may be considered a maximum possible 
input value. For example, in the case IPFV feature having a 
determined value of 0.003, an output value, which may be 
considered a disturbance weight, of 0.8 is selected as the 
output that is attributable to the IPFV feature. Similarly,
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output weights are selected for the EPFV feature. However, 
in the case of the EPFV feature, the input and output values 
for function of graph 1650 will be based on the values of the 
EPFV table (shown as table at reference character 1640B). 
Similarly, output weights are selected for the TSLBV feature 
by the function of graph 1650 and based on the values of the 
TSLBV table (shown as table at reference character 1640C). 
Similarly, output weights are selected for the I75AV feature 
by the function of graph 1650 and based on the values of the 
I75AV table (shown as table at reference character 1640D). 
It is noted that although specific values are illustrated in 
the tables of FIG. 16 it will be understood that these are 
merely examples. Other values may be implemented and may be 
empirically determined either from a group of patients or for 
a particular patient. Thus, these values may be learned with 
processing based on machine learning and pattern recognition 
techniques. Examples of techniques that may be adopted for 
this include cluster analysis, support vector machines and 
Bayesian classification.
[00188] A raw disturbance score is then determined by 
combining the weights, such as by summing the weights from 
thresholder 1510 in the raw score processing at scorer 
component 1512. The raw score from scorer component 1512 may 
then be adjusted or de-weighted based on certain system 
conditions. For example, it may be adjusted based on a 
detected leak and/or arousal conditions from a leak detection 
module or arousal module as illustrated in FIG. 15.
[00189] For example, a modified disturbance score 1522, which 
is from a current breath, may be determined by de-weighting 
the raw disturbance score by a de-weighting factor determined 
from a de-weighting function such as the example function 
illustrated in FIG. 17. Thus, the function of FIG. 17 may be 
employed to take into account current leak levels. In the 
example, if there is a high level of leak (e.g., leak greater
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than about 0.4 1/s) in the system determined by the high leak 
detector, the signal-to-noise ratio (SNR) for the actual 
respiratory airflow signal may be greatly reduced. In such 
situations the raw disturbance score may be de-weighted to 
take into account this low SNR. The threshold of FIG. 17 
linearly de-weights the sleep stability using the output de­
weighting factor once leak levels reach 0.3 1/s. Once leak 
reaches 0.5 1/s, the Sleep Stability score will be 0.
[00190] Similarly, the de-weighting component may be employed 
to consider the current arousal status from the arousal 
detector. For example, respiratory, leak and PLM related 
arousals are disruptive to the patient's sleep and the sleep 
stability score should be utilized during these types of 
arousals. However, a detected spontaneous arousal may be 
considered a part of the natural sleep pattern of the 
patient. In such a case, a determined sleep stability score 
for a particular breath may be disregarded if it coincides 
with a detected spontaneous arousal. Therefore, the de- 
weighter 1514 may assess the input arousal feature, and if a 
spontaneous arousal is detected, it may be configured to 
prevent the modified disturbance score from being counted in 
the sleep stability score for the current breath.
[00191] A filter 1516, such as a rolling average filter, may 
then process the modified disturbance scores from the de- 
weighter 1514. For example, the output of the de-weighter 
may be averaged over a past number of determined scores, such 
as a number in a range from 10 to 20 scores, but preferably 
15. Finally, the output of the filter may be considered the 
sleep stability score 1520 which may be considered a sleep 
stability index.
L. Sleep Quality Assessment Module
[00192] A sleep quality assessment module 120 may be 
implemented to assess sleep quality. In some embodiments, 
the assessment or detection may be based on outputs of other
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modules. An example methodology associated with the sleep 
quality assessment module 120 is illustrated in FIG. 10. 
Essentially, the methodology determines a sleep quality 
indicator from a measured flow of breathable gas. At 1000, 
similar to the input of the prior modules, a plurality of 
respiratory characteristics from a measure of respiratory 
flow are determined. This may be integrated as part of the 
module or as part of another module (e.g., the feature 
extraction module 110). At 1002 and 1004 respectively, the 
method then involves a determination a sleep state measure 
and a sleep stability measure from the plurality of 
respiratory characteristics as previously discussed. At 1006 
and 1008 respectively, the method - then determines and 
indicates one or more a sleep quality index/indices from the 
sleep state measure and the stability measure. Thus, the 
index or indices may be stored in a memory of the device, 
used by other assessment modules (e.g., the feedback module 
126) and/or displayed on a visual output display of the user 
interface module 124.
[00193] For example, an embodiment may be implemented with the 
following steps:

(1) Calculate a length of a sleep period (e.g., REM, 
non-REM, Deep REM, Light-REM, Phasic REM, Tonic REM, All 
Sleep States, etc.) as an index;

(2) Calculate a ratio between levels of sleep stability 
and total sleep time as an index; For example, a sleep 
stability index may be divided by a total sleep time 
index. This may serve to normalize the stability index.

