

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200048511 B2
(10) Patent No. 772906

(54) Title
Method of diagnosing colorectal adenomas and cancer using proton magnetic resonance spectroscopy

(51) 6 International Patent Classification(s)
G01N 024/08 G01N 033/00
G01N 001/38

(21) Application No: 200048511 (22) Application Date: 2000.05.16

(87) WIPO No: WO00/71997

(30) Priority Data

(31) Number (32) Date (33) Country
60/135039 1999.05.20 US

(43) Publication Date : 2000.12.12

(43) Publication Journal Date : 2001.02.15

(44) Accepted Journal Date : 2004.05.13

(71) Applicant(s)
National Research Council Of Canada; University of Texas System, Board of Regents; The University of Manitoba

(72) Inventor(s)
Tedros Bezabeh; Ian C. P. Smith; Bernard Levin; Constance Johnson; Charles Noah Bernstein

(74) Agent/Attorney
WATERMARK PATENT and TRADEMARK ATTORNEYS, Locked Bag 5, HAWTHORN VIC 3122

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 November 2000 (30.11.2000)

PCT

(10) International Publication Number
WO 00/71997 A1

(51) International Patent Classification: G01N 24/08,
33/00, 1/38

[CA/CA]; 401 - 1281 Grant Avenue, Winnipeg, Manitoba
R3M 1Z6 (CA). SMITH, Ian, C., P. [CA/CA]; 63 Shier
Drive, Winnipeg, Manitoba R3R 2H2 (CA). LEVIN,
Bernard [US/US]; 1515 Holcombe Boulevard, Box
203, Houston, TX 77030 (US). JOHNSON, Constance
[US/US]; 814 N. Third, Bellaire, TX 77401 (US).
GARRETT, David [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).
CHEN, Rong [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).

(21) International Application Number: PCT/US00/13329

[US/US]; 814 N. Third, Bellaire, TX 77401 (US).
GARRETT, David [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).
CHEN, Rong [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).

(22) International Filing Date: 16 May 2000 (16.05.2000)

[US/US]; 814 N. Third, Bellaire, TX 77401 (US).
GARRETT, David [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).
CHEN, Rong [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).

(25) Filing Language: English

[CA/CA]; 401 - 1281 Grant Avenue, Winnipeg, Manitoba
R3M 1Z6 (CA). SMITH, Ian, C., P. [CA/CA]; 63 Shier
Drive, Winnipeg, Manitoba R3R 2H2 (CA). LEVIN,
Bernard [US/US]; 1515 Holcombe Boulevard, Box
203, Houston, TX 77030 (US). JOHNSON, Constance
[US/US]; 814 N. Third, Bellaire, TX 77401 (US).
GARRETT, David [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).
CHEN, Rong [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).

(26) Publication Language: English

[CA/CA]; 401 - 1281 Grant Avenue, Winnipeg, Manitoba
R3M 1Z6 (CA). SMITH, Ian, C., P. [CA/CA]; 63 Shier
Drive, Winnipeg, Manitoba R3R 2H2 (CA). LEVIN,
Bernard [US/US]; 1515 Holcombe Boulevard, Box
203, Houston, TX 77030 (US). JOHNSON, Constance
[US/US]; 814 N. Third, Bellaire, TX 77401 (US).
GARRETT, David [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).
CHEN, Rong [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).

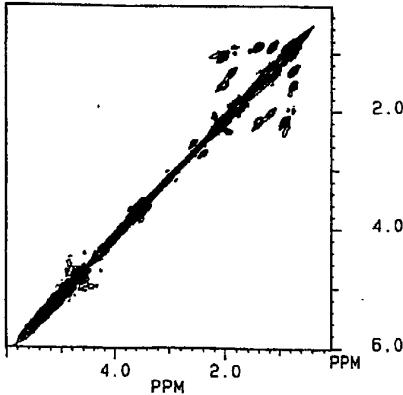
(30) Priority Data:

60/135,039 20 May 1999 (20.05.1999) US

[CA/CA]; 401 - 1281 Grant Avenue, Winnipeg, Manitoba
R3M 1Z6 (CA). SMITH, Ian, C., P. [CA/CA]; 63 Shier
Drive, Winnipeg, Manitoba R3R 2H2 (CA). LEVIN,
Bernard [US/US]; 1515 Holcombe Boulevard, Box
203, Houston, TX 77030 (US). JOHNSON, Constance
[US/US]; 814 N. Third, Bellaire, TX 77401 (US).
GARRETT, David [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).
CHEN, Rong [CA/CA]; 1000 Lakeshore
Road, Mississauga, Ontario L5J 1J2 (CA).

