A female plug assembly, for an electrical connector, comprising a female connector member with a single-fold metal element including two leaves, each of said leaves having a base area and a tongue area extending from said base area, said base areas of said leaves being superposed and said tongue areas of said leaves being superposed, one said leaf having said tongue area lying in the same plane as said base area, the other said leaf having said tongue area bent out of the plane of said base area, said tongue areas being spaced at least adjacent to said base areas to receive a plane metal male stem between them.

7 Claims, 4 Drawing Figures
1 CONNECTORS

This invention relates to electrical connectors, and more especially though not restrictedly to so-called "miniature" connectors.

The object of the invention is to provide improvements applied to two-rod lead connectors.

According to a first aspect of the present invention, in an electrical connector for use with a male plug assembly, there is provided a female connector member with a single-fold metal element including two leaves each of which has a base area and a tongue area extending from said base area, the base areas of the two leaves being superposed and the tongue areas of the two leaves being superposed, one of said leaves having its tongue area in the same plane with its base area, the other of said leaves having its tongue area bent out of the plane of its base area, such that the tongue areas are spaced at least adjacent to the base areas and may receive a plane metal stem between them.

In a preferred construction means are provided for urging the two tongue areas resiliently towards each other, e.g. as by a C-spring clip passing about a lateral edge of the tongue areas.

A male plug assembly for use therewith may have a male connector member including a plane metal stem for engagement between the tongue areas, and may further include a base, the base and stem being in the same plane.

According to a second aspect of the invention there are provided in combination two such female plug assemblies and a body for receiving them, the body including a first lower portion, a second front upper portion, a third rear portion, and means for securing the second and third portions being independently on the first portion, e.g. screws, the first and second portions and the first and third portions being recessed at their respective meeting faces to receive and retain said connector members in spaced relationship.

The connector members may advantageously each include a respective terminal positioned for access when said third portion is removed from said first portion of the body.

The second and third body portions are advantageously located on the first body portion by locating means, e.g. pins on the second and third portions to seat into holes in the first portion of the body.

The bodies as a whole are preferably shaped so as to reduce forwardly and thereby provide a clear line of demarcation where the front walls meet, thereby facilitating disengagement of the assemblies by hand.

The first body portion, and at least the third body portion, may be recessed laterally to improve hand-grip on the assembly.

The internal recessing of the body is advantageously so shaped that each of the male and female connector members is locked in position by its own shaping, when the body portions are secured in position.

The first and third body portions define a channel to receive wiring leads, and advantageously a rear end portion of said channel may be enlarged and provided in transverse position to receive a block for securing leads in position. The first and third body portions preferably define a cable entry hole at the rear end of the connector.

In order that the nature of the invention may be readily ascertained, a construction of miniature electric connector embodying both of the aforementioned aspects of the invention is hereinafter particularly described with reference to the figures of the accompanying drawings, wherein:

FIG. 1 is a perspective diagrammatic showing of the manner of introduction of a male connector member into a female connector member;

FIG. 2 is a side elevation to show a manner of connection of a conductor to the male member;

FIG. 3 is a perspective elevation, with the parts shown in separated condition, of a male plug assembly;

FIG. 4 is a perspective elevation, with the parts shown in separated condition, of a female socket assembly.

Referring to FIGS. 1 and 2, a male connector member is in the form of a sheet metal element 1 having a substantially rectangular plane base portion 2 and an elongated plane stem portion 3 rounded at its leading end for ease of insertion. In the base portion 2 there is provided a threaded hole to receive a screw 5 having a washer 6 to clamp a wire lead 7 of a conductor 8.

The female connector member comprises a sheet metal element 9 which is single-folded at 10 so that two similar leaves lie one above the other. Each leaf has a base area 11 in which there is provided a bore 12 to receive a fastening screw. The bore 12 is shown in the drawing larger than it would be in the practical construction of the member, and the bore would be threaded. The base area 11 of the lower leaf is continued forwardly by a tongue 13 in the same plane, the leading end of the tongue being spayed at 14. The base area 11 of the upper leaf is continued forwardly by a tongue 15 which is bent upwardly at 16 and then is inclined towards the other leaf forwardly, and is spayed at 16 at its leading end. Passing about a lateral edge of the two tongues 13 and 15 there is disposed a generally C-shaped clip member 17 having a substantially flat base 18 and a doubly curved upper part 19.

