elationand Primula veris (primula root) by liquid chromatography, evaporative light scattering detection and mass spectrometry. The Journal of Chromatography A, 2005, 1112
Volume 218-223.

曲功霖,等. 蒙药紫花的化学成分研究.《中草药》2007, 第38卷(第9期), 第1308-1310页.

曲功霖,等. 蒙药紫花化学成分的研究 II.《中国药学杂志》2008, 第43卷(第17期), 第1300-1304页.

曲功霖,等. 蒙药紫花中紫草苷的HPLC测定.《中国医药工业杂志》2007, 第38卷(第12期), 第866-867页.

审查员: 于岩

(55) 对比文件
CN 1927015 A, 2007.03.14, 全文, 尤其是说明书第2页.
Andrea Muller,等. Analysis of phenolic glycosides and saponins in Primula

(54) 发明名称
含有紫草苷和苯乙酮苷类提取物及其应用

(57) 摘要
本发明提供了一种来自蒙药原料药的含有紫草苷和苯乙酮苷类提取物。本发明尤其提供了来自紫花紫花原料药中紫草苷和苯乙酮苷类提取物，和该提取物的提取方法。本发明还提供了利用该提取物的药物组合物。本发明的提取方法简单实用，提纯效果良好。
1. 樱草苷和苯乙酮苷类提取物，其特征在于每克提取物中含有樱草苷和苯乙酮苷类成分以樱草苷计不少于 500 毫克，苯乙酮苷类选自 2-樱草糖基-4-甲氧基-苯乙酮、4-O-β-D-葡萄糖基-苯乙酮、4-羟基-苯乙酮、2-O-β-D-葡萄糖基-4-甲氧基-苯甲酸甲酯、4-樱草糖基-苯乙酮、2-樱草糖基-5-甲氧基-苯乙酮。

2. 如权利要求 1 所述的樱草苷和苯乙酮苷类提取物，其中，每克提取物中含有樱草苷不少于 50 毫克。

3. 如权利要求 2 所述的樱草苷和苯乙酮苷类提取物，其中所述的樱草苷和苯乙酮苷类提取物为脂溶香料中提取的每克提取物含有樱草苷不少于 50 毫克的具有如图 3 所显示的指纹图谱的含有樱草苷和苯乙酮苷类提取物，其中图 3 的色谱条件为 Diomonsil C18:5 μm 150×4.6 mm 色谱柱；甲醇 (A) - 水 (B) 为流动相，按照下表中的规定进行梯度洗脱，检测波长为 254nm；柱温：30℃；流速：1mL/min。

<table>
<thead>
<tr>
<th>时间</th>
<th>流动相A</th>
<th>流动相B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0～12 分钟</td>
<td>12%</td>
<td>88%</td>
</tr>
<tr>
<td>12～40 分钟</td>
<td>12%～50%</td>
<td>88%～50%</td>
</tr>
</tbody>
</table>

4. 如权利要求 1-3 中任一项所述的樱草苷和苯乙酮苷类提取物的制备方法，步骤为将脂溶香料粉碎，乙醇提取，回收溶剂，浓缩沉淀，滤过，滤液上大孔吸附树脂，用有机溶剂乙醇梯度洗脱，收集 10%～90%浓度洗脱下来的成分，上聚酰胺柱，以 20%～35%乙醇洗脱，得到所述的樱草苷和苯乙酮苷类提取物。

5. 药物组合物，包括权利要求 1-3 任一项中的樱草苷和苯乙酮苷类提取物及药剂学中可接受的药物辅剂。

6. 如权利要求 5 所述的药物组合物，其中樱草苷和苯乙酮苷类提取物的重量比例不低于 10%。

7. 如权利要求 5 或 6 所述的药物组合物，其中樱草苷和苯乙酮苷类提取物的重量比例为 10%～95%。
含有樱草苷和苯乙酮苷类提取物及其应用

技术领域
[0001] 本发明涉及一种来自蒙药原料药的樱草苷和苯乙酮苷类提取物，尤其涉及来自臌脂花原料药的含有樱草苷的苯乙酮苷类提取物。

背景技术
[0002] 蒙药臌脂花（又名散报春、臌脂报春）为报春花科报春花属植物臌脂花 Primula maximowiczii Regel 的全草（蒙药名：萨都克那克福），生于亚高山草甸上或山地林下、林缘及潮湿腐殖质丰富的地方，在我国分布于东北、内蒙古、河北、山西、陕西、甘肃、青海等地，具有止痛、祛风的作用，主治癫痫、头痛等症。

