(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
20 March 2008 (20.03.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

lﬂfb A0 OO0 O O

(10) International Publication Number

WO 2008/034086 Al

(51)

21

(22)

(25)
(26)
(30)

(1)

(72)

International Patent Classification:
GOGF 7/76 (2006.01)

International Application Number:
PCT/US2007/078540

International Filing Date:
14 September 2007 (14.09.2007)

Filing Language: English
Publication Language: English
Priority Data:

11/532,374 15 September 2006 (15.09.2006) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: LUCCO, Steven E.; One Microsoft Way, Red-
mond, Washington 98052-6399 (US). LANGWORTHY,
David E.; One Microsoft Way, Redmond, Washington
98052-6399 (US). DELLA-LIBERA, Giovanni M.; One
Microsoft Way, Redmond, Washington 98052-6399 (US).

(34)

CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))
as to the applicant’s entitlement to claim the priority of the

earlier application (Rule 4.17(iii))

Published:
with international search report

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

[Continued on next page]

(54) Title: TRANSFORMATION OF MODULAR FINITE STATE TRANSDUCERS

T TN
140a
Diverse Set of Attributed
Finite State Tree
Machine Grammar
Representations, 170
(e.g., tree data y
structures)
N~
= N e -
e - 1|- - —H_ . + 15 Structu_re Transfor_matlon - MFST
® L /’:_ » | Analysis Engine 180 Storage
-tz 160
° /‘
Q Framework 150
TN
Diverse Set of A 4
Finite State
Machine

" Processor P
Representations,

(e.g., tree data
structures)

N—

087034086 A1 |1 K 0000 0

& (57) Abstract: A Q Framework, or QFX for short, is provided for performing efficient tree transformation in a generalized manner
that achieves preservation of action semantics for FSTs that support action information in their representations across a diverse set
of types of representations for FSTs. Among other features, the QFX also enables the preservation of ordered and unordered nest
information while performing tree transformation, supports the transformation of non-deterministic data structures to a deterministic
data structure and enables intersection operations on machines having action semantics.

WO 2008/034086 A1 {000 000000100000 0 0

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

TRANSFORMATION OF MODULAR FINITE STATE TRANSDUCERS
TECHNICAL FIELD
[0001] The invention is directed generally to finite state automata, such as finite
state transducers, and more specifically, to the transformation thereof.
BACKGROUND
[0002] By way of general background, finite state machines (FSMs), also known
as finite state automata (FSA) are models of behavior for systems composed of
states, transitions and actions. FSMs, or FSA, can be represented in a variety of
conceptual ways, using state diagrams, state transition diagrams, state tables,
labeled directed graphs, trees, etc, which preserve the relationships of states,
transitions and actions that comprise the machines, or automata. There are different
kinds of FSMs or FSA, equivalencies among them, and various known conversions
among some of them as well.
[0003] Presently, some graph transducers and tree transducers exist that
accomplish some aspects of transforming a set of systems modeled by FSTs, e.g.,
for some types of directed graph data structure(s), to form a new FST or set of
FSTs, e.g., new directed graph data structure(s), however, such systems are limited
for various reasons. The Extensible Stylesheet Language Transformation (XSLT),
for instance, 1s an XML-based language used for the transformation of XML
documents. When used to transform other XML documents, the document is not
changed; rather, a new document is created based on the content of the existing
XML document. The new document may be serialized (output) by the processor in
standard XML syntax or in another format, such as HTML or plain text. XSLT is
often used to convert data between different XML schemas or to convert XML data
into web pages or PDF documents.
[0004] In essence, XSLT allows the creation of an XML document that describes
the transformation of other XML documents, which may in turn be translated to
different formats. However, XSLT fails to take into account action semantics that
can be represented in FSTs. In this respect, an action might be “when in a pre-
defined state, once certain information is recognized, e.g., a name, perform some

action.” However, to the extent that such arbitrary actions can be defined for an

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

FST, XSLT is unable to handle calls to such arbitrary actions as part of its
transformative capabilities. In addition, XSLT is unable to perform all of the
complement, intersect and union operations on machines.
[0005] Still further, existing transforms, such as XSLT, are also unable to match
and compose FSMs having both ordered and unordered hierarchical information,
such as ordered and unordered nests (e.g., as represented as a tree structure).
While, in certain circumstances, there are some systems that can handle
preservation of only ordered information when transforming trees, and there are
some systems that can handle preservation of only unordered information when
transformation, neither XSLT, nor any other known system, includes
transformative capabilities that can preserve both ordered and unordered nests
across directed graphs or tree structures. These and other deficiencies in the state of
the art of transformation of finite state transducers will become apparent upon
description of the various exemplary non-limiting embodiments of the invention set
forth in more detail below.

SUMMARY
[0006] In consideration of the above-described deficiencies of the state of the art,
the invention provides a general framework for performing efficient tree
transformation for FSTs, e.g., intersections, unions, complements, etc., that
preserves action semantics across transformative operations for FSTs that support
action information in their representations across a diverse set of types of
representations. The framework for performing efficient tree transformation for
FSTs is also able to preserve ordered and unordered nest information while
performing tree transformation and is capable of supporting the transformation of
non-deterministic data structures to a deterministic data structure.
[0007] In one embodiment, the invention provides a method for transforming data
structure(s) specifying tree structure(s) in a computing system to modular finite
state transducer(s) (MFSTs). The method includes receiving data structure(s)
specitying tree structure(s) representing finite state transducer(s) (FSTs) including
semantics for defining ordered and unordered information and for any type of finite

state machine (FSM) model represented by the data structure(s), the method

10

15

20

25

WO 2008/034086 PCT/US2007/078540

transforms the data structure(s) to MFSTs while preserving the ordered and
unordered information of the data structure(s) in the MFSTs. The transforming
includes performing any of an intersection, union and complement operation, or
any operations that are reducible to any of intersection, union and complement
operations, on the data structure(s). In another aspect of the invention, it can be
decided from the result FSM, whether the resulting FSM accepts a non-empty
input.
[0008] A simplified summary is provided herein to help enable a basic or general
understanding of various aspects of exemplary, non-limiting embodiments that
follow in the more detailed description and the accompanying drawings. This
summary is not intended, however, as an extensive or exhaustive overview. The
sole purpose of this summary is to present some high level concepts related to the
various exemplary non-limiting embodiments of the invention in a simplified form
as a prelude to the more detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The techniques for transforming tree grammars for modular finite state
transducers, and associated processes, of the invention are further described with
reference to the accompanying drawings in which:
[0010] Figure 1A illustrates an exemplary, non-limiting flow diagram showing an
exemplary process for transforming FSTs with a general transformation framework
provided by the invention to preserve action semantics;
[0011] Figure 1B illustrates an exemplary, non-limiting block diagram showing
an exemplary process for transforming FSTs with a general transformation
framework provided by the invention to preserve action semantics;
[0012] Figure 1C illustrates an exemplary, non-limiting block diagram showing
an exemplary framework and transformation engine for transforming FSTs in
accordance with the invention;
[0013] Figure 2A illustrates an exemplary interface provided in connection with a

transformation engine of the invention;

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

[0014] Figures 2B and 2C illustrate exemplary operation of PushEnvironment and
PopEnvironment methods, respectively, provided in accordance with embodiments
of the invention.

[0015] Figure 2D illustrates another exemplary interface provided in connection
with the transformation engine of the invention;

[0016] Figure 2E lists an exemplary, non-limiting e-closure algorithm as
implemented in the transformation framework provided by the invention;

[0017] Figure 2F shows a modification of a subset construction technique to
accommodate actions as implemented in the transformation framework provided by
the invention;

[0018] Figure 3A illustrates exemplary translation of the ACTION-REGEX case,
or o T case, of the enhanced set of translation cases defined in accordance with the
invention;

[0019] Figure 3B illustrates exemplary translation of the BIND-NEST case, or x :
[T] case, of the enhanced set of translation cases defined in accordance with the
invention;

[0020] Figure 3C illustrates exemplary translation of the BIND-NEST-REPEAT
case, or x : [T]*"" case, of the enhanced set of translation cases defined in
accordance with the invention;

[0021] Figure 3D illustrates exemplary translation of the x : (7)) case of the
enhanced set of translation cases defined in accordance with the invention;

[0022] Figure 3E illustrates exemplary translation of the x : 7 Ref case, expansion
using call, of the enhanced set of translation cases defined in accordance with the
invention;

[0023] Figure 3F illustrates exemplary translation of the x : T Ref*” case,
expansion using call, of the enhanced set of translation cases defined in accordance
with the invention;

[0024] Figures 4A and 4B conceptually illustrate ordered, or list, patterns and
unordered, or set, patterns, respectively, in connection with which the QFX of the
invention which operates to preserve both ordered and unordered nest information

across transforms for FSTs;

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

[0025] Figure SA illustrates an exemplary, non-limiting flow diagram showing an
exemplary process for transforming FSTs with a general transformation framework
provided by the invention to preserve ordered and/or unordered information;

[0026] Figure 5B illustrates an exemplary, non-limiting block diagram showing
an exemplary process for transforming FSTs with a general transformation
framework provided by the invention to preserve ordered and/or unordered
information;

[0027] Figs. 5C to SL illustrate exemplary, non-limiting aspects of
transformations on state machines in the presence of ordered, or labeled
information in accordance with the invention;

[0028] Figure 6A illustrates an exemplary finite state transducer in accordance
with the QFX of the invention;

[0029] Figures 6B and 6C illustrate tree data structure representing an exemplary
ordered nest and unordered nest, respectively, in connection with which the QFX of
the invention operates to preserve both ordered and unordered nest information;
[0030] Figure 7A illustrates exemplary modeling of an FSM as a state transition
table as an exemplary state machine data structure in accordance with the
invention;

[0031] Figure 7B illustrates exemplary modeling of an FSM as a state table as an
exemplary state machine data structure in accordance with the invention;

[0032] Figure 8A illustrates exemplary modeling of an FSM in a state transition
diagram;

[0033] Figure 8B shows a transducer representing a Moore model example as an
exemplary type of state machine data structure in accordance with the invention;
[0034] Figure 8C shows a transducer representing a Mealy model example as an
exemplary type of state machine data structure in accordance with the invention;
[0035] Figure 9 is a block diagram representing an exemplary non-limiting
networked environment in which the present invention may be implemented; and
[0036] Figure 10 is a block diagram representing an exemplary non-limiting
computing system or operating environment in which the present invention may be

implemented.

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

DETAILED DESCRIPTION
[0037] As mentioned in the background, current frameworks for transforming
FSTs and tree data structures, e.g., labeled directed graphs as they tend to be
represented in computing memory, are not versatile enough to preserve some types
of information when transforming across all types of FSTs. For instance, current
frameworks are unable to preserve action semantics of some FSTs, or both ordered
and unordered nest information represented by FSTs across a host of types of FSTs.
[0038] Accordingly, the invention provides a general framework, termed the Q
Framework (or QFX) herein, for performing efficient tree transformation that
achieves preservation of action semantics for FSTs that support action information
in their representations. The Q framework for performing etficient tree
transformation of the invention is also able to preserve ordered and unordered nest
information while performing its efficient tree transformation. As will be
appreciated from the following description, the QFX also enables a host of other
novel aspects relating to transformative capabilities for a defined tree grammar and
corresponding translations, transducer diagrams, a transformation engine and
operations performed by the transformation engine, translation cases, and
determinization including variable renaming, as described in more detail below. In
one embodiment of the invention, the invention enables at least intersection, union,
complement and emptiness test transforms on tree representations or sets of tree
representations.
[0039] By way of further introduction, modular finite state transducers (MFSTs)
are state machines that implement transformations. In particular, MFSTs are MFAs
augmented with program fragments called “actions”. Common actions include
construction of objects from other objects stored in an environment, binding of
variables within an environment, and execution of predicates during pattern-
matching.
[0040] In this regard, at a high level, the Q Framework (QFX) of the invention
enables programmers to define regular tree grammars with actions and to translate
these grammars to MFSTs. QFX supports use of any Domain Specific Language
(DSL) to define actions. In addition, QFX provides special support for variable-

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

binding actions, yielding a kind of tree grammar called an attributed tree grammar.
The following exemplary, non-limiting implementation(s) of the invention describe
how QFX is able to compile and execute attributed tree grammars.

[0041] In this regard, the compilation approach of the present invention is
advantageous for a number of reasons. The compilation approach provides support
for high-performance transformation via optimizations and other high-performance
approaches. The compilation technique also enables simplification of run-time
components so that the production of simple transformation machines can be easily
achieved. As will be described in exemplary non-limiting detail below, the
compilation techniques described herein also provide a set of clear semantics. In
this respect, the compilation approach of the invention makes it easy for
programmers to reason about the semantics of a tree grammar, including
composition and side-eftects.

[0042] In general, as shown by the flow diagram of Fig. 1A, the present invention
enables a general framework for receiving diverse types of finite state transducers
(FSTs) data structures having action semantic information in a computing system at
100, and then applying a transformation engine of the framework at 105 to the
FSTs. Then, at 110, analysis and transformation of the FSTs occurs in accordance
with a pre-defined tree grammar for any type FST representation, as described in
more detail below. As a result, the FSTs are transformed to generate an MFST at
115 that, inter alia, preserves action information of the FSTs, e.g., while
performing any of intersection, complement and union operations on two or more
FSTs, preserves ordered and unordered nest information, and enables
transformation of non-deterministic FSTs into a deterministic result.