(71) Applicants (for all designated States except US): NATIONAL RESEARCH COUNCIL OF CANADA
[CA/CA]; Intellectual Property Services Office, Bldg.
M-58, Room EG-10, Montreal Road, Ottawa, Ontario
K1A 0R6 (CA). UNIVERSITY OF TEXAS SYSTEM,
BOARD OF REGENTS [US/US]; 201 West Seventh
Street, Austin, TX 78701 (US). The University of Manitoba
Administration Building
Room 202
Winnipeg, Manitoba R3T 2N2

(72) Inventors; and


BEZABEH, Tedros (CA)

(81) Designated States (national): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,
DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,
UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD OF DIAGNOSING COLORECTAL ADENOMAS AND CANCER USING PROTON MAGNETIC RESONANCE SPECTROSCOPY

(57) Abstract: Two dimensional COSY magnetic resonance spectroscopy of human stool can be used in a non-invasive method of detecting the presence of colorectal cancer. The spectrum of a patient's stool is compared with that of stool from non-cancerous subjects, observed differences in spectra being indicative of cancer.

WO 00/71997 A1

Published:

— *With international search report.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHOD OF DIAGNOSING COLORECTAL ADENOMAS AND CANCER
USING PROTON MAGNETIC RESONANCE SPECTROSCOPY

This invention relates to a method of detecting colorectal adenomas and cancer, and in particular to a method of detecting such adenomas and cancer using 5 proton magnetic resonance spectroscopy.

Colorectal cancer is one of the most common cancers in the U.S.A. and Canada accounting for approximately 146,000 new cases in 1999. The lifetime risk that an individual in North America will develop colorectal cancer is about 5 - 6 %. Symptoms associated with colorectal cancer, including blood in the stool, anemia, 10 abdominal pain and alteration of bowel habits often become apparent only when the disease has advanced significantly. It is well known that prognosis for a patient depends largely on the stage of the disease at the time of diagnosis. In fact, whereas the five-year survival for a patient whose colorectal cancer is detected at an early stage is 92%, survival decreases to about 60% in patients with regional 15 spread, and to about 6% in those with distant metastases. Accordingly, it is important to detect the precursor adenomas and cancer as early as possible to increase the chances of successful therapeutic intervention.

Screening for a disease requires that the disease be prevalent in a large segment of the population and that early detection of the disease decreases 20 mortality and improves quality of life. Colorectal cancer meets these requirements and, thus, is an ideal candidate for such a program. The natural history of colorectal cancer, namely the progression from adenoma to adenocarcinoma occurring over a number of years (5 - 15), also makes it a suitable target. The cost benefit analysis for the early detection of colorectal cancer has also been shown to 25 be favourable (Bolin, TD. Cost benefit of early diagnosis of colorectal cancer. Scand J Gastroenterol 1996; 31 Suppl 220:142-146).

The screening technique itself also has to meet a series of criteria, such as, high sensitivity and specificity, low cost, safety and simplicity. Currently, digital rectal examination (DRE), fecal occult blood test (FOBT), barium enema and direct colon 30 visualization (sigmoidoscopy and colonoscopy) are used for this purpose.

DRE involves examining the rectum using a finger. This method detects cancers that can be palpated and are within reach of the finger. A negative DRE

SUBSTITUTE SHEET (RULE 26)

provides little reassurance that a patient is free of cancer, because fewer than 10% of colorectal cancers can be palpated by the examining finger.

FOBT detects hidden blood in the stool by chemical means on the assumption that all colorectal cancers bleed. Although the least expensive and the 5 simplest, the FOBT method has low sensitivity, moderate specificity and is usually not good for early detection. According to available data, a major drawback of this technique is that more than half of the cancers discovered by this method followed by x-ray or endoscopy are usually beyond the limit of early staging. A false positive rate of 10-12% is expected when the patients tested are on an unrestricted diet.