发明内容
[0003] 本发明人在对臌脂花中的樱草苷和苯乙酮苷类提取物进行研究中，发现所得到的含有樱草苷和系列苯乙酮苷类提取物，因而完成了本发明的内容。
[0004] 本发明提供的蒙药樱草苷和苯乙酮苷类提取物，尤其是蒙药臌脂花中提取的含有樱草苷和苯乙酮苷类提取物。
[0005] 本发明提供了一种来自蒙药原料药的樱草苷和苯乙酮苷类提取物，其中至少含有樱草苷成分，该提取物中樱草苷的含量以重量百分数计至少不低于5%，优选30%，但不超过95%。
[0006] 本发明还提供了来自臌脂花原料药的上述提取物的提取方法，以得到樱草苷和苯乙酮苷含量较高的提取物。
[0007] 根据本发明提供的蒙药樱草苷和苯乙酮苷类提取物，其中至少含有樱草苷，每克提取物中含有的樱草苷和苯乙酮苷类成分以樱草苷计不少于500毫克。尤其是，每克提取物中至少含有樱草苷不少于50毫克。
[0008] 本发明的提取物可以来自任何含有所述樱草苷和苯乙酮苷成分的原料药，优选来自臌脂花原料药中樱草苷和苯乙酮苷类成分。
[0009] 通过对成分的试验摸索，本发明尤其提供了应用大孔吸附树脂和聚酰胺吸附精制的提取方法得到的臌脂花提取物，具有比较高的樱草苷和苯乙酮苷类有效成分含量，并且保持了天然原料的成分。
[0010] 本发明所称“苯乙酮苷类”是指以苯乙酮为母核的不同糖为取代基的化合物。
[0011] 根据前面所述，本发明的提取物来自蒙药臌脂花，除含有樱草苷外，还可以包括任何苯乙酮苷类部位，例如其成分还包括选自2-樱草糖基-4-甲氧基-苯乙酮，4-O-β-D-葡萄糖基-苯乙酮，4-羟基-苯乙酮，2-O-β-D-葡萄糖基-4-甲氧基-苯甲酸甲酯，4-樱草糖基-苯乙酮，2-樱草糖基-5-甲氧基-苯乙酮等中的一种或数种。根据本发明的优选方案，该提取物来自臌脂花原料药中樱草苷和苯乙酮苷类成分。
[0012] 本发明的提取物可以是通过任何可行的方法得到，优选地可以是采用大孔吸附树脂和聚酰胺吸附精制得到，使产物具有比较高的纯度和收率。
本发明可采用原料生药，也可采用加工后的饮片。根据本发明优选的方法，采用酯化
花片或未加工的酯化花生药为原料，如果是未加工的酯化花生药，可进行清洗，晾晒和
切片等加工作为前期处理，提取方法如下：
酯化花药材粉碎，有机溶媒（例如乙醇）提取，回收溶剂，浓缩沉淀，滤过，滤液上
大孔吸附树脂，用有机溶媒（例如醇，优选乙醇）梯度洗脱，收集10％-90％浓度洗脱下来
的成分，优选20％-50％浓度洗脱下来的成分，更优选20％-40％浓度洗脱下来的成分，上
聚酰胺柱，以20％-35％乙醇洗脱，得到化合物樱草苷和苯乙酮类成分为主的组分。

结构鉴定
化合物1:2-樱草糖基-4-甲氧基-苯乙酮

棕黄色粉末，UV λ_m_{max} nm: 224, 262。

1H-NMR数据显示此化合物结构中存在ABX偶合系统：δ7.65 (1H, d, J = 8.5 Hz, H-6), 6.78 (1H, d, J = 2.0 Hz, H-3), 6.66 (1H, dd, J = 8.5, 2.0 Hz, H-5) 和1个甲氧基
δ3.83 (3H, s, H-9), 1个甲基 δ2.57 (3H, s, H-8) 以及2个糖的端基氢 δ5.03 (1H, d, J = 7.5 Hz, H-1’), 4.15 (1H, d, J = 7.5 Hz, H-1’), 表明2个单糖均为β构型。

13C-NMR数据显示有20个碳的信号，包括1个酮基碳 [δ 197.21 (C-7)], 1个甲氧基
碳 [δ 56.09 (C-9)], 1个甲基碳 [δ 32.52 (C-8)]; 二糖链结构为樱草糖 :D-木糖 (1→6)
D-葡萄糖 [D-glucose: δ 100.94 (C-1’), 73.70 (C-2’), 76.89 (C-3’), 70.09 (C-4’), 76.14 (C-5’), 69.28 (C-6’); D-xylose: δ 104.63 (C-1”), 73.54 (C-2”), 76.89 (C-3”), 69.85 (C-4”), 66.08 (C-5”)]

将该化合物与文献[1]报道的1H-NMR和13C-NMR数据进行比较，确定化合物1为
2-樱草糖基-4-甲氧基-苯乙酮。

化合物2:4-羟基-苯乙酮

白色粉末，UV λ_m_{max} nm: 211, 260。

1H-NMR数据显示此化合物结构中存在AB偶合系统：δ7.86 (2H, d, J = 8.1 Hz, H-2, 6), 6.87 (2H, d, J = 8.1 Hz, H-3, 5) 和1个甲基 δ2.53 (3H, s, H-8)。

13C-NMR数据显示有8个碳的信号，包括1个酮基碳 [δ 195.15 (C-7)], 1个甲基碳
[δ 25.29 (C-8)]。

综合以上数据，与化合物3的波谱数据进行比较（表1）并检索文献[2]，确定化合物
2为4-羟基-苯乙酮。

表1. 化合物2,3和5的核磁共振数据（溶剂为DMSO-d6）
<table>
<thead>
<tr>
<th>NO.</th>
<th>1H (J/Hz)</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2'</td>
<td>3'</td>
</tr>
<tr>
<td>1</td>
<td>7.86 (2H, d, 8.1)</td>
<td>7.92 (2H, d, 8.5)</td>
</tr>
<tr>
<td>2, 6</td>
<td>8.87 (2H, d, 6.8)</td>
<td>7.11 (2H, d, 9.0)</td>
</tr>
<tr>
<td>3, 5</td>
<td>2.53 (3H, s)</td>
<td>2.53 (3H, s)</td>
</tr>
<tr>
<td>4</td>
<td>150.90</td>
<td>161.53</td>
</tr>
<tr>
<td>7</td>
<td>2.53 (3H, s)</td>
<td>2.53 (3H, s)</td>
</tr>
<tr>
<td>8</td>
<td>5.01 (1H, d, 7.5)</td>
<td>4.95 (1H, d, 7.0)</td>
</tr>
<tr>
<td>1'</td>
<td>2.88〜3.78 (m)</td>
<td>2.91〜3.78 (m)</td>
</tr>
<tr>
<td>2'</td>
<td>2.88〜3.78 (m)</td>
<td>2.91〜3.78 (m)</td>
</tr>
<tr>
<td>3'</td>
<td>2.88〜3.78 (m)</td>
<td>2.91〜3.78 (m)</td>
</tr>
<tr>
<td>4'</td>
<td>2.88〜3.78 (m)</td>
<td>2.91〜3.78 (m)</td>
</tr>
<tr>
<td>5'</td>
<td>2.88〜3.78 (m)</td>
<td>2.91〜3.78 (m)</td>
</tr>
<tr>
<td>6'</td>
<td>4.19 (1H, d, 10.5)</td>
<td>3.96 (1H, d, 10.5)</td>
</tr>
<tr>
<td>7'</td>
<td>2.88〜3.78 (m)</td>
<td>2.91〜3.78 (m)</td>
</tr>
</tbody>
</table>

![Image](attachment:image1.png)

[0028]

