A vehicle automatic transmission is disclosed which minimizes the transmission of torque to the vehicle driveshaft when the gear selector is in the Drive (D) position and the engine is idling. This is accomplished by inserting a plurality of flow control valves in the hydraulic control circuit to cause the transmission to automatically shift into its highest forward gear whenever the driver's foot is lifted from the accelerator pedal. The flow control valve directs main supply pressure to the shift control valves causing the transmission to upshift into its highest forward gear regardless of vehicle speed.

5 Claims, 4 Drawing Figures
CREEP PREVENTING HYDRAULIC CONTROL CIRCUIT FOR VEHICLE AUTOMATIC TRANSMISSION

BACKGROUND OF THE INVENTION

In a conventional automatic transmission, a main pump supplies fluid at a regulated pressure to a plurality of shift control valves. The shift control valves, usually of the spool type, direct hydraulic fluid to various frictional elements to cause engagement or disengagement of such elements and thereby change the gear ratio. The regulated pressure is applied to the control valve spools in opposition to a second fluid pressure regulated by a plurality of governor valves, such second pressure varying directly with vehicle speed. Thus, movement of the shift control valve spools to cause the transmission to upshift from one gear ratio to another can only take place when the governor pressure exceeds the first regulated pressure. Downshifting takes place in a similar fashion, i.e., when the decrease in vehicle speed causes the governor pressure to become less than the first regulated pressure. In a conventional automatic transmission the downshifting takes place sequentially from the highest gear to the lowest. Thus, whenever the engine is idling and the vehicle speed is relatively low, the transmission downshifts to its lowest gear. Since the lowest gear is used to start vehicle movement, it must have a high gear ratio to transmit large torque forces to the vehicle driveshaft. During engine idling with the gear selector in Drive position, this large torque causes what is commonly referred to as vehicle creep, i.e., the movement of the vehicle when the engine is idling and the gear selector is in Drive (D). This creep phenomenon causes undue wear on the brake system of the vehicle and is generally annoying to the driver under normal driving conditions.

SUMMARY OF THE INVENTION

It is a primary object of the invention to avoid the aforementioned problems due to vehicle creep. To minimize the effect of the creep phenomenon, the transmission is caused to upshift into its highest forward gear when the gear selector is in the Drive position and the drivers foot is removed from the accelerator pedal to minimize the gear ratio and, consequently, the transmission of torque to the vehicle driveshaft. This is accomplished by utilizing a plurality of flow control valves in series between the main supply pump and the shift control valves. These valves cause fluid at line pressure to replace the aforementioned governor pressure in actuating the shift control valves. Since the line pressure is always higher than the aforementioned first regulated pressure, it causes the transmission to upshift regardless of vehicle speed. Two of the valves are controlled by the accelerator pedal while the remaining valve is controlled by the manual gear selector valve. For the creep prevention function to be operative, the manual gear selector must be in the Drive (D) position and the throttle must be closed or in the act of closing. It is inoperative under all other conditions. When the operative conditions exist, all flow control valves are open and fluid at line pressure passes through all three valves and is applied to the shift control valves to cause upshifting. The closing of any one valve shuts off the fluid flow at line pressure and allows fluid at the governor pressure to effect shifting as in the conventional transmission.
and by the second driving brake 11 through the second one-way brake 14.

Table 1 shows a schedule for achieving four different forward speed ratios and one reverse speed ratio by selectively actuating the front clutch 4, the rear clutch 5, the band brake 12, the low-and-reverse brake 9, the second coasting brake 10, and the second driving brake 11. The speed change ratio in Table 1 is based on 80 teeth for the ring gear and 37 teeth for the sun gear, for all of the first, second and third planetary sets. The speed change ratio, of course, can be modified by suitably changing such number of teeth in different gears of the different planetary sets.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Front clutch 4</th>
<th>Rear clutch 5</th>
<th>Band brake 12</th>
<th>L.R.B. 9</th>
<th>Low one-way brake 15</th>
<th>2CB 10</th>
<th>2DB 11</th>
<th>Second one-way brake 14</th>
<th>Speed change ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>D range</td>
<td>D1</td>
<td>O</td>
<td>O</td>
<td></td>
<td>Δ</td>
<td>O</td>
<td>Δ</td>
<td>2.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>"1" range</td>
<td>D1</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td>O</td>
<td>O</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>"2" range</td>
<td>D1</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td>O</td>
<td>O</td>
<td>2.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Reverse</td>
<td>D1</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td>O</td>
<td>O</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>"R" range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.16</td>
<td></td>
</tr>
</tbody>
</table>

In Table 1, the circle (o) indicates that the hydraulic pressure is applied to the circled friction elements or brakes, while the triangle (Δ) indicates that the thus marked one-way brake is applied.

Referring to Table 1, the difference in the D1 and D2 ranges of the category D from the 1 and 2 ranges is whether the brake is applied in one-way or two-ways. More particularly, both the low one-way brake 13 and the second one-way brake 14 produce reactive forces when they are driven from the engine side, but they idle when being driven from the output shaft 15. Accordingly, in D1 and D2 ranges with the one-way brakes applied, the engine brake is not effective. When it is desired to effect the engine brake, the low-and-reverse brake 9 and the second coasting brake 10 must be applied. In operation the rear clutch 5 and the one-way brake 13 are applied in the D1 range, while the rear clutch 5 and the low-and-reverse brake 9 are applied in the 1 range. In the following description, for simplicity, it will be assumed that the shaft 20 is driven by the rotation of the output shaft 15.

When the output shaft 15 rotates, the ring gear 7a of the second planetary set 7 rotates at the same speed with the shaft 15. At this moment, the carrier 26 is held stationary by the low-and-reverse brake 9 or the low-one-way brake 13, and the sun gear 7c rotates at a certain speed, and the sun gear 6c of the first planetary set 6 coupled thereto also rotates at the same speed with the sun gear 7c. In the first planetary set, the carrier 25 rotates at the same speed with the output shaft 15, so that the ring gear 6a rotates at a speed which depends on the speeds of the carrier 25 and the sun gear 6c. The rotation of the ring gear 6a is transmitted to the input shaft 20 through the rear clutch 5.

In practice, the driving power from the input shaft 20 is transmitted to the output shaft 15, in the opposite direction to the aforesaid direction but through the same path.