(3) Weight this ratio using the length of awakening 
periods during the night as an index; Such a step may 
take into account the frequency of awakenings. For 
example, collectively the total awake time might be a
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figure X. However if this figure is made up of Y small 
awake periods and this figure Y is large, then they can 
be accounted for by the weighting factor. In other 
words, the sleep stability figure may be further 
normalized by the frequency of awakenings during the 
night.

(4) Weight the ratio to account for bias as a result of 
individual patient characteristics as an index; In some 
cases there may be a certain level of bias towards 
increased periods of an awake state. A weighting factor 
based on such a bias that is attributable to entered 
characteristics of a particular patient may be utilized 
to further normalize the ratio.

(5) Output a final sleep quality score as a set of 
indices .

[00194] Optionally, this module may also monitor or record as 
an index a number of breakdowns of awake to sleep periods 
from one night to the next for feedback purposes. Such a 
figure or figures can be a simple number that can be 
calculated as the number of Awake periods, the total awake 
time, the number of sleep periods and/or total sleep time. 
Optionally, this can be provided as a figure(s) averaged over 
a period of time such as a month. A day by day figure(s) may 
also be provided. Such information can provide some simple 
feedback to the patient about their sleep architecture.
[00195] The output of this module may be recorded, used for 
feedback purposes and/or displayed for the patient and/or a 
clinician. For example, it may be displayed through the user 
interface module 124 and/or returned or fed back into the 
therapy algorithm processing module 128 to implement adaptive 
control of a flow generator in real time. The feedback may

