Title of the Invention: Direct current link circuit
Abstract Title: DC link circuit for photovoltaic array

A DC-DC converter for converting power from a floating source of DC power, particularly a photovoltaic array 111, to a dual direct current (DC) output (+V, 0V, -V), includes a positive input terminal A and a negative input terminal B. The dual DC output is connected to the input of a DC/AC inverter 103a. A series connection of a first power switch IGBT1 and a second power switch IGBT2 connected across the positive input terminal and the negative input terminal. Drive circuits G1 and G2 are connected to the bases of IGBT1 and IGBT2 respectively. A negative return path includes a first diode CR1 and a second diode CR2 connected between the negative input terminal and the negative output terminal. A resonant circuit T1 connects between the series connection and the negative return path. A charge storage device, capacitor C1, may be connected in parallel to the input terminals. The output inverter may be connected to a single phase or three phase load 105.

Fig. 4a
Fig. 1 Prior art
Fig. 2
301

303
Charge a charge storage device connected across a floating DC power supply.

305a Discharge the charge storage device through a resonant circuit via a switch.

305b Discharge the charge storage device through a resonant circuit via a second switch.

Fig. 3
Fig. 4a
Fig. 4b
403 Charge a resonant circuit in a first switching cycle applied to a first power switch.

405 Discharge a resonant circuit in a second switching cycle applied to a second power switch.

Fig. 4c
DIRECT CURRENT LINK CIRCUIT

TECHNICAL FIELD

Aspects of this disclosure relate to distributed power systems, particularly a photovoltaic power harvesting system and, more particularly to a direct current link circuit connected between a photovoltaic array and a 3-phase inverter circuit.

BACKGROUND

In a conventional photovoltaic power harvesting system configured to feed a single phase or a three phase alternating current (AC) power grid, dual (positive and negative) direct current (DC) power may be generated first from solar panels. The three phase inverter powered by the dual (positive and negative) DC power produces three phase AC power at the output of the three phase inverter. Conventionally, sufficiently high DC voltage may be provided to the input of the three phase inverter by connecting solar panels in series. However, in order to increase overall power conversion efficiency, the sum of positive and negative DC rails required by the inverter may be over 600 volts.

In North America, an input of voltage over 600 volts may create an issue with safety agency approval. An approach to avoid the safety issue may include inputting less than 600 volts to a boost circuit or transformer-isolated circuit to generate dual DC rails internally for the inverter input. The additional boost or transformer-isolated circuit increases cost and complexity especially since the additional power converter module generally requires dedicated control and protection features. Additionally, the boost or transformer-isolated circuit may also generate electromagnetic interference (EMI) and may cause reduction in overall efficiency of conversion of DC power to three phase AC power.

Thus there is need for and it would be advantageous to have a DC link circuit with a low voltage input, which does not cause significant reduction in overall efficiency of conversion of DC power to three phase AC power and which provides a sufficiently high DC input voltage to the AC inverter to generate an AC output of the inverter of required magnitude.
BRIEF SUMMARY

Embodiments include an electronic circuit for converting power from a floating source of DC power to a dual direct current (DC) output. The electronic circuit may include a positive input terminal and a negative input terminal connectible to the floating source of DC power. A positive output terminal and a negative output terminal and a ground terminal which may be connected to the dual DC output. The positive output terminal may be connected to the positive input terminal. The positive output terminal, the negative output terminal and the ground terminal may feed a three phase inverter. A charge storage device may be connected in parallel to the positive input terminal and the negative input terminal. The charge storage device may be charged from the positive input terminal and the negative input terminal.

A series connection of a first power switch and a second power switch connected across the positive input terminal and the negative input terminal. The series connection may provide a power output terminal between the first power switch and the second power switch and a negative return current path between the negative output terminal and the negative input terminal. The series connection may also include a first power terminal of the first power switch which connects to the positive output terminal and the positive input terminal. A second power terminal of the first power switch which connects to a third power terminal of the second power switch to provide the power output terminal. A fourth power terminal of the second power switch connects to the negative input terminal.

The negative return path may include a first diode and a second diode. The cathode of the first diode connects to the negative input terminal and the cathode of the second diode connects to the anode of the first diode to provide a diode terminal. The anode of the second diode connects to the negative output terminal and a resonant circuit may connect between the power output terminal and the diode terminal.