[0043] Fig. 1B is a block diagram corresponding generally to the above process
illustrating one aspect enabled by the tree grammar of the invention. The
transformation framework 125 receives one or more MFSTs 120 including action
semantics, transforms the MFSTs according to any of the intersect, union and
complement transform operations (and/or other Boolean operators, with

composition), and the action semantic information is preserved in the output 130.

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

[0044] Fig. 1C illustrates an exemplary, non-limiting block diagram showing an
exemplary framework and transformation engine for transforming FSTs in
accordance with the invention. As shown, a variety of kinds of finite state machine
representations may be found in a computing system in a variety of storage
elements 140a to 140n, wherever found in a computing environment having a
processor P for interacting with a Q framework 150 provided in accordance with
the invention. In general, the Q framework 150 receives, via a transformation
engine 180 for transforming and generating MFSTs 190, subset(s) of finite state
machine representations 140a to 140n. The transformation performs an analysis
160 on the subset(s) of finite state machine representations 140a to 140n with
reference to an attributed tree grammar 170 in order to determine how to best
transduce the subset(s) of finite state machine representations 140a to 140n to
MFSTs 190. An interface 11 may also be provided in the computing environment
for receiving or defining a directed graph data structure based on and for use with
the pre-defined tree grammar 170.

[0045] Thus, in various non-limiting embodiments, the invention enables the
transformation of tree data structures in a computing system to a modular finite
state transducer (MFST). The tree data structures, representing FSMs (e.g., FSTs),
include action semantics defining action information pertaining to the FSMs that is
preserved through the transformation process. In one embodiment, for any type of
FSM model represented by the tree data structures, e.g., directed graph data
structures, XML documents, etc., the invention transforms the tree data structures
to an MFST while preserving the action information. An extensible, pre-defined
translation grammar 1s implemented by a transformation engine that preserves the
action information irrespective of the type of FSM model represented by the tree
data structures, preserves both ordered and unordered nest information of the tree
data structures and transforms non-deterministic data structures to a deterministic
MFST. Advantageously, the invention can handle complements, intersection and
union of type of FSM as part of the transtormation process.

[0046] In further embodiments, the invention includes a Q framework (QFX)

including components and software for performing transduction of directed graphs

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

to a modular finite state transducer (MFST) including the ability to analyze directed
graph data structures of any type in a computing system and transducer the directed
graph data structures to a MFST based on the analysis while preserving action
semantics of the directed graph data structures. The QFX performs control flow
analysis algorithm(s) on the finite state machines (FSMs) represented by the
directed graph data structures in a way that preserves the action semantics
information of the directed graph data structures across any type of directed graph
representation.

[0047] In addition, the QFX includes a transformation engine that performs
specialized binding handling in connection with transducing the directed graph data
structures. The specialized binding handling includes performing binding for the
action semantics information during pattern matching. Furthermore, the transducing
includes the ability to in-line at least one transducer definition as defined by a
directed graph data structure of the directed graph data structures. Also, the
transducing includes compiling variable bindings of the directed graph data
structures to slots in the existing activation record and also includes register
analysis of the finite state machines (FSMs) represented by the directed graph data
structures. A grammar defined by the invention that achieves the above effects and
advantages of the invention may be implemented via a software interface, such as a
C# interface, that describes directed graph data structures including action
semantics information.

[0048] In addition, in various embodiments, the invention implements lexical
analysis with variable binding. Still further, QFX is extensible, providing efficient
interoperability with different transformation providers. Additionally, the invention
implements control over the trade-off between compilation and execution
performance, i.e., implementations can interpret patterns without expensive
compilation, and compile particular patterns for repeated use. Lastly, runtime
components can participate in the QFX scheduling discipline by supplying
variable-granularity continuation points, enabling use of the same mechanism to

supply either single or multiple results.

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

[0049] The following simplified tree grammar syntax of Table I below is an
exemplary non-limiting model that may be utilized in connection with compilation

processes in accordance with the invention.

TreeGrammar — Definition"
Definition — RegexName =’ Choice
Choice — Rule (’|” Rule)* (OR)
Rule — Action? RuleTerm" (ACTION-REGEX)
RuleTerm — NestedRegex Action? (REGEX-ACTION)
NestedRegex — BaseSymbol (BASE)
| VariableBinding? Wildcard (WILD)
Reference (REF)
NestedRegex NestedRegex (SEQUENCE)

|

|

| VariableBinding? ’[* NestedRegex ’]” (BIND-NEST)

| VariableBinding? ’(’ NestedRegex)’ (BIND-GROUP)
|
|

NestedRegex "+’ | *** | >?7°) (REPEAT)
NestedRegex "and’ NestedRegex (AND)
Reference — VariableBinding? RegexName (BIND-REF)

VariableBinding — Variable ’7’

Table I — Simplified Tree Grammar Syntax
[0050] In the above grammar, an exemplary operator precedence that may be
applied is REPEAT > BIND > SEQUENCE > AND > OR. In the description that
follows, x 1s used to represent a variable; b is used to represent a base symbol (a
type or a value of a base type); T is used to represent an MFST; « is used to
represent an action; and 7 Ref is used to represent a reference to 7.
[0051] With respect to the state of the art of translation of regular expressions to
NFAs and with respect to the determinization of NFAs, a general review of such
translation techniques can be found, for instance, in Aho et al., “Compilers:
Principles, Techniques and Tools,” Addison-Wesley (1986) or, in Hopcroft et al.’s
“Introduction to Automata Theory, Language and Computation,” Addison-Wesley

(2000). As an improvement on such state of the art techniques, in accordance with

10

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

the QFX, regular tree grammars defined via the techniques of the invention can be
expanded with actions to MFSTs.

[0052] Also, the translations discussed in Aho et al. purport to cover the following
cases from the above grammar: OR, AND, BASE, SEQUENCE, REPEAT and
REF; however, to handle (1) actions, (2) nesting and (3) variable binding according
to the invention, translations are desired for the following additional cases, notated

as shown in Table 11 below:

ol (ACTION-REGEX)
To (REGEX-ACTION)
x:[7] (BIND-NEST)
x:[T]*"" (BIND-NEST-REPEAT)
x: (D) (BIND-GROUP)

x:(D*"" (BIND-GROUP-REPEAT)
x:TRef (BIND-REF)
x : TRef*"" (BIND-REF-REPEAT)

Table II —-Enhanced Set of Translation Cases Handled by QFX
[0053] The ACTION-REGEX and REGEX-ACTION cases handle compilation of
tree grammars with general actions. The BIND-REF, BIND-GROUP, BIND-
NEST, BIND-REF-REPEAT, BIND-GROUP-REPEAT, and BIND-NEST-
REPEAT cases handle compilation of variable bindings. The BIND-NEST cases
also extend regular expressions to nested regular expressions.
[0054] Though not shown in the simplified tree grammar syntax of Table I, non-
terminal definitions in accordance with the invention may have both regular
parameters and type parameters. In one embodiment, the compiler handles regular
parameters as inherited attributes and handles type parameters using the BIND-REF
and BIND-REF-REPEAT translations.
[0055] The transformations to MFSTs in accordance with the invention may be
described in exemplary fashion using state machine diagrams that define the
MFSTs. In the diagrams, transitions are labeled as follows: b/a where b is the input
symbol consumed and « is the action performed. &/a represents a transition that

consumes no input, but performs some action. This class of transition is referred to

11

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

as an action transition. In executing transducers, in one embodiment of the
invention, a maximal progress policy 1s implemented which assigns a lower priority
to the action transitions from a state than all of the input-consuming transitions
from that state. In the diagrams, the special symbols ’[” and ’]” represent the
beginning and ending, respectively, of input collections. Variable bindings are
written as x = expr and apply to the current environment of the transducer.

[0056] For the repetition operators, i.e., +’,”*’, and *?’, collections of results are
accumulated using lists, but the mechanism can be generalized to cover
accumulation of results into any collection type, e.g., by using the corresponding
join operator.

[0057] In accordance with various embodiments of the invention, the BIND-REF
and BIND-REF-REPEAT cases are expanded in two ways: inline and call. The
inline expansion trades space for time and thus, in one non-limiting implementation
of the invention, the inline expansion is preferred when determinizing an MFST.
Generally, the call expansion is used in three cases. The first case is when
compiling for interpretation. In this case, the compiler does not determinize the
MFST and expands all references as calls. The second case is recursion. For
instance, if T Ref refers to the start symbol, the compiler expands the reference as a
call. The third case is extension. If T Ref refers to an opaque MFST, the compiler
expands the reference as a call.

[0058] The compiler of the invention translates tree grammars to instructions for a
virtual machine called a transformation engine (XE). The XE supports the
following: (1) Definition and operation of transducers, (2) Transfer of control to
other transformation engine instances and (3) Management of and access to
environments.

[0059] With respect to the first category, techniques for persisting and interpreting
state machine definitions are known. Accordingly, described below are exemplary
non-limiting methods for achieving the second and third instruction categories:
Transter and Management. In accordance with the invention, these instructions are

defined as methods in a pair of interfaces. The compiler does not generate calls to

12

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

these interfaces directly; rather, the compiler generates XE instructions that are
interpreted by an XE implementation.

[0060] An XEControllnstructions interface provided in accordance with the
invention is illustrated in the exemplary pseudo-code 200 of Fig. 2A. The
XEControllnstructions interface 200 has the current XE instance as an implicit
operand, i.e., the ‘this pointer’ of the XEControllnstructions interface 200.

[0061] A Mark method provided in exemplary embodiments of QFX records the
current location in the input term on the mark stack. A Yield method pops a mark
M oft the mark stack and returns the portion of the input term between M and the
current location. In one embodiment, QFX implements these methods by
indirection through a traversal-provider interface. Such an approach
advantageously separates term representation and traversal from term
transformation. Traversal providers can thus implement traversal by applying the
QFX transformation framework to any particular data representation.

[0062] A Call method provided in accordance with the invention creates a new
environment E and saves continuation and callingEnvironment in E (see, e.g.,
XEControllnstructions interface 200 of Fig. 2A). The Call method then returns a
continuation that transfers control to target. The Call method also calls the Mark
method to save the current input location. A Return method inverts this operation
and operates to save the matched term in the current environment (E) using the
Yield method: E.term=Yield(). Then, the Return method stores E in the variable
callingEnvironment.result; finally, the Return method returns continuation. When
called, continuation sets the current environment to callingEnvironment and
continues from the calling state.

[0063] A NewEnvironment method creates a new environment in accordance with
the invention. In addition, the exemplary non-limiting pseudo-code 210 and
pseudo-code 220 of Figs. 2B and 2C outline the operation of PushEnvironment and
PopEnvironment methods, respectively.

[0064] The PushEnvironment method saves the current environment on an

internal environment stack and creates a new environment, e.g., named tempEnv.

13

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

PushEnvironment then binds tempEnv to variableName, sets the current
environment to tempEnv and calls Mark to record the current input location.
[0065] The PopEnvironment method records in the variable “term” the sub-term
matched since the preceding Mark call. PopEnvironment then restores the current
environment from the environment stack. PopEnvironment does not save the
popped environment because the corresponding call to PushEnvironment has
already bound the popped environment.

[0066] Additionally, an Exec method executes an action in accordance with the
invention. In an exemplary implementation of QFX, an ActionReference is a table
index corresponding to a separately persisted and loaded table of method pointers.
[0067] An XEEnvironmentlnstructions interface provided in accordance with the
invention is illustrated in the exemplary pseudocode 230 of Fig. 2D. The
XEEnvironmentlnstructions interface 230 has an environment instance as an
explicit operand, i.e., the ‘this pointer’ of the XEEnvironmentInstructions interface
230.

[0068] A ChildEnv method creates a new nested environment whose parent is
‘this’ of the this pointer. A Bind method binds a variable to a value, returning true
if the binding succeeds. In an exemplary, non-limiting embodiment, if
variableName has a current binding, the Lookup method sets value to that binding
and returns true. Otherwise, it returns false.

[0069] Operation of the transformation engine (XE) of the invention supports
assignment of priorities to state transitions. The compiler addresses ambiguity
arising from choices among patterns by ordering the transitions possible on each
state. In one non-limiting embodiment, all transitions on normal input take
precedence over wildcard transitions, which take precedence over action
transitions. Also, within these precedence groups, the programmer may optionally
assign priorities to particular transitions.

[0070] XE instances may address generation of multiple results by supporting a
mode in which they use all applicable transitions to continue from a state, queueing

continuations in priority order.

14

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

[0071] Fig. 3A illustrates exemplary translation of the a T case of the enhanced
set of translation cases defined in accordance with the invention. More specifically,
Fig. 3A shows the translation of the ACTION-REGEX case. This translation is an
application of the translation for the NestedRegex SEQUENCE case. The REGEX-
ACTION case is not shown as it is a straightforward application of the
SEQUENCE translation. In the diagrams, circles SC1, SC2 and SC3 represent the
start states, circles IC1, IC2 and IC3 represent intermediate states and double
circles DC1, DC2 and DC3 represent accepting states.