62



WO 2011/006199 PCT/AU2010/000894

serve to implement short term changes to therapy and/or
longer term changes (e.g., weeks or months).
[00196] Example Sleep Quality Detector
[00197] A further example embodiment of a sleep quality 
assessment module 120 may be considered in reference to FIGs. 
28 to 31. Generally, the processing in this sleep quality 
detector will involve an assessment of other processed data 
of the system such as the sleep stability index, the sleep 
state identifier and/or the arousal index. The input data 
can serve as a dynamic force(s) to change the sleep quality 
index (SQI) on a breath-by-breath basis. The processing of 
the assessment module is illustrated in the block diagram of 
FIG. 28. In this embodiment, the input data are applied to 
thresholders 2810A, 2810B and 2810C.
[00198] In the event that the assessment module processes the 
sleep state identifier, thresholder 2810A may be implemented 
with a function such as the function illustrated in FIG. 29. 
In this case, the output of the thresholder 2810A may be a 
weight in a range of -0.05 and 0.5 based on the sleep state 
identifier. Generally, the function of FIG. 29 indicates 
that NREM Sleep will have the highest positive influence 
while Awake will have the highest negative influence. In 
this regard, if the input state identifier represents the 
Awake State 2110, then the output weight is -0.5. If the 
state identifier represents the NRem Sleep T state 2116, then 
the output weight is -0.3. If the state identifier 
represents the NRem Sleep state 2114, then the output weight 
is 0.5. In the case that the state machine includes 
additional detected states, additional weight values may be 
implemented by the thresholder.
[00199] In still further embodiments, detection of a REM state 
may also result in an adjustment to the sleep quality index. 
For example, if REM state periods are detected, then the 
sleep quality index may be positively weighted. Thus, in
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some embodiments, the sleep quality index may be increased as 
a function of a length of overall time spent in one or more 
REM states. Optionally, it may be increased as a function of 
an increase in a number of REM periods detected. Still 
further, it may be increased as a function of a particular 
point in time of the nights sleep that the REM state 
detection occurs. In still further embodiments, detection of 
REM state (s) may not result in any adjustment to the sleep 
quality index.
[00200] In the event that the assessment module processes the 
sleep stability index or sleep stability score, thresholder 
2810B may be implemented with a function such as the function 
illustrated in FIG. 30. In this case, the output of the 
thresholder 2810B may also be a weight in a range of -.05 and 
0.5 based on the sleep stability index. The association 
between the input sleep stability index and the output weight 
is represented by function line 3010. For example, an input 
of a sleep stability index of about 0.3 may result in an 
output weight of about 0.1.
[00201] In the event that the assessment module processes the 
arousal data, such as the arousal type, thresholder 2810C may 
be implemented with a function such as the function 
illustrated in FIG. 31. In this case, the output of the 
thresholder 2810C may also be a weight in a range of -0.05 
and 0.5 based on the sleep stability index. In this regard, 
if the input arousal type represents an apnea, then the 
output weight is -0.5. If the input arousal type represents 
an hypopnea, then the output weight is -0.4. If the input 
arousal type represents a RERA (respiratory effort related 
arousal), then the output weight is -0.1. If the input 
arousal type represents a leak, such as a mouth leak or high 
leak, then the output weight is -0.5. Finally, if the input 
arousal type represents a spontaneous arousal, then the 
output weight is 0.
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[00202] Based on the output of the thresholder(s), the sleep 
quality adjuster 2812 then sets the sleep quality index, 
which may be a real value between 0 and 1. For example, an 
existing sleep quality index may be raised or lowered by 
applying the weights of the thresholders as factors to a 
sleep quality index. For example, a sleep quality index may 
be reduced by multiplication with a negative weight factor or 
increased by multiplication by a positive weight factor. 
Alternatively, the thresholders may simply output true or 
false values if the threshold function is positive or 
negative respectively based on the input data. The true or 
false values may then control respectively incrementing or 
decrementing a sleep quality index, such as an integer value. 
This assessment may generally be based on the premise that 
(a) certain arousals will generally decrease sleep quality 
whereas an absence may increase sleep quality, (b) a decrease 
in sleep stability will decrease sleep quality, and (c) some 
sleep states will be indicative of better sleep quality. 
[00203] In the above described functions of FIGs. 29-31, the 
weights have been chosen to permit output of a sleep quality 
index that may be between 0 and 1 as a suitable indicator of 
sleep quality where 1 is the best quality and 0 is the lowest 
quality. However, other weight values and indicator values 
may be chosen depending on the nature of the desired sleep 
quality index.
M. Feedback Control Module
[00204] Thus, in some embodiments, the output of these modules 
of the system may serve to control changes to a therapy 
control algorithm, such as a pressure treatment therapy 
(e.g., continuous positive airway pressure therapy ("CPAP")) 
provided by a processor controlled flow generator. For 
example, sleep quality assessment output or sleep state 
output may be fed back into a feedback control module 126. 
The feedback control module may then control, for example, a
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level of instantaneous and long term amounts of pressure 
therapy given to the patient. This feedback control module 
may implement dynamic or short term and/or static or long 
term changes to the delivered therapy by sending instructions 
or control signals to a flow generator or therapy control 
processing module 128.
[00205] In one example, a dynamic feedback control may be 
based on different sleep state outputs. For example, if a 
patient is initially in a detected awake state, delivered 
therapy may be kept at minimal levels. Similarly, the 
respiratory detection routines (e.g., AHI module) may be set 
to be disabled or otherwise be weighted to be less sensitive 
to any flow disturbances and otherwise avoid or minimize the 
making of pressure adjustments to treat AHI events. As the 
patient transitions into a detected sleep state, the feedback 
control module may set the controller to be more sensitive to 
flow disturbances or AHI events. In periods of detected deep 
sleep (e.g., a deep REM state or REM state), the sensitivity 
levels of the pressure therapy algorithm may be set at its 
maximum to fully treat/respond to detected events. Still 
optionally, if the device detects a patient waking up with a 
detected arousal and/or awake state, the therapy may then be 
ramped down or decreased at gradual steady rate to permit the 
patient to more comfortably return to sleep.
[00206] In some embodiments, the feedback control module may 
implement static changes to therapy control. For example, a 
sleep quality index may be used for long term feedback. As 
the patient's sleep patterns change over time as monitored by 
changes to sleep quality indices, the sensitivity levels of 
the therapy algorithm may be adjusted accordingly. For 
example, improvements in sleep quality indices may control a 
reduction to therapy levels. Similarly decreases in sleep 
quality indices may control an increase in therapy levels. 
Such long term changes may optionally be implemented at
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controlled time periods, e.g., only after a certain number of
treatment sessions, at the beginning of each month, or a
period of therapy equivalent to a month, etc.
[00207] In still further embodiments, an additional awake to 
sleep breakdown score may also be implemented to control 
changes to the therapy. For example, if there is a larger or 
increasing proportion of awake periods over a long term 
period (e.g., 1 month) then the pressure control algorithms 
may be weighted by a factor based on the score to provide a 
greater degree of therapy.
[00208] The following additional feedback example embodiments 
may be implemented based on the output of the aforementioned 
modules .