The resonant circuit may be adapted to alternately charge the resonant circuit and discharge the resonant circuit to the negative output terminal by an alternating switching signal applied to respective drive terminals of the first power switch and the second power switch.
alternating switching signal causes both the first power switch and the second power switch to turn on and turn off with substantially zero current.

Further embodiments include a second series connection of a third power switch and a fourth power switch. The second series connection may include a fifth power terminal of the third power switch connected to the positive output terminal and the positive input terminal. A sixth power terminal of the third power switch connected to a seventh power terminal of the fourth power switch to give a second power output terminal. An eighth power terminal of the fourth power switch connected to the negative input terminal. A third diode and a fourth diode connected in series between the negative output terminal and the negative input terminal. A cathode of the third diode connects to the negative input terminal. A cathode of the fourth diode connects to an anode of the third diode to give a second diode terminal. An anode of the fourth diode connects to the negative output terminal. A second resonant circuit connected between the second power output terminal and the second diode terminal. The second resonant circuit may be adapted to alternately charge the second resonant circuit and discharge the second resonant circuit to the negative output terminal by the alternating switching signal applied to respective drive terminals of the third power switch and the fourth power switch. The alternating switching signal causes both the third power switch and the fourth power switch to turn on and turn off with substantially zero current.

Embodiments include a method to convert power from a floating source of DC power to a dual direct current (DC) output with respect to electrical earth. The floating source of DC power may include a positive input terminal and a negative input terminal. The dual DC output may include a positive output terminal, a negative output terminal and a ground terminal. The positive input terminal connects to the positive output terminal. A cathode of a second diode and an anode of a first diode may be connected together. The anode of the second diode connects to the negative output terminal and the cathode of the first diode connects to the negative input terminal. The method charges a resonant circuit in a first switching cycle applied to a first power switch. The first switching cycle connects the resonant circuit across the positive input terminal and to the negative input terminal through the first diode. The resonant circuit discharges in a second switching cycle applied to a second power switch. The second switching cycle connects the resonant circuit in series between the negative input terminal and the negative output terminal through the second diode.
Embodiments include an electronic circuit for converting power from a floating source of DC power to a dual direct current (DC) output. The electronic circuit may include a positive input terminal and a negative input terminal connectible to the floating source of DC power. A positive output terminal and a negative output terminal and a ground terminal which may be connected to the dual DC output. The negative output terminal may be connected to the negative input terminal. The positive output terminal, the negative output terminal and the ground terminal may feed a three phase inverter. A charge storage device may be connected in parallel to the positive input terminal and the negative input terminal. The charge storage device may be charged from the positive input terminal and the negative input terminal.

A series connection of a first power switch and a second power switch connected across the positive input terminal and the negative input terminal. The series connection may provide a power output terminal between the first power switch and the second power switch and a positive return current path between the positive output terminal and the positive input terminal. The series connection may also include a first power terminal of the first power switch which connects to the positive output terminal and the positive input terminal. A second power terminal of the first power switch which connects to a third power terminal of the second power switch to provide the power output terminal. A fourth power terminal of the second power switch connects to the negative input terminal.

The positive return path may include a first diode and a second diode. The cathode of the first diode connects to the positive output terminal and the cathode of the second diode connects to the anode of the first diode to provide a diode terminal. The anode of the second diode connects to the positive input terminal and a resonant circuit may connect between the power output terminal and the diode terminal.

The resonant circuit may be adapted to alternately charge the resonant circuit and discharge the resonant circuit to the positive output terminal by an alternating switching signal applied to respective drive terminals of the first power switch and the second power switch. The alternating switching signal causes both the first power switch and the second power switch to turn on and turn off with substantially zero current.
Further embodiments include a second series connection of a third power switch and a fourth power switch. The second series connection may include a fifth power terminal of the third power switch connected to the positive output terminal and the positive input terminal. A sixth power terminal of the third power switch connected to a seventh power terminal of the fourth power switch to give a second power output terminal. An eighth power terminal of the fourth power switch connected to the negative input terminal. A third diode and a fourth diode connected in series between the positive output terminal and the positive input terminal. A cathode of the third diode connects to the positive output terminal. A cathode of the fourth diode connects to an anode of the third diode to give a second diode terminal. An anode of the fourth diode connects to the positive input terminal. A second resonant circuit connected between the second power output terminal and the second diode terminal. The second resonant circuit may be adapted to alternately charge the second resonant circuit and discharge the second resonant circuit to the positive output terminal by the alternating switching signal applied to respective drive terminals of the third power switch and the fourth power switch. The alternating switching signal causes both the third power switch and the fourth power switch to turn on and turn off with substantially zero current.