化合物 3: 4-O-β-D-葡萄糖基-苯乙酮

[0029] 淡黄色粉末，UV λ_{max} nm: 215, 267。

[0030] 1H-NMR 数据显示此化合物结构中存在AB偶合系统：δ 7.92 (2H, d, J = 8.5Hz, H-2, 6), 7.11 (2H, d, J = 9.0Hz, H-3, 5) 和 1 个甲基 δ 2.53 (3H, s, H-8); 同时 1 个糖的端基氢 [δ 5.01 (1H, d, J = 7.5Hz, H-1’)] 表明此单糖为β 构型。

[0031] 13C-NMR 数据显示有 14 个碳的信号，包括 1 个酮羰基 [δ 196.95 (C-7)], 1 个 D-葡萄糖 [δ 100.23 (C-1’), 73.49 (C-2’), 77.54 (C-3’), 69.96 (C-4’), 76.81 (C-5’), 60.96 (C-6’)] 以及 1 个甲基 [δ 26.39 (C-8)]。

[0032] 将该化合物与文献3报道的 1H-NMR 和 13C-NMR 数据进行比较，确定化合物 3 为 4-O-β-D-葡萄糖基-苯乙酮，俗称云杉素 (picein)。化合物 4: 2-O-β-D-葡萄糖基-4-甲氧基-苯甲酸甲酯

[0033] 淡黄色粉末，UV λ_{max} nm: 220, 248。

[0034] 1H-NMR 数据显示此化合物结构中存在ABX 偶合系统：δ 7.68 (1H, d, J = 8.5Hz, H-6), 6.83 (1H, d, J = 2.3Hz, H-3), 6.67 (1H, dd, J = 8.5, 2.3Hz, H-5) 和 2 个甲氧基 δ 3.81 (3H, s, H-9), 3.77 (3H, s, H-8) 以及 1 个糖的端基氢 [δ 4.91 (1H, d, J = 7.3Hz, H-1’)], 表明此糖为β 构型。

[0035] 13C-NMR 数据显示有 15 个碳的信号，包括 1 个羰基 [δ 166.35 (C-7)], 2 个甲氧基 [δ 55.82 (C-9), 52.43 (C-8)]; 同时可能存在 1 分子葡萄糖 [D-glucose: δ 101.74 (C-1’), 73.71 (C-2’), 76.75 (C-3’), 70.23 (C-4’), 76.26 (C-5’), 61.08 (C-6’)]。

[0036] 综合以上数据，推测此化合物结构为 2-O-β-D-葡萄糖基-4-甲氧基-苯甲酸甲酯。
酯。通过检测 CA，仅有文献\(^5\) 提到此结构，但未报告其 NMR 数据。因此，通过与樱桃苷的 NMR 数据进行比较（表 2），对化合物 4 的 \(^1\)H 和 \(^{13}\)C 信号进行了归属。

表 2. 化合物 4 和 6 的核磁数据 (溶剂为 DMSO-d₆)

<table>
<thead>
<tr>
<th>NO.</th>
<th>(^1)H (J/Hz)</th>
<th>(^{13})C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>113.24, 113.11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>159.32, 159.01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.83 (1H, d, 2.3Hz)</td>
<td>6.81 (1H, d, 1.7Hz)</td>
</tr>
<tr>
<td>4</td>
<td>164.08, 164.07</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.67 (1H, dd, 8.5, 2.3Hz)</td>
<td>6.66 (1H, dd, 8.7, 1.7Hz)</td>
</tr>
<tr>
<td>6</td>
<td>7.68 (1H, d, 8.5Hz)</td>
<td>7.68 (1H, d, 8.7Hz)</td>
</tr>
<tr>
<td>7</td>
<td>166.35, 166.18</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.77 (3H, s)</td>
<td>3.77 (3H, s)</td>
</tr>
<tr>
<td>9</td>
<td>3.81 (3H, s)</td>
<td>3.82 (3H, s)</td>
</tr>
<tr>
<td>1'</td>
<td>4.91 (1H, d, 7.3Hz)</td>
<td>4.92 (1H, d, 6.5Hz)</td>
</tr>
<tr>
<td>2'</td>
<td>3.17～4.08 (m)</td>
<td>3.30 (1H, m)</td>
</tr>
<tr>
<td>3'</td>
<td>3.17～4.08 (m)</td>
<td>3.30 (1H, m)</td>
</tr>
<tr>
<td>4'</td>
<td>3.17～4.08 (m)</td>
<td>3.20 (1H, m)</td>
</tr>
<tr>
<td>5'</td>
<td>3.17～4.08 (m)</td>
<td>3.60 (1H, m)</td>
</tr>
<tr>
<td>6'</td>
<td>3.17～4.08 (m)</td>
<td>3.95 (1H, d, 9.5Hz), 61.08, 69.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.60 (1H, m)</td>
</tr>
<tr>
<td>1''</td>
<td>4.15 (1H, d, 7.5Hz)</td>
<td></td>
</tr>
<tr>
<td>2''</td>
<td>2.95 (1H, br t, 6.0Hz)</td>
<td></td>
</tr>
<tr>
<td>3''</td>
<td>3.08 (1H, br t, 8.5Hz)</td>
<td></td>
</tr>
<tr>
<td>4''</td>
<td>3.26 (1H, m)</td>
<td></td>
</tr>
<tr>
<td>5''</td>
<td>3.67 (1H, dd, 10.5, 5.0Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.98 (1H, d, 10.5Hz)</td>
<td></td>
</tr>
</tbody>
</table>

\(^{[0040]}\) 注：\(^1\)以上信号是通过二维核磁辅助手段得到。

\(^{[0041]}\) 化合物 5 : 4- 樱草糖基 - 苯乙酮

\(^{[0042]}\) 淡黄色粉末，\(\lambda_{\text{max}}^{\text{UV}} \) : 209, 264 nm。

\(^{[0043]}\) \(^1\)H-NMR 数据显示此化合物结构中存在 AB 偶合系统：\(\delta \) 7.93 (2H, d, \(J = 9.0 \) Hz, H-2, 6), 7.15 (2H, d, \(J = 8.5 \) Hz, H-3, 5) 和 1 个甲基 \(\delta \) 2.53 (3H, s, H-8)；同时 2 个糖的端基氢 \([\delta \text{ 4.95 (1H, d, J = 7.0Hz, H-1'), 4.17 (1H, d, J = 7.5Hz, H-1'')}] \) 表明 2 个单糖均为 β 基构型。