With the D3 range, i.e., the 2nd-speed of the D range, the rear clutch 5 is engaged and the second driving brake 11 is applied. In the 2 range, the rear clutch 5 is engaged and the second coasting brake 10 is applied. It is assumed that the output shaft 15 drives the transmission, as in the case of the first speed ratio range. As the output shaft 15 rotates, the sun gear 8c of the third planetary set 8 revolves together with the shaft 15, so as to drive the carrier 27 at a certain speed. At this time, the ring gear 8a is held stationary by the second coasting brake 10 or the second one-way brake 14.

In the second planetary set 7, the ring gear 7a is connected to the output shaft 15 and the carrier 26 is connected to the carrier 27 of the third planetary set 8, so that the sun gear 7c revolves at a speed which depends on the speeds of the ring gear 7a connected to the output shaft 15 and the carrier 26. In the first planetary set 6, the carrier 25 is connected to the output shaft 15 and the sun gear 6c is connected to the sun gear 7c of the second planetary set, the ring gear 6a rotates at a speed which depends on the speeds of the sun gear 6c and the carrier 25. Since this ring gear 6a is connected to the input shaft 20 through the rear clutch 5, the shaft 20 rotates at the same speed with the ring gear 6a. In this case, the input shaft 20 actually transmits power to the output shaft 15 in the opposite direction to the aforesaid direction but through the same path.

With the third or D3 range, the rear clutch 5 is engaged and the brake 12 is applied. Accordingly, the rotation of the output shaft 20 is transmitted to the ring gear 6a of the first planetary set 6, through the rear clutch 5. Since the sun gear 6c is held stationary by the band brake 12, the carrier 25 rotates at a certain speed, which carrier rotation is transmitted to the output shaft 15.

In the fourth or D4 range, the rear clutch 5 and the front clutch 4 are both engaged. Accordingly, the ring gear 6a and the sun gear 6c of the first planetary set 6 rotate at the same speed with the input shaft 20. Accordingly, the carrier 25 of this planetary set 6 also rotates at the same speed as the input shaft 20, so that the output shaft 15 rotates at the same speed as the input shaft 20.

In the reverse or R range, the front clutch 4 is engaged and the low-and-reverse brake 9 is applied. The rotation of the input shaft 20 is transmitted to the sun gear 7c of the second planetary set 7 through the front clutch 4 and the brake drum 30. At this moment, the carrier 26 of the second planetary set 7 is held stationary by the low-and-reverse brake 9, so that its ring gear 7a is rotated at a certain speed in the opposite direction to the sun gear 7c, and the rotation of the ring gear 7a is transmitted to the output shaft 15.

The hydraulic circuit according to the present invention will now be described by referring to FIG. 2. The
The hydraulic circuit of the present invention comprises a pump 41, a manual valve 42, a regulator valve 43, a throttle valve 44, a 1-2 shift valve 45, a 2-3 shift valve 46, a 3-4 shift valve 47, a downshift valve 48, a solenoid valve 49, an idle valve 50, a 1 speed pressure-reducing valve 51, a 2 speed pressure-reducing valve 52, a hysteresis valve 53, five shuttle valves 54, 55, 56, 57, 58, two governor valves 59, 60 and a creep valve 212. The pump 41 sucks oil from an oil sump 61 through a strainer 62 and an intake conduit 63, and the discharge from the pump 41 is delivered to a line pressure passage 64. The line pressure passage 64 acts to deliver and apply the line pressure to various frictional clutches and brakes.

REGULATOR VALVE

The regulator valve 43 is a valve which regulates the pressure in the line pressure passage 64. The regulator valve 43 includes a spool 65 with lands 65a, 65b, 65c, 65d, 65e, 65f, and a spring 66 urging the spool 65 upwardly.

Valve ports 67, 68, 69, 70, 71, 72, 73, and 74 are formed on the regulator valve 43. The valve port 67 of the regulator valve 43 is provided with the line pressure from the manual valve 42 through a passage 180 during the forward ranges, as will be described hereinafter. The valve port 68 of the regulator valve 43 communicates with the line pressure passage 64 through an orifice 178. Accordingly, an oil pressure acts on the differential area between the lands 65a and 65b of the spool 65 of the regulator valve 43, so that there is produced a force which urges the spool downwardly. The valve port 69 of the regulator valve 43 communicates with a valve port 165 of the idle valve 50 through passage 184, ports 217 and 214 of valve 212 and passage 220. As will be described later, an oil pressure is generated at the port 165 of the idle valve 50 when the car idles. As a result, during the idling, the oil pressure acts on the differential area between the lands 65b and 65c of the spool 65, so as to generate a force which urges the spool 65 downwardly. The port 70 of the regulator valve 43 is a drain port which drains the oil leaking from the port 71 through a gap adjacent the land 65d. The port 71 communicates with the line pressure passage 64. The port 72 of the regulator valve 43 is connected to the torque converter, for feeding the oil to the torque converter from the port 71 through a gap adjacent the land 65e of the spool 65. The port 73 of the regulator valve 43 communicates with the shuttle valve 57 through a passage 185. The shuttle valve 57 communicates with the port 79 of the manual valve 42 through the passage 181, as well as with the port 84 of the throttle valve 44 through the passage 186. The port 79 of the manual valve 42 is at the line pressure when the spool 75 thereof is at the range or position 3, 2, or 1. The port 84 of the throttle valve 44 is at the oil pressure (throttle pressure) which corresponds to the engine load. As well known in the art, the shuttle valve 57 provides the passage 185 with the higher one of pressures at the passages 181 and 186. As a result, when the manual valve 42 is at the range or position 3, 2, or 1, the passage 185 is at the line pressure.

Thus, the differential area between the lands 65e and 65f of the regulator valve spool 65 is provided with the throttle pressure when the manual valve 42 is not at any one of the ranges or positions 3, 2, and 1, while the differential area is provided with the line pressure when the manual valve 42 is at the range or position 3, 2, or 1. The port 74 of the regulator valve 43 is a drain port.