BRIEF DESCRIPTION OF THE DRAWINGS

Certain embodiments are illustrated by way of example, and not by way of limitation, in the accompanying figures, wherein like reference numerals refer to the like elements throughout:

Figure 1 shows a photovoltaic power harvesting system according to conventional art.
Figure 2 shows a power harvesting system in accordance with one or more embodiments described herein.
Figure 3 shows a method for the power harvesting system shown in Figure 2 according to one or more embodiments described herein.
Figure 4a shows a circuit according to one or more embodiments described herein.
Figure 4b shows a circuit which may be an interleaved topology version of the circuit shown in Figure 4a, according to according to one or more embodiments described herein.
Figure 4c shows a method, according to one or more embodiments described herein.
DETAILED DESCRIPTION

Reference will now be made in detail to features of the present invention, examples of which are illustrated in the accompanying figures. The features are described below to explain the present invention by referring to the figures.

Before explaining features of the invention in detail, it is to be understood that the invention is not limited in its application to the details of design and the arrangement of the components set forth in the following description or illustrated in the figures. The invention is capable of other features or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting. For example, the indefinite articles "a" and "an" used herein, such as in "a switch" and "a DC output" have the meaning of "one or more," e.g., "one or more switches" and "one or more DC outputs."

It should be noted, that although the discussion herein relates primarily to photovoltaic systems, the present invention may, by non-limiting example, alternatively be configured using other distributed power systems including (but not limited to) wind turbines, hydro turbines, fuel cells, storage systems such as battery, super-conducting flywheel, and capacitors, and mechanical devices including conventional and variable speed diesel engines, Stirling engines, gas turbines, and micro-turbines.

The term “switch” as used herein refers to any of: silicon controlled rectifier (SCR), insulated gate bipolar junction transistor (IGBT), bipolar junction transistor (BJT), field effect transistor (FET), junction field effect transistor (JFET), mechanically operated single pole double pole switch (SPDT), SPDT electrical relay, SPDT reed relay, SPDT solid state relay, insulated gate field effect transistor (IGFET), diode for alternating current (DIAC), and triode for alternating current (TRIAC).

The term “switch” as used herein refers to a three terminal device. Two out the three terminals referred to herein as “power terminals” and are equivalent to the collector and
emitter of a BJT or the source and drain of a FET for example. The remaining “drive terminal” of the three terminal device being equivalent of the base of a BJT or the gate of a FET for example.

The term “positive current” as used herein refers to a direction of flow of a current from a higher potential point in a circuit to a lower potential difference point in the circuit. The term “negative current” as used herein refers to a flow of return current from a negative DC output to a negative input terminal.

The term “zero current switching” (or “ZCS”) as used herein is when the current through a switch is reduced to substantially zero amperes prior to when the switch is being turned either on or off.

The term "power converter" as used herein applies to DC-to-DC converters, AC-to-DC converters, DC-to-AC inverters, buck converters, boost converters, buck-boost converters, full-bridge converters and half-bridge converters or any other type of electrical power conversion/inversion known in the art.

The terms “power grid” and “mains grid” are used herein interchangeably and refer to a source of alternating current (AC) power provided by a power supply company and/or a sink of AC power provided from a distributed power system.

The term "period of a resonant circuit" refers to a time period of a substantially periodic waveform produced by the resonant circuit. The time period is equal to the inverse of the resonant frequency of the resonant circuit.

The term "low input voltage" is used herein refers to a floating (i.e., not referenced to a ground potential) DC voltage input across two terminals of less than 600 Volts or other voltage as specified by a safety regulation.

The term "dual DC" input or output refers to positive and negative terminals that may referenced to a third terminal, such as ground potential, electrical ground or a neutral of
an alternating current (AC) supply which may be connected to electrical ground at some point.

