发明名称 水热合成的用于选择性氧化烃类的
Mo-V-M-Nb-X 氧化物催化剂

摘要
将水热合成的含有混合金属氧化物的催化剂用于在该催化剂存在下通过链烷烃或链烷烃与链烯烃的混合物的气相氧化制备不饱和羧酸；或者用于在该催化剂存在下通过链烷烃或链烷烃与链烯烃的混合物以及氨的气相氧化制备不饱和腈。
1. 含有以下经验式所示的混合金属氧化物的催化剂:

\[Mo_aV_bM_eNb_dX_eO_f \]

其中

M 是选自 Te 和 Sb 的元素；

X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、
Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、
Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、
F、Cl、Br、I、Pr、Nd、Sm 和 Tb 的元素，条件是，当 M 是 Sb 时，
X 不能是 Sb；

a、b、c、d、e 和 f 分别是元素 Mo、V、M、Nb、X 和 O 的相对
原子数量；并且，

当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，0<e<1.0
且 f 取决于其它元素的氧化态；

所述的催化剂通过包括如下步骤的方法来制备:

(i) 将所需要的元素 Mo、V、M、Nb 和 X 的化合物与含有水的溶
剂混合，以形成含有至少 2 种但少于所述元素 Mo、V、M、Nb 和 X
的全部的第一混合物；

(ii) 将所述的第一混合物在 25℃至 200℃下加热 5 分钟至 48 小时；

(iii) 然后，将所需要的元素 Mo、V、M、Nb 和 X 的化合物与所述
的第一混合物混合，而形成以各自的相对原子比率 a、b、c、d 和 e 含
有元素 Mo、V、M、Nb 和 X 的第二混合物，其中，当 a=1 时，b=0.01
至 1.0，c=0.01 至 1.0，d=0.01 至 1.0 且 0<e<1.0；

(iv) 将所述的第二混合物在封闭容器中在加压及 50℃至 300℃下
加热 1 小时至数周；

(v) 从所述的封闭容器中回收不溶物以得到催化剂。

2. 根据权利要求 1 所述的催化剂，其中制备所述催化剂的所述方
法还包括:

(vi) 焙烧所述的回收的不溶物。

3. 制备含有以下经验式所示的混合金属氧化物的催化剂的方法:

\[\text{Mo}_a \text{V}_b \text{M}_c \text{Nb}_d \text{X}_e \text{O}_f \]

其中

\(\text{M} \) 是选自 \(\text{Te} \) 和 \(\text{Sb} \) 的元素；

\(\text{X} \) 是选自 \(\text{Li} \), \(\text{Na} \), \(\text{K} \), \(\text{Rb} \), \(\text{Cs} \), \(\text{Mg} \), \(\text{Ca} \), \(\text{Sr} \), \(\text{Ba} \), \(\text{Sc} \), \(\text{Y} \), \(\text{La} \), \(\text{Ti} \), \(\text{Zr} \), \(\text{Hf} \), \(\text{Ta} \), \(\text{Cr} \), \(\text{W} \), \(\text{Mn} \), \(\text{Re} \), \(\text{Fe} \), \(\text{Ru} \), \(\text{Co} \), \(\text{Rh} \), \(\text{Ir} \), \(\text{Ni} \), \(\text{Pd} \), \(\text{Pt} \), \(\text{Cu} \), \(\text{Ag} \), \(\text{Au} \), \(\text{Zn} \), \(\text{B} \), \(\text{Ga} \), \(\text{In} \), \(\text{Pb} \), \(\text{P} \), \(\text{As} \), \(\text{Sb} \), \(\text{Bi} \), \(\text{Se} \), \(\text{F} \), \(\text{Cl} \), \(\text{Br} \), \(\text{I} \), \(\text{Pr} \), \(\text{Nd} \), \(\text{Sm} \) 和 \(\text{Tb} \) 的元素，条件是，当 \(\text{M} \) 是 \(\text{Sb} \) 时，

\(\text{X} \) 不能是 \(\text{Sb} \);

a, b, c, d, e 和 f 分别是元素 Mo, V, M, Nb, X 和 O 的相对原子数量；并且，

当 a=1 时，b=0.01 至 1.0, c=0.01 至 1.0, d=0.01 至 1.0, 0≤e≤1.0

且 f 取决于其它元素的氧化态；

该方法包括:

(i) 将所需要的元素 Mo, V, M, Nb 和 X 的化合物与含有水的溶剂混合，以形成含有至少 2 种但少于所述元素 Mo, V, M, Nb 和 X 的全部的第一混合物；

(ii) 将所述的第一混合物在 25℃ 至 200℃ 下加热 5 分钟至 48 小时；

(iii) 然后，将所需要的元素 Mo, V, M, Nb 和 X 的化合物与所述的第一混合物混合，而形成以各自的相对原子比率 a, b, c, d 和 e 含有元素 Mo, V, M, Nb 和 X 的第二混合物，其中，当 a=1 时，b=0.01 至 1.0, c=0.01 至 1.0, d=0.01 至 1.0 且 0≤e≤1.0；

(iv) 将所述的第二混合物在封闭容器中在加压及 50℃ 至 300℃ 下加热 1 小时至数周；

(v) 从所述的封闭容器中回收不溶物以得到催化剂。
4. 根据权利要求 3 所述的方法，其还包括:
(vi) 焙烧所述的回收的不溶物。

5. 含有以下经验式所示的混合金属氧化物的催化剂:

\[\text{Mo}_a \text{V}_b \text{M}_c \text{Nb}_d \text{X}_e \text{O}_f \]

其中
M 是选自 Te 和 Sb 的元素；
X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、
Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、
Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、
F、Cl、Br、I、Pr、Nd、Sm 和 Tb 的元素，条件是，当 M 是 Sb 时，
X 不能是 Sb；
a、b、c、d、e 和 f 分别是元素 Mo、V、M、Nb、X 和 O 的相对
原子数量; 并且，
当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，0≤e≤1.0
且 f 取决于其它元素的氧化态；

所述的混合金属氧化物具有在如下衍射角(20)有衍射峰的 X-射线
衍射图：22.1 ±0.3、26.2 ±0.3、27.3 ±0.3、29.9 ±0.3、45.2 ±0.3、48.6
±0.3，并且在以下衍射角 (20) 没有衍射峰：28.2 ±0.3、36.2 ±0.3、50.0
±0.3。

6. 根据权利要求 5 所述的催化剂，其通过包括如下步骤的方法来
制备:
(i) 将所需要的元素 Mo、V、M、Nb 和 X 的化合物与含有水的溶
剂混合，以形成含有至少 2 种但少于所述元素 Mo、V、M、Nb 和 X
的全部的第一混合物；
(ii) 将所述的第一混合物在 25°C 至 200°C 下加热 5 分钟至 48 小时；
(iii) 然后，将所需要的元素 Mo、V、M、Nb 和 X 的化合物与所述
的第一混合物混合，而形成以各自的原子比率 a、b、c、d 和 e 含有元
素 Mo、V、M、Nb 和 X 的第二混合物，其中，当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0 且 0≤e≤1.0；

(iv) 将所述的第二混合物在封闭容器中在加压及 50℃至 300℃下加热 1 小时至数周；

(v) 从所述的封闭容器中回收不溶物；

(vi) 焙烧所述的回收的不溶物；

(vii) 将所述的焙烧后的回收的不溶物与选自无机酸、醇类、无机酸和过氧化氢的液体接触物质接触以形成接触混合物；

(viii) 从所述的接触混合物中回收不溶物以得到催化剂。

7. 制备含有以下经验式所示的混合金属氧化物的催化剂的方法：

\[\text{Mo}_a \text{V}_b \text{M}_c \text{Nb}_d \text{X}_e \text{O}_f \]

其中

M 是选自 Te 和 Sb 的元素；

X 是选自 Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Se, Y, La, Ti, Zr, Hf, Ta, Cr, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, B, Ga, In, Pb, P, As, Sb, Bi, Se, F, Cl, Br, I, Pr, Nd, Sm 和 Tb 的元素，条件是，当 M 是 Sb 时，X 不能是 Sb；

a, b, c, d, e 和 f 分别是元素 Mo, V, M, Nb, X 和 O 的相对原子数量；并且，

当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，0≤e≤1.0 且 f 取决于其它元素的氧化态；

所述的混合金属氧化物具有在如下衍射角 (2θ) 有衍射峰的 X-射线衍射图：22.1 ±0.3, 26.2 ±0.3, 27.3 ±0.3, 29.9 ±0.3, 45.2 ±0.3, 48.6 ±0.3，并且在以下衍射角 (2θ) 没有衍射峰：28.2 ±0.3, 36.2 ±0.3, 50.0 ±0.3，该方法包括：

(i) 将所需要的元素 Mo、V、M、Nb 和 X 的化合物与含有水的溶剂混合，以形成含有至少 2 种但少于所述元素 Mo、V、M、Nb 和 X
的全部的第一混合物；

(ii) 将所述的第一混合物在 25℃至 200℃下加热 5 分钟至 48 小时；

(iii) 然后，将所需要的元素 Mo、V、M、Nb 和 X 的化合物与所述的第一混合物混合，而形成以各自的相对原子比率 a、b、c、d 和 e 含有元素 Mo、V、M、Nb 和 X 的第二混合物，其中，当 a=1 时，b=0.01至 1.0，c=0.01 至 1.0，d=0.01 至 1.0 且 0<e<1.0；