[0072] Fig. 3B illustrates exemplary translation of the BIND-NEST case, x : [T].
In Fig. 3B, the methods PushEnvironment and PopEnvironment are abbreviated
PushEnv and PopEnv respectively. Start state SC4, intermediate states IS3 and IS4
and accepting state DC4 show different states of the machine defined by Fig. 3B.
Upon reading a [, the machine creates a new environment E and binds it to x. The
machine then pushes the current environment C and makes E the current
environment. The machine also marks the current input location. Then, the machine
executes T, binding variables in E. During the execution of T, variable bindings
accumulate in E. The machine then stores in E.term the term matched by [T] and
restores C as the current environment.

[0073] Fig. 3C illustrates exemplary translation of the BIND-NEST-REPEAT
case, x : [T]*[+|?. Fig. 3C shows how the compiler translates nested regular
expressions with repetition. Start state SCS5, intermediate states IS5, 1S6, IS7 and
IS8 and accepting state DC5 show different states of the machine defined by Fig.
3C. One can see that the inner portion of the transducer defined by states IS5, 1S6,
IS7 and IS8 is identical to the machine in Fig. 3B. Surrounding this machine is a
container state machine including start state SCS and accepting state DCS. The goal
of the container machine is to accumulate environments as a list bound to the
variable x.

[0074] In this regard, first, the transducer creates an empty list and binds it to x.
Next, the transducer appends the result of executing a [T] to x. The execution and

append steps are rendered optional by the forward € transition marked “Use this

15

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

arc for ’*” and ’?’. The execution and append steps may be optionally repeated by
traversal of the backward e transition marked “Use this arc for **” and *+’.

[0075] Fig. 3D illustrates exemplary translation of the x : (T) case. Start state
SC6, intermediate states 1S9 and IS10 and accepting state DC6 show difterent
states of the machine defined by Fig. 3D. Fig. 3D shows a transducer that is similar
to the transducer for the BIND-NEST case of Fig. 3B, except that the transitions
into and out of T in Fig. 3D do not consume an input symbol.

[0076] Fig. 3E illustrates exemplary translation of the x : T Ref case, expansion
using call. Fig. 3E defines a machine including start state SC7, intermediate state
IS11 and accepting state DC7 and shows use of the call strategy to expand x : T
Ref. The first transition executes a call instruction Call(T) which is a shorthand for
the following exemplary, non-limiting pseudo-code:

Call(T, CurrentContinuation, CurrentEnvironment)

[0077] The CurrentContinuation at the point of the call is the intermediate state
IS11 at the end of the transition arrow. The called transducer returns its
environment in the variable result. Finally, the calling transducer binds the result to
X.

[0078] Fig. 3F illustrates exemplary translation of the x : T Ref*|+|? case,
expansion using call. Fig. 3F defines a machine including start state SC8,
intermediate states IS12 and IS13 and accepting state DC8 and shows the repetition
container applied to a call. This transducer is similar to the transducer of Fig. 3C,
with a call to T as the inner transducer in place of an inline expansion of T.

[0079] The translation cases not described so far in Figs. 3A to 3F are BIND-
GROUP-REPEAT and the inline version of the BIND-REF cases. BIND-GROUP-
REPEAT combines the repetition container of Fig. 3F with the transducer for
BIND-GROUP shown in Fig. 3D. Additionally, the inline versions of the BIND-
REF and BIND-REFREPEAT cases are identical to the BIND-GROUP and BIND-
GROUP-REPEAT cases, respectively.

[0080] Determinization describes how subset construction techniques can be
formulated to account for transitions that may have actions in accordance with the

invention. In accordance with the invention, association of actions with both

16

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

transitions and states is enabled. While deterministic transducers may be
constructed with actions only on transitions, that choice makes the algorithms more
complex, whereas it is straightforward to efficiently to store actions for both states
and transitions.

[0081] Simplifying some details, Fig. 2E lists an exemplary, non-limiting -
closure algorithm as implemented in QFX, i.e., State(T).EClosure+. The method is
augmented to accumulate actions on € transitions. The lines marked (A1) and (A2)
in the exemplary pseudo-code 240 of Fig. 2E save in the list ‘actions’ all actions on
epsilon transitions traversed during the e-closure construction. The overall
determinization algorithm transfers these saved actions to the deterministic finite
state transducer (DFST) state constructed from the e-closure.

[0082] Fig. 2F shows the subset construction modified to accommodate actions as
implemented in exemplary fashion in QFX, i.e., NFA(T).SubsetConstruction.
Labels (B1) through (B6) mark lines of the exemplary pseudo-code 250 of Fig. 2F
modified or added to accommodate actions. Lines (B1) and (B2) find all of the
states to which the source state (src) has a transition on symbol; these lines also
accumulate in symActions the actions of each transition. Lines (B3) and (B4)
perform a similar function for the € transitions. Finally, line (BS) adds symActions
to the DFST transition between the src and dst states and line (B6) adds epsActions
to the src state. These actions are then performed upon completed transition to src.
In one embodiment, these algorithms assume that actions do not have side-effects
other than the binding of variables in the current environment.

[0083] Overall, advantageously, this method for determinization in accordance
with the invention achieves the following guarantees:

1. If a pair of actions al and a2 are elements of same production, actions al and
o2 are invoked in lexical order;

2. Ifaction al is part of production p1 and action a2 is part of production p2, with
pl # p2, then the transducer will invoke either al or a2. The transducer may only
invoke both actions in the case that pl and p2 share a prefix pre, and that pre

contains al in pl and pre contains a2 in p2; and

17

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

3. Within the starting definition for a grammar, the final action of each production
may have side eftects. In one embodiment, the transducer does not run this action
until all other actions have completed.

[0084] In this respect, attributed tree grammars enable programmers to take
advantage of the above guarantees. Using attribute grammars, a programmer can
express all actions as variable bindings within the current environment. Such
actions can take one of two forms: either x : 7 or x = expression, where expression
may read values from the current environment or invoke code to compute a value.
As long as the code executed by an expression does not introduce ordering
dependencies, the result of executing a tree grammar is deterministic.

[0085] Programmers can use attribute grammars to defer side effects until it is
unambiguous that the side effect should be invoked. For example, to traverse a tree
printing text, a programmer could gather the text into a string using attributes and
then print the string from the final action associated with the tree grammar’s start
symbol. The programmer could also choose to print sub-trees “on the fly” by
deferring print actions to unambiguous non-terminal definitions.

[0086] With respect to variable renaming in accordance with exemplary, non-
limiting embodiments of the invention, to ensure the independence of variable-
binding actions, the compiler renames variables so that each variable bound in an
MFST is unique. If the compiler is also generating code for a given action, the
compiler renames variables in o as well. If a code block B is opaque to the
compiler, the compiler arranges to pass to B an environment that looks up the
original variable names indirectly through their updated names.

[0087] Optionally, the variable renaming can be optimized by performing live
range analysis and having several original variables share the same updated name.
Also, transducer performance may be improved by implementing variable reference
as array access using a compiler-determined offset.

[0088] Accordingly, in one aspect, the invention provides a general framework for
performing efficient tree transformation that achieves preservation of action
semantics for FSTs that support action information in their representations across a

diverse set of representations of FSTs. Any of the intersection, union and

18

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

complement transformation operations, and other Boolean operators with
composition, can be performed on FSTs while preserving action semantics.

[0089] In addition, as mentioned in the background, under limited circumstances,
there are some systems that can preserve ordered nest information across tree
transforms and some systems that can preserve unordered nest information across
tree transforms, but there are no systems yet that can preserve both ordered and
unordered tree information across tree transforms, e.g., intersection, union,
complement, etc. Accordingly, in various non-limiting embodiments, the
framework for performing efficient tree transformation also preserves ordered and
unordered nest information while performing tree transformations for FSTs.

[0090] The distinction between ordered and unordered information is conceptually
illustrated in Figs. 4A and 4B. Fig. 4A shows an ordered pattern, also known as a
list pattern, which requires the sequence of red, then green, then blue, then red
again in order to match the pattern. In a pattern matching sense, therefore, the order
in which the elements of the pattern appear is taken into account. Fig. 4B shows an
unordered pattern, which is also known as a set pattern. The set pattern of Fig. 4B
shows the same elements as the list pattern of Fig. 4A, but this time, without any
order. The set pattern of Fig. 4B thus represents a set of two reds, one green, and
one blue in any order whatsoever. It is the occurrence of the elements in the set that
1s taken into account when pattern matching, i.e., whether the elements appear in
both trees, not in what order the elements appear.

[0091] An example of a list pattern matching scenario in a computing system
might be the entry of a password, wherein the password is a sequential set of
numerals. Since each character entered for the password must be entered in a
specific order in order to match against the correct password stored in the system
for the user, the password matching scenario will match patterns based on a tree
structure having ordered information.

[0092] An example of a set pattern matching scenario in a computing system
might be searching for a set of specified files, e.g., Pic_ Amy, Pic_Greg,

Pic Neyda, in a file system. When searching for the folder in which these pictures

appear, what is being matched is their occurrence, not in what order they appear, in

19

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

the folder. In other words, the user in the search scenario only cares to find a folder
having each of these files, and the order in which the pictures were stored in the
system 1s unimportant to the user. Another example of a set pattern matching
scenario is finding a certain first, middle and last name together in a database,
where the result does not depend on whether the data was stored as “last name, first
name, middle name,” “first name, middle name, last name” or “first name, last
name, middle name.” Any occurrence of all three in any order satisfies the database
query.

[0093] In accordance with the framework of the invention, transformations can be
performed on MFSTs while preserving both ordered and unordered information
represented by the tree data structures including any of intersect, union and
complement transformations. Transformations can thus be performed on patterns
that combine set and list assumptions about children of the tree. Thus, either
ordered or unordered information that is nested in the nodes of the tree structures is
preserved across transformations.

[0094] As shown by the flow diagram of Fig. SA, the present invention enables a
general framework for receiving diverse types of finite state transducers (FSTs)
data structures including ordered and/or unordered information in a computing
system at 500, and then applying a transformation engine of the framework of the
invention at 505 to the FSTs. At 510, analysis and transformation of the FSTs
occurs in accordance with the above-described tree grammar for any type FST
representation. As a result, the FSTs are transformed to generate an MFST at 515
that preserves action information of the FSTs, e.g., while performing any of
intersection, complement and union operations on two or more FSTs, preserves
ordered and unordered nest information, and enables transformation of non-
deterministic FSTs into a deterministic result.

[0095] Fig. 5B is a block diagram corresponding generally to the above process
illustrating this aspect enabled by the tree grammar of the invention. The
transformation framework 530 receives one or more MFSTs 520, 522 or 524
including ordered information, unordered information, or both, respectively,

transforms the MFSTs according to any of the intersect, union and complement

20

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

transtform operations (and/or other Boolean operators, with composition), and the
ordered and/or unordered information is preserved in the output 540.

[0096] Figs. 5C to 51 illustrate exemplary, non-limiting aspects of transformations
on state machines in the presence of ordered, or labeled information. As shown in
the block diagram of Fig. 5C, the issue relates to the union of two state machines
M, and M,, having separate accept states 550 and 555 for the respective machines
M; and M,, i.e., how to represent this information in the transform representation of
the machines. In the past, this has been accomplished by combining the two accept
states 550 and 555 into a single accept state representing both, which can result in
loss of information from the original machines.

[0097] In accordance with the block diagram of Fig. 5D, in an exemplary non-
limiting aspect, the invention accepts home state machine labeled accept states in a
resultant transform machine 560. In various non-limiting embodiments, the
invention introduces the handling of a labeled union U, during transformation,
which is a variant of union that labels the accept states of the union machine with
the name of the machine from which the accept state originates.

[0098] As illustrated by the example of Fig. SE, when performing M; U_ M,, then
there are three possibilities for accept state labels: “M;” 575,” M;, M,” 580 and
“M,” 585. These indicate that the accept state in the labeled union machine
represents an input that would be accepted by M1, both M2 and M2, and M2,
respectively. As shown in greater detail in Fig. 51, in an exemplary non-limiting
implementation, these labels can be viewed as bits, one bit per original machine.
For example, M; could be assigned the low bit and M, could be assigned the high
bit. Then, the possible labels can be represented as “01” (i.e., M; but not M, would
accept the input), “11” (i.e., both M; and M, would accept the input) and “10” (i.e.,
M, but not M; would accept the input). The other possibility 1s “00.” All non-
accept states of the union machine can be viewed as having this label (because
neither M; nor M, would accept the input).

[0099] In this regard, as shown in the block diagram of Fig. SE, in addition to
generating a resultant accept state node 580 that represents the combination M;M,,

the invention also generates accept state nodes 575 and 585 representing an accept

21

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

state M and an accept state M,. As shown in Fig. 5F, any of these accept states
575, 580 and/or 585 may be part of the resulting Accept State when the union
operator M; U M, is encountered, whereas, as shown in Fig. 5G, the intersect
operator M; N M, implicates just the M;M; node 580. For instance, where M, is
assigned the low bit and M, is assigned the high bit, in one non-limiting
embodiment, the union machine is converted into an intersection machine by
finding the accept states labeled “11.” If there are none, the intersection machine is
empty. Given a set of states 4 that are labeled “11,” the intersection machine is
generated by removing from the union machine any states from which no state in 4
can be reached.