THROTTLE VALVE

The throttle valve 44 is a valve which produces a pressure corresponding to the engine load, i.e., the throttle pressure, for modifying the shift point of the automatic transmission and for controlling the line pressure applicable to various brakes and clutches. The port 187 of the throttle valve 44 is at the line pressure from the line pressure passage 64, and the port 84 of the valve 44 communicates the other port 83 thereof through an orifice 86. A chamber 188, which is formed to the left of a diaphragm 87 of the throttle valve 44, communicates with an engine intake conduit, so that the valve spool 82 is strongly urged to the ring as seen in FIG. 2, when the engine load is high, while it is weakly urged to the right when the engine load is low.

When the force which urges the spool 82 to the right from the diaphragm 87 is large, the gap from the port 187 to the port 84 increases while decreasing the gap leading to the drain port 85 by the land 82b of the spool 82. Accordingly, the oil pressure at the port 84 increases, and the oil pressure at a port 83 communicating with the port 84 also increases. Thus, the increased pressure at the port 83 acts on the extreme right end of the spool and 82c so as to tend to return the spool 82 to the original position thereof. Consequently, the spool 82 is held at a balanced position, and the oil pressure at the port 84 is regulated at a comparatively high level. On the contrary, when the force from the diaphragm 87 is small, the oil pressure at the port 84 is regulated at a comparatively low level. Such pressure regulation by the throttle valve 44 results in an oil pressure proportional to the engine load (throttle pressure) at the valve port 84.

The governor valves 59 and 60 generate an oil pressure which corresponds to car speed to facilitate the shifting of the speed change ratios in cooperation with the aforesaid throttle valve. The primary governor valve 59 includes a casing secured to the output shaft, which houses a valve spool 169 and a spring 172. The spool 169 is slidable in the housing. The secondary governor valve 60 also includes a housing secured to the output shaft which houses a spool 169 and a spring 177. The spool 169 is also slidable in the housing. A governor pressure passage 189 is provided with an oil pressure from the line pressure passage 64 through an orifice 190. When the passage diameter of the orifice 190 is sufficiently small, the oil pressure in the passage 189 has little effect on the pressure in the passage 64.

When the revolving speed of the output shaft is less than a certain value (e.g., 500 r.p.m.), the spool 169 of the primary governor valve 59 is urged downwardly by the spring 172, so that the port 170 communicates with the drain port 171, so that the oil in the passage 189 is discharged to the drain port 171, so that no oil pressure is built in the passage 189. As the revolving speed of the output shaft increases, the spool 169 moves upwards, as seen in FIG. 2, due to an increased centrifugal force, so that the port 170 is isolated from the drain port 171 and the oil in the passage 189 is retained therein, to build up an oil pressure which is determined by the secondary governor 60, as will be described hereinafter. In the secondary governor valve 60, an oil pressure delivered through a valve port 176 to the lower end surface
of the land 169'b of a spool 169' balances the elasticity of a spring 177 plus the centrifugal force acting on the spool. When the revolving speed of the output shaft becomes high and the centrifugal force acting on the spool 169' increases, the oil pressure in the passage 189 also increases to balance such increased centrifugal force. In effect, the oil pressure in the passage 189 corresponds to the revolving speed of the output shaft. With the combined effect of the primary governor valve 59 and the secondary governor valve 60, the oil pressure at the passage 189 is zero when the revolving speed of the output shaft is below a certain predetermined level, while for the revolving speed in excess of the predetermined level, the oil pressure at the passage 189 corresponds to the revolving speed of the output shaft, i.e., the car speed (such oil pressure will be referred to as "fundamental governor pressure," hereinafter).

DOWNSHIFT VALVE

The downshift valve 48 includes a spool 123 with lands 123a and 123b, a spring 124 urging the spool 123 downwardly, and valve ports 125, 126, 127, 128, and 129. The ports 128 and 129 communicate with the fundamental governor pressure at the passage 189, while the port 126 communicates with the line pressure passage 64. An oil pressure signal is applied to the valve port 125 at the time of kickdown, but otherwise it is drained to the port 162 of the idle valve 50. Except for the time of kickdown, the line pressure from the port 126 enters into the port 127 through a gap adjacent the land 123a of the spool 123, so that this pressure acts on the differential area between the lands 123b and 123a for generating a force urging the spool 123 downwardly. The downward force is combined with the elasticity of the spring 124, so as to balance the upward force acting on the land 123b due to the fundamental governor pressure from the port 129. Accordingly, the oil pressure at the port 127 depends on the fundamental governor pressure, and the former is higher than the latter by an amount related to the differential area of the lands 123a and 123b. Thus, the pressure at the port 127 is somewhat amplified as compared with the fundamental governor pressure (the oil pressure at the port 127 will be referred to as "amplified governor pressure," hereinafter). At the time of kickdown, the spool 161 of the idle valve 50 blocks the drain port 162, so that the line pressure is applied to the port 125 through the ports 157–158 of the solenoid valve 49, the ports 164–163 of the idle valve 50, and the passage 202. Thus, the spool 123 of the downshift valve 48 is forced to its lower position, so as to communicate the ports 127 and 128. As a result, the pressure at the port 127 becomes the fundamental governor pressure.

Hysteresis Valve

The hysteresis valve 53 has a valve spool 146 with lands 146a, 146b, and 146c, which spool 146 is normally urged downwardly by a spring 147. The hysteresis valve 53 also has valve ports 148, 149, 150, 151, and 152, 153. The valve port 150 communicates with the line pressure passage 64, while the valve port 153 communicates with a passage 195. The aforesaid passage 295 of the throttle valve communicates with a valve port 79 of the manual valve 42 through the shuttle valve 57, and also to a valve port 84 of the throttle valve 44 through the same shuttle valve 57. Unless the spool 75 of the manual valve 42 is located in the 1, 2, or 3 range, the passage 295 communicates with the port 79 of the manual valve 42 for receiving the line pressure. The oil pressure which is delivered from the port 150 to the port 148 through the valve port 151, the passage 197, and the orifice 154 is regulated to a level which balances a combined upwardly directed force due to both the oil pressure at the port 153 urging the land 146c upwardly and the elasticity of a spring 147. Unless the spool 75 of the manual valve 42 is in the 3, 2, or 1 range, the oil pressure at the valve port 153 is the throttle pressure, so that the oil pressure at the passage 197 corresponds to the throttle pressure. When the spool 75 of the manual valve 42 is in the 3, 2, or 1 range, the oil pressure at the valve 153 becomes the line pressure, and a force due to this line pressure is combined with the force of the spring 147 to urge the spool 146 upwardly. As a result, the pressure regulating balance is lost, and the ports 150 and 151 communicate with each other, so that the pressure at the passage 197 becomes the line pressure.