(iv) 将所述的第二混合物在封闭容器中在加压及 50℃至 300℃下加热 1 小时至数周；

(v) 从所述的封闭容器中回收不溶物；

(vi) 烘烧所述的回收的不溶物；

(vii) 将所述的烘烧后的回收的不溶物与选自有机酸、醇类、无机酸和过氧化氢的液体接触物质接触以形成接触混合物；

(viii) 从所述的接触混合物中回收不溶物以得到催化剂。

8、制备不饱和羧酸的方法，该方法包括将链烷烃或链烷烃与链烯烃的混合物在权利要求 1 的催化剂存在下进行气相催化氧化反应。

9、制备不饱和羧酸的方法，该方法包括将链烷烃或链烷烃与链烯烃的混合物在权利要求 5 的催化剂存在下进行气相催化氧化反应。

10、制备不饱和腈的方法，该方法包括将链烷烃或链烷烃与链烯烃的混合物与氯在权利要求 1 的催化剂存在下进行气相催化氧化反应。

11、制备不饱和腈的方法，该方法包括将链烷烃或链烷烃与链烯烃的混合物与氯在权利要求 5 的催化剂存在下进行气相催化氧化反应。
水热合成的用于选择性氧化烃类的
Mo-V-M-Nb-X 氧化物催化剂

本发明涉及通过气相催化氧化将链烷烃或链烷烃与链烯烃的混合物氧化成其相应的不饱和羧酸的催化剂、制备该催化剂的方法以及利用该催化剂将链烷烃或链烷烃与链烯烃的混合物气相催化氧化成其相应的不饱和羧酸的方法。本发明还涉及在氮的存在下利用该催化剂将链烷烃或链烷烃与链烯烃的混合物气相催化氧化成其相应的不饱和酯的方法。

诸如丙烯腈和甲基丙烯腈之类的腈类作为制备纤维、合成树脂、合成橡胶等的重要中间体而在工业上进行生产。制备这样的腈类的最常用的方法是在催化剂的条件下，在高温下将诸如丙烯或异丁烯之类的烯烃与氨和氧气进行气相氧化反应。用于进行该反应的已知催化剂包括 Mo-Bi-P-O 催化剂、V-Sb-O 催化剂、Sb-U-V-Ni-O 催化剂、Sb-Sn-O 催化剂、V-Sb-W-P-O 催化剂以及通过机械混合 V-Sb-W-O 氧化物和 Bi-Ce-Mo-W-O 氧化物得到催化剂。然而，考虑到丙烯和丙烯或异丁烯和异丁烯之间的价格不同，人们将注意力转向开发通过气相氧化反应制备丙烯腈或甲基丙烯腈的方法，其中将低级链烷烃例如丙烷或异丁烷用作原料，并在催化剂的存在下使它们在气相中与氨和氧气发生催化反应。

特别是，美国专利 5,281,745 公开了一种制备不饱和腈的方法，该方法包括在满足如下条件的催化剂的存在下，将链烷烃和氮在气态中进行催化氧化:

(1) 混合金属氧化物催化剂以如下经验式表示:

\[\text{Mo}_a \text{V}_b \text{Te}_c \text{X}_x \text{O}_n \]

其中 X 是选自铌、钽、钨、钛、铝、锆、铬、锰、铁、钌、钴、铑、镍、钯、铂、镉、铋、硼和铈的至少一种元素，并且当 a=1 时,
b=0.01 至 1.0, c=0.01 至 1.0, x=0.01 至 1.0 且 n 是满足金属元素的总化合价的数；和

(2) 在其 X-射线衍射图内，催化剂在以下的 2θ 角 (+0.3°) 处具有 X-射线衍射峰：22.1°、28.2°、36.2°、45.2° 和 50.0°。

不饱和羧酸如丙烯酸和甲基丙烯酸作为各种合成树脂、涂料和增塑剂的原料在工业上具有重要性。在商业上，目前生产丙烯酸的方法包括用丙烯进料作为原料的两步催化氧化反应。在第一阶段，将丙烯在酸性的钼酸铋催化剂上转化成丙烯醛。在第二阶段，利用主要由钼和钒的氧化物构成的催化剂将第一阶段的丙烯醛产物转化成丙烯酸。在大多数情况下，催化剂的配方归催化剂供应商所有，但是，该技术已被良好地确立。此外，还需要开发从相应的链烯烃制备不饱和酸的单步法。因此，现有技术描述了其中在单一步骤中使用复合金属氧化物催化剂从相应的链烯烃制备不饱和酸的情况。

日本未审公开的专利申请公开号 07-053448 公开了在含有 Mo、V、Te、O 和 X 的混合金属氧化物的存在下，通过丙烯的气相催化氧化生产丙烯酸的方法，其中 X 是选自 Nb、Ta、W、Ti、Al、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ni、Pd、Pt、Sb、Bi、B、In、Li、Na、K、Rb、Cs 和 Ce 的至少一种元素。

还存在利用低成本的丙烷原料生产丙烯酸的商业动机。因此，现有技术描述了其中在一步法中将混合金属氧化物催化剂用于将丙烷转化成丙烯酸的情况。

美国专利 5,380,933 公开了制备不饱和羧酸的方法，该方法包括在含有混合金属氧化物的催化剂存在下将链烷烃进行气相催化氧化反应，所述的混合金属氧化物含有作为必要成分的 Mo、V、Te、O 和 X，其中 X 是选自铌、钽、钨、钛、铝、锆、铪、锰、铁、钌、钴、铑、镍、钯、铂、钯、铋、硼、铟和铈的至少一种元素，并且其中各种必要成分的比率满足如下关系式（按照除氧之外的必要成分的总量计）：0.25<r(Mo)<0.98、0.003<r(V)<0.5、0.003<r(Fe)<0.5 和 0.003<r(X)<0.5，其中 r(Mo)、r(V)、r(Fe) 和 r(X) 分别是 Mo、V、Te 和 X 的摩尔分数。
按照除氧之外的必要成分的总量计。

然而，现有技术在继续寻求所就混合金属氧化物催化剂的性能的方法。

Ueda 等的“轻链烷烃在水热合成的 Mo-V-M-O(M=Al、Ga、Bi、Sb 和 Te)氧化物催化剂上的选择性氧化”，Applied Catalysis A: General, 200, pp. 135-143(2000)公开了在水热合成的 Mo-V-M-O(M=Al、Ga、Bi、Sb 和 Te)复合金属氧化物催化剂上进行的乙烷氧化成乙烯和乙酸、丙烷氧化成丙烯酸的选择性氧化。将固体分成两组，即，Mo-V-M-O(M=Al, 可能是 Ga 和 Bi) 和 Mo-V-M-O(M=Sb 和 Te)。前者对乙烷氧化成乙烯和乙酸的部分氧化具有中等活性，后者对氧化脱氢具有非常高的活性并且对丙烷部分氧化成丙烯酸也具有活性。在 600℃下在 N2 中进行热处理后，对催化剂进行研磨提高了丙烷的转化率并且提高了生成丙烯酸的选择性。

Chen 等的“乙烷在水热合成的 Mo-V-Al-Ti 氧化物催化剂上的选
择性氧化”，Catalysis Today, 64, pp. 121-128(2001)公开了通过水热法合成对乙烷气相氧化成乙烯和乙酸表现出活性的单相物质Mo\(_6\)V\(_2\)Al\(_2\)O\(_x\)的方法。将钛加入到Mo\(_6\)V\(_2\)Al\(_2\)O\(_x\)氧化物催化剂中导致对乙烷选择性氧化的活性明显升高。

现已发现，可通过水热合成技术制备的某些新的混合金属氧化物催化剂可用于链烷烃或链烷烃与链烯烃的混合物的部分氧化以制备不饱和羧酸；或者用于链烷烃或链烷烃与链烯烃的混合物的氢氧化以制备不饱和酯。

因此，本发明的第一方面提供了含有以下经验式所示的混合金属氧化物的催化剂：

\[\text{Mo}_a\text{V}_b\text{M}_c\text{Nb}_d\text{X}_e\text{O}_f \]

其中

M 是选自 Te 和 Sb 的元素；

X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、F、Cl、Br、I、Pr、Nd、Sm 和 Tb 的元素，条件是，当 M 是 Sb 时，X 不能是 Sb；

a、b、c、d、e 和 f 分别是元素 Mo、V、M、Nb、X 和 O 的相对原子数量；并且

当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，且 0＜e＜1.0 且 f 取决于其它元素的氧化态；

所述的催化剂通过包括如下步骤的方法制备：

(i) 将所需要的元素 Mo、V、M、Nb 和 X 的化合物与包含水的溶剂混合，以形成含有至少 2 种但少于所述元素 Mo、V、M、Nb 和 X 的全部的第一混合物；

(ii) 将所述的第一混合物在 25℃至 200℃下加热 5 分钟至 48 小时；

(iii) 然后，将所需要的元素 Mo、V、M、Nb 和 X 的化合物与所述的第一混合物混合，而形成以各自的相对原子比率 a、b、c、d 和 e 含
有元素 Mo, V, M, Nb 和 X 的第二混合物，其中，当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，且 0<e<1.0；
(iv) 将所述的第二混合物在封闭容器中在加压及 50℃ 至 300℃ 下加热 1 小时至数周；
(v) 从所述的封闭容器中回收不溶物以得到催化剂。