10 Estimates of the positive predictive value range from 2.2 to 50%. The guaiac tests have a very low sensitivity, generally around 50% (Ransohoff DF, Lang CA., Screening for colorectal cancer with the fecal occult blood test; a background paper. Ann Intern Med 1997; 126:811-822). The use of FOBT is based on the assumption that colorectal cancers are associated with bleeding. However, some colorectal 15 cancers bleed intermittently and others not at all.

A barium enema involves an x-ray of the bowel using a contrast agent. The enema can be a single or double contrast. The main radiologic signs of malignancy include mucosal distortion, abrupt cut-off and shouldering and localized lesions with sharp demarcations from uninvolved areas. The estimated sensitivity of double 20 contrast barium enema for cancer and large polyps is only about 65-75% and even lower for small adenomas. Despite its better diagnostic yield, double contrast barium enema has a false-negative rate of 2-18%. Moreover, the method involves exposure to radiation, the repeated use of which may not be safe. Perforation from barium enema is extremely uncommon, but when it happens it is frequently fatal or 25 leads to serious long term problems as a result of barium spillage into the abdominal cavity.

A variety of instruments (collectively called endoscopes) are used for examining the bowel. Endoscopes can be rigid or flexible with varying lengths. Rigid sigmoidoscopes are usually 25 cm long while flexible sigmoidoscopes are 35 30 or 60 cm long. A colonoscope is a 130 - 160 cm flexible viewing instrument for examining the entire colon. Biopsies are taken from suspicious looking areas while

viewing the colon through the endoscope. The flexible sigmoidoscopy examination is limited to the left side of the colon and rectum. Approximately 1/3 of neoplastic tumors occur in areas proximal to the splenic flexure that are inaccessible by sigmoidoscopy. Colonoscopy has a high sensitivity, and remains the gold standard for visualization of the colon and the detection of neoplastic abnormalities. However, it is invasive, quite expensive, and exposes the subject to risks of bowel perforation.

5 Magnetic resonance spectroscopy (MRS) is a technique that has the potential to detect small and early biochemical changes associated with disease processes, and has been proven to be useful in the study of tissue biopsies from cancer 10 patients (Smith ICP, Bezabeh T. *Tissue NMR ex vivo*. In: Young IR, editor. *Encyclopedia of NMR: Medical Spin-off Volume, In Press (2000)*). It is particularly useful to detect small, mobile chemical species in a given biological sample that are of diagnostic interest. Obtaining tissue biopsies for such an examination, however, usually involves an invasive procedure.

15 There are a number of currently available methods for detecting cancer in its early stages. Biophysical methods such as conventional X-rays, nuclear medicine, rectilinear scanners, ultrasound, CAT and MRI all play an important role in early detection and treatment of cancer. Clinical laboratory testing for tumor markers can also be used as an aid in early cancer detection. Tumor marker tests measure 20 either tumor-associated antigens or other substances present in cancer patients which aid in diagnosis, staging, disease progression, monitoring response to therapy and detection of recurrent disease. Unfortunately, most tumor marker tests do not possess sufficient specificity to be used as screening tools in a cost-effective manner. Even highly specific tests suffer from poor predictive value, because the 25 prevalence of a particular cancer is relatively low in the general population. The majority of available tumor marker tests are not useful in diagnosing cancer in symptomatic patients because elevated levels of markers are also seen in a variety of benign diseases. The main clinical value of tumor markers is in tumor staging, monitoring therapeutic responses, predicting patient outcomes and detecting 30 recurrence of cancer.

United States Patents Nos. 4,912,050 and 4,918,021, issued to E.T. Fossel on March 27, 1990 and April 17, 1990, respectively disclose a technique for detecting cancer by proton nuclear magnetic resonance (NMR) of blood, blood serum or blood plasma. United States Patent No. 5,261,405, issued to the same 5 inventor on November 16, 1993 describes an apparatus and method for automating the process.

United States Patent No. 5,318,031, issued to Mountford et al on June 7, 1997 describes a method for determining chemical states of living animal or 10 human tissue using NMR and 2D-COSY (two-dimensional correlation) NMR spectroscopy, and comparing measured values to reference measurements of normal, abnormal and transitions state tissue.