Solenoid Valve

The solenoid valve 49 comprises a solenoid which is energized at kickdown and upon release of accelerator pedal, a plunger 203 of the solenoid, a valve port 204 to be closed and opened by the plunger, a valve spool 155 with lands 155a and 155b, other valve ports 156, 157, 158, 159, a spring 206 urging the spool upwardly, and an orifice 205 disposed at the port 156. When the solenoid is energized upon kickdown or release of the accelerator pedal, the plunger acts to open the valve port 204, so that the spool 155 is pushed upwardly by the spring 206, as shown in FIG. 2. Thus, the line pressure from the passage 64 is applied to the port 164 of an idle valve 50 through the ports 157, 158, and a passage 207. When the accelerator pedal is released by removing the foot therefrom, the engine idles, the throttle pressure delivered to the port 167 of the idle valve 50 is reduced and the spool 161 of the idle valve 50 is forced downwardly by spring 168 to its lowermost position, as shown in FIG. 2. Accordingly, the line pressure at the port 164 of the idle valve 50 is delivered to a shuttle valve 58 through the valve port 165, passage 220, port 214, port 217 and the passage 184, so as to cause the valve to block the passage 208 while communicating the passage 184 with another passage 209. Thus, the line pressure from the solenoid valve 49 is applied to the lower ends of the 3–4 shift valve 47, the 2–3 shift valve 46 and the 1–2 shift valve 45, so that the spools of those shift valves are forced upwardly to establish the fourth speed.

The line pressure from the solenoid valve 49 is also applied to the port 69 of the regulator valve 43, so as to force the spool 65 of the regulator valve 43 downwardly for reducing the line pressure to a level below a predetermined value. Since the shifting takes place with the thus reduced line pressure, the shock at the time of shifting from the Neutral (N) or Park (P) ranges to the Drive (D) range can be reduced.

Pressure-Reducing Valves

Pressure-reducing valves include a first speed pressure-reducing valve 51 and a second speed pressure-reducing valve 52. When the manual valve 42 is shifted to its 1 range or position, the port 77 of the manual
3,890,856

valve 42 communicates with the ports 78, 79, 80 and 81, so as to deliver line pressure to passages 180, 181, 182, 183, and 185. The line pressure delivered to the passage 183 acts to force a spool 88 of the 1–2 shift valve 45 downwardly, so that a path is formed through ports 98 to 97 of the 1–2 shift valve 45 and to a passage 211 for delivering the line pressure to a port 137 of the first speed pressure-reducing valve 51. An upwardly directed force acting on the spool 131 of the first speed pressure-reducing valve 51 caused by the pressure at the port 137 balances a combined downwardly directed force due to the spring 132 and the oil pressure applied to the port 133 through orifice 138. Gaps or openings adjacent the ports 134 and 135 are so controlled as to achieve the aforesaid balance, and the line pressure from the passage 211 is reduced at the gaps or openings adjacent the ports 134 and 135. The oil pressure, which is thus reduced by the first speed pressure-reducing valve, is delivered to the low-and-reverse brake 9 through a passage 192.

When the manual valve 42 is shifted to its 2 range or position, the port 77 communicates with the ports 78, 79 and 80, so as to deliver the line pressure from the pump 41 to the passages 180, 181, and 182. The line pressure delivered to the passage 182 tends to push the spool 139 of the second speed pressure-reducing valve 52 upwardly. As a result, the spool 139 moves upwardly against the spring 145, so as to change-over the path between ports 142 and 143 (drain) to another path between ports 142 and 141. Thus, the passage 210 communicates with the passage 198. When the manual valve 42 is at the 2 range or position, the spool 100 of the 2–3 shift valve 46 is pushed downwardly. The line pressure is reduced while passing through the passage 180, the ports 94, 95 of the 1–2 shift valve 45, ports 109, 108 of the 2–3 shift valve 46, the passage 198, and the ports 141, 142 of the second speed pressure-reducing valve 52. The thus reduced line pressure is applied to the 2CB 10 through the passage 210.

Operation of the other valves will be described for different ranges or operative positions of the manual valve 42.

P RANGE

When the manual valve 42 is set in the P range, the port 77 of the manual valve 42 connected to the line pressure passage 64 is blocked by the land 75b of the spool 75, so that no oil pressure is applied to the shift valves. Accordingly, the clutches and the brakes are not actuated.

R RANGE

When the manual valve 42 is set in the R range, the port 77 of the manual valve 42 connected to the line pressure passage 64 is communicated with the port 76, so that the line pressure is delivered to the passage 191. The passage 191 is connected to the 1 speed pressure-reducing valve 51 and the shuttle valve 56. A port 136 of the 1 speed pressure-reducing valve 51 receives only the line pressure from the passage 191. The spool 131 of the valve 51 is urged downwardly by a spring 132, so that the port 136 communicates with port 135 to deliver line pressure to passage 192. Whereby, the low-and-reverse brake 9 is applied. The line pressure applied to the shuttle valve 56 also proceeds into passage 193, and is then applied to the front clutch 4 and the servo release 35. Whereby, the band brake 12 is released and the front clutch 4 is engaged. As a result, the conditions for the reverse operation are established.

The line pressure for the reverse operation is so regulated that there is a balance among a downwardly directed force due to the oil pressure acting on the differential area between the lands 65a and 65b and the port 68 of the regulator valve 43, an upwardly directed force due to the throttle pressure applied to the differential area between the lands 65e and 65f at the port 73, and another upwardly directed force of the spring 66.

N RANGE

When the manual valve is set in the N range, the port 77 of the valve is blocked, so that the line pressure at the port 77 is not delivered anywhere as in the case of the P range. Thus, no brakes nor clutches are engaged, and the neutral state is maintained.