在第二方面，本发明提供了制备含有以下经验式所示的混合金属氧化物的催化剂的方法：

\[\text{Mo}_a \text{V}_b \text{M}_c \text{Nb}_d \text{X}_e \text{O}_f \]

其中

M 是选自 Te 和 Sb 的元素；
X 是选自 Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, Ta, Cr, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, B, Ga, In, Pb, P, As, Sb, Bi, Se, F, Cl, Br, I, Pr, Nd, Sm 和 Tb 的元素，条件是，当 M 是 Sb 时，X 不能是 Sb；

a, b, c, d, e 和 f 分别是元素 Mo, V, M, Nb, X 和 O 的相对原子数量；并且，

当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，0<e<1.0 且 f 取决于其它元素的氧化态；

该方法包括：
(i) 将所需要元索 Mo, V, M, Nb 和 X 的化合物与包含水的溶剂混合以形成含有至少 2 种但不限于所述元素 Mo, V, M, Nb 和 X 的全部的第一混合物；
(ii) 将所述的第一混合物在 25℃ 至 200℃ 下加热 5 分钟至 48 小时；
(iii) 然后，将所需要的元素 Mo, V, M, Nb 和 X 的化合物与所述的第一混合物混合而形成以各自的相对原子比率 a, b, c, d 和 e 含有元素 Mo, V, M, Nb 和 X 的第二混合物，其中，当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，且 0<e<1.0；
(iv) 将所述的第二混合物在封闭容器中在加压及 50℃ 至 300℃ 下
加热 1 小时至数周；

(v) 从所述的封闭容器中回收不溶物以得到催化剂。

在第三方面，本发明提供了含有以下经验式所示的混合金属氧化物的催化剂：

\[\text{Mo}_a\text{V}_b\text{M}_c\text{Nb}_d\text{X}_e\text{O}_f \]

其中

M 是选自 Te 和 Sb 的元素；

X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、
Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、
Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、
F、Cl、Br、I、Pr、Nd、Sm 和 Tb 的元素，条件是，当 M 是 Sb 时，
X 不能是 Sb。

a、b、c、d、e 和 f 分别是元素 Mo、V、M、Nb、X 和 O 的相对原子数量；并

当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，0<e<1.0
且 f 取决于其它元素的氧化态；

所述的混合金属氧化物具有在如衍射角(2θ)有衍射峰的 X-射线
衍射图：22.1 ±0.3、26.2 ±0.3、27.3 ±0.3、29.9 ±0.3、45.2 ±0.3、48.6
±0.3，并且在以下衍射角(2θ)没有衍射峰：28.2 ±0.3、36.2 ±0.3、50.0
±0.3。

在第四方面，本发明提供了制备含有以下经验式所示的混合金属
氧化物的催化剂的方法：

\[\text{Mo}_a\text{V}_b\text{M}_c\text{Nb}_d\text{X}_e\text{O}_f \]

其中

M 是选自 Te 和 Sb 的元素；

X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、
Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、
Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、
F、Cl、Br、I、Pr、Nd、Sm 和 Tb 的元素，条件是，当 M 是 Sb 时，
X 不能是 Sb；

a、b、c、d、e 和 f 分别是元素 Mo、V、M、Nb、X 和 O 的相对原子数量；并且，

当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，0<e<1.0 且 f 取决于其它元素的氧化态；

所述的混合金属氧化物具有在如下衍射角(2θ)有衍射峰的 X-射线衍射图：22.1 ±0.3、26.2 ±0.3、27.3 ±0.3、29.9 ±0.3、45.2 ±0.3、48.6 ±0.3，并且在以下衍射角(2θ)没有衍射峰：28.2 ±0.3、36.2 ±0.3、50.0 ±0.3，该方法包括：

(i) 将所需要的元素 Mo、V、M、Nb 和 X 的化合物与包含水的溶剂混合以形成含有至少 2 种但少于所述元素 Mo、V、M、Nb 和 X 的全部的第一混合物；

(ii) 将所述的第一混合物在 25°C 至 200°C 下加热 5 分钟至 48 小时；

(iii) 然后，将所需要的元素 Mo、V、M、Nb 和 X 的化合物与所述的第一混合物混合而形成以各自的相对原子比率 a、b、c、d 和 e 含有元素 Mo、V、M、Nb 和 X 的第二混合物，其中，当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0 且 0<e<1.0；

(iv) 将所述的第二混合物在封闭容器中在加压及 50°C 至 300°C 下加热 1 小时至数周；

(v) 从所述的封闭容器中回收不溶物；

(vi) 烘烧所述的回收的不溶物；

(vii) 使所述的烘干后的回收的不溶物与选自有机酸、醇类、无机酸和过氧化氢的液体接触物质接触以形成接触混合物；

(viii) 从所述的接触混合物中回收不溶物以得到催化剂。

在第五方面，本发明提供了制备不饱和羧酸的方法，该方法包括所链烷烃或链烷烃与链烯烃的混合物在本发明的第一方面的催化剂存在下进行气相催化氧化反应。

在第六方面，本发明提供了制备不饱和腈的方法，该方法包括将链烷烃或链烷烃与链烯烃的混合物与氢在本发明的第一方面的催化剂
存在下进行气相催化氧化反应。

在第七方面，本发明提供了制备不饱和羧酸的方法，该方法包括将链烷烃或链烷烃与链烯烃的混合物在本发明的第三方面的催化剂存在下进行气相催化氧化反应。

在第八方面，本发明提供了制备不饱和腈的方法，该方法包括将链烷烃或链烷烃与链烯烃的混合物与氯在本发明的第三方面的催化剂存在下进行气相催化氧化反应。

附图的图 1 是对比例 2 制备的催化剂的 X-射线衍射图。
附图的图 2 是对比例 3 制备的催化剂的 X-射线衍射图。
附图的图 3 是实施例 1 制备的催化剂的 X-射线衍射图。
附图的图 4 是实施例 2 制备的催化剂的 X-射线衍射图。

本发明的第一方面的催化剂含有以下经验式所示的混合金属氧化物：

\[\text{Mo}_a \text{V}_b \text{M}_c \text{Nb}_d \text{X}_e \text{O}_f \]

其中

M 是选自 Te 和 Sb 的元素；
X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、
Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、
Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、
F、Cl、Br、I、Pr、Nd、Sm 和 Tb 的元素，条件是，当 M 是 Sb 时，
X 不能是 Sb；

a、b、c、d、e 和 f 分别是元素 Mo、V、M、Nb、X 和 O 的相对
原子数量； 并且，

当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0，0<e<1.0
且 f 取决于其它元素的氧化态；

所述的催化剂通过包括如下步骤的方法制备：

(i) 将所需要的元素 Mo、V、M、Nb 和 X 的化合物与包含水的溶
剂混合以形成含有至少 2 种但少于所述元素 Mo、V、M、Nb 和 X 的
全部的第一混合物；
(ii) 将所述的第一混合物在 25°C 至 200°C 下加热 5 分钟至 48 小时;

(iii) 然后，将所需要的元素 Mo、V、M、Nb 和 X 的化合物与所述的第一混合物混合而形成以各自的相对原子比率 a、b、c、d 和 e 含有元素 Mo、V、M、Nb 和 X 的第二混合物，其中，当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0 且 0<e<1.0;

(iv) 将所述的第二混合物在封闭容器中在加压及 50°C 至 300°C 下加热 1 小时至数周;

(v) 从所述的封闭容器中回收不溶物以得到催化剂。

优选 M 是 Te。

另外，优选 X 是选自 Li、K、Mg、Ca、Sc、Y、La、Cr、Mn、Re、Fe、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Ga、In、Pb、Bi、Se、F、Cl、Br、I、Pr、Nd、Sm 和 Tb 的元素；更优选 X 是选自 Li、K、Mg、Ca、La、Cr、Mn、Fe、Co、Rh、Ni、Pd、Pt、Zn、In、Pb、Cl、Br、I 和 Sm 的元素。

此外，优选当 a=1 时，b=0.1 至 0.6，c=0.1 至 0.5，d=0.01 至 0.5 且 e=0.0001 至 0.5；更优选当 a=1 时，b=0.3 至 0.6，c=0.15 至 0.5，d=0.05 至 0.25 且 e=0.001 至 0.25。f 的值即氧的存在量取决于催化剂中其它元素的氧化态。

在本发明的第二方面，催化剂通过“水热”技术形成。在该“水热”技术中：

将所需要的元素 Mo、V、M、Nb 和 X 的化合物与含有水的溶剂混合以形成含有至少 2 种但少于所述元素 Mo、V、M、Nb 和 X 的全部的第一混合物；

将所述的第一混合物在 25°C 至 200°C 下加热 5 分钟至 48 小时；

然后，将所需要的元素 Mo、V、M、Nb 和 X 的化合物与所述的第一混合物混合而形成以各自的相对原子比率 a、b、c、d 和 e 含有元素 Mo、V、M、Nb 和 X 的第二混合物，其中，当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0 且 0<e<1.0；