[00100] Subtyping can also be captured during transtormation in accordance with
the invention as shown illustrated by the block diagram of Fig. SH. There are three
results that may be determined when determinizing with component 570 with
respect to typing. M; < M, 1s one result if no Accept State is labeled M;, as shown
at the top. M; =M, is another result if only Accept State M;M,; 580 is generated in
the middle. M, < M; is another result if no Accept State is labeled M,, as shown at
the bottom. Given the above transformation processes, subtyping can be
determined. For instance, where M; is assigned the low bit and M, is assigned the
high bit, if all accept states are labeled 11, then M; is equal to M2. If there are
accept states labeled 10 and 11, then M; contains M; (i.e., M; is a subtype of M5).
[00101] Fig. SI illustrates a flow diagram for an exemplary non-limiting process of
transforming a machine 590 and machine 592 according to the labeled union
operator, wherein each of the two machines 590 and 592 are two-bit machines. In
accordance with the above-described exemplary non-limiting implementation that
applies bit labels, two bits are assigned to labels L; and L, of machine 590 and two
bits are assigned to labels L; and L, of machine 592. When combined according to
the labeled union operator of the invention, this produces 16 accept states in a
resultant 4-bit machine 595. For instance, L, will receive label 0010, L,L4receives
label 1010 and L;L,L;L,receives label 1111, and so on, until all of the

combinations are represented.

22

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

[00102] Fig. 5] illustrates how to transform ordered machine(s) to build and
combine corresponding unordered machine(s). For instance, a set of patterns P may
include optional occurrence constraints, such as represented by the following set
{p1, p2*, p3 }, which indicates a set including at least one p;, a set including zero or
more one p,, and one ore more ps. In accordance with exemplary, non-limiting
implementations of the invention, set patterns P are broken into two constituent
parts: (A) aunion pattern 596 such as p; U p, U p; in the presently described
example set P and (B) a set of labeled runs 598, each of which accepts some inputs.
In the presently described example, this might may result in {L;, L,*, L;"}, where
L;, L, and L5 label the accept states of p;, p» and ps, respectively.

[00103] Accordingly, as shown by Fig. 5K, to perform a labeled union Uy for
unordered patterns, e.g., given unordered patterns P; and P,, in accordance with
exemplary, non-limiting implementations of the invention, the following
expressions are computed: (P;), U(P,), I'(P,) and I'(P,), where \U(x) is the union
pattern for x, and I'(x) is the set of accepting runs for x. Then, based on these
expressions, the following two results are obtained:

(1) WPy up, Py) =U(P1) Uy U(P2)

(2) TPy P) =T(Py) * I'(P2)

wherein the “*” operator LUCP of Fig. 5K and in equation (2) above represents a
labeled union cross product operation.

[00104] Next, U(P; Uy Py) is re-labeled so that run labeling is consistent. For
instance, re-labeling is achieved by re-writing every / in a group of redundant labels
R. From R, an arbitrary member z (e.g., the lowest-numbered label or the lowest-
ordered bit in the above-described bit per label implementation) is selected, and / is
re-written to z for each /in R. For instance, as shown in Fig. SL, where (P
P,) has exemplary accept state labels ASL1 including “L;,L,”, “L;,L3,L4,L, and
“L,,L4”, then L3 can be replaced by L; and L4 can be replaced by L, to form
condensed accept state labels ASL2, 1.e., “L,”, “L;,L.,”and “L,”.

[00105] As mentioned, the “*” operator LUCP of Fig. 5K and in equation (2)

above represents a labeled union cross product operation. Having re-labeled the

23

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

accepting runs of P, and P, as described in the previous paragraph, the labeled
union cross product operation can be defined according to the following non-
limiting process. First, the operator Uy is defined for a pair of runs R; and R,. To do
so, Label(R) is defined as the label of run R. R is then defined as a set of pairs (/,
[x, y]) where [is some label from the re-labeled P; Uy Py, x is the minimum # of
occurrences of /, y is the maximum # of occurrences of /, and [x, y] < [0, »]. R; g
R, 1s computed by considering each pair of elements in R, * R, (i.e., the cross
product of R; and R;), as follows. For each pair (/1, [x1, y1]), (&2, [X2, V2]), if [1 =15,
then (/y, [x1, y1]), (L2, [X2, y2]) becomes (I, [x1, y1]) U (&2, [X2, y2]) using an interval
union operation. Otherwise, (/, [X1, Y1]), ({2, [X2, ¥2]) 1s the empty set.

[00106] Thus, for a member z in Ry * R, (i.e., the cross product of R; and R,), Uy is
computed as either (/1, [x1, y1]) U (&, [X2, y2]) or the empty set. R; Up R is then
computed by taking the union over those results to form a resulting set S. If S has
the same cardinality as R; and R,, then R; U R, is S with labels, e.g., Label(R;)
and Label(R,). Otherwise, R; U R, is {R;, Ry} in which case R; and R, are disjoint
and they are kept with separate labels.

[00107] For example, if:

Ri={(Ly, [0, 1]), Ly, [1, ®0]), L, [1, 1])}

Ro={(Ly, [1,2]), L, [2,2]), L5, [1, 1])}

Then, Ry Up Ry= {(Ly, [0, 2]), Ly, [1,]), L3, [1, 1])} with label Label(R,),
Label(R,).

[00108] For another example, if:

Ri=A{(Ly, [1, 1]), Ly, [2,]), L5, [1, 1])}

Ro={(Ly, [0, 0]), Ly, 1, 1]), L, [4, 4])}

Then, R; Up Ry= {Ry, Ry} because Ry and R, are disjoint.

[00109] For another example, if:

Ry={Ly, Ly} where Lyis (L4, [1, 1]), etc.

Ry=1{Ly, Ly, L3*}

Then, R, Uy Ry= {L,, L,} with label Label(R,), Label(R,) and {L;, L», L3'} with
label Label(R,).

24

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

[00110] To summarize, R; U; R,, the definition of U; for runs R; and R, in
accordance with the invention, is first computed according to the above-described
procedure. Then, the result is refined by taking the intersection of R; with (R; U
R») and the intersection of R, with (R; Uy, R,), 1.e., Ry N (R; Uy Ry) and R, N (R; Uy,
R,). Ry N (R; UL Ry) and R, N (R Up Ry) are performed using a similar
methodology as for the union operator Uy, but with interval intersection instead of
interval union operations.

[00111] To achieve this, in exemplary, non-limiting embodiments of the invention,
the union run is divided into pieces Ry, R,, and R; N R,. These pieces Ry, R,, and
R; N R, are then labeled with Label(R;), Label(R,), and Label(R,), Label(R»),
respectively.

[00112] Accordingly, where Py and P, are unordered patterns, the determination of
P, U P, can be performed. In this regard, the invention enables P; U P, to be
calculated as an unordered pattern with a union pattern portion and a set of
accepting runs of the union pattern, with each run labeled with labels from P;, P, or
both. P, Up P; can then be unions with some other unordered pattern P5, which also
has a union pattern and a set of labeled runs, and so on for another unordered

pattern Py.

EXEMPLARY NON-LIMITING USAGE SCENARIOS
[00113] For supplemental understanding, a variety of usage scenarios of the present
invention illustrate the broad variety of applications to which pattern matching
using the Q framework of the invention may be applied in computing systems. The
ability to match while preserving action semantics or ordered and unordered
information embedded in the trees being transformed thus enables a broad set of
pattern matching systems in a computing systems. The actual scenarios chosen,
however, are merely exemplary and thus are not to be taken as limiting on the
universe of pattern matching to which the invention applies. Indeed, the capabilities
of transtorming MFSTs in accordance with the invention are, by definition, quite

broad since one need not be concerned with losing information pertaining to action

25

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

constraints, or ordered and unordered information embedded in the tree
representations being transformed.

[00114] In this regard, as mentioned above, the Q framework enables preservation
of such action or ordered and unordered information when transforming MFSTs
according to at least the intersection, union and complement transforms. With these
three transform operations, a property on tree data structures can be performed
known to those of skill in the art as structural compatibility, or sub-typing.
Oftentimes, a computing application will want to know whether a given tree is a
subset of another given tree, or set of trees (or some transform operation of those
trees defined by union, complement or intersection).

[00115] Another important class of scenarios to which the invention may be
applied 1s the host of applications that perform static type checking, wherein a
compiler looks at a program, and asks for procedural compatibility. Procedural
compatibility checks involve pattern matching for a set of trees, and is helpful for
finding bugs in computer programs.

[00116] Generally, the classes of tests that a user or computing system may wish to
implement against a set of tree data, or subset of tree data is limitless. However,
some recurring tests generally occur. For instance, often a test will wish to know
whether a first tree or set of trees intersects with a second tree or set of trees. Or,
one will wish to know whether there is summing for a set of trees, and whether
there is coverage of all of the paths of tree traversal. Or a user may wish to know
what trees result in a default case. One may also wish to test the empty test, which
asks the question of whether any trees are accepted as a pattern match at all. As
mentioned, in one embodiment of the invention, the invention enables the
following four transform tests: intersection, union, complement and emptiness
testing.

[00117] The advantageous use of the invention with compilers was mentioned
above. The invention can also be used for a host of other scenarios as well, such as
schema validation. For instance, a message comes in with a purchase order, and the
question is whether the purchase order is compatible against some schema. The

pattern matching of the invention can be used to validate the message against the

26

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

schema regardless of action semantics or ordered/unordered information while
preserving the same in the outcome.
[00118] Contract checking is another exemplary use of the invention. For instance,
a company might have a policy concerning a human resources computing system
for the company that states that it must adhere to a set of computer requirements
representing a physical system (e.g., X amount of Storage, Y amount of security, Z
amount of processing power, etc.). In this regard, each configuration can be
represented as a set of requirements in tree representations and according to the tree
transtorm capabilities of the framework of the invention, a systems analyst can
transform a computer configuration according to a pre-defined transform and see
whether the new computer configuration matches the contract required for the HR
computing system.
[00119] The invention could further be applied to finding security hole patterns in a
set of log data recorded by a computing system, or to determine possible
configurations for a computing system. The invention could be applied to a firewall
where the messages coming in and out of the firewall can be viewed as trees, and
wherein pattern matching can be employed to observe whether any given message
should not be left through the firewall. Since the transformation boolean operations
mentioned herein and supported by the Q framework can be utilized to form any
logic statement, any system of rules in a computing system can be reduced to a tree,
and pattern matching can be applied to determine adherence to those rules. Thus, it
should be clear that the applications of the invention are limitless.

FINITE STATE AUTOMATA AND TRANSDUCERS
[00120] For additional context, a finite state machine (FSM) or finite state
automaton (FSA) is a model of behavior composed of states, transitions and
actions. A state of an FSM stores information about the past, i.e., a state reflects the
input changes from the start of a system to a present moment. A transition indicates
a state change and is described by a condition that requires fulfillment to enable the
transition. An action is a description of an activity that is to be performed at a given
moment. There are several action types: Entry, Exit, Input and Transition Actions.

Entry actions execute the action when entering the state. Exit actions execute the

27

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

action when exiting the state. Input actions execute the action dependent on present
state and input conditions. Transition actions execute the action when performing a
certain transition.

[00121] Finite state transducers (FSTs) are a type of FSM that generate output(s)
based on given input(s) and/or state(s) using action(s), and can be used for control
applications, construction of computer programs, and the like. Fig. 6A illustrates a
simple finite state transducer 620. Transducer 620 generates output(s) 630 based
on given input(s) 610, as translated, or transformed, by FSM 620. Two types of
transducer FSMs that exist are Moore models and Mealy models, which are
described in more detail infra. Mixed models are often used as well.

[00122] Thus, one can appreciate that many different kinds of computer systems
and processes can be modeled as FSMs and FSTs. For instance, any extensible
markup language (XML) document can be represented as an FSM using directed
graphs. Relational data in a relational database may also be represented in this
fashion, e.g., whereby input (e.g., queries) is translated by the FST, which
represents the underlying relational store, to outputs (e.g., query results). In general,
when used to model computer processes, FSTs are typically represented as edge-
labeled directed graphs, where each vertex represents one of 7 states and each edge
a transition from one state to the other on receipt of the alphabet symbol that labels
the edge.

[00123] When many complex subsystems and processes in a computer system are
communicatively coupled as part of an overall system, to design software for the
overall system, a designer might first represent each of the subsystems and
processes as FSTs, e.g., as directed graphs, or other equivalent representations.
Then, to create a complex computer program for a single system that connects
different subsystems, the FSTs, e.g., directed graphs, may be combined or
otherwise transformed according to various operations in order to form new
directed graph(s) that represent the behavior of the overall system.

[00124] For instance, suppose a user Jane makes a request from a client computer
to an Internet server via the Internet for a friend John’s vacation photographs stored

in a database and served by an application on the Internet server. As can be

28

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

appreciated, the end to end communications that take place according to such a
request are numerous, beginning with authentication of Jane and ensuring that Jane
1s authorized to view John’s photos in addition to performing the request itself. As
a simple example, the making and handling of the request itself can be modeled as
a first FST. At the server, a second FST may model the behavior of checking if
Jane is a friend of John’s with reference to various rules, such as may be found in a
set of access control lists (ACLs) and corresponding policy, which might be
represented as a chain of XML fragments, trees, or directed graphs. Additionally, a
third FST may model the relational database itself. By transforming, combining,
matching, translating, etc. the first, second and third sets of FSTs, a new directed
graph can be formed that represents the system, and returns a yes (“authorized”) or
(“unauthorized”) answer for the specific input request, and that handles delivery of
the photos.