\(^{[0044]}\) \(^{13}\)C-NMR 数据显示有 19 个碳的信号，包括 1 个酚基碳 \([\delta \text{ 196.85(C-7), 1} \) 个甲基碳 \([\delta \text{ 26.04(C-8)}] \); 糖链结构为樱草糖 \(\text{D-木糖 (1 → 6) D-葡萄糖 (D-glucose : } \delta \text{ 99.45(C-1'), 72.58(C-2'), 75.90(C-3'), 69.04(C-4', 75.60(C-5', 67.67(C-6'), D-xylose : } \delta \text{ 103.34(C-1''), 72.84(C-2''), 75.94(C-3''), 69.04(C-4', 65.10(C-5''))}] \]。

\(^{[0045]}\) 综合以上数据，并与化合物 3 的波谱数据进行比较（表 1）以及检索文献\(^5\)，确定此化合物结构为 4-樱桃糖基 - 苯乙酮。

\(^{[0046]}\) 化合物 6 : 2- 樱草糖基 -4- 甲氧基 - 苯甲酸甲酯
白色粉末，UV \(\lambda_{\text{max}} \) nm: 222, 253。EST-MS 谱给出准分子离子峰 \(m/z \) 499.2 [M+Na] , 515.1 [M+K] 的峰，结合 \(^1\text{H}-\text{NMR}\) 和 \(^{13}\text{C}-\text{NMR}\) 谱数据，推测其分子量为 476，分子式为 \(C_{29}H_{48}O_{12} \)。

\(^1\text{H}-\text{NMR}\) 数据显示此化合物结构中存在 ABX 偶合系统：\(\delta \) 7.68 (1H, d, \(J = 8.7 \text{Hz} \), H-6), 6.81 (1H, d, \(J = 1.7 \text{Hz} \), H-3), 6.66 (1H, dd, \(J = 8.7, 1.7 \text{Hz} \), H-5) 和 2 个甲氧基 \(\delta \) 3.82 (3H, s), 3.77 (3H, s)；以及糖链结构：2 个糖的端基氢 [\(\delta \) 4.92 (1H, d, \(J = 6.5 \text{Hz} \), H-1'), \(\delta \) 4.15 (1H, d, \(J = 7.5 \text{Hz} \), H-1'')] 表明 2 个单糖均为 \(\beta \) 构型。

\(^{13}\text{C}-\text{NMR}\) 数据显示结构中存在 1 个羰基碳：\(\delta \) 166.18 (C-7)，并且糖链可能包括 1 分子葡萄糖 [\(\delta \) 73.71 (C-2'), 76.73 (C-3'), 70.11 (C-4'), 76.16 (C-5'), 69.16 (C-6')] 以及 1 分子木糖 [\(\delta \) 73.84 (C-2''), 77.04 (C-3''), 69.97 (C-4''), 66.11 (C-5'')]，而在 HMBC 谱中可以看到 H-1' [\(\delta \) 4.15] 与 C-6' [\(\delta \) 69.16] 有相关点。因此确定糖链结构为 D- 木糖 (1→6) D- 葡萄糖，即樱草糖 (primverose)。

该化合物与文献 [6] 报道的 \(^1\text{H}-\text{NMR}\) 和 \(^{13}\text{C}-\text{NMR}\) 数据一致（表 3），因此确定化合物 6 为 2- 樱草糖基-4- 甲氧基- 苯甲酸甲酯，俗称樱草苷 (primeverin)。

表 3. 化合物 6 的核磁数据（溶剂为 DMSO-d_6）

<table>
<thead>
<tr>
<th>NO.</th>
<th>(^1\text{H}(\text{J/Hz}))</th>
<th>(^{13}\text{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>113.11</td>
<td>112.7</td>
</tr>
<tr>
<td>2</td>
<td>159.01</td>
<td>158.5</td>
</tr>
<tr>
<td>3</td>
<td>6.81 (1H, d, 1.7Hz)</td>
<td>6.8 (1H, d, 2.0Hz)</td>
</tr>
<tr>
<td>4</td>
<td>164.07</td>
<td>163.6</td>
</tr>
<tr>
<td>5</td>
<td>6.66 (1H, dd, 8.7, 1.7Hz)</td>
<td>6.66 (1H, dd, 9, 2.0Hz)</td>
</tr>
<tr>
<td>6</td>
<td>7.68 (1H, d, 8.7Hz)</td>
<td>7.67 (1H, d, 9.0Hz)</td>
</tr>
<tr>
<td>7</td>
<td>166.18</td>
<td>165.7</td>
</tr>
<tr>
<td>8</td>
<td>3.77 (3H, s)</td>
<td>3.76 (3H, s)</td>
</tr>
<tr>
<td>9</td>
<td>3.82 (3H, s)</td>
<td>3.81 (3H, s)</td>
</tr>
<tr>
<td>1'</td>
<td>4.92 (1H, d, 6.5Hz)</td>
<td>4.91 (1H, d, 7.5Hz)</td>
</tr>
</tbody>
</table>

\[0054\]
化合物 7: 2- 樱草糖基 -5- 甲氧基 - 苯乙酮

棕黄色粉末，UV λ_{max}^{U} nm: 221, 259。HRESI-MS 给出分子式 C_{20}H_{18}O_{12}Na（实测值 483.1480，计算值 483.1478），结合 ^1H-NMR 和 ^13C-NMR 数据，确定其分子量为 460，分子式为 C_{20}H_{18}O_{12}，说明该化合物有 7 个不饱和度。