A. Awake Expiratory Pressure Relief (EPR)
[00209] In some respiratory pressure treatment devices, 
pressure control may include an Expiratory Pressure Relief 
(EPR) feature. Such a device is described in International 
Patent Application No. PCT/US2004019598 (Publ. No. WO 
2004/112680) and corresponding U.S. Patent No. 7,128,069, the 
disclosure of which is incorporated herein by reference. An 
EPR feature can provide patient comfort to allow a patient to 
achieve sleep more easily. Generally, the EPR control 
automatically reduces a delivered treatment pressure by some 
amount (e.g., cm H20) from a therapeutic pressure treatment 
setting upon the detection of each patient expiration while 
delivering the therapeutic treatment pressure during 
inspiration. Such a pressure treatment control may be 
modified based on the current technology. Typically, once a 
patient is asleep, EPR may be considered less necessary for 
treatment of the patient in that EPR may not provide maximum 
desired therapeutic benefit to the patient. Accordingly, a 
ramp time may be implemented based on the detected sleep 
state which may in turn control the EPR. For example, 
whenever the device detects that that patient is in the Awake
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state, the EPR control may be turned on or otherwise operate 
as described above to reduce pressure during expiration. 
However, once the sleep state detection module detects that a 
patient falls into either NREM Sleep T, NREM Sleep or REM 
Sleep, the EPR function may be disengaged to prevent the 
reduction during expiration. Optionally, the EPR control 
function may be gradually disengaged by gradually ramping 
down the amount of reduction of the therapeutic treatment 
pressure during a number of breathing cycles or period of 
time upon the detection of a transition from an awake state 
to a sleep related state. While this disengaging of the EPR 
function may be implemented at sleep onset, it may even 
optionally be implemented dynamically throughout a treatment 
session. For example, if after the sleep onset, the sleep 
state detection module detects that the patient has returned 
to an awake state from a sleep state (for example, by 
entering an awake state and remaining there for a certain 
period of time), the EPR function may be reengaged (or 
gradually re-engaged by gradually ramping up the amount of 
reduction of the therapeutic treatment pressure during a 
number of breathing cycles or period of time) . The EPR may 
then subsequently be disengaged (e.g., gradually) as 
discussed above upon the further detection of patient's 
sleeping state.

B. Respiratory Event Reporting 
[00210] In some embodiments, the sleep state detection may 
control how detected events are scored. For example, some 
events that may be detected by the respiratory treatment 
apparatus may not be reported as part of an event score even 
though these are detected by the device. For example, 
detected respiratory events such as apneas, hypopneas, 
arousals, mask leak, and/or mouth leak may not be reported as 
part of a particular event type score if the event is 
detected concurrently with a detected awake state. In such a
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case, the control algorithm of the treatment device may 
confirm that the patient is in NREM Sleep T, NREM Sleep or 
REM Sleep states before the detection algorithm will score 
such events. Optionally, all of the events may be scored but 
the scoring of each of the events may be categorized based 
the different detected sleep states during which they 
occurred or even more simply whether they occurred during 
either awake or sleep time. For example, a number of apneas 
may be scored for the awake time of a treatment session and a 
number of apneas may be separately scored for the sleep time 
(e.g., the sleep related states) of the treatment session. 
Thus, the scored events may be reported as output by the 
device based on the detected states such as in association 
with the detected sleep state during which they occurred.

C. Therapy Change Control.
[00211] In some respiratory treatment apparatus, a therapeutic 
treatment pressure may be automatically set by the device. 
For example, some pressure treatment devices may analyze the 
respiratory flow signal for abnormalities in the patients 
breathing and adjust the pressure for treatment of the 
abnormalities. For OSA patients, these abnormalities may be 
considered Flow limitation, Snoring and Obstructive Apneas. 
Once the pressure treatment device detects one or more of 
these events, it will control an increase in the pressure 
therapy based on the severity of the event up to some 
predefined maximum. In some such pressure treatment devices, 
after such an increase, if the abnormalities in the flow are 
removed (i.e., no longer detected), the device can 
automatically control a reduction in the pressure therapy to 
permit it to fall back down to some predefined minimum value 
(e.g., set by the doctor for the patient) . However, in some 
cases this may not be the most desirable scenario because 
events can occur in quick succession and this quick 
succession can result in the pressure therapy being increased
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and decreased unnecessarily. Accordingly, with aspects of 
the present technology, such a pressure control algorithm may 
be modified. For example, the pressure control algorithm may 
be configured to treat the detected abnormalities and, rather 
than simply reducing the pressure in the further absence of 
detecting these abnormalities, the control may hold the 
therapy at the raised treatment level until the 
aforementioned sleep stability index is restored to a 
"high/acceptable" level based on comparing the sleep 
stability index against a threshold. Upon reaching the 
threshold after a treatment pressure increase, the pressure 
may then be reduced, or gradually ramped down, to the pre­
determined minimum. The threshold representative of such a 
"high/acceptable" level may be pre-determined empirically, 
for example, by data mining of existing clinical data. Thus, 
reductions in the therapy pressure setting may be based on 
the sleep stability index instead of, or in addition to, the 
absence of the detection of the breathing abnormalities.