C.L. Lean et al (Magn. Reson Med 20:306-311, 1991; Biochemistry 3:11095-11105, 1992 and Magn Reson Med 30:525-533, 1992) describe the use 15 of magnetic resonance spectroscopy to examine colon cells and tissue specimens.

However, a need still exists for an inexpensive, non-invasive method of 20 detecting colorectal cancer and colorectal adenomas. The object of the present invention is to provide a relatively simple, non-invasive method of detecting colorectal adenomas and cancer which meets the above defined criteria of high sensitivity and specificity, low cost and safety.

Accordingly, the invention relates to a method of detecting the presence of 25 colorectal adenomas and colorectal cancer in a patient comprising the steps of subjecting a stool sample from the patient to magnetic resonance spectroscopy; and comparing the resulting spectrum with the magnetic resonance spectra of stool from non-cancerous subjects, with observed differences in spectra being indicative of cancer.

The performing of spectral analysis on human stool offers a significant 30 advantage over other methods, because the collection of the specimen is non-invasive and presents no risk to the patient. Moreover, no special processing of the sample is required prior to analysis.

The use of 2D-COSY spectroscopy is preferred, because while one-dimensional 1D MRS can give information on the nature and relative intensities of

biochemical species present in a given sample, it does not always allow an exclusive and unambiguous identification of some of the species. Two dimensional MRS can be defined as a series of 1D MR spectra acquired with varying pulse delays, and subsequently Fourier-transformed along two axes (the acquisition time and the delay time). Such an approach allows the separation of composite 1D spectral resonances by generating cross-peaks in a second dimension, which identifies protons coupled together. The method makes it possible to detect species present in low concentrations, and normally masked in 1D spectra by other species present in larger concentrations.

10 The invention is described below in greater detail with reference to the accompanying drawings, wherein:

Figure 1 is a 360 MHz¹H MR symmetrized COSY spectrum of human stool from a subject with a normal colon;

15 Figure 2 is a 360MHz¹H MR symmetrized COSY spectrum of human stool from a subject with adenomatous polyps (1 cm and 3 mm tubular adenomas in ascending colon); and

Figure 3 is a 360 MHZ¹H MR symmetrized COSY spectrum of human stool from a subject with colorectal cancer (adenocarcinoma in the right colon, stage TisNOMX, with residual villus adenoma).

20 **METHOD**

Sixty-nine human subjects (36 female, 33 male; average age 61 years, range 22-90 years), who were scheduled for colonoscopy or surgery were recruited to donate a single sample of stool. Tables 1 and 2 provide a breakdown of the cases.

Table 1

25 (Breakdown of subjects recruited)

Cases

Colorectal cancer	24
Normal	13
Adenomatous Polyps	20
30 Others	12

Table 2

(Breakdown of subjects in "Others" category of Table 1)

	Hyperplastic Polyps	3
	Colonic Tics	2
5	Diverticulosis and Liver Cancer	1
	Lymphocytic Lymphoma	1
	Melanosis Coli	1
	Scattered Diverticula	1
	Diverticulosis	1
10	Gastric Cancer	1
	Enema Proctitis and Advanced Melanoma	1

The subjects were instructed to collect the first bowel movement after the start of their colonic preparation for colonoscopy or surgery scheduled for the following day. The stool samples were collected at the University of Texas M.D. Anderson Cancer Center. The samples were kept frozen in the patients' refrigerators for an average of 24-48 hours prior to their delivery to the hospital in small ice chests (mailers). They were then stored in a -70 °C freezer until being shipped to the National Research Council Institute for Biodiagnostics, Winnipeg, Canada. All samples were shipped blindly in dry ice and kept frozen at -70°C until the time of the experiment. There was no significant difference in the lengths of time for which the samples were kept frozen.

SAMPLE PREPARATION

For MRS experiments, samples were thawed and an aliquot portion taken and suspended in PBS/D₂O buffer. The suspension was then put inside a capillary tube (filled to approximately one-third of its volume) with one end closed with a Teflon (trademark for polytetrafluoroethylene) plug. This was then put in a standard 5 mm MR tube containing p-amino benzoic acid (PABA) that served as a chemical shift reference.