将所述的第二混合物在封闭容器中在加压及 50°C 至 300°C 下加热
1小时至数周；和
从所述的封闭容器中回收不溶物以得到催化剂。
任选地，尽管优选地，将回收的不溶物煅烧。
煅烧后，该煅烧的从封闭容器回收的不溶物具有在以下衍射角(2θ)
有衍射峰的 X-线衍射图(使用 Cu-Kα 射线作为辐射源测定)：22.1 ±
0.3、27.3 ±0.3、28.2 ±0.3、36.2 ±0.3、45.2 ±0.3、50.0 ±0.3。X-射线
衍射峰的强度可随着每种晶体的测定条件而变化。然而，只要可观察
到上述的衍射图，基本晶体结构是相同的，即使除了上述的衍射图所
定义的衍射峰之外还观察到其它的衍射峰。
特别是，将元素 Mo、V、M、Nb 和 X 的化合物与含有水的溶剂
混合以形成第一混合物。该第一混合物含有至少 2 种但少于为制备所
需的催化剂组合物而需要的元素 Mo、V、M、Nb 和 X 的全部，其中
M 是选自 Te 和 Sb 的元素；X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、
Sr、Ba、Sc、Y、La、Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、
Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、
As、Sb、Bi、Se、F、Cl、Br、I、Pr、Nd、Sm 和 Tb 的元素。
对于含有元素 Mo、V、M、Nb 和 X 的催化剂，优选混合元素
Mo、M、Nb 和 X 的化合物，元素 Mo 和 M 的化合物或元素 V 和 M
的化合物以形成第一混合物。优选以最后的催化剂中存在的元素的原
子比率使用第一混合物的成分。

所形成的第一混合物可以在 25°C 至 200°C、优选 50°C 至 175°C、
最优选 75°C 至 150°C 下维持 5 分钟至 48 小时、优选 5 分钟至 10 小时、
最优选 5 分钟至 5 小时。如果需要，可以将该处理过程中从混合物蒸
发的任何溶剂或溶剂的任何部分冷凝并返回到混合物以维持液相。或
者，第一混合物的该处理可以在封闭容器中进行。

在第一混合物的上述处理之后，将第一混合物与所需要的元素
Mo、V、M、Nb 和 X 的化合物混合，而形成以各自的相对原子比率 a、
b、c、d 和 e 含有元素 Mo、V、M、Nb 和 X 的第二混合物，其中，
当 a=1 时，b=0.01 至 1.0，c=0.01 至 1.0，d=0.01 至 1.0 且 0<e<1.0.
优选在该混合步骤中仅加入在第一混合物中没有的元素的化合物。

然后优选在封闭容器中，在 50°C 至 300°C、优选 100°C 至 250°C、更优选 150°C 至 200°C 下，将第二混合物维持 1 小时至数周、优选 2 小时至 7 天，最优选 5 至 72 小时。所述的封闭容器可处于加压下。压力可以是在所采用的具体温度下的被封闭物质的自生压力，或者可以是施加的压力，例如可以通过将加压气体充入封闭容器中来得到。在任一情况下，在被封闭混合物上的气体空间可以含有氧化性气氛如空气、富含氧气的空气或氧气；还原性气氛如氮气；惰性气氛如氮气、氢气、氨气或其混合物；或其混合物。此外，在被封闭混合物上的气体空间还可以填充有少量的助催化剂如 NOx 化合物、SOx 化合物、气态卤化物或卤素。

在上述的处理之后，从封闭容器中回收不溶物。该不溶物是活性非常高的催化剂，但是对所需的反应产物例如烯酸的选择性通常较低。当将回收的不溶物进行煅烧时，活性降低，但是对所需的反应产物例如烯酸的选择性升高。通过将煅烧的催化剂与选自有机酸、醇类、无机酸和过氧化氢的液体接触物质接触，可以把催化剂的活性恢复至某一程度，同时维持提高的选择性。

可以进行这样的接触而没有任何具体的限制。液体接触物质的用量通常是煅烧的所回收的不溶物的体积的 1 至 100 倍，优选 3 至 50 倍，更优选 5 至 25 倍。接触可以在升高的温度下进行。然而，如果延长的接触时间不是考虑的因素，则可以利用在较低温度下的接触，例如在小于 150°C 下接触。通常采用室温至 100°C 的接触温度，优选 50°C 至 90°C，更优选 60°C 至 80°C。如前所述，接触时间受到进行接触的温度的影响。通常采用 1 至 100 小时的接触时间，优选 2 至 20 小时，更优选 5 至 10 小时。在接触过程中优选将接触混合物搅拌。

对于可用作液体接触物质的有机酸没有具体的限制。例如，可以使用草酸、甲酸、乙酸、柠檬酸和酒石酸，然而优选草酸。如果有机酸是液体，可以将其原样使用，或者将其以水溶液的形式使用。如果有机酸是固体，将其以水溶液的形式使用。当使用水溶液时，对有机
酸的浓度没有具体的限制。在水溶液中，有机酸的浓度通常可以为 0.1 重量%至 50 重量%，优选 1 至 15 重量%。

对于可用作液体接触物质的醇类没有具体的限制。例如，可以使用甲醇、乙醇、丙醇、丁醇、己醇和二醇，然而优选含有 1 至 4 个碳原子的醇类，特别优选乙二醇。醇类可以以水溶液的形式使用，但是，如果这样，水含量应该保持在 20 重量%或更小以达到最佳效果。

类似地，对于可用作液体接触物质的无机酸没有具体的限制。例如，可以使用硝酸、硫酸、磷酸、盐酸、高氯酸、氯酸和次氯酸。通常将无机酸以酸浓度为 0.1 至 50 重量%、优选 0.1 至 10 重量%的水溶液的形式使用。

当过氧化氢作液体接触物质时，将其以浓度为 0.1 至 50 重量%、优选 1 至 10 重量%的水溶液的形式使用。

在不溶物与液体接触物质接触之后，从所形成的接触混合物中回收不溶物。可通过任何常规的方法，例如离心或过滤回收不溶物。如果在升高的温度下进行接触，可以先将接触混合物冷却，然后回收不溶物。

在不溶物与液体接触物质接触之后，从接触混合物中回收的不溶物具有在以下衍射角(2θ)有衍射峰的 X-射线衍射图(使用 Cu-Kα 射线作为辐射源测定)：22.1 ±0.3、26.2 ±0.3、27.3 ±0.3、29.9 ±0.3、45.2 ±0.3、48.6 ±0.3，并且在以下衍射角(2θ)没有衍射峰：28.2 ±0.3、36.2 ±0.3、50.0 ±0.3。X-射线衍射的强度可随着每种晶体的测定条件而变化。然而，只要可观察到上述的衍射图，基本的晶体结构是相同的，即使除了上述的衍射图所定义的衍射峰之外还观察到其它的衍射峰。

在“水热”技术中，优选将水作催化剂制备过程中的溶剂。水可以是适用于化学合成的任何的水，其包括但不限于蒸馏水和去离子水。然而，使用的溶剂还含有极性溶剂如与水混溶的醇类、二醇类、二元醇类、多元醇、醚类、羧酸酯类、腈类和酰胺类。所用的溶剂量不是关键。

优选水热处理所用的容器由对水热反应呈现惰性的材料形成，或
者其具有对水热反应呈现惰性的材料例如聚四氯乙烯 (PTFE) 作为衬
里。

水热处理后，从处理容器中回收不溶物，可通过任何常规的方法，
例如离心或过滤回收不溶物。优选将水热处理后的物质冷却，然后回
收不溶物。如果需要，可以将不溶物用水洗涤一次或多次。

然后可以将回收的不溶物通过本领域已知的任何适宜的方法干
燥，这样的方法包括但不限于真空干燥、冷冻干燥和风干。

例如，为了除去任何残留的水，通常在 10 mmHg 至 500 mmHg 的
压力下进行真空干燥，使用或者未使用加热。冷冻干燥通常需要利用
例如液氮冷冻回收的物质，然后真空干燥冷冻的物质。风干可以在 25
℃至 90 ℃下进行。

回收的不溶物的煅烧可以在氧化气氛，例如在空气、富含氧的空
气或氮气中或在基本上缺氧的气氛，例如在惰性气氛或真空中进行。
惰性气氛可以是基本上惰性即不会与催化剂前体发生反应或相互作用
的任何物质，适宜的例子包括但不限于氮气、氢气、氩气、氮气或其
混合物。优选惰性气氛是氮气或氢气。惰性气氛可以流经催化剂前体
的表面或者不流经催化剂前体的表面（静态环境）。当惰性气氛流经催
化剂前体的表面时，流速可以在范围内变化，例如以 1 至 500 hr⁻¹
的空速。

煅烧通常在 350 ℃至 850 ℃，优选 400 ℃至 700 ℃，更优选 500 ℃
至 650 ℃的温度下进行。将煅烧进行适于形成上述催化剂的时间量。
通常煅烧进行 0.5 至 30 小时，优选 1 至 25 小时，更优选 1 至 15 小时，
以得到所需的被促进的混合金属氧化物。

在优选的操作模式下，煅烧在两个阶段内进行，即，在氧化气氛
中将回收的不溶物加热至第一温度，然后在非氧化气氛中将如此处理
的回收的不溶物从第一温度加热至第二温度。一般地，在第一阶段，
在氧化环境（例如空气）中将催化剂前体在 200 ℃至 400 ℃，优选 275 ℃
至 325 ℃下煅烧 15 分钟至 8 小时，优选 1 至 3 小时。在第二阶段，在
非氧化环境（例如惰性气氛），将来自第一阶段的物质在 500 ℃至 750
℃。优选 550℃至 650℃下煅烧 15 分钟至 8 小时，优选 1 至 3 小时。
任选地，任在第二阶段的煅烧过程中可以加入还原气体例如氢或氮气。