^1H-NMR 数据提示此化合物结构中存在 ABX 偶合系统：δ 7.32 (1H, d, J = 9.0 Hz, H-3), 7.12 (1H, dd, J = 9.0, 3.0 Hz, H-4), 7.08 (1H, d, J = 3.0 Hz, H-6) 和 1 个甲氧基 δ 3.74 (3H, s, H-9), 1 个甲基 δ 2.62 (3H, s, H-8) 以及 2 个糖的端基氢：δ 4.83 (1H, d, J = 7.0 Hz, H-1’), 4.19 (1H, d, J = 7.5 Hz, H-1”)，表明 2 个单糖均为 β 构型。

^13C-NMR 数据显示有 20 个碳的信号，包括 1 个醋基碳 [δ 199.38 (C-7)], 1 个甲氧基碳 [δ 55.96 (C-9)], 1 个甲基碳 [δ 32.47 (C-8)]; 并且糖链结构为：D- 树糖：δ 101.97 (C-1’), 73.76 (C-2’), 76.96 (C-3’), 70.10 (C-4’), 76.82 (C-5’), 68.74 (C-6’); D-木糖：δ 104.31 (C-1’), 73.70 (C-2’), 76.53 (C-3’), 69.94 (C-4’), 66.05 (C-5’)

在 HMBC 谱中可以找到 H-1” (δ 4.19) 与 C-6’ (δ 68.74) 有相关点，同时，将化合物 26 糖链结构的 ^13C-NMR 数据与化合物 6 进行比较，两者一致，因此推测糖链结构为：D-木糖 (1 → 6)D- 葡萄糖，即樱桃糖。

同时，NOESY 谱显示 δ 3.74 (3H, s) 与 δ 7.12 (1H, dd, J = 9.0, 3.0 Hz) 有关相关点，表明甲氧基氢与苯环中处于邻间位双倍偶合的氢在同侧。

综合以上数据并通过 2D-NMR 对其 ^1H, ^13C 信号进行归属 (见表 4)，确定此化合物的结构为 2- 樱草糖基-5- 甲氧基- 苯乙酮。经检索文献，未见相关报道，化合物 7 为一新化合物。

表 4. 化合物 7 的核磁数据及主要相关信号
<table>
<thead>
<tr>
<th>NO.</th>
<th>13C</th>
<th>1H(J/Hz)</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>151.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>118.51</td>
<td>7.32(1H, d, 9.0Hz)</td>
<td>C-1, 5, 7</td>
</tr>
<tr>
<td>4</td>
<td>120.59</td>
<td>7.12(1H, dd, 9.0, 3.0Hz)</td>
<td>C-2, 6</td>
</tr>
<tr>
<td>5</td>
<td>154.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>113.09</td>
<td>7.08(1H, d, 3.0Hz)</td>
<td>C-2, 4, 7</td>
</tr>
<tr>
<td>7</td>
<td>199.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>32.47</td>
<td>2.62(3H, s)</td>
<td>C-7</td>
</tr>
<tr>
<td>9</td>
<td>55.96</td>
<td>3.74(3H, s)</td>
<td>C-5</td>
</tr>
<tr>
<td>D-Glucose 1'</td>
<td>101.97</td>
<td>4.83(1H, d, 7.0Hz)</td>
<td>C-2</td>
</tr>
<tr>
<td>2'</td>
<td>73.76</td>
<td>3.31(1H, m)</td>
<td></td>
</tr>
<tr>
<td>3'</td>
<td>76.96</td>
<td>3.55(1H, m)</td>
<td></td>
</tr>
<tr>
<td>4'</td>
<td>70.10</td>
<td>3.15(1H, m)</td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>76.82</td>
<td>3.28(1H, m)</td>
<td></td>
</tr>
<tr>
<td>6'</td>
<td>68.74</td>
<td>3.99(1H, d, 10.2Hz), 3.55(1H, m)</td>
<td></td>
</tr>
<tr>
<td>D-Xylose 1''</td>
<td>104.31</td>
<td>4.19(1H, d, 7.5Hz)</td>
<td>C-6'</td>
</tr>
<tr>
<td>2''</td>
<td>73.70</td>
<td>3.06(1H, t, 10.0Hz)</td>
<td></td>
</tr>
<tr>
<td>3''</td>
<td>76.53</td>
<td>3.28(1H, m)</td>
<td></td>
</tr>
<tr>
<td>4''</td>
<td>69.94</td>
<td>3.30(1H, t, 10.2Hz)</td>
<td></td>
</tr>
<tr>
<td>5''</td>
<td>66.05</td>
<td>3.66(1H, m), 2.98(1H, t, 10.0Hz)</td>
<td></td>
</tr>
</tbody>
</table>

[0065] 注: 以上信号是通过二维核磁共振技术支持得到; a,b,c可交换。

[0066] 参考文献

[0069] [3] Schroeder, Cornelia; Lutterbach, Ralf; Stoeckigt, Joachim. Preparative biosynthesis of natural glucosides and fluorogenic substrates for β-glucosidases followed by in vivo 13C-NMR with high density plant cell cultures, Tetrahedron, 1996, 52(3): 925-34.

[0072] [6] Andrea Müller, Markus Ganzera and Hermann Stuppner. Analysis of phenolic glycosides and saponins in Primula elatior and Primula veris (primula root) by liquid chromatography, evaporative light scattering detection and mass

[0073] 胺脂花中樱草苷和苯乙酮苷部位的制备

[0074] 1. 大孔吸附树脂的处理

[0075] 1.1 预处理，取 AB-8 型大孔吸附树脂，用丙酮加热回流洗脱，洗脱至洗脱液蒸干后无残留物。

[0076] 1.2 装柱；以乙醇湿法装柱，继续用乙醇冲柱，不时检查流出液，至与水混合不呈白色混浊为止。（乙醇液；水=1：5）。然后以大量的蒸馏水洗去乙醇，备用。

[0077] 1.3 再生；树脂使用一次后，一般用 95%的乙醇洗脱至无色时，树脂柱即已再生，然后以大量水洗去乙醇，即可进行下一次的分离。经反复使用后，吸附树脂颜色变深，吸附效果下降时，可用 0.1%～0.5% NaOH 和 HCl 进行酸碱交替处理或浸泡适当的时间，至树脂接近原颜色为宜，继续用水洗至中性即可再用。