D. Assess Cardiopulmonary Coupling (CPC).
[00212] CPC is an interesting quantity which measures the 
coupling between heart rate and breath rate. There are many 
uses for it but two of the most relevant are being able to 
distinguish between central and obstructive apneas and also 
measuring overall sleep quality. The breath is easily 
derived via the respiratory flow signal. However, deriving 
heart rate is a bit more difficult. A measure of heart rate 
from the respiratory flow is done by analyzing the 
cardiogenic flow element of the overall respiratory flow 
signal. For example, U.S. Patent No. 5,704,345 describes 
several methods for detecting cardiogenic airflow, the 
disclosure of which is incorporated herein by reference. 
Cardiogenic flow is small oscillations in the respiratory 
flow signal due to the pounding of the heart onto the lung. 
They are not easily distinguishable during all times of
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therapy. In particular, it can be difficult in Awake, NREM 
Sleep T and REM Sleep. However, during stable sleep or NREM 
Sleep it is possible to detect the cardiogenic flow signal 
more accurately. Accordingly, an automated method for 
detection of cardiogenic flow may be controlled so as to wait 
for the detection of a stable section of sleep to occur and 
during these sections of sleep, the device may then perform 
the procedure to determine the cardigenic airflow and/or 
calculate a CPC index. In other words, the detection of
particular sleep states (e.g., the NREM sleep state) can
trigger or permit the detection of cardiogenic flow while
other states (e.g ., NREM T, REM or awake) can prevent the
cardiogenic airflow determination procedure. Thus, the
cardiogenic airflow determination procedure may be based on 
the sleep state detection. For example, in one embodiment, 
based on the sleep state, a cardiogenic airflow determination 
procedure can be used if an apnea is detected to distinguish 
between obstructive and central apneas. Thus, if a 
controller of a treatment device detects the onset of an 
apnea, and the controller detects that the sleep state is a 
stable state (e.g., the NREM state), a CPC detector, or a 
process of the controller, may then be enabled to permit a 
decision on which type of apnea has occurred (e.g., central 
or obstructive) based on the cardiogenic airflow detection 
(e.g., the presence or absence of the cardiogenic airflow 
respectively).
N. Periodic Breathing State Detection Module
[00213] In some embodiments, the sleep condition detection 
device 102 may implement a periodic breathing state detection 
module 1880 such as the module illustrated in FIG. 18. In 
this regard, during sleep there may exist sleep sections with 
high levels of breathing instability. More often than not, 
this can be periodic nature. In particular, in periods while 
a patient is transitioning from awake to sleep or periods
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that follow large arousals, the body's respiratory controller 
can lose rhythm and in turn cause unstable breathing 
patterns. A purpose of a periodic breathing state detection 
module is to identify such sections during sleep. In some 
embodiments, this may be detected by processing of 
respiratory flow signal data from a respiratory flow sensor 
and outputting a periodic breath state output signifying 
whether or not the patient is experiencing periodic breathing 
(e.g., a periodic breath state variable is 1 for yes and 0 
for no) for a given breath.
[00214] For example, such a module may be based on an 
analysis of one or more of the features of the feature 
extractor 110 as discussed above. Processing associated with 
such an embodiment of the module may be considered in 
conjunction with the details of FIG. 18. Based on a measure 
of respiratory flow, the feature extractor 110 may determine 
one or more of the features discussed above. For example, in 
this example embodiment, the 3mvTtot feature and the IP75A 
feature may be analyzed. As previously discussed, the IP75A 
feature is the area of the Inspiratory Flow curve above 75% 
Inspiratory Peak Flow and the 3mvTtot feature is the ratio 
between current 3 minute ventilation to Ttot (total breath 
time).
[00215] Each feature is provided to a thresholder 1810 where 
one or more threshold function(s) such as the examples 
illustrated in FIG. 19 are applied to each feature of the 
feature subset. In the example, when thresholding of the 
I75AV feature, the function of graph 1950 of FIG. 19 may be 
implemented with the example input values IA, IB and IC and 
example output values OA, OB and OC taken from table I75AV 
(shown as table at reference character 1940A). As previously 
mentioned in these tables, the input values IA, IB, IC etc. 
represent consecutive ranges for the output values. Thus, 
for table I75AV (shown as table at reference character 1940A
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in FIG. 19), IA is a range from less than 0.01 up to and 
including 0.01. IB is a value of a range greater than the 
range of IA up to and including 0.035. IC is a value of a 
range greater than the range of IB up to and including 10, 
which may be considered a maximum possible input value. For 
example, in the case I75AV feature having a determined value 
of 0.035, an output value, which may be considered a periodic 
state weight, of 1 is selected as the output that is 
attributable to the I75AV feature. Similarly, output weights 
are selected for the 3mvTtot feature. However, in the case 
of the 3mvTtot feature, the input and output values for 
function of graph 1950 will be based on the values of the 
3mvTtot table (shown as table at reference character 1940B). 
It is noted that although specific values are illustrated in 
the tables of FIG. 19 it will be understood that these are 
merely examples. Other values may be implemented and may be 
empirically determined either from a group of patients or for 
a particular patient. Thus, these values may be learned with 
processing based on machine learning and pattern recognition 
techniques. Examples of techniques that may be adopted for 
include cluster analysis, support vector machines and 
Bayesian classification.
[00216] These periodic state weights are then processed by the
raw periodic state calculator 1882. The raw periodic state
score may be determined by the following method:

IF (O_psTl == 1) THEN Raw Periodic State = 1 
ELSE IF ( (O_psTl == 0) AND (O_psT2==l) ) THEN

Raw Periodic State = 1 
ELSE Raw Periodic State = 0

Where :
O_psTl is the periodic state weight attributable to the 

I75AV feature;
O_psT2 is the periodic state weight attributable to the 

3mvTtot feature.
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[00217] The periodic state output (e.g., whether or not a
periodic breath state has been detected) may then be
determined according to the following methodology:

If Raw Periodic State score is 1:
a. Set Periodic State Output to 1
b. Increment Periodic State Counter by 1
c. Set Steady Sleep counter to 0

If Raw Periodic State score is 0, then check if the 
Steady Sleep counter is less than a Counter Threshold (e.g., 
in a range from about 5 to 15, but preferably 10)

If Steady Sleep count less than equal to the 
Counter Threshold (e.g., <= 10) then

a. Set Periodic State Output to 1
b. Increment Periodic State counter by 1
c. Increment Steady Sleep counter by 1

If Steady Sleep count is greater than the Counter 
Threshold (e.g., > 10) then:

a. Set Periodic State Output to 0
b. Increment Steady Sleep counter by 1 

[00218] In this embodiment, although a suitable Counter 
Threshold may be set to 10, it may be some other empirically 
determined value. For example, in some embodiments of the 
methodology, the counter threshold may be set as a result of 
processing based on machine learning and pattern recognition 
techniques. Such techniques may include cluster analysis, 
support vector machines and Bayesian classification or other 
similar machine learning techniques.
0. Sleep Onset Module
[00219] Detecting sleep onset accurately can provide a very 
interesting insight into the patient's sleeping patterns and 
overall quality of sleep. It can also be important in 
accurately detecting sleep state. Thus, in some embodiments 
of the sleep condition detection device 102, an index may be 
implemented to detect or calculate the first transition into
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sleep from awake in a particular sleep session. The 
transition to sleep may be either NREM Sleep or NREM Sleep T, 
which may depend on which state has a higher transition 
probability in the implementation discussed below. 
Subsequent transitions into sleep states may then be governed 
by sleep state modules previously discussed herein.
[00220] In the example implementation, the sleep onset 
detection module may utilize as input data representing one 
or more respiratory flow based features taken from the 
feature extractor 110. For example, sleep onset detection 
may be implemented by analysis of the following set of 
features :

1. ) EPFL Ratio - This feature is the ratio between 
Expiratory Peak Flow Location and Total Expiratory Period, 
which may optionally be defined in samples (e.g., number of 
samples) rather than time units (e.g., seconds)).

2. ) EPFL Difference Feature - This feature takes the 
current EPFL Ratio and subtracts the average EPFL Ratio over 
a set period of time. For example, the set period of time 
may be a previous number of breaths in a range from 10 to 20 
but preferably 15.

Sleep onset detection may also be based on the 
following:

3. ) Raw Sleep State Score - This may be a score output 
from the sleep state detector as previously discussed for a 
sleep state.
[00221] The sleep onset detector may then be implemented with 
the following processing methodology in the detection of 
sleep onset based on the above mentioned input data. This 
may be determined on a breath-by-breath basis at least until 
the patient has transitioned into the sleep onset:

1.) Derive a Sleep-Awake Transition Index (which may be 
preset to 0):
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If (EPFL Difference Feature >= Tl) OR (Raw Sleep State
Score >= T2) THEN (Increment Sleep-Awake Transition Index by
1)