MRS EXPERIMENTS

All experiments were performed using an AMR-360 spectrometer (vintage 1986, Bruker Instruments) at 25°C with the sample spinning at 20 Hz. Both single

5 pulse 1D (90° pulse; Number of scans, NS =256; Recycle delay, RD = 2.41 s; Number of data points in time domain, TD =4K; Spectral width, SW = 5000Hz), and 2D COSY (NS = 128; Number of experiments, NE=180; TD2 = 2K; Spectral width in the second dimension, SW2 = 2906 Hz) MRS experiments were performed on each stool sample. Data sampling in the 2D COSY experiment was carried out with an initial delay of 1.2 ms between the two 90°pulses, an increment of 374 microseconds and a relaxation delay of 1 s. During this relaxation delay, low-power CW irradiation (20 dB below 0.2W) was used to presaturate the water signal.

DATA PROCESSING

10 COSY data matrices underwent zero-filling to 1 K in t_1 domain, Fourier transformation, and magnitude calculation [square root (Real² + Imaginary)²] to give 1024 x 1024 real data points for each 2D spectrum. Sine-bell window functions were uniformly applied in both the t_1 and t_2 domains prior to Fourier transformation. Contour plots were generated with the lowest level set close to the noise level and 15 with subsequent levels increasing in powers of two.

CLINICAL DIAGNOSIS

Colonoscopy was the standard to which the results were compared. Information such as the exact location of the neoplasia (tumor or polyp), the stage of the cancer, the histological type of polyps (i.e. tubular, villus, or tubulovillous), and 20 the size and number of polyps was provided for each patient, where applicable.

Results

There were differences among the 1D MR spectra of the stool specimens obtained from normal subjects, those obtained from subjects with adenomatous polyps, and those from cancer patients. As can be seen in Figs. 1 to 3, the most 25 striking results, however, came from the 2D COSY MR spectra. When comparing the three COSY spectra in Figs. 1 to 3, it can be seen that the COSY spectra of the stool specimen from a cancer patient (Fig. 3) has the highest overall number of cross peaks, with that of the normal one (Fig. 1) having the lowest number, and that of the polyp (Fig. 2) having an intermediate number.

30 The most interesting cross peak, however, is the one at 1.3-4.3 ppm which is present only in Figs. 2 and 3. This cross peak is attributed to the methyl-methine

(H₅-H₆) couplings of bound fucose and is believed to serve as a marker for the presence of colorectal neoplasia. An increase in the degree of fucosylation can also been seen as evidenced by the increase in the number and complexity of the fucose cross peaks, in Fig. 3 (cancer) compared to that in Fig. 2 (polyp).

5 Based on the presence or absence of the fucose cross peak, specimens were identified as being either positive or negative for neoplasia. The MRS results were then compared to the colonoscopic findings. The sensitivity, specificity and positive predictive value (PPV) for the MRS analysis are all indicated in Table 3. It is worth noting that 14 of the 20 subjects with adenomatous polyps gave positive results in
 10 the MRS analysis. Interestingly, 4 out of the 6 cases, which gave negative results, had polyps less than 1 cm in size.

Table 3
 (Results (%) of MRS Diagnosis)

		Sens.	Spec.	PPV
15	Cancer versus Normal	83	85	91
	Polyps versus Normal	70	85	88
	(Cancer + Polyps) versus Normal	77	85	94
	(Cancer + Polyps) versus (Normal +Others)	77	60	77

Sens = sensitivity, Spec = specificity and PPV = positive predictive value.

20 **Conclusion**

The results are consistent with earlier findings on colorectal cell lines and tissue biopsies where the presence of elevated levels of fucose on the cell surface was suggested to be a tumor marker (see Lean et al 1991, 1992 above). Besides indicating the presence and absence of cancer, the levels of fucose and the
 25 increase in complexity of the fucosylation patterns correlate with the grade and/or the stage of the cancer. Because of the already existing knowledge of the potential role of fucose/fucosylation in colorectal cancer, the fucose cross peak was exclusively relied upon to make the diagnosis. However, there were also other notable differences in the COSY spectra among the three groups that could provide
 30 additional diagnostic information, and thus are worth looking at.