[0078] 2. 药材的提取；取药材胺脂花，粉碎成粗粉，用 50%乙醇回流提取 3 次（8 倍量，2 小时，6 倍量，1 小时；6 倍量，1 小时），滤过，合并滤液，低温减压回收乙醇至无醇味，以水调节至每毫升滤液相当于 1.0g 生药。

[0079] 2.1 洗脱溶媒的定性选择；取提取液加到已处理好的 AB-8 型大孔吸附树脂柱上，依次用蒸馏水、30%、50%、70%乙醇梯度洗脱，分段收集，减压回收乙醇加以浓缩，聚酰胺薄层色谱及其 HPLC 色谱定性检查樱草苷和苯乙酮苷类成分，结果显示 30%中含有苯乙酮苷。因此确定提取液在 AB-8 型大孔吸附树脂吸附后，水洗脱除去水溶性杂质，30%乙醇洗脱富集胺脂花中苯乙酮苷类成分。

[0080] 2.230%乙醇洗脱量的确界；取样品溶液 20ml 上柱，静置后，先用蒸馏水洗脱至无色，再用 30%乙醇洗脱，每 50ml 为一份，每份稍加浓缩，薄层色谱定性检测樱草苷，结果显示第 5 份检测不出樱草苷，故确定洗脱溶媒用量为 200ml。

[0081] 2.3 富集程度考察；取样品溶液 20ml，按上述条件上柱洗脱，收集水洗脱液浓缩干燥至恒重，收集 30%乙醇洗脱液，减压回收乙醇，并减压干燥至恒重。另取提取液 20ml 减压干燥至恒重，分别测定总固物的含量。按含量测定法测定上柱前和上柱后的含氯，结果见下表。

<table>
<thead>
<tr>
<th>项目</th>
<th>总固长度 (g)</th>
<th>樱草苷量 (mg)</th>
<th>樱草苷含量 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>上柱前</td>
<td>2.00</td>
<td>4.60</td>
<td>0.23</td>
</tr>
<tr>
<td>30%乙醇洗脱部分</td>
<td>0.43</td>
<td>4.38</td>
<td>1.02</td>
</tr>
<tr>
<td>樱草苷保留率 (%)</td>
<td>—</td>
<td>95.22</td>
<td>—</td>
</tr>
</tbody>
</table>

[0083] 结果表明，以 AB-8 型大孔吸附树脂为吸附剂，上样与洗脱前后的总固物和樱草苷的含量为指标，AB-8 型大孔吸附树脂可以有效的去除杂质，使樱草苷和苯乙酮苷类成分的含量大幅度提高，而且的保留率相近，说明 AB-8 型大孔吸附树脂可用于胺脂花中樱草苷和苯乙酮苷类成分的富集。

[0085] 以樱草苷为指标评价 AB-8 型大孔吸附树脂富集胺脂花中樱草苷和苯乙酮苷类成
分的上样量，结果表明大孔吸附树脂 20ml 最大吸附量为 20ml 膏脂花药液，即 20g 膏脂花生药为佳。

【0086】3. 聚酰胺的处理
【0087】3.1 预处理：取 60-90 目聚酰胺，用乙醇加热回流洗脱，洗脱至洗脱液蒸干后无残留物。
【0088】3.2 装柱：以 30%乙醇湿润装柱，继续用 30%乙醇冲洗柱，备用。
【0089】3.3 再生：树脂使用一次后，一般用 95%的乙醇洗脱至无色时，聚酰胺柱即己再生，然后再用 30%乙醇洗脱，即可进行下一次的分离。经反复使用后，吸附聚酰胺颜色变深，吸附效果下降时，可用 0.1%～0.5% NaOH 和 HCl 进行酸碱交替处理或浸泡适当的时间，至聚酰胺接近原颜色为宜，继续用水洗至中性即可再用。
【0090】3.4 洗脱溶液的定性选择：取【2】中大孔吸附树脂 30%乙醇洗脱液部分，浓缩至 1ml 溶液相当于 10g 生药，加至已处理好的聚酰胺柱上，用 10%、30%、50%、90%乙醇梯度洗脱，分段收集，减压回收乙醇加以浓缩，聚酰胺薄膜层色谱及其 HPLC 色谱定性检查橡胶素和苯乙酮苷类成分，结果显示 30%中圆含有橡胶素和苯乙酮苷类，因此确定 30%大孔吸附树脂洗脱液再经聚酰胺吸附后，30%乙醇洗脱富集脂胶中橡胶素和苯乙酮苷类成分。
【0091】3.5 30%乙醇洗脱液的定量：取样品溶液 20ml 上柱，用 30%乙醇洗脱，每 20ml 为一份（1 个柱体积），每份稍加浓缩，薄层色谱法定性检测橡胶素，结果显示第 6 份时检测不出橡胶素，故确定洗脱溶媒用量为 120ml。
【0092】3.6 集体成分考察：取样品液 20ml，按上述条件上柱洗脱，收集 30%乙醇洗脱液，回收乙醇，并干燥至恒重。另取提取液 20ml 减压干燥至恒重，分别测定总固物的含量，并按含量测定法测定上柱前和上柱后的含量，结果见下表。

<table>
<thead>
<tr>
<th>项 目</th>
<th>总固体物（g）</th>
<th>橡胶素量（mg）</th>
<th>橡胶素含量（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>上柱前</td>
<td>4.30</td>
<td>43.86</td>
<td>1.02</td>
</tr>
<tr>
<td>30%乙醇洗脱</td>
<td>0.76</td>
<td>39.98</td>
<td>5.26</td>
</tr>
<tr>
<td>橡胶素洗脱率（%）</td>
<td>—</td>
<td>91.15</td>
<td>—</td>
</tr>
</tbody>
</table>