D RANGE

When the manual valve 42 is set in the D range, the port 77 of the valve 42 communicates with port 78 to establish the line pressure at the passage 180. Since the passage 180 is connected to the rear clutch 5, the rear clutch S is engaged. The passage 180 is also connected to a port 94 of the 1–2 shift valve 45. In the 1–2 shift valve 45, the throttle pressure from a passage 195 is applied to a differential area between the lands 88a and 88b of a spool 88 and to another differential area between the lands 88e and 88c, through the shuttle valve 54, to provide a downwardly directed force thereto, together with a spring 89. In this case, the amplified governor pressure is applied to another port 99 of the 1–2 shift valve 45 to cause an upwardly directed force to act on land 88e of the spool 88. When the car speed is comparatively low and the amplified governor pressure is low, the upwardly directed force is weak and the spool 88 of the 1–2 shift valve 45 is forced downwardly by the combination of the throttle pressure force and the spring force. Thus, the port 94 of the 1–2 shift valve 45 is blocked by the land 88e of the spool 88. Accordingly, if the car speed is low, only the rear clutch S is engaged. Thus, the D3 range is established, wherein the engine brake is not effective.

When the car speed increases and the amplified governor pressure becomes high, the upwardly directed force acting on the land 88e of the spool 88 of the 1–2 shift valve 45 will surpass the combination of the downwardly directed forces due to the throttle pressure and the spring 89. Thus, the spool 88 is gradually raised. When the spool 88 comes up to a position where the port 93 is blocked by the land 88c, the throttle pressure formerly acting on the differential area between the lands 88b and 88c is now drained through the port 92. Thus, the downwardly directed force is weakened to quicken the upward movement of the spool 88. The ports 94 and 95 of the 1–2 shift valve 45 then communicate so that the oil pressure from the passage 180 is applied to the passage 194 and the second driving brake 11 is applied. Thus, the D2 range is established. When the spool 88 of the 1–2 shift valve 45 is urged to its uppermost position, the downwardly directed force acting thereon becomes the sum of the forces due to the throttle pressure applied to the differential area between the lands 88a and 88b and the spring force. As compared with the force necessary for pushing up the spool 88, the amplified governor pressure which is nec-
necessary for pushing the spool down can be reduced by an amount corresponding to the throttle pressure acting on the differential area between the lands 88b and 88c. Thus, as compared with the upshift from the 1st speed range to the 2nd speed range, the downshift from the 2nd speed range to the 1st speed range will be effected at a lower car speed.

When the line pressure is applied to the passage 194 with the ports 94 and 95 of the 1-2 shift valve communicated, it is also applied to the port 109 of the 2-3 shift valve 46. A port 105 of the 2-3 shift valve 46 receives the throttle pressure through the shuttle valve 55 and passages 186 and 196, which throttle pressure acts on the differential area between lands 100c and 100b of the spool 100 of the valve 46 to urge the spool 100 downwardly. A regulated pressure from the hysteresis valve 53 (to be referred to as the "hysteresis pressure," hereinafter) is applied to a port 106 of the 2-3 shift valve 46 through a passage 197, so as to act on a differential area between lands 100d and 100c of the spool 100 of the valve 46, for urging the spool 100 downwardly together with a spring 101. The amplified governor pressure applied to a port 112 of the valve 46 acts to urge the spool 100 upwardly. When the car speed is comparatively low, the amplified governor pressure is also low, and the upwardly urging force is small enough to keep the spool 100 urged to its lowermost position. Under such conditions, the line pressure from the passage 194 is transmitted to the passage 198 through the ports 109 and 108 of the valve 46. The passage 198 is connected to a port 141 of the 2 speed pressure-reducing valve 52, but the port 141 is blocked by the land 139e of the spool 139 in the D range because spring 145 forces the spool 139 downwardly. As the car speed further increases, the amplified governor pressure also becomes higher, so as to gradually move the spool 100 upwardly. As soon as the land 100d blocks the port 106, the port 105 communicates with the port 199. The hysteresis pressure which has acted on the differential area between the lands 100d and 100c is now replaced with the throttle pressure, because the spool 100 thus raised communicates with the port 105 with the port 199. In this case, the hysteresis pressure is higher than the throttle pressure, so that the replacement of the hysteresis pressure with the throttle pressure results in a reduction of the downwardly directed force by an amount corresponding to the difference between the hysteresis pressure and the throttle pressure. Consequently, the spool 100 of the 2-3 shift valve 46 is quickly pushed up. As a result, the path from the port 109 to the port 108 is switched to another path from the port 109 to another port 110. The oil pressure at the passage 198 is drained to the drain port 107. The pressure at the port 110 is applied to the servo apply 34 through a passage 200, so as to apply the band brake 12. Thus, the conditions for the D1 and 3 ranges are established. Once the spool 100 of the 2-3 shift valve 46 is pushed up, the downwardly directed force acting on the spool 100 is reduced by the amount corresponding to the difference between the hysteresis pressure and the throttle pressure, so that the downshift from the 3rd speed to the 2nd speed takes place at a lower amplified governor pressure, i.e., at a lower car speed, as compared with those for the upshift from the 2nd speed to the 3rd speed.

The passage 200 connected to the port 110 of the 2-3 shift valve 46 is connected to a port 119 of the 3-4 shift valve 47. The 3-4 shift valve 47 has ports 116 and 117 which are communicated with each other and provided with the throttle pressure from the passage 185 connected to the throttle valve 44. The passage 197 applied the hysteresis pressure to a port 118 of the valve 47. The throttle pressure acts on a differential area between lands 113e and 113c of a spool 113 of the valve 47, and the hysteresis pressure acts on another differential area between lands 113c and 113b of the spool 113, and both the throttle and hysteresis pressure act to urge the spool 113 downwardly together with a spring 114. The amplified governor pressure delivered to a port 122 of the valve 47 acts to urge the spool 113 upwardly, so that there will be a balance between this upwardly directed force and a combined downwardly directed force of the aforesaid causes. As long as the car speed is in short of a certain predetermined level, the spool 113 of the 3-4 shift valve 47 is kept at its lowermost position, and the port 119 of the valve 47 is blocked by the land 113c. As the car speed increases, the spool 113 is gradually raised, as in the case of the 2-3 shift valve 46, and the port 119 is communicated with the port 120 at a certain point. The port 120 is communicated with the shuttle valve 56 through a passage 201, which shuttle valve 56 is connected to the front clutch 4 and the servo release 35 through the passage 193. Accordingly, when the 3-4 shift valve spool 113 is raised to such a position as to communicate the ports 119 and 120 of the valve 47, the passage 201 is communicated with the passage 200 and provided with the line pressure. As a result, the band brake 12 is released, and the front clutch 4 is engaged, so as to establish the conditions for the 4th speed, or the D4 range. The 4-3 downshift will take place at a lower car speed, as compared with that for the 3-4 upshift, due to similar reasons.