在特别优选的操作模式中，在第一阶段，将待煅烧的物质在室温下置于所需的氧化气氛中，然后升温至第一阶段的煅烧温度并在该温度维持所选定的第一阶段的煅烧时间。然后将气氛用第二阶段的煅烧所需的非氧化气氛代替，将温度升高至所需的第二阶段的煅烧温度并在该温度下维持所需的第二阶段的煅烧时间。

在另一个优选的操作模式中，将从接触混合物回收的不溶物在非氧化气氛下煅烧。在促进元素即元素 X 是卤素的情况下，可以将这样的元素加入到上述的非氧化气氛中。

尽管煅烧过程中可以利用任何类型的加热方式，例如加热炉，但是优选在指定的气态环境的气流中进行煅烧。因此，优选在所需的气体温流过固体催化剂前端颗粒的床层的床内进行煅烧。

对上面的混合金属氧化物的原料没有具体限制。可以使用宽范围内的物质，包括例如氧化物、磷酸盐、卤化物或卤氧化物、醇盐、乙酰丙酮酸盐和有机金属化合物。例如，七钼酸铵可用作催化剂中的催化剂。然而，还可以用诸如 MoO₃、MoO₂、MoCl₅、MoOCl₅、Mo(OC₂H₅)₅、乙酰丙酮酸钼、磷钼酸和硅钼酸之类的化合物代替七钼酸铵。类似地，硫酸氧钒(VOSO₄)可用作催化剂中的催化剂。然而，还可以用诸如 V₂O₅、V₂O₃、VOCl₃、VCl₄、VO(OC₂H₅)₃、乙酰丙酮酸钒和乙酰丙酮酸氧钒之类的化合物代替硫酸氧钒。TeO₂可用作催化剂中的催化剂。然而，还可以用 TeCl₄、Te(OC₂H₅)₅ 和 Te(OCH(CH₃)₂)₄代替 TeO₂。钒源可以包括草酸铑酸、Nb₂O₅、NbCl₅、铑酸或 Nb(OC₂H₅)₅以及更常用的草酸铑酸。

关于可应用于制备改良的本发明催化剂的其它元素或其化合物，没有具体限制。应该记住，下列表列只是对这些元素或其化合物中的一些的可用来源进行说明，不是对其进行限制。

金源可以是四氯金酸铵、溴化金、氯化金、氧化金、氢氧化金、碘化金、氧化金、三氯酸金或硫化金。
银源可以是乙酸银、乙酰丙酮酸银、苯甲酸银、溴化银、碳酸银、氯化银、水合柠檬酸银、氯化银、碘化银、乳酸银、硝酸银、亚硝酸银、氧化银、磷酸银或银在含水无机酸例如硝酸中的溶液。

铜源可以是乙酸铜、一水合乙酸铜、水合乙酸铜、乙酰丙酮酸铜、溴化铜、碳酸铜、氯化铜、二水合氯化铜、氯化铜、水合甲酸铜、葡萄糖酸铜、氢氧化铜、碘化铜、甲醇铜、水合硝酸铜、硝酸铜、氧化铜、水合酒石酸铜或铜在含水无机酸例如硝酸中的溶液。

钇源可以是钇盐，例如溶于水的硝酸钇。

钪源可以是乙酸钪、水合溴化钪、氯化钪、六水合氯化钪、水合氯化钪、氟化钪、碘化钪、异丙醇钪、水合硝酸钪、水合草酸钪、氯化钪或钪在含水无机酸例如硝酸中的溶液。

铼源可以是高铼酸铼、羰基铼、氯化铼、氧化铼、二氧化铼、五羰基溴化铼、五羰基氯化铼和硫化铼。

铱源可以是乙酰丙酮酸铱、水合溴化铱、氯化铱、水合氯化铱盐酸盐、水合氯化铱、氧化铱、水合氧化铱、三水合乙酸铱或溶于含水无机酸例如硝酸的铱。

锌源可以是乙酸锌、乙酰丙酮酸锌、丙烯酸锌、二(2,2,6,6-四甲基-3,5-戊二酸)锌、溴化锌、碱式碳酸锌、氯化锌、柠檬酸锌、环己烷丁酸锌、3,5-二-(叔丁基)水杨酸锌、氯化锌、碘化锌、L-乳酸锌、甲基丙烯酸锌、硝酸锌、氧化锌、高氯酸锌或硬脂酸锌。

镓源可以是 Ga₂O₃、GaCl₃、GaCl₂、乙酰丙酮酸镓、Ga₂O₃ 或 Ga(NO₃)₃。

溴源可以以上述溴化物试剂之一的形式加入，例如以 X 的溴盐(其中 X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、Pr、Nd、Sm 和 Tb 的元素)、以溴化钼、以四溴化碲或以溴化钒的形式加入，或者以溴在含水无机酸例如硝酸中的溶液的形式加入。还可以在回收的不溶物的煅烧过程中加入溴源，或者在煅烧后作为溴处理
步骤而加入。例如，可以将溴源以例如 HBr、Br₂、溴乙烷等形式加入到煅烧气氛中或者加入到氧化或氯氧化反应器的进料物流中，以达到利用溴的促进效果。

氯源也可以以上述氯化物试剂之一的形式加入，例如以 X 的氯盐（其中 X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、Pr、Nd、Sm 和 Tb 的元素）、以氯化铵、以四氯化碳或以氯化氢的形式加入。还可以在回收的不溶物的煅烧过程中加入氯源，或者在煅烧后作为氯处理步骤加入。例如，可以将氯源以例如 HCl、Cl₂、氯乙烷等的形式加入到煅烧气氛中或者加入到氧化或氯氧化反应器的进料物流中，以达到利用氯的促进效果。

氯源也可以以上述氯化物试剂之一的形式加入，例如以 X 的氯盐（其中 X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、Pr、Nd、Sm 和 Tb 的元素）、以氯化铵、以四氯化碳或以氯化氢的形式加入。还可以在回收的不溶物的煅烧过程中加入氯源，或者在煅烧后作为氯处理步骤加入。例如，可以将氯源以例如 HF、F₂、氟乙烷等的形式加入到煅烧气氛中或者加入到氧化或氯氧化反应器的进料物流中，以达到利用氟的促进效果。

碘源也可以以上述碘化物试剂之一的形式加入，例如以 X 的碘盐（其中 X 是选自 Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、Ta、Cr、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、B、Ga、In、Pb、P、As、Sb、Bi、Se、Pr、Nd、Sm 和 Tb 的元素）、以碘化铵、以碘化液或以碘化氢的形式加入。还可以在回收的不溶物的煅烧过程中加入碘源，或者在煅烧后作为碘处理步骤加入。例如，可以将碘源以例如 HI、I₂、碘乙烷等的形式加入到煅烧气氛中或者加入到氧化或氯氧化反应器的进料物流中，以达到利用碘的促进效果。
流中，以达到利用碘的促进效果。

通过上述技术所形成的催化剂本身具有良好的催化活性。然而，通过研磨可以将混合金属氧化物转化成活性更高的催化剂。

对于研磨方法没有具体的限制，可以使用常规方法。作为干磨法，例如可以提到使用气流研磨机的方法，其中将粗颗粒在高速气流中彼此碰撞而进行研磨。研磨不仅可以用机械进行，而且在小规模操作等的情况下还可以利用研钵等进行研磨。

作为湿磨法，其中通过将水或有机溶剂加入到上面的混合金属氧化物中而以湿状态来进行研磨，可以提到使用旋转圆筒式介质磨或介质搅拌型磨的常规方法。旋转圆筒式介质磨是其中将研磨物质的容器进行旋转的湿型磨，并且其包括例如球磨机和棒磨机。介质搅拌型磨是湿型磨，其中通过搅拌装置将待研磨的、包含于容器中的物质进行搅拌，并且其包括例如旋转螺旋式磨和旋转圆盘式磨。

可以适当地设定研磨的条件，以满足上述促进的混合金属氧化物的性质、在湿磨情况下所用的溶剂的粘度、浓度等或者研磨装置的最佳条件。

此外，在某些情况下，可以通过将溶剂进一步加入到研磨的催化剂前体中以形成溶液或浆液，然后再次干燥来进一步提高催化活性。关于溶液或浆液的浓度没有具体的限制，并且通常调节溶液或浆液，以便研磨的催化剂前体的原料化合物的总量是 10 至 60 wt%。然后，将该溶液或浆液通过诸如喷雾干燥、冷冻干燥、蒸发至干或真空干燥之类的方法，优选通过喷雾干燥的方法进行干燥。此外，在进行湿磨的情况下还可以进行类似的干燥。

通过上述的方法得到的氧化物可用作最后的催化剂，但是，通常还可以将其在 200°C 至 700°C 下热处理 0.1 至 10 小时。

如此得到的混合金属氧化物本身可用作固体催化剂，但可以将其与适宜的载体如二氧化硅、氧化铝、二氧化钛、硅酸盐、硅藻土或氧化锆一起形成催化剂。此外，根据反应器的规模或系统，还可以将其制成适宜的形状和粒度。
在本发明的第五和第七方面，本发明提供了制备不饱和羧酸的方法，该方法包括将链烷烃或链烷烃与链烯烃的混合物分别在本发明的第一或第三方面的催化剂存在下进行气相催化氧化反应。