In use, the engagement together of the two portions of the connector would result in the insertion of the stem 3 between the tongues 13, 15, in the direction of the arrow 20.

The tongues 13, 15 are themselves resilient, but their grip on the inserted stem 3 is increased by the action of the C-clip 17.

Referring now to FIGS. 3 and 4, the male plug assembly comprises a lower body portion 21, a front upper body portion 22, and a rear upper body portion 23. Portion 22 can be assembled onto portion 21 by means of a screw 24 to engage through a bore 25 into a threaded hole 26. Portion 23 can be assembled onto portion 21 by means of two screws 27 engaged through bores 28 into threaded holes 29.

Portion 22 is located, with respect to portion 21, by means of two pins 30 seating into holes 31. Portion 23 is located with respect to portion 21 by means of two pins 32 seating into holes 33.

The portions 21, 22, 23 are recessed internally to provide seatings for two of the male connector members 34 described in detail in relation to FIGS. 1 and 2. The male elements may have differently shaped leading ends, as shown, for the purpose of assisting engagement of the connector with correct polarity.

The portions 21, 22, 23 are also recessed to provide a cable entry 35 and a channel 36 for accommodation of leads. In the rear end of the channel 36 there is accommodated a block 37 used for securing the leads.
The side walls of the portions 21 and 23 are recessed at 38 to provide a better handgrip on the item.

Referring now to FIG. 4, the construction of the female socket assembly is very similar, in that it comprises body portions 39, 40 and 41 which are shaped and assembled in the same manner as the portions 21, 22, 23. The only difference is that the internal recessing is made somewhat modified to accommodate the somewhat larger base area 11 of the two female connector members 42, each of which is as described in relation to FIG. 1.

When the plug and socket assembly have been fully interconnected, they exhibit a clear line of demarcation at the meeting faces 43, and can readily be disengaged and engaged again by hand.

We claim:

1. A female plug assembly for an electrical connector comprising: a female connector member having at least one single-fold metal element which includes two leaves, each of said leaves having a base area and a tongue area extending from said base area, said base areas of said leaves being superposed and said tongue areas of said leaves being superposed, one said leaf having said tongue area in the same plane as said base area, the other said leaf having said tongue area out of the plane of said base area, said tongue areas being spaced at least adjacent said base areas to receive a male element between them, and a clip member passing around the lateral edges of said tongue areas, said clip member having two arms including a substantially flat arm engaging the entire width of one tongue and a curved arm engaging the outside opposite surface of the other tongue to press the contact areas of the tongues together.

2. A female plug assembly, as claimed in claim 1, comprising means resiliently urging said tongue areas towards each other.

3. In combination:
 i. a female plug assembly as claimed in claim 1, and
 ii. a male plug assembly having a male connector member including a plane metal stem for engagement between said tongue areas of said female plug assembly.

4. In combination:
 a. two of the female plug assemblies claimed in claim 1, and
 b. a body for receiving said plug assemblies, said body including:
 a first lower portion, and
 a second front portion, and
 a third rear portion, and
 means for securing said second and third portions independently on said first portion, said first and second portions and said first and third portions being recessed at their respective meeting faces to receive and retain said connector members of said female plug assemblies in spaced relationship.

5. The combination of claim 4 wherein said connector member of each said female plug assembly includes a respective terminal positioned for access when said third body portion is removed from said first body portion.

6. The combination of claim 4, and means for locating said second and third body portions on said first body portion.

7. An electrical connector comprising:
 a. the combination of claim 6, and
 b. a male plug assembly comprising:
 two male connector members each including a metal base and a plane metal stem extending in the same plane from said base;
 a body receiving said male connector members and including a first lower portion, a second front upper portion, a third rear portion, and means securing said second and third portions independently on said first portion, said first and second portions and said first and third portions being recessed at their respective meeting faces to receive and retain said male connector members in spaced relationship.

* * * * *