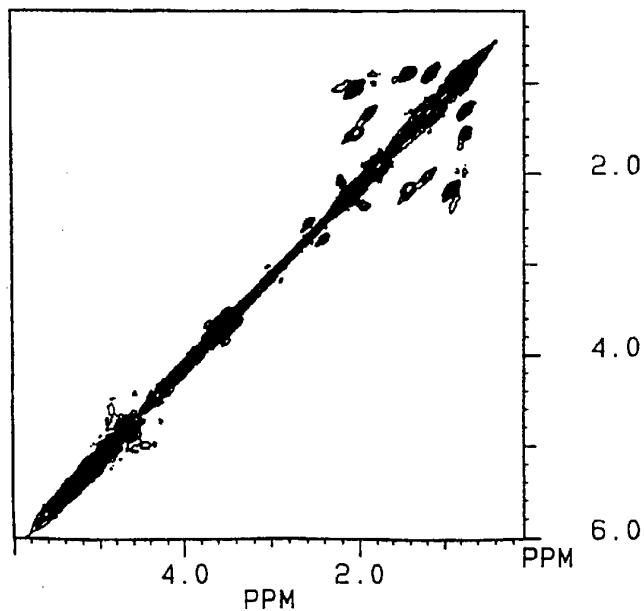
The reported sensitivity of FOBT for a single test for colorectal carcinoma ranges between 30% to 50%, while its specificity is estimated to be about 90%. These values are lower for adenomatous polyps. As can be seen in Table 3, the sensitivity and positive predictive value of the method of the present invention is 5 excellent, at least in this small sample. The diagnostic accuracy improves when all the subjects with some sort of abnormality from the analysis are excluded (compare row 3 vs. row 4 in Table 3). Although the sensitivity stays the same, both the specificity and the positive predictive value decrease considerably with the inclusion of such subjects. The last row, however, is the one that reflects the true clinical 10 picture. In the case of subjects with other forms of cancer, there could have been some early microscopic metastasis to the colon missed on the colonoscopy. There was actually a case of a patient (not included in the analysis) with a history of colon cancer (resected) with metastasis to the lungs that had normal colonoscopy, but showed a positive result on the MRS analysis. Although colonoscopy is used as the 15 gold standard in the analysis, as is the case in all other studies, reports show that 10-20% of polyps and up to 5% of colorectal cancers could be missed on conventional colonoscopy. All false-negative colonoscopies are assumed to be false-positive results for MRS. Thus, the true specificity and positive predictive value of the analysis could actually be higher than set out herein.

20 If the MRS method is to be of any use in the screening of asymptomatic subjects, it has to be able to identify those subjects with adenomatous polyps. A large percentage (70%) of these subjects gave positive MRS results. There is good evidence that the malignant potential of polyps depends on their size, histological type, and number of polyps. It is known that polyps less than 1 cm in size are less 25 likely to become malignant, and 2/3 of those subjects who gave negative MRS results had polyps 1 cm or less in size. However, neither the histological type nor the number of polyps showed any correlation with the (accuracy of) MRS diagnosis.

In summary, the use of the method of the present invention makes it possible to make better decisions as to whether to perform full colonoscopy on a patient.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of detecting the presence of colorectal adenomas and colorectal cancer in a patient including the steps of subjecting a stool sample from the patient to magnetic resonance spectroscopy; and comparing the resulting spectrum with the magnetic resonance spectra of stool from non-cancerous subjects, observed differences in spectra being indicative of cancer.
2. A method according to claim 1, wherein the stool sample is subjected to two-dimensional correlation nuclear magnetic resonance spectroscopy.
3. A method according to claim 2, wherein the stool sample is subjected to ^1H magnetic resonance symmetrized correlation spectroscopy.
4. A method according to claim 2, wherein the stool sample is subjected to 360^1MHz magnetic resonance spectroscopy.
5. A method of detecting the presence of colorectal adenomas and colorectal cancer in a patient including the steps of collecting a sample of the patient's stool; subjecting the sample to magnetic resonance spectroscopy; and comparing the resulting spectrum with magnetic resonance spectra of stool from non-cancerous subjects, observed differences in spectra being indicative of cancer.
6. A method according to claim 5, wherein the stool sample is subjected to two-dimensional correlation nuclear magnetic resonance spectroscopy.
7. A method according to claim 5, wherein the stool sample is subjected to ^1H magnetic resonance symmetrized correlation spectroscopy.
8. A method according to claim 5, wherein the stool sample is subjected to 360^1MHz magnetic resonance symmetrized correlation spectroscopy.