D RANGE KICKDOWN

In the D range operation, when the accelerator pedal is fully depressed to close a kickdown switch 36, the shift point will be raised in the following manner. With the kickdown switch open, the plunger 203 of a solenoid 160 is forced to engage orifice 204 by an inner spring of the solenoid 160. The solenoid valve 49 has a port 156 which communicates with the line pressure passage 64 through orifice 205, and the line pressure acts on the port 156 when the orifice 204 is blocked by the plunger 203, in order to force a spool 155 downwardly against a spring 206. Under such conditions, the port 157 of the valve 49 is blocked by a land 155a of the spool 155, and a port 158 is drained to a drain port 159. When the kickdown switch 36 is closed, the plunger 203 of the solenoid 160 is pulled up, so as to allow the draining of the line pressure at the port 156 through the orifice 204. Thus, the spool 155 is pushed up by the spring 206. At the same time, the port 157 communicates with the port 158, so that the line pressure from the port 158 is applied to the idle valve 50 through the passage 207. At this moment, the port 167 of the idle valve 50 is provided with the throttle pressure which is applied thereto through the passage 186. When the accelerator pedal is so depressed as to close the kickdown switch 36, the throttle pressure is so high that the upwardly directed force acting on the land 161c of the spool 161 of the idle valve 50 overcomes the elasticity of the spring 168 and pushes the spool 161 upwardly. Thus, the port 164 communicates with
the port 163, so as to deliver the oil pressure from the passage 207 to the passage 202 leading to the downshift valve 48. When the oil pressure is applied to the passage 202 as described above, the oil pressure acts on the port 125 of the downshift valve 48 for urging the spool 123 thereof downwardly, so as to switch the oil pressure acting on the port 127, i.e., the passage 208, from the amplified governor pressure to the fundamental governor pressure. For a given car speed, the fundamental governor pressure is lower than the amplified governor pressure, so that the shift point is raised for both the upshift and the downshift. The line pressure system for the kickdown operation is the same as for the normal D range.

D RANGE IDLING STATE

The solenoid 160 of the solenoid valve 49 is adapted to be turned on not only at the kickdown but also at the engine idling. Accordingly, if the accelerator pedal is released while cruising at D range, the solenoid 160 is energized. More particularly, switch 36 is provided which is to be closed upon removing the foot from the accelerator pedal. When such solenoid is energized, the port 158 and the passage 207 leading to the idle valve 50 are provided with oil pressure, as in the case of kickdown. Up to this point, the operation is the same as that of the kickdown.

During the idling, the throttle pressure at the port 167 of the idle valve 50 is low. Accordingly, the spool 161 of the idle valve 50 is kept at the lowermost position by the spring 168, and the port 164 communicates with the port 165.

The creep valve 212 is connected in series with the solenoid valve 49 and the idle valve 50. When the accelerator pedal is released, the creep valve 212 interrupts the oil flow from the idle valve 50 when the manual valve 42 is at one of the forward ranges other than the D range, while the valve 212 allows passage of the oil from the idle valve 50 when the manual valve 42 is in the D range. The creep valve 212 comprises a spool 213 with lands 213a and 213b, valve ports 214, 215, 216, 217, 218, and a spring 219.

When the spool 161 of the idle valve 50 is urged downwardly by the spring 168, as described above, the port 165 of the idle valve 50 communicates with the port 214 of the creep valve 212 through a passage 220. At this moment, if the manual valve is at the D range, the port 215 of the creep valve 212 has no oil pressure, and the spool 213 of the creep valve is pushed up by the spring 219, as shown in FIG. 2, for communicating the port 214 with the port 217. The port 217 transmits fluid at line pressure to the passage 184. As the passage 184 is at the line pressure, it is always higher than the oil pressure at the passage 208 from the downshift valve 48 (amplified governor pressure or the fundamental governor pressure). Accordingly, the line pressure is delivered to the passage 209 through the shuttle valve 58, regardless of the relative magnitudes of the two governor pressures. The passage 209 leads to the port 99 of the 1-2 shift valve 45, the port 112 of the 2-3 shift valve 46, and the port 112 of the 3-4 shift valve 47. As a result, the spools 88, 100, and 113 of the shift valves 45, 46, and 47 are pushed up, to achieve the conditions for the 4th speed or D1 range. Thus, when the foot leaves the accelerator pedal, the solenoid 160 is closed to establish a path through the solenoid valve 49, the idle valve 50, the creep valve 212 and the shuttle valve 58. The line pressure from the hydraulic system is applied to the shift valves 45, 46, and 47 for bringing the automatic transmission to the 4th speed range without failure.

With conventional cars, when the car is stopped, the automatic transmission is at the 1st speed range where the driving torque is high, so that the car starts to move even during the idling stage when the brakes are released (i.e., what is referred to as the creep phenomenon).

When a car equipped with the automatic transmission of the present invention is idling, the transmission is in the 4th speed range, so that there will be no torque amplification due to the gear ratio, and the creep phenomenon is eliminated.

When the accelerator pedal is depressed in order to start from the idling state, the solenoid 160 is immediately de-energized, so that the port 158 of the solenoid valve 49 communicates with the drain port 159. Thus, the oil pressure is drained, and the spools 88, 100, and 113 of the shift valves are forced downwardly by the springs 89, 101, and 114, so that the 1st speed range or D1 range is established for ensuring a strong acceleration. As regards the line pressure for this case, the passage 184 communicates with the port 69 of the regulator valve 43, for applying the oil pressure from the idle valve 50 to the differential area between the lands 65c and 65b of the spool 65 of the regulator valve 43 so as to cause a downwardly directed force acting on the spool 65. As a result, the line pressure under the control of the regulator valve 43 is reduced by that amount. Thus, under the idling state, the line pressure is lower than that for the normal D range operation.