2.) IF (Sleep-Awake Transition Index >= T3) THEN Sleep 
Onset = 1 (i.e., This Sleep Onset Index may be taken to 
represent that the person using the sleep condition detection 
module has transitioned into a first sleep period for the 
night).
[00222] In these embodiments, the Tl, T2 and T3 thresholds may 
be determined empirically with known data for a group of 
patients. It may also be determined and set in a device for 
a particular patient.
[00223] Accordingly, the Sleep Onset Index may be considered a 
binary switch or flag that is preset (e.g., to 0), such as at 
startup, to represent that the first onset of sleep has not 
occurred. In the example, if the index is subsequently set 
to 1, then the person using the detector is considered to be 
in sleep (e.g., the first onset of sleep for a sleep session 
(e.g. a night)). Otherwise, the patient may be considered to 
be in an awake state (e.g., not yet in an initial sleep state 
for the particular session using the detector). In this way, 
the device may be configured to distinguish the onset of 
sleep (the initial transition to sleep) from subsequent 
transitions to sleep of a common or particular treatment 
session having multiple transitions from an awake state into 
a sleep state.
P. Respiratory Treatment Device
[00224] Although the controller may be implemented without 
feedback, in a monitoring type device or data analysis 
device, some embodiments as previously discussed may 
implement the controller with a flow generator. For example, 
as illustrated in FIG. 11, the sleep condition detection 
device may be optionally implemented with a flow generator 
1110 such as a servo controlled blower with suitable sensors
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for such control (e.g., a pressure sensor and/or flow sensor
1106).
[00225] A respiratory treatment or pressure therapy regime, 
such as a therapeutic pressure level associated with CPAP 
treatment, may be delivered by the controller of the device. 
Such therapeutic pressure levels may be automatically 
adjusted in response to the detection of sleep conditions as 
previously described herein that may be suitable for 
treatment of patients with Sleep Disorder Breathing (SDB). 
Other pressure adjustment schemes may also be implemented. 
Pressure may be delivered to a patient via a patient 
interface 1108 such as a mask, cannula and supply tube.
[00226] In this embodiment, the display 1120 is mounted on an 
exterior surface of the housing of the sleep condition 
detection device 102. As illustrated in this embodiment, the 
controller 104 may then be housed within the same housing as 
display. Output from the modules of the device may then 
optionally be displayed to the user or clinician on a display 
1120 of the device or otherwise transferred from a memory of 
the device to other devices, systems or computers. Thus, the 
controller may then also optionally be configured to 
communicate with other external equipment including, for 
example, over the Internet with other computer based systems 
via a wired communications port (e.g., an Ethernet 
communications card and connection) (not shown) or a wireless 
communications port (e.g., a Bluetooth transceiver) (not 
shown).
Q. Example Controller Architecture
[00227] An example system architecture of a controller 104 is 
illustrated in the block diagram of FIG. 12. In the 
illustration, a sleep condition detection device 102 may be 
implemented by a general purpose computer with one or more 
programmable processors 1208. The device may also include a 
display interface 1210 to output data from the modules as
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previously discussed (e.g., sleep states, durations, sleep 
quality indices, AHI, leak detection data, and/or stability 
indices, etc.), results or graphs as described herein to a 
display such as on a monitor or LCD panel. A user 
control/input interface 1214, for example, for a keyboard, 
touch panel, control buttons, mouse etc. may also be included 
as previously discussed and for adjusting a therapy of a flow 
generator, inputting data, or otherwise activating or 
operating the methodologies described herein. The device may 
also include a sensor or data interface 1214, such as a bus, 
for receiving/transmitting data such as programming 
instructions, flow data, pressure data, sleep quality data, 
sleep state data, sleep stability data, arousal data and 
other output or input of the previously described modules. 
[00228] The device also includes memory/data storage 
components 1220 containing control instructions and data of 
the aforementioned methodologies and modules. For example, 
at 1222, they may include stored processor control 
instructions for flow signal processing such as measuring 
and/or feature extraction. At 1224, these may also include 
stored processor control instructions for flow limitation 
detection, AHI detection, leak detection, arousal detection, 
sleep state detection, sleep stability detection and/or sleep 
quality detection as discussed in more detail herein. At 
1226, they may also include processor control instructions 
for respiratory treatment control such as feedback processing 
and pressure control adjustment, etc. Finally, they may also 
include stored data at 1228 for these methodologies such as 
flow data, detected respiratory characteristics, disturbance 
data, detected hypopnea and apnea events (AHI), sleep states, 
stability and arousal events and indices, sleep period times, 
sleep quality indices, patient characteristics, reports and 
graphs, etc.
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[00229] In some embodiments, the processor control 
instructions and data for controlling the above described 
methodologies may be contained in a computer readable 
recording medium as software for use by a general purpose 
computer so that the general purpose computer may serve as a 
specific purpose computer according to any of the 
methodologies discussed herein upon loading the software into 
the general purpose computer. .
[00230] In the foregoing description and in the accompanying 
drawings, specific terminology, equations and drawing symbols 
are set forth to provide a thorough understanding of the 
present technology. In some instances, the terminology and 
symbols may imply specific details that are not required to 
practice the technology. For example, although process steps 
in the detection methodologies have been illustrated in the 
figures in an order and with reference to particularly 
discrete modules, such an ordering and modularization is not 
required. Those skilled in the art will recognize that such 
ordering may be modified and/or aspects thereof may be 
conducted in parallel. Those skilled in the art will also 
recognize that some aspects of certain modules may be 
combined with some aspects of other modules to implement 
discrete features of the technology. Furthermore, although 
an entire system has been described with particular reference 
to the embodiment of FIG. 1, the distinct features may 
separately, or in different combinations, be implemented in 
other respiratory treatment and/or monitoring systems. 
Moreover, although tables with particular values and 
thresholds are illustrated, it will be understood that other 
values may be utilized, which may be determined from 
empirical data and/or machine learning.
[00231] Thus, although the technology herein has been 
described with reference to particular embodiments, it is to 
be understood that these embodiments are merely illustrative
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of the principles and applications of the technology, 
therefore to be understood that numerous modifications 
made to the illustrative embodiments and that 
arrangements may be devised without departing from the 
and scope of the technology.