[00125] In general, an FSM can be represented using a state diagram (or state
transition diagram) as in the simple state transition diagram of Fig. 8A. In Fig. 8A,
two states S1 and S2 are represented having entry actions EntryAl and EntryA2,
respectively, meaning that entry action EntryA1l is performed when state S1 1s
entered and entry action EntryA2 is performed when state S2 is entered. In turn, a
transition T1 from state S1 to S2 occurs when transition condition TC1 happens
and a transition T2 from state S2 to S1 occurs when transition condition TC2
happens. State S1 might be “the door is open” and state S2 might be “the door is
closed.” To go from state S1 to state S2, therefore, transition T1 must occur, which
occurs only when transition condition TC1 occurs, which might be “a force is
causing the door to move in the closed direction.” The entry action EntryA2 that
executes when entering state S2 thus might be “close the door.” A similar transition
chain can be followed in opening the door, i.e., going from state S2 to state S1.
[00126] Besides diagrams, different types of state transition tables can also be used
to represent FSA. A common representation of such a state transition table STT1 is
shown in Fig. 7A, wherein the combination of a column of the table STT1, such as
current state B and a row of the table STT1, such as condition Y, indicates the next

state that occurs when condition Y happens while in state B, namely, state C.

29

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

However, with a table such as state transition table STT1, the complete actions
information can be added only using footnotes.

[00127] There are, however, FSM definitions including the full actions information
using state tables. For instance, an FSM defined in a virtual environment is called a
virtual finite state machine (VFSM) which relates to a software specification
method used to describe the behavior of a control system using assigned names of
input control properties and of output actions.

[00128] The virtual environment characterizes the environment in which a VFSM
operates and is defined by three sets of names: input names, output names and state
names. Input names are represented by the control properties of all available
variables. Output names are represented by all the available actions on the variables
and state names are defined for each of the states of the FSM. The input names are
used to build virtual conditions to perform state transitions or input actions. The
virtual conditions are built using positive logic algebra. The output names are used
to trigger actions (entry actions, exit actions, input actions or transition actions).
[00129] A state table defines the details of the behavior of a state of a VFSM, as
shown by the exemplary state table ST1 of Fig. 7B. State transition table ST1
includes three columns: in the first column, state names SN are used, in the second
column, the virtual conditions CO built out of input names using positive logic
algebra are placed and in the third column, the output names used to trigger actions
AC appear.

[00130] In addition to their use in modeling reactive systems presented here, FSA
are significant in many different areas, including linguistics, computer science,
philosophy, biology, mathematics, and logic. Finite state machines are one type of
the automata studied in automata theory and the theory of computation. In
computer science, finite state machines are widely used in modeling of application
behavior, design of hardware digital systems, software engineering, compilers, and
the study of computation and languages. A complete survey of the applications of
FSAs 1s virtually impossible - sufficed to say, there are virtually limitless

applications of FSAs to systems everywhere.

30

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

[00131] In general, a transducer computes a relation between two formal
languages. In the context of FSMs and FSAs, transducers generate output based on
a given input and/or a state using actions, and can be used for control applications.
Two types of transducer FSMs are generally distinguished: Moore models and
Mealy models. In practice, mixed models are often used.

[00132] For illustrative purposes, Fig. 8B shows a transducer FSM 800 showing a
Moore model example having four states S3, S4, S5 and S6, with outputs O3, O4,
05 and O6, respectively. With a Moore machine, the FSM uses only entry actions,
1.e., output depends only on the state. The advantage of the Moore model is as a
simplification of the behavior. The example in Fig. 8B shows a Moore FSM 800 of
an elevator door. The state machine recognizes two commands: “command open”
C1 and “command close” C2, which trigger state changes. For instance, the entry
action EA1 in “Opening” state S6 starts a motor opening the door and the entry
action EA2 in “Closing” state S4 starts a motor in the other direction closing the
door. “Opened” state S3 and “Closed” state S5 do not perform any actions in this
example, rather they signal to the outside systems (e.g., to other state machines)
that: “door is open” or “door is closed,” respectively.

[00133] Fig. 8C illustrates a transducer FSM 810 showing a Mealy model example
having two states S7 and S8, outputs O7 and O8 and input actions I1 and 12,
respectively. With a Mealy machine, the FSM uses only input actions, i.e., output
depends on input and state. The use of a Mealy FSM often leads to a reduction of
the number of states. The example in Fig. 8C shows a Mealy FSM 810
implementing the same behavior as in the Moore example 800 of Fig. 8B. There are
two input actions: “start motor to close the door if command close arrives” I1 and
“start motor in the other direction to open the door if command open arrives™ 12.
[00134] Yet another distinction for finite automata is between deterministic finite
automata (DFA) and non-deterministic (NDFA) or generalized non-deterministic
finite automata (GNFA). In deterministic automata, for each state, there is exactly
one transition for each possible input. In non-deterministic automata, there can be
none or more than one transition from a given state for a given possible input. This

distinction 1s relevant in practice, but not in theory, as there exists an algorithm

31

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

which can transform any NDFA into an equivalent DFA, although this
transformation typically significantly increases the complexity of the automaton.
[00135] An FSM with only one state is called a combinatorial FSM and uses only
input actions. This concept is useful in cases where a number of FSM are required
to work together, and where it is convenient to consider a purely combinatorial part
as a form of FSM to suit the design tools.

[00136] In general, a transducer computes a relation between two formal
languages. The class of relations computed by finite state transducers (FSTs) is
known as the class of rational relations. FSTs are typically useful in natural
language processing research.

[00137] An FST is a finite state machine with two tapes, which is contrasted with
an ordinary finite state automaton, which has a single tape. As a matter of
nomenclature, an automaton is said to recognize a string if the content of its tape is
viewed as input. In other words, the automaton computes a function that maps
strings into the set {0, 1}. Alternatively, it is said that an automaton generates
strings, which means its tape is viewed as an output tape. On this view, the
automaton generates a formal language, which is a set of strings. The two views of
automata are equivalent: the function that the automaton computes is precisely the
indicator function of the set of strings it recognized. The class of languages
generated by finite automata is known as the class of regular languages.

[00138] The two tapes of a transducer are typically viewed as an input tape and an
output tape. In this regard, a transducer is said to transduce (i.e., translate) the
contents of its input tape to its output tape, by accepting a string on its input tape
and generating another string on its output tape. It may do so nondeterministically
and it may produce more than one output for each input string. A transducer may
also produce no output for a given input string, in which case it is said to reject the
input.

[00139] For additional context, formally, a finite state transducer 7 is a tuple (Q, Z,
I', I, F, §) such that:

Q 1s a finite set, the set of states;

¥ 1s a finite set, called the input alphabet;

32

10

15

20

25

WO 2008/034086 PCT/US2007/078540

I" 1s a finite set, called the output alphabet;

I is a subset of Q, the set of initial states;

F is a subset of Q, the set of final states; and

ocOx (2 u{e})x (T u{e})x O (wheree is the empty string) is the transition
relation.

(Q, 6) can be viewed as a labeled directed graph, known as the transition graph of

-

© means that there is a labeled edge

r’l i

& ¥ £
. . ¥ B
T: the set of vertices is O, and & & & F 1 5

going from vertex ¢ to vertex . In this respect, a is the input label and b the output

label of that edge.

[00140] Define the extended transition relation & " as the smallest set such that:
§C & :

(g, 6,6,8) S8 goran ¥ =@ ; and

whenever L& T, w73 =8 g irab sy 28 g0 (g, za, ybs) € &

[00141] The extended transition relation is essentially the reflexive transitive
closure of the transition graph that has been augmented to take edge labels into
account. The elements of 8~ are known as paths. The edge labels of a path are
obtained by concatenating the edge labels of its constituent transitions in order.

[00142] The behavior of the transducer T is the rational relation [7] defined as

follows: x[T]y if and only if there exists ¢ = I and & € Fsuch that

u ‘;‘\ [amp ¥ ~n ‘v— ¥, .
' i, i< & . This is to say that 7 transduces a string & ¥ intoa string

¥ = 1" if there exists a path from an initial state to a final state whose input label
1s x and whose output label is y.

[00143] The following operations defined on finite automata also apply to finite
transducers: Union, concatenation, Kleene closure, composition, projection of the

input tape and projection of the output tape.

[00144] With respect to the union operation, given transducers 7 and S, there exists

a transducer T U 5 such that T[T U S1%ifand only if x[T]y or x[S]y.

33

10

15

20

25

WO 2008/034086 PCT/US2007/078540

[00145] With respect to the concatenation operation, given transducers 7 and S,
there exists a transducer - .5 such that ' [T Sly= if and only if w[TTy and
x[S]z.

[00146] With respect to the Kleene closure operation, given a transducer 7, there
exists a transducer 7 with the following properties: (1) [T " les) it w[T "]y and
x[T]z then wx[T* lyz; and x[T "]y does not hold unless mandated by (1) or (2).
[00147] Note that there is no notion of intersection of transducers. Instead, there is
an operation of composition, which is specific to transducers and whose
construction is similar to that of intersection of automata. Composition is defined as
follows:

[00148] Given a transducer 7 on alphabets £ and I' and a transducer S on alphabets
I and A, there exists a transducer ¥ © .5 on X and A such that € [T 28]z and

only if there exists a string ¥ = I" such that x[7]y and y[S]z.

[00149] One can also project out either tape of a transducer to obtain an automaton.
There are two projection functions: m; preserves the input tape, and m, preserves the
output tape. The first projection, x; 1s defined as follows:

[00150] Given a transducer 7, there exists a finite automaton w;7 such that ;7
accepts x if and only if there exists a string y for which x[7T]y. The second
projection, m, is defined similarly.

[00151] In addition, finite state machines can be used to represent a partial order,
which formalizes the intuitive concept of an ordering, sequencing, or arrangement
of a set’s elements. A partial order need not necessarily be a total order, which
guarantees the mutual comparability of all objects in the set. In this regard, a total
order 1s a kind of partial order defined for all pairs of items of a set.

[00152] Thus, a partial order is defined for some, but not necessarily all, pairs of
items. For instance, the sets {a, b} and {a, ¢, d} are subsets of {a, b, ¢, d}, but
neither is a subset of the other. So “subset of” is a partial order on sets. For another
example, < (less than or equal to) is a total order on integers, since, for any two

integers, one of the integers is always less than or equal to the other.

34

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

[00153] As shown in Fig. 6B, an ordered nest represents that the information that

66,99 66

a” “implies” “b,” but not the other way around (i.e., “b” does not necessarily

99 66,99
a

“imply) according to the ordered hierarchy. Thus, the tree of Fig. 6B is an
example of a representation of an ordered nest. The tree of Fig. 6C, in contrast,
represents an example of an unordered nest. In this regard, whether the factual
information represented by the tree of Fig. 6C is read from left to right, or right to
left, the same factual information is gleaned, namely, “block equals (is) red” or “red
equals (is) block™ both indicate logically that the block is (=) red. Accordingly,
such information is unordered and the order in which the tree is traversed is not
critical to gaining the unordered information.

EXEMPLARY NETWORKED AND DISTRIBUTED ENVIRONMENTS
[00154] One of ordinary skill in the art can appreciate that the invention can be
implemented in connection with any computer or other client or server device,
which can be deployed as part of a computer network, or in a distributed computing
environment, connected to any kind of data store. In this regard, the present
invention pertains to any computer system or environment having any number of
memory or storage units, and any number of applications and processes occurring
across any number of storage units or volumes, which may be used in connection
with embodiments of the QFX of the present invention. The present invention may
apply to an environment with server computers and client computers deployed in a
network environment or a distributed computing environment, having remote or
local storage. The present invention may also be applied to standalone computing
devices, having programming language functionality, interpretation and execution
capabilities for generating, receiving and transmitting information in connection
with remote or local services and processes. As described earlier, MFSTs have
ubiquitous applicability to software processes across multiple machines and
computing devices, and thus the techniques for translating grammars to MFSTs in
accordance with the present invention can be applied with great efficacy in a
variety of computing environments.

[00155] Distributed computing provides sharing of computer resources and

services by exchange between computing devices and systems. These resources and

35

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

services include the exchange of information, cache storage and disk storage for
objects, such as files. Distributed computing takes advantage of network
connectivity, allowing clients to leverage their collective power to benefit the entire
enterprise. In this regard, a variety of devices may have applications, objects or
resources that may implicate the QFX of the invention.

[00156] Fig. 9 provides a schematic diagram of an exemplary networked or
distributed computing environment. The distributed computing environment
comprises computing objects 910a, 910b, etc. and computing objects or devices
920a, 920b, 920c, 920d, 920e, etc. These objects may comprise programs,
methods, data stores, programmable logic, etc. The objects may comprise portions
of the same or different devices such as PDAs, audio/video devices, MP3 players,
personal computers, etc. Each object can communicate with another object by way
of the communications network 940. This network may itself comprise other
computing objects and computing devices that provide services to the system of
Fig. 9, and may itself represent multiple interconnected networks. In accordance
with an aspect of the invention, each object 910a, 910b, etc. or 920a, 920b, 920c,
920d, 920e, etc. may contain an application that might make use of an API, or other
object, software, firmware and/or hardware, suitable for use with the various
embodiments of QFX in accordance with the invention.