9. A method according to any one of claims 1 to 8, including the steps of forming a liquid suspension of the stool sample; and subjecting the suspension to magnetic resonance spectroscopy.
10. A method according to any one of the preceding claims, substantially as herein described.

DATED this 6th day of August 2002
**NATIONAL RESEARCH COUNCIL OF CANADA, UNIVERSITY OF TEXAS
SYSTEM, BOARD OF REGENTS**

WATERMARK PATENT & TRADE MARK ATTORNEYS
290 BURWOOD ROAD
HAWTHORN VICTORIA 3122
AUSTRALIA

P20540AU00 PNF/AJE/HB

1/3

FIG. 1

SUBSTITUTE SHEET (RULE 26)

2/3

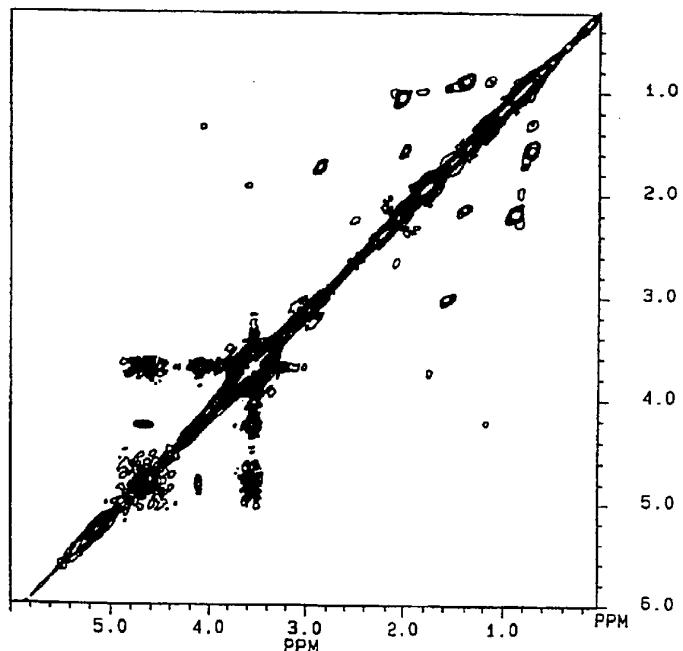


FIG. 2

SUBSTITUTE SHEET (RULE 26)

3/3

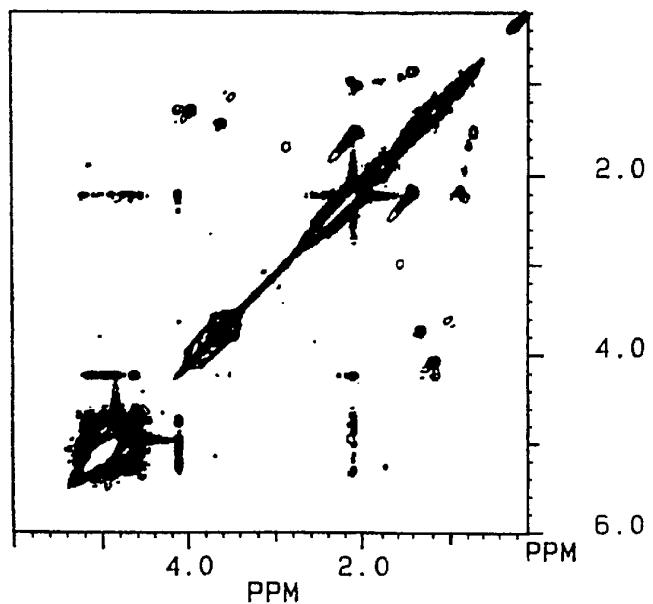


FIG. 3

SUBSTITUTE SHEET (RULE 26)