Such method of reducing pressure is not used in any conventional hydraulic circuits, so that when the manual valve is shifted from the N range to the D range, the line pressure is retained at a high level for the normal D range, and an unpleasant shock is produced.

With the hydraulic circuit according to the present invention, the line pressure during the idling state is reduced to the minimum necessary oil pressure, so that the unpleasant shock is diminished. Furthermore, as soon as the accelerator pedal is depressed, the solenoid is de-energized for draining the line pressure at the passage 184, so as to recover the oil pressure for the normal D range. The oil pressure necessary for the start is applied to each clutch and brake to ensure reliable engagement.

3 RANGE

When the main valve 42 is set in the 3 range, in addition to the port 78, the port 79 thereof is communicated with the line pressure from the port 77, so that the passage 181 is also provided with the line pressure. The passage 181 leads to the port 115 of the 3-4 shift valve 47 and to the shuttle valve 57. Since the line pressure at the passage 186, the shuttle valve 57 acts to switch the pressure of the passage 185 from the throttle pressure to the line pressure.

As pointed out above, the passage 295 leads to the port 153 of the hysteresis valve 53, so that during the D range, a pressure corresponding to the throttle pressure at the port 153 is applied to the passage 197. On the other hand, when the 3 range is selected, this throttle pressure is switched to the line pressure at the shuttle valve 57, so that the spool 146 of the hysteresis valve 53 is pushed up, to cause communication be-
between the ports 150 and 151. As a result, the line pressure from the passage 64 is applied to the passage 197, and to the port 118 of the 3–4 shift valve 47. The passage 195 applies the line pressure to the ports 116 and 117 of the 3–4 shift valve 47. As pointed out above, the line pressure from the passage 181 is applied to the port 115 of the 3–4 shift valve 47. In effect, all the differential areas of the spool 113 of the 3–4 shift valve 47 are provided with downwardly directed forces, thereby moving the spool 113 of the 3–4 shift valve 47 downwardly regardless of the magnitude of the counteacting governor pressure.

Thus, when the manual valve 42 is shifted to the 3 range, the spool 113 of the 3–4 shift valve 47 is forced to the lowermost position regardless of the car speed. In short, when running at the 4th speed range, if the 3 range is selected, the gear ratio is turned to the 3rd speed or lower. The conditions for the 1–2 shift valve 45 and the 2–3 shift valve 46 are the same as those of the D range, except for the following points. What is different from the D range is that, although the port 106 of the 2–3 shift valve 46 receives the hysteresis pressure from the passage 197 in the D range, it receives the line pressure in the 3 range. Since the line pressure is higher than the hysteresis pressure, the 2–3 shift point becomes higher as compared with that in the D range. Otherwise, the conditions are the same as the D range, and the automatic shifting between the 1st speed range, the 2nd speed range and the 3rd speed range can be effected depending on the car speed and the engine load. The same kickdown operation as that for the D range can be carried out.

In the 3 range, the aforementioned creep phenomenon is prevented, but in the 3 range the creep preventing function is inoperative. This is accomplished by interrupting the oil pressure from the passage 184 to the shift valves through the shuttle valve 58 and the passage 209 to remove the forces acting to push the spools upwardly.

The creep prevention does not function in the 2 range and the 1 range, as in the case of the 3 range. This is because it is desired to use the engine as a brake in the 2 range and 1 range, and the 1 range pressure by an amount corresponding to the force of the spring 143 is delivered. This pressure is limited by the relay valve 213, so that the oil pressure is very large and the spool 46 of the 2–3 shift valve 46 cannot be lowered immediately. It will be necessary more, the effect of the throttle pressure is eliminated, so that it becomes a constant oil pressure regardless of the throttle pressure. As a result, when the engine brake is used, the band brake can be quickly applied.

2 RANGE

When the manual valve 42 is set in the 2 range, in addition to the ports of 78 and 79 for the case of the 3 range, the line pressure is also applied to the port 80. Thus, the passage 182 receives the line pressure. Let it be assumed that the shift to the 2 range is effected while cruising at the 3 range, i.e., with the spool 100 of the 2–3 shift valve 46 kept raised. Then, the port 102 of the 2–3 shift valve 46 communicates with the passage 182, so that the line pressure is immediately applied thereto. The pressure applied to the port 105 through the shuttle valve 55 and the passage 196 is switched from the previous throttle pressure to the line pressure. Accordingly, as compared with the downshift in the case of the D range, very quick downshift is effected regardless of the throttle pressure. When the spool 100 of the 2–3 shift valve 46 is urged to the lowermost position, the line pressure from the passage 182 is applied to the port 104, so that all the downwardly oriented differential areas of the spool 100 are applied with the line pressure, and the spool 100 is firmly locked in its lowermost position. As long as the manual valve 42 is at the 2 position, it will never be upshifted. When the spool 100 of the 2–3 shift valve 46 is forced to its lowermost position, the path from the port 109 to the port 110 will be switched to the other path from the port 109 to the port 108. The port 108 is connected to the port 141 of the 2 speed pressure-reducing valve 52 through the passage 198. On the other hand, the line pressure is applied to the port 144 of the 2 speed pressure-reducing valve 52 through the passage 182. Thus, the 2 speed pressure-reducing valve 52 becomes ready to regulate the oil pressure by using the drain port 143. The upwardly directed line pressure from the port 144 balances the combined downwardly forces of the spring 145 and the oil pressure in the port 140. That is to say, the oil pressure in the port 140 is lower than the line pressure by an amount corresponding to the force of the spring 145. This oil pressure is delivered to the second coasting brake 10 through the passage 210, so that the 2 speed range is established in which engine braking can effectively be used. At this moment, a shift shock may be experienced. If the oil pressure at the passage 210 is too high, the shock will become unpleasantly large, while if the oil pressure is too low, the shift operation will take too much time and the engine brake cannot be used quickly.

With the hydraulic circuit according to the present invention, the oil pressure for the second coasting brake can be regulated by the 2 speed pressure-reducing valve 52. By modifying the strength of the spring 145, the oil pressure can be suitably regulated to provide a proper engine brake. In the 2 speed range, the automatic 1–2 shift is carried out in the same manner as the D range. The creep preventing function is halted in the 2 speed range, just like in the 2 speed range.