[00157] It can also be appreciated that an object, such as 920c, may be hosted on
another computing device 910a, 910b, etc. or 920a, 920b, 920c, 920d, 920e, etc.
Thus, although the physical environment depicted may show the connected devices
as computers, such illustration is merely exemplary and the physical environment
may alternatively be depicted or described comprising various digital devices such
as PDAs, televisions, MP3 players, etc., any of which may employ a variety of
wired and wireless services, software objects such as interfaces, COM objects, and
the like.

[00158] There are a variety of systems, components, and network configurations
that support distributed computing environments. For example, computing systems
may be connected together by wired or wireless systems, by local networks or

widely distributed networks. Currently, many of the networks are coupled to the

36

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

Internet, which provides an infrastructure for widely distributed computing and
encompasses many different networks. Any of the infrastructures may be used for
exemplary communications made incident to embodiments of the QFX of the
invention.

[00159] In home networking environments, there are at least four disparate network
transport media that may each support a unique protocol, such as Power line, data
(both wireless and wired), voice (e.g., telephone) and entertainment media. Most
home control devices such as light switches and appliances may use power lines for
connectivity. Data Services may enter the home as broadband (e.g., DSL, Cable
modem, etc.) and are accessible within the home using either wireless (e.g.,
HomeRF or 802.11B) or wired (e.g., Home PNA, Cat 5, Ethernet, even power line)
connectivity. Voice traffic may enter the home either as wired (e.g., Cat 3) or
wireless (e.g., cell phones) and may be distributed within the home using Cat 3
wiring. Entertainment media, or other graphical data, may enter the home either
through satellite or cable and is typically distributed in the home using coaxial
cable. IEEE 1394 and DVI are also digital interconnects for clusters of media
devices. All of these network environments and others that may emerge, or already
have emerged, as protocol standards may be interconnected to form a network, such
as an intranet, that may be connected to the outside world by way of a wide area
network, such as the Internet. In short, a variety of disparate sources exist for the
storage and transmission of data, and consequently, any of the computing devices
of the present invention may share and communicate data in any existing manner,
and no one way described in the embodiments herein is intended to be limiting.
[00160] The Internet commonly refers to the collection of networks and gateways
that utilize the Transmission Control Protocol/Internet Protocol (TCP/IP) suite of
protocols, which are well-known in the art of computer networking. The Internet
can be described as a system of geographically distributed remote computer
networks interconnected by computers executing networking protocols that allow
users to interact and share information over network(s). Because of such wide-
spread information sharing, remote networks such as the Internet have thus far

generally evolved into an open system with which developers can design software

37

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

applications for performing specialized operations or services, essentially without
restriction.

[00161] Thus, the network infrastructure enables a host of network topologies such
as client/server, peer-to-peer, or hybrid architectures. The “client” is a member of a
class or group that uses the services of another class or group to which it 1s not
related. Thus, in computing, a client is a process, i.e., roughly a set of instructions
or tasks, that requests a service provided by another program. The client process
utilizes the requested service without having to “know” any working details about
the other program or the service itself. In a client/server architecture, particularly a
networked system, a client is usually a computer that accesses shared network
resources provided by another computer, e.g., a server. In the illustration of Fig. 9,
as an example, computers 920a, 920b, 920c, 920d, 920e, etc. can be thought of as
clients and computers 910a, 910b, etc. can be thought of as servers where servers
910a, 910b, etc. maintain the data that is then replicated to client computers 920a,
920b, 920c, 920d, 920e, etc., although any computer can be considered a client, a
server, or both, depending on the circumstances. Any of these computing devices
may be processing data or requesting services or tasks that may implicate the tree
grammars and translation techniques of the various embodiments of the QFX of the
invention.

[00162] A server is typically a remote computer system accessible over a remote or
local network, such as the Internet or wireless network infrastructures. The client
process may be active in a first computer system, and the server process may be
active in a second computer system, communicating with one another over a
communications medium, thus providing distributed functionality and allowing
multiple clients to take advantage of the information-gathering capabilities of the
server. Any software objects utilized pursuant to the QFX of the invention may be
distributed across multiple computing devices or objects.

[00163] Client(s) and server(s) communicate with one another utilizing the
functionality provided by protocol layer(s). For example, HyperText Transfer
Protocol (HTTP) is a common protocol that is used in conjunction with the World

Wide Web (WWW), or “the Web.” Typically, a computer network address such as

38

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

an Internet Protocol (IP) address or other reference such as a Universal Resource
Locator (URL) can be used to identify the server or client computers to each other.
The network address can be referred to as a URL address. Communication can be
provided over a communications medium, e.g., client(s) and server(s) may be
coupled to one another via TCP/IP connection(s) for high-capacity communication.
[00164] Thus, Fig. 9 illustrates an exemplary networked or distributed
environment, with server(s) in communication with client computer (s) via a
network/bus, in which the present invention may be employed. In more detail, a
number of servers 910a, 910D, etc. are interconnected via a communications
network/bus 940, which may be a LAN, WAN, intranet, GSM network, the
Internet, etc., with a number of client or remote computing devices 920a, 920b,
920c¢, 920d, 920e, etc., such as a portable computer, handheld computer, thin client,
networked appliance, or other device, such as a VCR, TV, oven, light, heater and
the like in accordance with the present invention. It is thus contemplated that the
present invention may apply to any computing device in connection with which it is
desirable to compile and execute attributed tree grammars, and translate to MFSTs
in accordance with the Q framework defined by the invention.

[00165] In a network environment in which the communications network/bus 940
is the Internet, for example, the servers 910a, 910b, etc. can be Web servers with
which the clients 920a, 920b, 920c, 920d, 920e, etc. communicate via any of a
number of known protocols such as HTTP. Servers 910a, 910b, etc. may also serve
as clients 920a, 920b, 920c¢, 920d, 920e, etc., as may be characteristic of a
distributed computing environment.

[00166] As mentioned, communications may be wired or wireless, or a
combination, where appropriate. Client devices 920a, 920b, 920c, 920d, 920e, etc.
may or may not communicate via communications network/bus 14, and may have
independent communications associated therewith. For example, in the case of a
TV or VCR, there may or may not be a networked aspect to the control thereof.
Each client computer 920a, 920b, 920c, 920d, 920e, etc. and server computer 910a,
910b, etc. may be equipped with various application program modules or objects

135a, 135b, 135c, etc. and with connections or access to various types of storage

39

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

elements or objects, across which files or data streams may be stored or to which
portion(s) of files or data streams may be downloaded, transmitted or migrated.
Any one or more of computers 910a, 910b, 920a, 920b, 920c, 920d, 920e, etc. may
be responsible for the maintenance and updating of a database 930 or other storage
element, such as a database or memory 930 for storing data processed or saved
according to the invention. Thus, the present invention can be utilized in a
computer network environment having client computers 920a, 920b, 920c, 920d,
920e, etc. that can access and interact with a computer network/bus 940 and server
computers 910a, 910b, etc. that may interact with client computers 920a, 920b,
920c, 920d, 920e, etc. and other like devices, and databases 930.

EXEMPLARY COMPUTING DEVICE
[00167] As mentioned, the invention applies to any device wherein it may be
desirable to apply techniques of the QFX defined in accordance with the invention.
It should be understood, therefore, that handheld, portable and other computing
devices and computing objects of all kinds are contemplated for use in connection
with the present invention, i.e., anywhere that a device may implement software
processes representing state machines or otherwise receive, process or store data.
Accordingly, the below general purpose remote computer described below in Fig.
10 is but one example, and the present invention may be implemented with any
client having network/bus interoperability and interaction. Thus, the present
invention may be implemented in an environment of networked hosted services in
which very little or minimal client resources are implicated, e.g., a networked
environment in which the client device serves merely as an interface to the
network/bus, such as an object placed in an appliance.
[00168] Although not required, the invention can partly be implemented via an
operating system, for use by a developer of services for a device or object, and/or
included within application software that operates in connection with the
component(s) of the invention. Software may be described in the general context of
computer-executable instructions, such as program modules, being executed by one

or more computers, such as client workstations, servers or other devices. Those

40

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

skilled in the art will appreciate that the invention may be practiced with other
computer system configurations and protocols.

[00169] Fig. 10 thus illustrates an example of a suitable computing system
environment 1000a in which the invention may be implemented, although as made
clear above, the computing system environment 1000a is only one example of a
suitable computing environment for a media device and is not intended to suggest
any limitation as to the scope of use or functionality of the invention. Neither
should the computing environment 1000a be interpreted as having any dependency
or requirement relating to any one or combination of components illustrated in the
exemplary operating environment 1000a.

[00170] With reference to Fig. 10, an exemplary remote device for implementing
the invention includes a general purpose computing device in the form of a
computer 1010a. Components of computer 1010a may include, but are not limited
to, a processing unit 1020a, a system memory 1030a, and a system bus 1021a that
couples various system components including the system memory to the processing
unit 1020a. The system bus 1021a may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures.

[00171] Computer 1010a typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by
computer 1010a. By way of example, and not limitation, computer readable media
may comprise computer storage media and communication media. Computer
storage media includes both volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage of information such as
computer readable instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM,
tlash memory or other memory technology, CDROM, digital versatile disks (DVD)
or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other medium which can be used
to store the desired information and which can be accessed by computer 1010a.

Communication media typically embodies computer readable instructions, data

41

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

structures, program modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any information delivery
media.

[00172] The system memory 1030a may include computer storage media in the
form of volatile and/or nonvolatile memory such as read only memory (ROM)
and/or random access memory (RAM). A basic input/output system (BIOS),
containing the basic routines that help to transter information between elements
within computer 1010a, such as during start-up, may be stored in memory 1030a.
Memory 1030a typically also contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing unit
1020a. By way of example, and not limitation, memory 1030a may also include an
operating system, application programs, other program modules, and program data.
[00173] The computer 1010a may also include other removable/non-removable,
volatile/nonvolatile computer storage media. For example, computer 1010a could
include a hard disk drive that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive that reads from or writes to a removable,
nonvolatile magnetic disk, and/or an optical disk drive that reads from or writes to a
removable, nonvolatile optical disk, such as a CD-ROM or other optical media.
Other removable/non-removable, volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment include, but are not limited to,
magnetic tape cassettes, flash memory cards, digital versatile disks, digital video
tape, solid state RAM, solid state ROM and the like. A hard disk drive is typically
connected to the system bus 1021a through a non-removable memory interface
such as an interface, and a magnetic disk drive or optical disk drive is typically
connected to the system bus 1021a by a removable memory interface, such as an
interface.

[00174] A user may enter commands and information into the computer 1010a
through input devices such as a keyboard and pointing device, commonly referred
to as a mouse, trackball or touch pad. Other input devices may include a
microphone, joystick, game pad, satellite dish, scanner, or the like. These and other

input devices are often connected to the processing unit 1020a through user input

42

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

1040a and associated interface(s) that are coupled to the system bus 1021a, but may
be connected by other interface and bus structures, such as a parallel port, game
port or a universal serial bus (USB). A graphics subsystem may also be connected
to the system bus 1021a. A monitor or other type of display device is also
connected to the system bus 1021a via an interface, such as output interface 1050a,
which may in turn communicate with video memory. In addition to a monitor,
computers may also include other peripheral output devices such as speakers and a
printer, which may be connected through output interface 1050a.

[00175] The computer 1010a may operate in a networked or distributed
environment using logical connections to one or more other remote computers,
such as remote computer 1070a, which may in turn have media capabilities
different from device 1010a. The remote computer 1070a may be a personal
computer, a server, a router, a network PC, a peer device or other common network
node, or any other remote media consumption or transmission device, and may
include any or all of the elements described above relative to the computer 1010a.
The logical connections depicted in Fig. 10 include a network 1071a, such local
area network (LAN) or a wide area network (WAN), but may also include other
networks/buses. Such networking environments are commonplace in homes,
offices, enterprise-wide computer networks, intranets and the Internet.

[00176] When used in a LAN networking environment, the computer 1010a 1s
connected to the LAN 1071a through a network interface or adapter. When used in
a WAN networking environment, the computer 1010a typically includes a
communications component, such as a modem, or other means for establishing
communications over the WAN, such as the Internet. A communications
component, such as a modem, which may be internal or external, may be connected
to the system bus 1021a via the user input interface of input 1040a, or other
appropriate mechanism. In a networked environment, program modules depicted
relative to the computer 1010a, or portions thereof, may be stored in a remote
memory storage device. It will be appreciated that the network connections shown
and described are exemplary and other means of establishing a communications

link between the computers may be used.