【0094】结果表明，以聚酰胺为吸附剂，上样与洗脱前后的总固体物和橡胶素的含量为指标，聚酰胺可以有效的去除黄酮类，使橡胶素和苯乙酮苷类成分的含量大幅度提高，而且的保留率接近，说明聚酰胺可用于脂胶中橡胶素和苯乙酮苷类成分的富集。
【0095】用橡胶素为指标评价聚酰胺富集脂胶中橡胶素和苯乙酮苷类成分的上样量，结果表明聚酰胺 20g 最大吸附量为 200g 脂胶为佳。
【0096】除以上所述，实施本发明方法的过程中所涉及的其它操作，例如提取液的挥发，可以采用加温挥发，也可以直接常温自然挥发或其它可行的方法，分取和挥发过程的具体操作属于本领域的基本技能，而涉及的到的蒙药饮片加工、粉碎、过筛和萃取等，均可采用本领域常规操作或其它可行的操作，本发明没有特别限定。得到的提取物可以通过任何常规的检测分析方法得知其是否符合要求，如薄层色谱法、紫外分光光度法以及其他如《中国药典》2005 年版一部附录所收载的检测方法，以上属于本领域常规操作，本发明亦没有特别限定。
[0007] 从胎脂花药材中分离精制的苯乙酮苷及其主要成分苯草苷，因此作为胎脂花的物质作用部位和主要成分之一。本文建立分离效果好，方法快速准确，重现性好的HPLC方法，检测了胎脂花中苯草苷和苯乙酮苷类部位成分。

[0008] 含有苯草苷和苯乙酮苷类成分分析

[0009] 1 仪器与试剂

[0100] HP-1100 系列高效液色谱仪；甲醇（色谱纯），乙腈（色谱纯），均购自 Fisher Scientific；市售纯水。

[0101] 2 样品制备

[0102] 对照品溶液的制备 精密称取 2-苯草糖基-4-甲氧基-苯乙酮对照品，4-O-β-D-葡萄糖苷-苯乙酮对照品，2-O-β-D-葡萄糖苷-苯甲酸甲酯对照品，4-苯草糖基-苯乙酮对照品，苯草苷对照品。取上述制备部位样品 0.1g，精密称定，置 100mL 锥形瓶中，加入 70% 甲醇 50mL，称重，超声（功率 250W，频率 50KHZ）处理 40 分钟，放至室温，加 70% 甲醇补足重量，摇匀，滤过，取续滤液，即得。

[0103] 供试品溶液的制备 取上述制备部位样品 0.1g，精密称定，置 100mL 锥形瓶中，加入 70% 甲醇 50mL，称重，超声（功率 250W，频率 50KHZ）处理 40 分钟，放至室温，加 70% 甲醇补足重量，摇匀，滤过，取续滤液，即得。

[0104] 测定法 分别精密吸取对照品溶液与供试品溶液各 10 μL，注入液相色谱仪，测定，即得。

[0105] 3 色谱条件与系统适用性试验

[0106] Diamonsil C18（5 μm，150×4.6mm）色谱柱；甲醇（A）- 水（B）为流动相，按照下表中的规定进行梯度洗脱；检测波长为 254nm；柱温：30℃；流速：1mL/min。

[0107]

<table>
<thead>
<tr>
<th>时间（分钟）</th>
<th>流动相A（%）</th>
<th>流动相B（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0～12</td>
<td>12</td>
<td>88</td>
</tr>
<tr>
<td>12～40</td>
<td>12～50</td>
<td>88～50</td>
</tr>
</tbody>
</table>

[0108] 4 样品测定

[0109] 取 1 所述供试品溶液，以 2 所述色谱条件分别进行测定。通过各个单体化合物的保留时间对其在部位的峰中的位置进行定位，分析结果见表，HPLC 色谱图见图 1～5。

[0110] 对照品与样品色谱峰对应表

<table>
<thead>
<tr>
<th>项目</th>
<th>4-O-β-D-葡萄糖基-苯乙酮</th>
<th>4-苯草糖基-苯乙酮</th>
<th>2-苯草糖基-5-甲氧基-苯乙酮</th>
<th>2-苯草糖基-4-甲氧基-苯乙酮</th>
<th>苯草苷</th>
<th>2-O-β-D-葡萄糖基-4-甲氧基-苯甲酸甲酯</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照品保留时间</td>
<td>10.105</td>
<td>11.346</td>
<td>20.723</td>
<td>21.917</td>
<td>33.239</td>
<td>34.115</td>
</tr>
<tr>
<td>部位中对应用峰</td>
<td>10.141</td>
<td>11.360</td>
<td>20.768</td>
<td>21.918</td>
<td>33.242</td>
<td>34.109</td>
</tr>
</tbody>
</table>

[0112] 在上述研究基础上，本发明还提供了可用于苯草苷和苯乙酮苷类的药物组合物，包括药物苯草苷和苯乙酮苷类提取物及药剂学中可接受的药物辅剂，其中苯草苷和苯乙酮苷类提取物在组合物中重量比至少不低于 10%，优选不低于 30%，更优选 50% 以上，不超
过 95%。
[0113] 上述药物组合物包括药学可接受的任何剂型，如注射剂、片剂、胶囊剂、颗粒剂和
口服液等，上述药物辅料也包括药学可接受的任何辅料，以及各剂型的制备工艺均为本领域
常规操作，在此不加赘述。
[0114] 根据本发明的药物组合物，该樱草苷和苯乙酮苷类部位还可与其它蒙药成分复配
达到更好的治疗效果，所述成分可以是例如葛根、人参、银杏三七、灯盏花、丹参等原料药中
的有效成分，其可来自任何提取方法。