在这样的不饱和羧酸的制备过程中，优选使用含有水蒸汽的进料气体。在该种情况下，作为将要供应至反应系统的进料气体，通常使用含有含水蒸汽的链烷烃或含水蒸汽的链烷烃与链烯烃的混合物与含氧气体的气体混合物。然而，可以将含水蒸汽的链烷烃或含水蒸汽的链烯烃与链烯烃的混合物以及含氧气体交替地供应至反应系统。待利用的水蒸汽可以以蒸气的形式存在于反应系统中，并且它的引入方式没有具体的限制。

关于卤素用作本发明的催化剂的元素，可以将先前所述的气态卤素源加入到反应的气体进料中。

此外，可以供应惰性气体如氮气、氢气或氮气作为稀释气体。在原料气体中，摩尔比率(链烷烃或链烷烃与链烯烃的混合物):(氧气):(稀释气体):(H₂O)优选为(1):(0.1 至 10):(0 至 20):(0.2 至 70)，更优选为(1):(1 至 5.0):(0 至 10):(5 至 40)。

当将水蒸汽与作为原料气体的链烷烃或链烷烃与链烯烃的混合物一起供应时，对不饱和羧酸的选择性明显提高，并且，只通过一个阶段的接触就以良好的收率从链烷烃或链烷烃与链烯烃的混合物得到不饱和羧酸。然而，为了稀释原料的目的，常规技术利用稀释气体如氢气、氮气或氮气。作为这样的稀释气体，为了调节空速、氧分压和水蒸汽分压，可以将诸如氮气、氢气或氮气之类的惰性气体与水蒸汽一起使用。

作为原料链烷烃，优选使用 C₃₈ 链烷烃，特别是丙烷、异丁烷或正丁烷；更优选丙烷或异丁烷；最优选丙烷。根据本发明，从这样的链烷烃可以以良好的收率得到不饱和羧酸如 α,β-不饱和羧酸。例如，当将丙烷或异丁烷用作原料链烷烃时，分别以良好的收率得到丙烯酸或甲基丙烯酸。

在本发明中，作为原料链烷烃与链烯烃的混合物，可以使用 C₃₈
链烷烃和 C₃-C₈ 链烯烃，特别是丙烷和丙烯、异丁烷和异丁烯或正丁烷和正丁烯的混合物。作为原料链烷烃与链烯烃的混合物，更优选丙烷和丙烯或异丁烷和异丁烯。最优选丙烷和丙烯的混合物。根据本发明，从这样的链烷烃与链烯烃的混合物，可以以良好的收率得到不饱和羧酸如 α,β-不饱和羧酸。例如，当将丙烷和丙烯或异丁烷和异丁烯用作原料链烷烃与链烯烃的混合物时，分别以良好的收率得到丙烯酸或甲基丙烯酸。优选地，在链烷烃与链烯烃的混合物中，链烯烃以至少 0.5 重量%、更优选至少 1.0 重量%至 95 重量%、最优选 3 重量%至 90 重量%的量存在。

或者，还可以将醇如异丁醇（其在反应条件下脱水形成其相应的链烯烃即异丁烯）用作该方法的原料或者与先前提到的原料流相结合。

原料链烷烃的纯度没有具体的限制，可以使用含有低级烃烃如甲烷或乙烷、空气或二氧化碳作为杂质的链烷烃而不会有特别的问题。此外，原料链烷烃可以是各种链烷烃的混合物。类似地，原料链烷烃与链烯烃的混合物的纯度没有具体的限制，可以使用含有低级烯烃如乙烯、低级烷烃如甲烷或乙烷、空气或二氧化碳作为杂质的链烷烃与链烯烃的混合物而不会有特别的问题。此外，原料链烷烃与链烯烃的混合物可以是各种链烷烃与链烯烃的混合物。

对于链烯烃的来源没有限制。可以以它自身或者以其与链烷烃和/或其它杂质的混合物形式购买。或者，它还可以作为链烷烃氧化的副产物来得到。类似地，对于链烷烃的来源没有限制。可以以它自身或者以其与链烯烃和/或其它杂质的混合物形式购买。另外，需要时还可以将链烷烃（无论来源如何）和链烯烃（无论来源如何）相混合。

本发明的氧化反应的详细机理还没有被清楚地了解，但是氧化反应通过存在于上述的促进的混合金属氧化物中的氧原子或者通过存在于进料气体中的分子氧来进行。为了将分子氧引入进料气体，这样的分子氧可以是纯氧气。然而，使用含氧气体如空气通常更经济的，因为纯度并不是特别要求的。

还可以仅使用链烷烃或链烷烃与链烯烃的混合物，基本上是在不
存在分子氧的条件下进行气相催化反应。在这种情况下，优选采用其中将一部分催化剂不时地从反应区适当地取出，然后送至氧化再生器，将其再生然后返回到反应区以重新使用的方法。作为催化剂的再生方法，例如可以提到包括如下步骤的方法：在再生器中，将氧化气体如氧气、空气或一氧化氮与催化剂通常在300至600℃的温度下接触。

就其中将丙烷用作原料链烷烃以及将空气用作氧化源的情况，下面将更详细地描述本发明的该方面。该反应体系可以是固定床体系或流化床体系。然而，由于该反应是放热反应，所以优选使用流化床体系，由此易于控制反应温度。供应到反应体系的空气的比率对于生成的丙烯酸的选择性是重要的，对于每摩尔丙烷，它通常是至多25摩尔，优选0.2至18摩尔，由此得到对丙烯酸的高选择性。该反应通常在常压下进行，但也可以在稍有更高的压力或稍有降低的压力下进行。关于其它链烷烃如异丁烷，或链烷烃与链烯烃诸如丙烷与丙烯的混合物，可以按照丙烷的条件选择进料气体的组成。

在本发明的实施中，可以利用丙烷或异丁烷氧化生成丙烯酸或甲基丙烯酸的常用反应条件。该方法可以以单程模式(只将新鲜原料进料至反应器)或者以循环模式(将至少一部分的反应器的流出物返回到反应器)进行。本发明的方法的常用条件如下：反应温度可以为200℃至700℃，但通常是200℃至550℃，更优选250℃至480℃，最优选300℃至400℃；在气相反应中，气体空速SV通常为100至10000hr⁻¹，优选300至6000hr⁻¹，更优选300至2000hr⁻¹；与催化剂的平均接触时间可以是0.01至10秒或更多，但通常是0.1至10秒，更优选2至6秒；反应区的压力通常是0至75psig，但优选不大于50psig。在单程模式的方法中，优选由含氧气体如空气供应氧。单程模式的方法还可以在加入氧气的条件下进行。在循环模式的方法的实施中，氧气本身是优选的来源，从而避免反应区中惰性气体的积累。

当然，在本发明的氧化反应中，重要的是进料气体中烃和氧的浓度应维持在适宜的水平，以便在反应区内或者特别是在反应区的出口处，使燃烧的可能最小化或避免发生燃烧。通常优选出口的氧气含量
低，从而将后燃烧降至最低，并且特别是在循环操作模式下，将循环的气态流出物流中的氧气量降至最小。另外，在低温(低于450℃)下反应的操作是非常有吸引力的，因为后燃烧几乎不成问题，这能够达到所需产物的更高选择性。本发明的催化剂在上述低温范围内可以有效地操作，明显地降低乙酸和碳氧化物的形成并且提高了对丙烯酸的选择性。作为调节空速和氧分压的稀释气体，可以使用诸如氢气、氮气或氨气之类的惰性气体。

当通过本发明的方法进行丙烷的氧化反应，特别是丙烷和丙烯的氧化反应时，除了丙烯酸之外，还生成副产物一氧化碳、二氧化碳、乙酸等。此外，在本发明的方法中，根据反应条件，有时会形成不饱和醇。例如，当丙烷存在于原料混合物中时，可以形成丙烯醇；并且，当异丁烷存在于原料混合物中时，可以形成甲基丙烯醇。在这种情况下，通过用本发明的促进的含混合金属氧化物的催化剂将其在进行气相催化氧化，或者通过用不饱和醇的常规催化反应催化剂将其进行气相催化氧化反应，可以将这样的不饱和醇转化成所需的不饱和羧酸。

在第六和第八方面，本发明提供了制备不饱和腈的方法，该方法包括将链烷烃或链烷烃与链烯烃的混合物分别在本发明的第一或第三方面的催化剂存在下与氯进行气相催化氧化反应。

关于卤素用作本发明的催化剂的元素，可以将前述的气态卤素源加入到反应的气体进料中。

在这样的不饱和腈的制备过程中，作为原料链烷烃，优选使用C₃₋₈链烷烃如丙烷、丁烷、异丁烷、戊烷、已烷和庚烷。然而，考虑到制备的腈类的工业应用，优选使用含有3或4个碳原子的低级链烷烃，特别是丙烷和异丁烷。

类似地，作为原料链烷烃与链烯烃的混合物，可以使用C₃₋₈链烷烃和C₃₋₈链烯烃的混合物，例如丙烷和丙烯、丁烷和丁烯、异丁烷和异丁烯、戊烷和戊烯、己烷和己烯以及庚烷和庚烯的混合物。然而，考虑到制备的腈类的工业应用，更优选使用含有3或4个碳原子的低级链烷烃与含有3或4个碳原子的低级链烯烃，特别是丙烷和丙烯或
异丁烷和异丁烯的混合物。优选地，在链烷烃与链烯烃的混合物中，
链烯烃以至少 0.5 重量%、更优选至少 1.0 重量%至 95 重量%、最优
选 3 重量%至 90 重量%的量存在。