43

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

EXEMPLARY DISTRIBUTED COMPUTING ARCHITECTURES
[00177] Various distributed computing frameworks have been and are being
developed in light of the convergence of personal computing and the Internet.
Individuals and business users alike are provided with a seamlessly interoperable
and Web-enabled interface for applications and computing devices, making
computing activities increasingly Web browser or network-oriented.
[00178] For example, MICROSOFT®’s managed code platform, i.e., .NET,
includes servers, building-block services, such as Web-based data storage and
downloadable device software. Generally speaking, the .NET platform provides (1)
the ability to make the entire range of computing devices work together and to have
user information automatically updated and synchronized on all of them, (2)
increased interactive capability for Web pages, enabled by greater use of XML
rather than HTML, (3) online services that feature customized access and delivery
of products and services to the user from a central starting point for the
management of various applications, such as e-mail, for example, or software, such
as Office .NET, (4) centralized data storage, which increases efficiency and ease of
access to information, as well as synchronization of information among users and
devices, (5) the ability to integrate various communications media, such as e-mail,
faxes, and telephones, (6) for developers, the ability to create reusable modules,
thereby increasing productivity and reducing the number of programming errors
and (7) many other cross-platform and language integration features as well.
[00179] While some exemplary embodiments herein are described in connection
with software, such as an application programming interface (APIl), residing on a
computing device, one or more portions of the invention may also be implemented
via an operating system, or a “middle man” object, a control object, hardware,
firmware, intermediate language instructions or objects, etc., such that the
embodiments of the QFX in accordance with the invention may be included in,
supported in or accessed via all of the languages and services enabled by managed
code, such as .NET code, and in other distributed computing frameworks as well.
[00180] There are multiple ways of implementing the present invention, e.g., an

appropriate API, tool kit, driver code, operating system, control, standalone or

44

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

downloadable software object, etc. which enables to use the QFX of the invention.
The invention contemplates the use of the invention from the standpoint of APIs (or
other software object), as well as from the viewpoint of data structures, software or
hardware object that may implement at least part of the QFX in accordance with the
invention. Thus, various implementations of the invention described herein may
have aspects that are wholly in hardware, partly in hardware and partly in software,
as well as in software.

[00181] The word “exemplary” is used herein to mean serving as an example,
instance, or illustration. For the avoidance of doubt, the subject matter disclosed
herein is not limited by such examples. In addition, any aspect or design described
herein as “exemplary” is not necessarily to be construed as preferred or
advantageous over other aspects or designs, nor is it meant to preclude equivalent
exemplary structures and techniques known to those of ordinary skill in the art.

99 ¢¢

Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other
similar words are used in either the detailed description or the claims, for the
avoldance of doubt, such terms are intended to be inclusive in a manner similar to
the term “comprising” as an open transition word without precluding any additional
or other elements.

[00182] As mentioned above, while exemplary embodiments of the present
invention have been described in connection with various computing devices and
network architectures, the underlying concepts may be applied to any computing
device or system in which it is desirable to include MFSTs implementing
transformations. For instance, the QFX of the invention may be applied to the
operating system of a computing device, provided as a separate object on the
device, as part of another object, as a reusable control, as a downloadable object
from a server, as a “middle man” between a device or object and the network, as a
distributed object, as hardware, in memory, a combination of any of the foregoing,
etc. While exemplary programming languages, names and examples are chosen
herein as representative of various choices, these languages, names and examples
are not intended to be limiting. One of ordinary skill in the art will appreciate that

there are numerous ways of providing object code and nomenclature that achieves

45

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

the same, similar or equivalent functionality achieved by the various embodiments
of the invention.

[00183] As mentioned, the various techniques described herein may be
implemented in connection with hardware or software or, where appropriate, with a

99 ¢¢

combination of both. As used herein, the terms “component,” “system” and the like
are likewise intended to refer to a computer-related entity, either hardware, a
combination of hardware and software, software, or software in execution. For
example, a component may be, but is not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of execution, a program,
and/or a computer. By way of illustration, both an application running on computer
and the computer can be a component. One or more components may reside within
a process and/or thread of execution and a component may be localized on one
computer and/or distributed between two or more computers.

[00184] Thus, the methods and apparatus of the present invention, or certain
aspects or portions thereof, may take the form of program code (i.e., instructions)
embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or
any other machine-readable storage medium, wherein, when the program code is
loaded into and executed by a machine, such as a computer, the machine becomes
an apparatus for practicing the invention. In the case of program code execution on
programmable computers, the computing device generally includes a processor, a
storage medium readable by the processor (including volatile and non-volatile
memory and/or storage elements), at least one input device, and at least one output
device. One or more programs that may implement or utilize the QFX of the
present invention, e.g., through the use of a data processing API, software object, or
the like, are preferably implemented in a high level procedural or object oriented
programming language to communicate with a computer system. However, the
program(s) can be implemented in assembly or machine language, if desired. In any
case, the language may be a compiled or interpreted language, and combined with
hardware implementations.

[00185] The methods and apparatus of the present invention may also be practiced

via communications embodied in the form of program code that is transmitted over

46

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

some transmission medium, such as over electrical wiring or cabling, through fiber
optics, or via any other form of transmission, wherein, when the program code is
received and loaded into and executed by a machine, such as an EPROM, a gate
array, a programmable logic device (PLD), a client computer, etc., the machine
becomes an apparatus for practicing the invention. When implemented on a
general-purpose processor, the program code combines with the processor to
provide a unique apparatus that operates to invoke the functionality of the present
invention. Additionally, any storage techniques used in connection with the present
invention may invariably be a combination of hardware and software.

[00186] Furthermore, the disclosed subject matter may be implemented as a
system, method, apparatus, or article of manufacture using standard programming
and/or engineering techniques to produce software, firmware, hardware, or any
combination thereof to control a computer or processor based device to implement
aspects detailed herein. The term "article of manufacture” (or alternatively,
"computer program product") where used herein is intended to encompass a
computer program accessible from any computer-readable device, carrier, or media.
For example, computer readable media can include but are not limited to magnetic
storage devices (e.g., hard disk, floppy disk, magnetic strips...), optical disks (e.g.,
compact disk (CD), digital versatile disk (DVD)...), smart cards, and flash memory
devices (e.g., card, stick). Additionally, it is known that a carrier wave can be
employed to carry computer-readable electronic data such as those used in
transmitting and receiving electronic mail or in accessing a network such as the
Internet or a local area network (LAN).

[00187] The aforementioned systems have been described with respect to
interaction between several components. It can be appreciated that such systems
and components can include those components or specified sub-components, some
of the specified components or sub-components, and/or additional components, and
according to various permutations and combinations of the foregoing. Sub-
components can also be implemented as components communicatively coupled to
other components rather than included within parent components (hierarchical).

Additionally, it should be noted that one or more components may be combined

47

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

into a single component providing aggregate functionality or divided into several
separate sub-components, and any one or more middle layers, such as a
management layer, may be provided to communicatively couple to such sub-
components in order to provide integrated functionality. Any components
described herein may also interact with one or more other components not
specifically described herein but generally known by those of skill in the art.
[00188] In view of the exemplary systems described supra, methodologies that
may be implemented in accordance with the disclosed subject matter are better
appreciated with reference to the flowchart of Fig. 5. While for purposes of
simplicity of explanation, the methodologies are shown and described as a series of
blocks, it is to be understood and appreciated that the claimed subject matter is not
limited by the order of the blocks, as some blocks may occur in different orders
and/or concurrently with other blocks, or otherwise provide equivalent
functionality, from what 1s depicted and described herein. Where non-sequential, or
branched, flow is illustrated via flowchart, it can be appreciated that various other
branches, tlow paths, and orders of the blocks, may be implemented which achieve
the same or a similar result. Moreover, not all illustrated blocks may be required to
implement the methodologies described hereinafter.

[00189] Furthermore, as will be appreciated various portions of the disclosed
systems above and methods below may include or consist of artificial intelligence
or knowledge or rule based components, sub-components, processes, means,
methodologies, or mechanisms (e.g., support vector machines, neural networks,
expert systems, Bayesian belief networks, fuzzy logic, data fusion engines,
classifiers...). Such components, infer alia, can automate certain mechanisms or
processes performed thereby to make portions of the QFX more adaptive as well as
efficient and intelligent.

[00190] While the present invention has been described in connection with the
preferred embodiments of the various Figs., it is to be understood that other similar
embodiments may be used or modifications and additions may be made to the
described embodiment for performing the same function of the present invention

without deviating therefrom. For example, while exemplary network environments

48

10

15

WO 2008/034086 PCT/US2007/078540

of the invention are described in the context of a networked environment, such as a
peer to peer networked environment, one skilled in the art will recognize that the
present invention is not limited thereto, and that the methods, as described in the
present application may apply to any computing device or environment, such as a
gaming console, handheld computer, portable computer, etc., whether wired or
wireless, and may be applied to any number of such computing devices connected
via a communications network, and interacting across the network. Furthermore, it
should be emphasized that a variety of computer platforms, including handheld
device operating systems and other application specific operating systems are
contemplated, especially as the number of wireless networked devices continues to
proliferate.

[00191] While exemplary embodiments refer to utilizing the present invention in
the context of particular programming language constructs, the invention is not so
limited, but rather may be implemented in any language and applies to translating
any grammars that include actions. Still further, the present invention may be
implemented in or across a plurality of processing chips or devices, and storage
may similarly be effected across a plurality of devices. Therefore, the present
invention should not be limited to any single embodiment, but rather should be

construed in breadth and scope in accordance with the appended claims.

49

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

CLAIMS
What is claimed is:
1. A method for transforming at least one data structure specifying at least one
tree structure in a computing system to at least one modular finite state transducer
(MFST), comprising:
receiving 500 at least one data structure specifying at least one tree structure 140a
representing at least one finite state transducer (FST) including semantics for
defining ordered and unordered information; and
for any type of finite state machine (FSM) model represented by the at least one
data structure 140a, transforming 510 the at least one data structure 140a to at least
one MFST while preserving the ordered and unordered information of the at least
one data structure in the at least one MFST, wherein said transforming includes
performing any of an intersection, union and complement operation on the at least
one data structure.
2. The method of claim 1, wherein said transforming 510 includes
transforming the at least one data structure 140a with a translation grammar 170
that preserves the ordered and unordered information in the at least one MFST
irrespective of the type of FSM model represented by the at least one tree structure
specified by the at least one data structure 140a.
3. The method of claim 1, wherein said transforming 510 includes performing
at least one control flow analysis algorithm on the FSTs represented by at least one
data structure 140a that preserves the ordered and unordered semantics information
of the at least one data structure 140a for any type of representation.
4, The method of claim 1, wherein said transforming 510 includes
transforming the at least one data structure 140a with a pre-defined translation
grammar 170 that preserves both ordered and unordered nest information of the at
least one data structure 140a irrespective of the type of FSM model represented by
the at least one tree structure specified by the at least one data structure 140a.
S. The method of claim 1, wherein said receiving 500 includes receiving at

least one data structure 140a specifying at least one directed graph structure

50

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

representing the at least one FST including ordered and unordered semantics for
defining list and set pattern information.
6. The method of claim 4, wherein said receiving 500 includes receiving at
least one data structure 140a specitying at least one extensible markup language
(XML) document representing the at least one FST including the semantics for
defining ordered and unordered information.
7. The method of claim 1, wherein said transforming 510 includes performing
an empty nest test on at least one data structure 140a.
8. The method of claim 1, wherein said transforming 510 includes performing
a structural compatibility test on at least two data structures while preserving the
ordered and unordered information.
9. The method of claim 1, wherein said receiving 500 includes receiving at
least one data structure 140a specifying at least one non-deterministic tree data
structure and said transforming 510 includes transforming the at least one data
structure to a deterministic MFST.
10. A computer readable medium comprising computer executable instructions
for performing the method of claim 1.
11. A computing device comprising means for performing the method of claim 1.
12. A transformation framework for transducing directed graph data structures
representing finite state transducers (FSTs) to a modular finite state transducer
(MFST) in a computing system, comprising:

means for storing a plurality of directed graph data structures 140a of
varying types for representing FSTs in a computing system including ordered and
unordered semantics information of the plurality of directed graph data structures
140a; and

a transducer 150 that analyzes the plurality of directed graph data structures
140a based on a pre-defined tree grammar 170 and transduces the plurality of
directed graph data structures 140a to at least one MFST while preserving the
ordered and unordered semantics information of the plurality of directed graph data
structures 140a, wherein the transducer 150 performs any of intersect, complement

and union operations on the plurality of directed graph data structures 140a.

51

10

15

20

25

30

WO 2008/034086 PCT/US2007/078540

13. The transformation framework of claim 12, wherein said transducer 150
performs at least one control flow analysis algorithm on the FSTs represented by
the plurality of directed graph data structures 140a that preserves the ordered and
unordered semantics information of the plurality of directed graph data structures
across any type of directed graph representation.

14. The transformation framework of claim 12, wherein said transducer 150
includes a transformation engine 180 that performs specialized binding handling
when transducing the plurality of directed graph data structures 140a, wherein the
specialized binding handling includes performing binding for the ordered and
unordered semantics information during a pattern matching process for matching
patterns of the plurality of directed graph data structures 140a.

15. The transformation framework of claim 12, wherein said transducer 150 in-
lines at least one transducer definition as defined by a directed graph data structure
of the plurality of directed graph data structures 140a while preserving the ordered
and unordered semantics information.

16. The transformation framework of claim 12, wherein the transducer 150
includes a transformation engine component 180 for matching the at least one data
structure 140a to at least one MFST including matching both ordered and
unordered nest information contained in the at least one data structure 140a.

17. The transformation framework of claim 16, wherein said at least one data
structure 140a specifies at least one non-deterministic tree structure and said
transformation engine component 180 transforms the at least one data structure
140a to a deterministic MFST.

18. The transformation framework of claim 12, further comprising:

an interface 11 for receiving a directed graph data structure of the plurality of
directed graph data structures 140a that defines and translates directed graph data
structures 140a according to said pre-defined tree grammar 170.