When the shift to the 2 speed range takes place during the 4th speed range, the car speed is very high, and the force due to the upwardly directed governor pressure is very large and the spool 46 of the 2–3 shift valve 46 cannot be lowered immediately. It will be necessary
to establish the 3rd speed range at first, and after a certain speed reduction, the upwardly directed governor pressure will be reduced sufficiently for effecting the downshift. Thus, even if the shift to the "2" range is selected at a high car speed, engine overrun will never occur.

1 RANGE

When the manual valve 42 is set in the 1 range, in addition to the ports 78, 79, and 80 for the case of the 2 speed range, the line pressure is also applied to the port 81. The line pressure is applied to the passage 183. Let it be assumed that the shift to the 1 range or position is effected in the 2nd speed range cruising, i.e., with the spool 88 of the 1-2 shift valve 45 kept at the raised position. Then, the port 90 of the 1-2 shift valve 45 is communicated with the passage 183, so that the line pressure is immediately applied thereto. The pressure at the port 91 from the shuttle valve 54 and the passage 195 is switched from the previous throttle pressure to the line pressure. Accordingly, the spool 88 is very quickly forced downwardly. When the spool 88 of the 1-2 shift valve 45 is pushed down, the line pressure is delivered to the port 93 through the shuttle valve 54 and the passage 195, so as to act on the differential area between the lands 88c and 88d of the spool 88. The line pressure also enters the port 92 from the port 183, so that all the downwardly oriented differential areas of the spool 88 of the 1-2 shift valve 45 are applied with the line pressure. Accordingly, as long as the manual valve 42 is kept at the 1 range or position, spool 88 of the 1-2 shift valve 45 is held down, and will never be automatically shifted upwardly.

When the spool 88 is pushed down, a path is formed from the port 98 to the port 97, and the line pressure reaches the passage 211. The passage 211 leads to the ports 137 and 134 of the 1 speed pressure-reducing valve 51. The port 136 of the 1 speed pressure-reducing valve 51 is drained to the port 76 of the manual valve 42 through the passage 191. Thus, the valve 51 functions as a pressure-reducing valve, in which the upwardly directed force due to the line pressure at the port 137 balances the combined downwardly directed force of the spring 132 and the oil pressure at the port 133. Thus, the oil pressure at the port 133 is regulated to be lower than the line pressure by an amount corresponding to the force of the spring 132. The thus regulated oil pressure acts to apply the low-and-reverse brake 9 through the passage 192, to establish the conditions for the 1st speed range in which the engine brake can be used.

As described in the foregoing, with the R range, the ports 136 and 135 of the 1 speed pressure-reducing valve 51 are in communication and the line pressure is applied to the passage 192 for applying the low-and-reverse brake 9, so as to establish the reverse conditions. Accordingly, the function of the 1 speed pressure-reducing valve 51 is to directly use the line pressure for the reverse range, while the case of the 1st speed range, the line pressure is used only after reducing the pressure. This is because the low-and-reverse brake 9 is subjected to a larger reaction torque during the reverse range, while during the 1st speed range, the reaction is small as compared with the case for the reverse range.

According to the present invention, when the shift to the 1st speed range is effected while cruising at the 4th speed range, the 1st speed range cannot be achieved immediately. This is to prevent engine overrun. At high speed, the governor pressure is high, and the upwardly directed force acting on the spool 88 of the 1-2 shift valve 45 is large, so that the spool 88 of the valve 45 is held in the raised position until the car is slowed down to a certain level, which the spool 88 can be pushed down. If the manual valve 42 is shifted to the 1 range while the car is cruising in the 4th speed range, the 3-4 shift valve 47 works at first so as to slow down the car to the 3rd speed range, then the 2-3 shift valve 46 acts to slow down to the 2nd speed range, and the 1-2 shift valve 45 becomes effective to shift to the 1st speed range only after the car speed is reduced to a sufficiently low level. Once it is shifted down to the 1 speed range, it will never be automatically shifted up to the 2nd or higher speed ranges. The creep preventing function is halted in the 1 speed range, just like in the 3 and 2 speed ranges. The line pressure is controlled in a manner similar to that in the case of the 2 and 3 speed ranges.

What is claimed is:

1. In a hydraulic control circuit for a vehicle automatic transmission of the type having a hydraulic pressure source, pressure regulating means to regulate the hydraulic pressure from said source, a plurality of shift control valves which selectively transmit hydraulic fluid to a plurality of frictional elements to cause engagement and disengagement of said elements to change the output gear ratio of said transmission, the improved creep-preventing mechanism comprising:
 a. a first fluid flow control means;
 b. a second fluid flow control means;
 c. a third fluid flow control means;
 d. means connecting said first, second and third flow control means in series;
 e. electric means to control said first fluid control means in response to the position of the vehicle throttle such that said first fluid control means allows hydraulic fluid to pass therethrough only when said throttle is in a predetermined position;
 f. means to control said second flow control means in response to the vehicle throttle such that said second fluid flow control means allows hydraulic fluid to pass to said third fluid flow control means only when said throttle is in a predetermined position;
 g. means to control said third fluid flow control means in response to a manually controllable gear selector valve such that said third fluid flow control means allows fluid to pass therethrough only when said gear selector valve is in a predetermined position.

2. The improved hydraulic control circuit of claim 1 wherein the means to control the second fluid flow control means comprises (a) a throttle valve connected to the hydraulic pressure source and to the vehicle throttle such that said throttle valve produces a hydraulic output pressure proportional to the engine load; and (b) means to hydraulically connect the output of said throttle valve to said second fluid flow control means such that said second flow control means allows passage of hydraulic fluid from the third fluid flow control means only when the hydraulic output pressure of the throttle valve is below a predetermined level.

3. The improved hydraulic control circuit of claim 1 wherein the third fluid flow control means allows passage of hydraulic fluid therethrough only when the
manually operable gear selector valve is in a position which allows the transmission to automatically shift into its highest forward gear.

4. The improved hydraulic control circuit of claim 1 wherein said first flow control means comprises a solenoid operated spool valve.

5. The improved hydraulic control circuit of claim 4 wherein said electric means to control said first flow control means comprises a switch electrically connected to said solenoid and mechanically connected to an accelerator pedal of said vehicle such that the switch actuates the solenoid when the accelerator pedal is fully depressed, or returning to idle position to allow fluid to pass through the solenoid valve.