原料链烷烃的纯度没有具体的限制，可以使用含有低级烷烃如甲
烷或乙烷，空气或二氧化碳作为杂质的链烷烃而没有任何特别的问题。
此外，原料链烷烃可以是各种链烷烃的混合物。类似地，原料链烷烃
与链烯烃的混合物的纯度没有具体的限制，可以使用含有低级链烯烃
如乙烯、低级烷烃诸如甲烷或乙烷、空气或二氧化碳作为杂质的链烷
烃和链烯烃的混合物而没有任何特别的问题。此外，原料链烷烃和链
烯烃的混合物可以是各种链烷烃与链烯烃的混合物。

对于链烯烃的来源没有限制。可以以它自身或者以其与链烷烃和/
或其它杂质的混合物形式购买。或者，它还可以作为链烷烃氧化的副
产物来得到。类似地，对于链烷烃的来源没有限制。可以以它自身或
者以其与链烯烃和/或其它杂质的混合物形式购买。另外，需要时还可
以将链烷烃(无论来源如何)和链烯烃(无论来源如何)相混合。

发明的该方面的氧化反应的详细机理还没有被清楚地了解。
然而，氧化反应通过存在于上述促进的混合金属氧化物中的氧原子或
者通过进料气体中的分子氧来进行。当将分子氧引入进料气体时，所
述氧可以是纯氧气。然而，由于不要求高纯度，因此使用含氧气体如
空气通常更为经济。

作为进料气体，可以使用含有链烷烃或链烷烃与链烯烃的混合物、
氧和含氧气体的气体混合物。然而，可以交替地供应含有链烷烃或链
烷烃与链烯烃的混合物和氧的气体混合物和含氧气体。

当使用链烷烃或链烷烃与链烯烃的混合物和基本上不含分子氧的
氧作为进料气体进行气相催化反应时，建议采用其中将一部分催化剂
定期地取出并送至用于再生的氧化再生器，然后将再生催化剂返回到
反应区的方法。作为再生催化剂的方法，可以提到其中将氧化气体如
氧气、空气或一氧化氮通常在 300 至 600℃的温度下流经再生器内的
催化剂的方法。
就其中将丙烷用作原料链烷烃以及将空气用作氧源的情况，下面将更详细地描述本发明的该方面。供应至反应的空气的比率对于生成的丙烯腈的选择性是重要的。也就是说，当相对于每摩尔丙烷，供应的空气至多为 25 摩尔、优选 1 至 15 摩尔时可以得到对丙烯腈的高选择性。相对于每摩尔丙烷，供应至反应的氧的比率优选为 0.2 至 5 摩尔，特别是 0.5 至 3 摩尔。该反应通常在常压下进行，但也可以在稍有升高的压力或稍有降低的压力下进行。关于其它链烷烃如异丁烷，或链烷烃与链烯烃如丙烷与丙烯的混合物，可以按丙烷的条件选择进料气体的组成。

本发明的该方面的方法可以在例如 250°C 至 480°C 的温度下进行。更优选温度为 300°C 至 400°C。在气相反应中，气体空速 SV 通常为 100 至 10000hr⁻¹，优选 300 至 6000hr⁻¹，更优选 300 至 2000hr⁻¹。作为调节空速和氧分压的稀释气体，可以使用诸如氮气、氢气或氯气之类的惰性气体。当通过本发明的方法进行丙烯的氧化后，除了丙烯腈之外，还形成副产物一氧化碳、二氧化碳、乙腈、氢氰酸和丙烯醛。

实施例

对比例 1

向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碳和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100°C 下水热处理 1.5 小时，然后在 60°C 下向弹筒内加入 6.5g 硫酸氧化铁水合物，随后在搅拌下加入 30mL 草酸铵铵的水溶液（0.2M 的 Nb 溶液）。将弹筒的内含物在 175°C 下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水（50mL）洗涤，在 25°C 下在真空烘箱中干燥过夜，然后在空气中从 25°C 至 275°C 以 10°C/分钟的速率煅烧并在 275°C 下维持 1 小时，然后在氯气中从 275°C 至 600°C 以 2°C/分钟的速率煅烧并在 600°C 下维持 2 小时。最后的催化剂的名义组成为 Mo₁₀V₀₄₃Te₀₃₃Nb₀₁Oₓ。将所得到的催化剂碳压并筛分成 14-20 筛目的颗粒以用于反应器的评价。
对比例 2

将在 70℃下把相应的盐溶于水所形成的含有四水合七钼酸铵 (1.0M MoO₄)、偏钒酸铵 (0.3M V) 和碲酸 (0.23M Te) 的 200mL 水溶液加入到 1000mL 的 rotavap 烧瓶中。然后向其中加入 100mL 草酸铑铵 (0.25M Nb) 和草酸 (0.31M) 的水溶液。在 50℃及 28mmHg 下用热水浴通过旋转蒸发器蒸除水后，将固体物质在 25℃下在真空烘箱中进一步干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Mo₁.₀V₀.₃Te₀.₂₃Nb₀.₁₂₅Oₓ。将 20 克催化剂研磨并将其加入到 400mL 5%的 HNO₃ 水溶液中。将形成的悬浮液在 25℃下搅拌 30 分钟，然后固体通过重力过滤收集，并在 25℃下在真空烘箱中干燥过夜，然后在氢气中以 10℃/分钟的速率从 25℃加热至 600℃并在 600℃下维持 2 小时。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。图 1 显示了该催化剂的 X-射线衍射图。

对比例 3

将七钼酸铵 (18.38 克)、偏钒酸铵 (3.65 克) 和碲酸 (5.50 克) 溶于热水 (307 克)。将 4.96 克草酸铑铵的水 (70.5 克) 溶液和 9.2 克草酸加入到第一溶液中。在 50℃及 28mmHg 下用热水浴通过旋转蒸发器蒸除水后，将固体物质在 25℃下在真空烘箱中进一步干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Mo₁.₀V₀.₃Te₀.₂₃Nb₀.₀₈Oₓ。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。图 2 显示了该催化剂的 X-射线衍射图。

实施例 1
向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 0.1M 的水合硝酸钯的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铵铵的水溶液(0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，再在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Pd_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。图 3 显示了该催化剂的 X-射线衍射图。

实施例 2
将得自实施例 1 的 20 克煅烧后的固体、20 克二水合草酸和 80 克水加入到 300cc 的高压釜中。将混合物在 125℃下在搅拌下加热 5 小时。将固体通过重力过滤收集，用水洗涤并在 25℃下真空干燥过夜。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。图 4 显示了该催化剂的 X-射线衍射图。

实施例 3
向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 0.1M 的硝酸四氨合铂(II)的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铵铵的水溶液(0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，再在 25℃下在真空烘箱中干燥
过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275 ℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Pt_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_{x}。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。

实施例 4

向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 0.1M 的二水合硝酸铈的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铱铵的水溶液(0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Rh_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_{x}。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。

实施例 5

向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 0.1M 的硝酸铈的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铱铵的水溶液(0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1
实施例 6
向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100°C 下水热处理 1.5 小时，然后在 60°C 下向弹筒内加入 6mL 0.1M 的硝酸钾水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铵的水溶液 (0.2M 的 Nb 溶液)。将弹筒的内含物在 175°C 下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水 (50mL)洗涤，在 25°C 下在真空烘箱中干燥过夜，然后在空气中从 25 至 275°C 以 10°C/分钟的速率煅烧并在 275°C 下维持 1 小时，然后在氨气中从 275 至 600°C 以 2°C/分钟的速率煅烧并在 600°C 下维持 2 小时。最后的催化剂的名义组成为 Li₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。

实施例 7
向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100°C 下水热处理 1.5 小时，然后在 60°C 下向弹筒内加入 6mL 0.1M 的六水合硝酸铵的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铵的水溶液 (0.2M 的 Nb 溶液)。将弹筒的内含物在 175°C 下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水 (50mL)洗涤，在 25°C 下在真空烘箱中干燥过夜，然后在空气中从 25 至 275°C 以 10°C/分钟的速率煅烧并在 275°C 下维持 1 小时，然后在氨气中从 275 至 600°C 以 2°C/分钟的速率煅烧并在 600°C 下维持 2 小时。最后的催化剂的名义组成为 K₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。
在600℃下维持2小时。最后的催化剂的名义组成为Mg_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_{x}。将所得到的催化剂碾压并筛分成14-20筛目的颗粒以用于反应器的评价。

实施例8
向125mL的带有PTFE制成的内管的Parr Acid Digestion Bomb中加入3.15g二氧化碲和60mL0.143M的四水合七钼酸铵的水溶液。将混合物首先在100℃下水热处理1.5小时，然后在60℃下向弹筒内加入6mL0.1M的四水合硝酸铈的水溶液和6.5g硫酸氧钒水合物，随后在搅拌下加入30mL草酸钪铵的水溶液(0.2M的Nb溶液)。将弹筒的内含物在175℃下水热处理4天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在25℃下在真空烘箱中干燥过夜，然后在空气中从25至275℃以10℃/分钟的速率煅烧并在275℃下维持1小时，然后在氮气中从275至600℃以2℃/分钟的速率煅烧并在600℃下维持2小时。最后的催化剂的名义组成为Ca_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_{x}。将所得到的催化剂碾压并筛分成14-20筛目的颗粒以用于反应器的评价。