19. A compiler for transforming directed graph data structures representing
finite state transducers (FSTs) to a modular finite state transducer (MFST) in a

computing system, comprising:

52

10

WO 2008/034086 PCT/US2007/078540

a plurality of directed graph data structures 140a representing FSTs for
processes in a computing system including ordered and unordered information
defining ordered lists and unordered sets for the processes; and

a transformation engine 180 that analyzes the plurality of directed graph data
structures 140a based on a defined tree grammar 170 and transduces the plurality of
directed graph data structures 140a to at least one MFST while preserving the
ordered and unordered information of the plurality of directed graph data structures
140a, wherein the transformation engine 180 performs any of intersect,
complement and union operations on the plurality of directed graph data structures
140a to generate said at least one MFST.

20. The compiler of claim 19, wherein the plurality of directed graph data
structures 140a are represented according to varying FST model types for

representing ordered and unordered information.

53

WO 2008/034086

PCT/US2007/078540

1/25

100

Receive FSTs (e.g., directed graphs)
having Action Semantics

l 105

Process by Transformation Engine

l 110

Apply Analysis and Transformation
according to defined Tree Grammar for
any type FST representation

l 115

Generate MFST, e.g., preserving action
information

MFST
Representations
including Action

Semantics 120

FIG. 1A

Transformation
Framework 125

FIG. 1B

Tranformed
MFST
Representations
Preserving
Action
Semantics 130

PCT/US2007/078540

WO 2008/034086
2/25
140a
Diverse Set of Attributed
Finite State Tree
Machine Grammar
Representations, 170
(e.g., tree data
structures) i
. 190 >
————— | \ Data
® - - NN Structure Transformation | | MFST
® | _ 1 | Analysis Engine 180 Storage
k-] 160
o ﬁ
Q Framework 150

C >]

Diverse Set of

Finite State
Machine Processor P FIG. 1C

Representations,
(e.g., tree data
structures)

WO 2008/034086

)

200-

ovecccssscsscscsscssss’sssssscssscscscsscsna

PCT/US2007/078540

3/25

interface XEControllnstructions {

N

210

semmccnnceeMecccccnaas

[Environment CurrentEnvironment { get; set; }

IContinuation CurrentContinuation { get; }

IContinuation Call(XEInstance target, IContinuation continuation,
IEnvironment callingEnvironment);

IContinuation Return();

void Mark();

object Yield();

[Environment NewEnvironment();

void PushEnvironment(string variableName);

void PopEnvironment();

void Exec(ActionReference action);

FIG. 2A

void PushEnvironment(string variableName) {

[Environment tempEnv;
environmentStack.Push(CurrentEnvironment);
tempEnv=NewEnvironment();
Bind(varName,tempEnv);
CurrentEnvironment=tempEnv;

Mark();

FIG. 2B

WO 2008/034086 PCT/US2007/078540

4/25

)

void PopEnvironment() {
Bind(‘‘term’’,Yield());
220 <, environmentStack.Pop();

CurrentEnvironment=environmentStack.Peek();

PLEI XX X]

FIG. 2C

L)

interface XEEnvironmentInstructions {
[Environment ChildEnv();
230 bool Bind(string variableName,object value);

bool Lookup(string variableName,out object value);

seccccoMecaaa.

FIG. 2D

WO 2008/034086 PCT/US2007/078540

5/25

1Y

public static Set<State<T>> EClosure(Set<State<T>> nfaStates,
List<Action> actions) {
Set<State<T>> eClosure = new Set<State<T>>();

Stack<State<T>> stack = new Stack<State<T>>();

foreach (State<T> nfaState in nfaStates) {
stack.Push(nfaState);
¢Closure.Insert(nfaState);

while (stack.Count > 0) {
State<T> nfaSrc = stack.Pop();

240 4 foreach (Transition<T> t in nfaSrc.EpsTransitions) {
(A1) if (t. Action!=null)
(A2) actions.Add(t.Action);

foreach (State<T> nfaDst in t.States) {

if (!(eClosure.Contains(nfaDst))) {
eClosure.Insert(nfaDst);
stack.Push(nfaDst);

}

return (eClosure);

PY X X X X X ¥ X X XX XXX XY XXXy XYYy Yy Yy yyyy¥y¥NJ
N

FIG. 2E

WO 2008/034086 PCT/US2007/078540

6/25

s

public NFA<T> SubsetConstruction(List<T> lexicon) {
State<T> startDFAState =
State<T>.SubsetState(State<T> EClosure(startState));
NFA<T> dfa = SubsetDFA((startDF AState);

Queue<State<T>> q = new Queue<State<T>>();
q-Enqueue(startDF AState);

while (q.Count > 0) {
State<T> src = q.Dequeue();

foreach (T symbol in lexicon) {

250 (B1) List<Actions> symActions=new List<Actions>();
(B2) Set<State<T>> neighbors=src.Move(symbol,symActions);
(B3) List<Actions> epsActions=new List<Actions>();
(B4) Set<State<T>> eclosure=

State<T> EClosure(neighbors,epsActions);

State<T> dst = State<T>.SubsetState(eclosure);

(B5) src.AddTransition(symbol,dst,symActions);
(B6) src.AddActions(epsActions);
return (dfa);
}
}
}

.-------------------O“-------------------.

FIG. 2F

WO 2008/034086 PCT/US2007/078540

7/25

FIG. 3A

FIG. 3B

WO 2008/034086

8/25

PCT/US2007/078540

Use this arc for * and +

Use thisa
for *and

FIG. 3C

~1C9

7

FIG. 3D

WO 2008/034086

9/25

PCT/US2007/078540

FIG. 3E

Use this arc for *
and ‘+.

arc for *
and ‘“?

FIG. 3F

WO 2008/034086 PCT/US2007/078540

10/25
red
,-~ green
f blue

Ordered or red
List Pattern

FIG. 4A

{
Unordered
or Set
Pattern

FIG. 4B

WO 2008/034086

11/25

PCT/US2007/078540

500

Receive FSTs (e.g., directed graphs)
Having Ordered and Unordered Patterns

l

505

Process by Transformation Engine

l

510

Apply Analysis and Transformation
according to defined Tree Grammar for
any type FST representation

l

515

Generate MFST, e.g., preserving ordered/
unordered information

MFST

FIG. SA

Representations
including List e
Assumptions 520

MFST
Representations

including Set ——pp
Assumptions 522

MFST
Representations
including List =

and Set

Transformation
Framework 530
(e.g. intersection,
union,
complement, etc.)

Tranformed
MFST
—» Representations
Preserving List
and Set Pattern
Information 540

Assumptions 524

FIG. 5B

WO 2008/034086

PCT/US2007/078540
12/25
M; UM,
550 .
0, O
M, \
Home State
Machine Labels?
e 555 ., _/e/v
: M. :

M, UL M,
550 -

u® O—=

M, Accept

States Labeled with
Home State
e 555 - Machine
O, ©

FIG. 5D

M1 U_ M2 After
Determinization

-8575
. ——/@
M,
580
- >@
MM,
— \\‘ -~ 585
Determinization 570 @
M.

FIG. SE

WO 2008/034086

PCT/US2007/078540

13/25
M, U M, ~ 575
e M1 \\\\\\
580 - Any of Accept

—_—

Determinization 570

States 575, 580 or

—>@ —————— 585 may be Part

FIG. SF

MM of the Accept
! 3585 _- State for Union
’ /,/ Operator M, U_ M,
M

—_—

Determinization 570

Accept State for
Intersect Operator
M, N M,

—>@ —————— comprises the

FIG. 5G

M;M; Accept
State 580

WO 2008/034086

14/25

SubTyping

Determinization 570

PCT/US2007/078540

M;c M;if no
Accept State
labeled M,

580 M1 = M2 if Only

Accept State
labeled MM,

M.C M, if no
—————— Accept State
labeled M,

FIG. SH

WO 2008/034086 PCT/US2007/078540

15/25
M, U_ M, 595
| L0001
M, 590
—1—» L4L, 0011
1w L
2-Bit | L 4—» L, 0010
Machine 1=2
— ——» L.L,L; 0111
|, 1lals

UL M:UM,)

Labeled Accept

M, 592 Machine @ States, then Labels
L o are Generated for
1w L Each Combination
2-Bit
Machine | LaLa
T L,

— > L, 0100

——» Ls;L, 1100

A L0, 1111

FIG. 51

WO 2008/034086 PCT/US2007/078540

16/25
596
Set of Patterns P Union Pattern, e.g.,
p1Upz2Ups
Set of Patterns with Optional
Occurrence Constraints, e.g.,
{p1, pP2*; Pa+}
598
Set of Labeled
Runs, e.g., {L1, L%,

Ls+}

FIG. 5J

WO 2008/034086 PCT/US2007/078540

17/25

P,uL P,

I

uP) U(P,) I'(Py) I'(P,)

I

U(P; UL, Py) = U(Py) U, U(P,)
&
F(Pl UL, Pz) = F(Pl)/* F(Pz)

/
/
/
/
/

Labeleé Union
Cross Product
LUCP

FIG. 5K

WO 2008/034086 PCT/US2007/078540

18/25

Accept State
Labels ASL1
U(Pl UL, Pz)

Lla L3
L19 L39 L29 L4
L29 L4

L;=L4
Ls=L,

Accept State
U(Pl L PZ) Labels ASL2
L,

L19 L2
L,

FIG. SL

WO 2008/034086

19/25

Input(s) 610 L
- Finite State Transducer 620

PCT/US2007/078540

FIG. 6A

Implies

/N

FIG. 6B Pacts

Output(s) 630
utput(s) o

ZAN

/\

block

red

FIG. 6C

PCT/US2007/078540

WO 2008/034086

20/25

VL O

Z uoijipuo)d
0 B2 12 1) A uonipuo)
X uonipuod
J 9je)s g 9ajels Vv 9)e1s uol}ipuon/ajels jJuaing

11L1S d|qel uoljisuel] Ijels

PCT/US2007/078540

WO 2008/034086

21/25

qaL "Old

(s)aweN indino UOIHPUOY [eNLIA aweN ajejs }xaN

(s)aweN indino UOIHPUOY [eNLIA aweN ajejs }xaN

(s)aweN indino UOIHPUOY [eNLIA

(s)aweN ndinQ uonoy }ixg

(s)owep 3ndino uonoy Anug aje)s juaun)
JV suonoy 0D suonipuo) NS aweN ajels

11S dlqel 9jels

WO 2008/034086

22/25

TC1

Finite
State
Machine
Diagram

FIG. 8A

PCT/US2007/078540

TC2

WO 2008/034086 PCT/US2007/078540

23/25

Moore
Representation
800
\

L e T ——

N
N Sensor_@pened 06

Command_Slose O3

S4
Closing

Command_Open C1

S6
Opening

Command_Close C2

Sengbr_Closed O4

FIG. 8B

Mealy
Representation
810

Sensor_Closed O7
- S8

Closed

Sensor_Opened O8

FIG. 8C

WO 2008/034086

24/25

r 920b

/
/
/
/
i
!

Computing
Device -
920a Computing Device

i

0] IZI' Il

Object
920c
|

PCT/US2007/078540

/940 y
7/
Object — Computing
920d Communications Device
Network/Bus 920e
910b

=

I D
[

N

N
Server Object

=T
<Q
o
Q
N\

Server Object

Database 930

FIG. 9

PCT/US2007/078540

WO 2008/034086

25/25

e0.01

JION3Y

JALNdINOD

y

0901
ERVE]
IOMISN

A -

BTZ01 SNg WIJsAS

e0s0l

Re[dsiq
i I TiTe)

B0col

nun
puIssasoig

€000} JUSWIUOAIAUT bunndwioy

ATowiopy W9ISAS

—_————_——_—_—_—_, e, e, e, — e ———y

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2007/078540

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 7/76(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models since 1975
Japanese utility models and applications for utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(Kipo Internal), Google, YesKisti
keywords: FSM, FST, MFST, finite state machine, finite state transducer, transform*, transduc*, compile, tree, data structure

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A SUSUMU. N. et al. XML stream transformer generation through program composition and 1-20
dependecy analysis. Science of Computer Programming. Feburary 2005, Vol. 54, pages 257-290,
ISSN 0167-6423.

See 258 page, 3rd paragraph; figure 1, 260 page, 5th paragraph.

A US2006/0085389 A1 FLANAGAN, M. et al.) 20 APRIL 2006 1-20
See tigure 8 and its description.

A US05806032 A (SPROAT, R.W.) 08 SEPTEMBER 1998 1-20
See Summary.

A US2004/0176945 A1 INAGAKI, Y. et al.) 09 SEPTEMBER 2004 1-20
See Summary.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
04 JANUARY 2008 (04.01.2008) 07 JANUARY 2008 (07.01.2008)
Name and mailing address of the ISA/KR Authorized officer
' ' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, YOON, Hye Sook
Republic of Korea

Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8370

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2007/078540
Patent document Publication Patent family Publication
cited in search report date member(s) date
US2006085389A1 20.04.2006 NONE
US05806032A 08.09. 1998 CA2201189AA 14.12.1997
EPO0813185A2 17.12.1997
JP10063290A2 06.03. 1998
US20040176945A1 09.09.2004 JP2004271764A2 30.09.2004

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - wo-search-report
	Page 82 - wo-search-report