It is 
may be 
other 

spirit
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3 Claims:

1. A method for controlling a processor to determine a sleep quality indicator from a 

measured flow of breathable gas, the method of the processor comprising:

determining a plurality of respiratory characteristics from a measure of respiratory

flow;

determining a sleep state measure substantially based on the plurality of respiratory 

characteristics;

determining a sleep stability measure from the plurality of respiratory characteristics; 

determining a sleep quality index from the sleep state measure and the stability

measure; and

indicating the sleep quality index.

2. The method of claim 1 wherein the sleep quality index is derived as a function of a ratio of 

sleep time during a treatment session and the sleep stability measure.

3. The method of claim 2 wherein the sleep quality index is further derived as a function of a 

duration of awake periods during the treatment session.

4. The method of any one of claims 1-3 wherein the sleep state measure comprises at least 

one of a REM state, a non-REM state and an awake state and a measure of duration for the 

sleep state measure.

5. The method of any one of claims 1-4 wherein the sleep stability measure is derived as a 

function of a determined flow disturbance and flow data preceding the flow disturbance.

6. The method of claim 5 wherein the determination of the sleep stability measure further 

comprises detecting an arousal from sleep based on the flow disturbance.

7. The method of any one of claims 1-6 wherein the sleep quality index serves in a feedback 

control system to set treatment supplied by a flow generator.

8. An apparatus to determine a sleep quality indicator from a measured flow of breathable gas, 

the apparatus comprising:
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3 a controller having at least one processor to access data representing a measured flow

of breathable gas, the controller being further configured to:

determine a plurality of respiratory characteristics from the measure of

respiratory flow;

determine a sleep state measure substantially based on the plurality of 

respiratory characteristics;

determine a sleep stability measure from the plurality of respiratory 

characteristics;

determine a sleep quality index from the sleep state measure and the stability 

measure; and

indicate the sleep quality index.

9. The apparatus of claim 8 wherein the sleep quality index is derived as a function of a ratio 

of sleep time during a treatment session and the sleep stability measure.

10. The apparatus 6f claim 9 wherein the sleep quality index is further derived as a function 

of a duration of awake periods during the treatment session.

11. The apparatus of any one of claims 8-10 wherein the sleep state measure comprises at 

least one of a REM state, a non-REM state and an awake state and a measure of duration for 

the sleep state measure.

12. The apparatus of any one of claims 8-11 wherein the sleep stability measure is derived as 

a function of a determined flow disturbance and flow data preceding the flow disturbance.

13. The apparatus of claim 12 wherein the determination of the sleep stability measure further 

comprises detecting an arousal from sleep based on the flow disturbance.

14. The apparatus of any one of claims 8-13 further comprising a flow generator and a flow 

sensor to measure the flow of breathable gas, wherein the processor controls a respiratory 

pressure treatment regime based on the indicating of the detected disturbance.

15. The apparatus of any one of claims 8-14 wherein the sleep quality index implements a 

feedback control to adjust treatment supplied by a flow generator.
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16. A system to determine a sleep quality indicator from a measured flow of breathable gas, 

the system comprising:

means for determining a plurality of respiratory characteristics from a measure of 

respiratory flow;

means for determining a sleep state measure substantially based on the plurality of 

respiratory characteristics;

means for determining a sleep stability measure from the plurality of respiratory 

characteristics;

means for determining a sleep quality index from the sleep state measure and the 

stability measure; and

means for indicating the sleep quality index.

17. The system of claim 16 further comprising a means for measuring the respiratory flow.

18. The system of claim 17 further comprising flow generation means for generating a flow 

of breathable gas based on an output of the means for determining.

19. The system of any one of claims 16-18 wherein the sleep quality index is used in a 

feedback control system for setting treatment supplied by a flow generator.
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SQI / Sleep Stage Interaction
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