实施例9
向125mL的带有PTFE制成的内管的Parr Acid Digestion Bomb中加入3.15g二氧化碲和60mL0.143M的四水合七钼酸铵的水溶液。将混合物首先在100℃下水热处理1.5小时，然后在60℃下向弹筒内加入6mL0.1M的六水合硝酸铈的水溶液和6.5g硫酸氧钒水合物，随后在搅拌下加入30mL草酸钪铵的水溶液(0.2M的Nb溶液)。将弹筒的内含物在175℃下水热处理4天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在25℃下在真空烘箱中干燥过夜，然后在空气中从25至275℃以10℃/分钟的速率煅烧并在275℃下维持1小时，然后在氮气中从275至600℃以2℃/分钟的速率煅烧并在600℃下维持2小时。最后的催化剂的名义组成为
实施例 10
向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃ 下水热处理 1.5 小时，然后在 60℃ 下向弹筒内加入 6mL 0.1M 的九水合硝酸铬的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铱铵的水溶液 (0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃ 下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水 (50mL)洗涤，在 25℃ 下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃ 以 10℃/分钟的速率煅烧并在 275℃ 下维持 1 小时，然后在氢气中从 275 至 600℃ 以 2℃/分钟的速率煅烧并在 600℃ 下维持 2 小时。最后的催化剂的名义组成为 Cr_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_{x}。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。

实施例 11
向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃ 下水热处理 1.5 小时，然后在 60℃ 下向弹筒内加入 6mL 0.1M 的水合硝酸锰 (II) 的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铱铵的水溶液 (0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃ 下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水 (50mL)洗涤，在 25℃ 下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃ 以 10℃/分钟的速率煅烧并在 275℃ 下维持 1 小时，然后在氢气中从 275 至 600℃ 以 2℃/分钟的速率煅烧并在 600℃ 下维持 2 小时。最后的催化剂的名义组成为 Mn_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_{x}。将所得到的催化剂碾压并筛分成 14-20
筛目的颗粒用于反应器的评价。

实施例 12
向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 0.1M 的六水合硝酸钴(II)的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铵铵的水溶液(0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天，将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Co_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒用于反应器的评价。

实施例 13
向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 0.1M 的六水合硝酸钴(II)的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铵铵的水溶液(0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天，将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Ni_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒用于反应器的评价。
实施例 14

向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 0.1M 的五水合硝酸镧 (III) 的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铑铵的水溶液 (0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水 (50mL) 洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氩气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 In₀.₀₁Mo₁₀.V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。

实施例 15

向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 0.1M 的六水合硝酸镧的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸铑铵的水溶液 (0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水 (50mL) 洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氩气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 La₀.₀₁Mo₁₀.V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。
实施例16
向125mL的带有PTFE制成的内管的Parr Acid Digestion Bomb中加入3.15g二氧化碲和60mL0.143M的四水合七钼酸铵的水溶液。将混合物首先在100℃下水热处理1.5小时，然后在60℃下向弹筒内加入6mL0.1M的六水合硝酸铑的水溶液和6.5g硫酸氧化铑水合物，随后在搅拌下加入30mL草酸铵铵的水溶液(0.2M的Nb溶液)。将弹筒的内含物在175℃下水热处理4天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在25℃下在真空烘箱中干燥过夜，然后在空气中从25至275℃以10℃/分钟的速率煅烧并在275℃下维持1小时，然后在氩气中从275至600℃以2℃/分钟的速率煅烧并在600℃下维持2小时。最后的催化剂的名义组成为Zn_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x。将所得到的催化剂碳压并筛分成14-20筛目的颗粒以用于反应器的评价。

实施例17
向125mL的带有PTFE制成的内管的Parr Acid Digestion Bomb中加入3.15g二氧化碲和60mL0.143M的四水合七钼酸铵的水溶液。将混合物首先在100℃下水热处理1.5小时，然后在60℃下向弹筒内加入6mL0.1M的九水合硝酸铑(III)的水溶液和6.5g硫酸氧化铑水合物，随后在搅拌下加入30mL草酸铵铵的水溶液(0.2M的Nb溶液)。将弹筒的内含物在175℃下水热处理4天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在25℃下在真空烘箱中干燥过夜，然后在空气中从25至275℃以10℃/分钟的速率煅烧并在275℃下维持1小时，然后在氩气中从275至600℃以2℃/分钟的速率煅烧并在600℃下维持2小时。最后的催化剂的名义组成为Fe_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x。将所得到的催化剂碳压并筛分成14-20筛目的颗粒以用于反应器的评价。

实施例18
向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 0.1M 的硝酸铅(II)的水溶液和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸钒铵的水溶液(0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Pb_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。

实施例 19

向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 碘化钒(III)的水溶液(0.1M 的 I)和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸钒铵的水溶液(0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水(50mL)洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 I_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。

实施例 20

向 125mL 的带有 PTFE 制成的内管的 Parr Acid Digestion Bomb
中加入 3.15g 二氧化碲和 60mL 0.143M 的四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 溴化钾 (III) 的水溶液 (0.1M 的 Br) 和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸钒铵的水溶液 (0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水 (50mL) 洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Br_{0.01}Mo_{0.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。

实施例 21

向 125mL 的带有 PTFE 制成的内衬的 Parr Acid Digestion Bomb 中加入 3.15g 二氧化碲和 60mL 的 0.143M 四水合七钼酸铵的水溶液。将混合物首先在 100℃下水热处理 1.5 小时，然后在 60℃下向弹筒内加入 6mL 氟化钾 (V) 的水溶液 (0.1M 的 Cl) 和 6.5g 硫酸氧钒水合物，随后在搅拌下加入 30mL 草酸钒铵的水溶液 (0.2M 的 Nb 溶液)。将弹筒的内含物在 175℃下水热处理 4 天。将弹筒内形成的黑色固体通过重力过滤收集，用去离子水 (50mL) 洗涤，在 25℃下在真空烘箱中干燥过夜，然后在空气中从 25 至 275℃以 10℃/分钟的速率煅烧并在 275℃下维持 1 小时，然后在氢气中从 275 至 600℃以 2℃/分钟的速率煅烧并在 600℃下维持 2 小时。最后的催化剂的名义组成为 Cl_{0.01}Mo_{0.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x。将所得到的催化剂碾压并筛分成 14-20 筛目的颗粒以用于反应器的评价。

评价方法

将催化剂在 10cm 长的派热克斯玻璃管式反应器 (内径：3.9mm) 中进行评价。将催化剂床 (4cm 长) 与玻璃棉放置在靠近反应器的中部
并将其用电炉加热，质量流量控制器和计量器调节气体的流速。利用丙烷、水蒸汽和空气的进料气流进行氧化，丙烷:水蒸汽:空气的进料比率为 1:3:96。通过 FTIR 分析反应器的流出物。将保留时间为 3 秒的结果示于表 1-2 中。

<table>
<thead>
<tr>
<th>对比例</th>
<th>组成</th>
<th>温度(℃)</th>
<th>% C₃转化率</th>
<th>% AA收率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀1Oₓ</td>
<td>393</td>
<td>68</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>Mo₁.₀V₀.₃Te₀.₂₃Nb₀.₁₂5Oₓ</td>
<td>384</td>
<td>75</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>Mo₁.₀V₀.₃Te₀.₂₃Nb₀.₀₈Oₓ</td>
<td>400</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

表 2

<table>
<thead>
<tr>
<th>实施例</th>
<th>组成</th>
<th>温度(℃)</th>
<th>% C₃转化率</th>
<th>% AA收率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>390</td>
<td>70</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>Pd₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>386</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Pt₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>376</td>
<td>54</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>Rh₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>341</td>
<td>46</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>Li₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>375</td>
<td>57</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>K₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>327</td>
<td>52</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>Mg₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>391</td>
<td>55</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>Ca₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>341</td>
<td>47</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>Sm₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>369</td>
<td>60</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>Cr₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>380</td>
<td>56</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>Mn₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>383</td>
<td>59</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>Co₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>350</td>
<td>65</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>Ni₀.₀₁Mo₁.₀V₀.₄₃Te₀.₃₃Nb₀.₁Oₓ</td>
<td>372</td>
<td>52</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Formula</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>In_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x</td>
<td>374</td>
<td>42</td>
<td>39</td>
</tr>
<tr>
<td>15</td>
<td>La_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x</td>
<td>344</td>
<td>60</td>
<td>39</td>
</tr>
<tr>
<td>16</td>
<td>Zn_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x</td>
<td>369</td>
<td>46</td>
<td>38</td>
</tr>
<tr>
<td>17</td>
<td>Fe_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x</td>
<td>375</td>
<td>47</td>
<td>38</td>
</tr>
<tr>
<td>18</td>
<td>Pb_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x</td>
<td>336</td>
<td>44</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>I_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x</td>
<td>400</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>Br_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x</td>
<td>379</td>
<td>49</td>
<td>35</td>
</tr>
<tr>
<td>21</td>
<td>Cl_{0.01}Mo_{1.0}V_{0.43}Te_{0.33}Nb_{0.1}O_x</td>
<td>370</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>
图1
图4