附图说明：
[0115] 图 1 樱草苷对照品 HPLC 色谱图
[0116] 图 2 胶脂花药材 HPLC 色谱图（p：樱草苷）
[0117] 图 3 含樱草苷和苯乙酮苷部位的 HPLC 色谱图
[0118] 图 4 化合物 3（4-O-β-D-葡萄糖基-苯乙酮）和化合物 5（4-樱草糖基-苯乙酮）
对照品 HPLC 色谱图
[0119] 图 5 化合物 7（2-樱草糖基-5-甲氧基-苯乙酮）、化合物 1（2-樱草糖基-4-甲
氧基-苯乙酮）、化合物 6（2-樱草糖基-4-甲氧基-苯甲酸甲酯（樱草苷））和化合物
4（2-O-β-D-葡萄糖基-4-甲氧基-苯甲酸甲酯）对照品 HPLC 色谱图
[0120] 图 6 樱草苷和苯乙酮苷类化合物结构式
[0121] 图 7 2-樱草糖苷-4-甲氧基-苯乙酮的 1H-NMR 光谱图
[0122] 图 8 2-樱草糖苷-4-甲氧基-苯乙酮的 13C-NMR 光谱图
[0123] 图 9 4-羟基-苯乙酮的 1H-NMR 光谱图
[0124] 图 10 4-羟基-苯乙酮的 13C-NMR 光谱图
[0125] 图 11 4-O-β-D-葡萄糖基-苯乙酮的 1H-NMR 光谱图
[0126] 图 12 4-O-β-D-葡萄糖基-苯乙酮的 13C-NMR 光谱图
[0127] 图 13 2-O-β-D-葡萄糖基-4-甲氧基-苯甲酸甲酯的 1H-NMR 光谱图
[0128] 图 14 2-O-β-D-葡萄糖基-4-甲氧基-苯甲酸甲酯的 13C-NMR 光谱图
[0129] 图 15 4-樱草糖基-苯乙酮的 1H-NMR 光谱图
[0130] 图 16 4-樱草糖基-苯乙酮的 13C-NMR 光谱图
[0131] 图 17 樱草苷的 ESI-MS 光谱图
[0132] 图 18 樱草苷的 1H-NMR 光谱图
[0133] 图 19 樱草苷的 13C-NMR 光谱图
[0134] 图 20 樱草苷的 HMQC 光谱图
[0135] 图 21 樱草苷的 HMBC 光谱图
[0136] 图 22 2-樱桃糖基-5-甲氧基-苯乙酮的 HRESI-MS 光谱图
[0137] 图 23 2-樱桃糖基-5-甲氧基-苯乙酮的 1H-NMR 光谱图
[0138] 图 24 2-樱桃糖基-5-甲氧基-苯乙酮的 13C-NMR 光谱图
[0139] 图 25 2-樱桃糖基-5-甲氧基-苯乙酮的 1H-H COSY 光谱图
[0140] 图 26 2-樱桃糖基-5-甲氧基-苯乙酮的 HMQC 光谱图
[0141] 图 27 2-樱桃糖基-5-甲氧基-苯乙酮的 HMBC 光谱图
具体实施方式

[0143] 关于本发明的具体实施和治疗效果，将结合优选实施例及附图进行详细阐述，需要说明的是：本发明所采用的术语“苯乙酮苷类提取物”、“苯乙酮苷类部位”的含义是相同的。

[0144] 药物组合物实施例 1 : 注射剂

[0145] 含有樱草苷和苯乙酮苷类提取物 400g

[0146] 苯甲醇 0.1g

[0147] 注射用水 加至 1000ml

[0148] 共制成注射剂 1000ml。

[0149] 药物组合物实施例 2 : 片剂

[0150] 含有樱草苷和苯乙酮苷类提取物 40g

[0151] 淀粉 20g

[0152] 糖粉 20g

[0153] 糊精 20g

[0154] 常规压片，压制 1000 片，每片 0.1g。

[0155] 药物组合物实施例 3 : 胶囊剂

[0156] 含有樱草苷和苯乙酮苷类提取物 40g

[0157] 糊精 20g

[0158] 糖粉 20g

[0159] 淀粉 20g

[0160] 共制成 1000 粒。

[0161] 药物组合物实施例 4 : 颗粒剂

[0162] 含有樱草苷和苯乙酮苷类提取物 50g

糊精 10g

糖粉 20g

淀粉 20g

[0163] 常规方法制成颗粒剂 100g，装袋，每袋 5g。

[0164] 以上描述了本发明优选实施方式，然其并非用以限定本发明。本领域技术人员对在此公开的实施方案可进行不偏离本发明范畴和精神的改进和变化。
图5
2-樱草糖基-4-甲氧基-苯甲酰化学结构式

4-羟基-苯甲酰化学结构式

4-0-β-D-葡萄糖基-苯甲酰化学结构式

2-0-β-D-葡萄糖基-4-甲氧基-苯甲酸甲酯化学结构式
4-樱草糖基-苯乙酮化学结构式

2-樱草糖基-4-甲氧基-苯甲酸甲酯（樱草苷）化学结构式

2-樱草糖基-5-甲氧基-苯乙酮化学结构式

图6
图 11
图14

27
图15
#1 Ret.Time:Averaged 0.453-0.987(Scan#:18-38)
Mass Peaks:151 Base Peak:499.15(7112108) Polarity:Pos Segment1 - Event1
Intensity

![Chemical Structure Diagram]

mass peaks: 388.4 405.2 431.3 451.4 469.2 515.1 537.9 562.4 590.5 614.9 632.6

m/z:
375 400 425 450 475 500 525 550 575 600 625
enlarged (X: 5.5-2.5)
(Y: 90-50)
Elemental Composition Report

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0
Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions
17 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

<table>
<thead>
<tr>
<th>S/N</th>
<th>Q-Tof micro</th>
<th>Q-Tof micro</th>
<th>Q-Tof micro</th>
<th>Q-Tof micro</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>20.0574182</td>
<td>20.0574182</td>
<td>20.0574182</td>
<td>20.0574182</td>
</tr>
<tr>
<td>93</td>
<td>TOF MS ES+</td>
<td>TOF MS ES+</td>
<td>TOF MS ES+</td>
<td>TOF MS ES+</td>
</tr>
<tr>
<td>93</td>
<td>8.4263</td>
<td>8.4263</td>
<td>8.4263</td>
<td>8.4263</td>
</tr>
</tbody>
</table>

| Minimum: | 20.00 | 100.00 | 200.0 | 20.0 | -1.5 |
| Maximum: | 100.00 | 100.00 | 50.0 | 100.00 | 50.0 |

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>483.1480</td>
<td>100.00</td>
<td>483.1478</td>
<td>0.2</td>
<td>0.3</td>
<td>6.5</td>
<td>1</td>
<td>C20 H28 O12 Na</td>
</tr>
</tbody>
</table>

![Chemical Structure Diagram](image)

![Chemical Structure Diagram](image)
图25
enlarged (x: 5-2)
(y: 80-60)
图 28

enlarged (X:8-6)
(Y:4-3)