The term “two level inverter” as used herein, may refer to its output. The AC phase output of the two level inverter has two voltage levels with respect to a negative terminal. The negative terminal is common to the AC phase output and the direct current (DC) input to the two level inverter. The alternating current (AC) phase output of the two level inverter may be a single phase output a two phase output or a three phase output. Therefore, the single phase output has two voltage levels with respect to the negative terminal. The two phase output has two voltage levels with respect to the negative terminal for each of the two phases. The three phase output has two voltage levels with respect to the negative terminal for each of the three phases.

Similarly, the term “three level inverter” as used herein may refer to an alternating current (AC) phase output of the three level inverter. The AC phase output has three voltage levels with respect to a negative terminal. The negative terminal is common to the AC phase output and the direct current (DC) input to the three level inverter. The alternating current (AC) phase output of the three level inverter may be a single phase output a two phase output or a three phase output. Therefore, the single phase output has three voltage levels with respect to the negative terminal. The two phase output has three voltage levels with respect to the negative terminal for each of the two phases. The three phase output has three voltage levels with respect to the negative terminal for each of the three phases.

The three level inverter compared with the two level inverter may have a cleaner AC output waveform, may use smaller size magnetic components and may have lower losses in power switches, since more efficient lower voltage devices may be used. Three level inverter circuits may have dual (positive and negative) direct current (DC) inputs.

Reference is made to Figure 1, which shows a photovoltaic power harvesting system according to conventional art. A photovoltaic string includes a series connection of photovoltaic panels. Photovoltaic strings may be connected in parallel together in an interconnected array, which provides a parallel direct current (DC) power output at
DC power lines X and Y. The parallel DC power output supplies the power input of a direct-current-to-alternating-current (DC-to-AC) three phase inverter 103 on DC power lines X and Y. The three phase AC power output of inverter 103 (phases W, U and V) connects across an AC load 105. AC load 105 by way of example may be a three phase AC motor or a three phase electrical power grid.

Reference is now made to Figure 2, which illustrates a power harvesting system 20 according to a feature of the present invention. System 20 includes interconnected photovoltaic array 111, which may provide a floating direct current voltage (DC) on positive input terminal A and negative input terminal B. The floating DC voltage may also be provided from other distributed power systems such as a DC voltage generator for example. Connected across positive and negative input terminals A and B is charge storage device C1, which may be a capacitor. Connected to positive input terminal A is the collector of an insulated gate bipolar transistor (IGBT) IGBT1. The emitter of IGBT1 connects to node C. IGBT1 may include an integrated diode with an anode connected to the emitter and a cathode connected to the collector. Connected to negative input terminal B is the emitter of an insulated gate bipolar transistor (IGBT) IGBT2. The collector of IGBT2 connects to node C. IGBT2 may include an integrated diode with an anode connected to the emitter and a cathode connected to the collector. Drive circuits G1 and G2 are connected to the bases of IGBT1 and IGBT2 respectively and may be referenced to ground. An inductor L1 connects between nodes C and D, where node D may connect to the ground and the ground input of inverter 103a. A diode CR1 has an anode connected to positive input terminal A and a cathode connected to node V+. Diode CR1 provides a positive current path between nodes V+ and positive input terminal A. A capacitor C2 connects between node D and node V+. Node V+ provides a DC positive voltage to the input of inverter 103a. A diode CR2 has a cathode connected to negative input terminal B and an anode connected to node V-. Diode CR2 provides a negative return current path between nodes V- and node B. Capacitor C3 connects between node D and node V-. Node V- provides a DC negative voltage to the input of inverter 103a. Capacitors C2 and C3 may have substantially equal capacitance value. Inverter 103a may have a 3 level inverter topology with dual DC input from nodes V+, V- and node D which may be converted to a
single phase or a 3 phase AC voltage output, which supplies a load 105, which may be single phase or 3 phase load.

Reference is now made to Figure 3, which shows a method 301 applied to power harvesting system 20 shown in Figure 2, according to a feature of the present invention. In step 303, capacitor C1 may be charged by the floating DC voltage of array 111 by virtue of capacitor C1 being directly connected across array 111 at positive and negative input terminals A and B.

IGBT1 and IGBT2 may be gated alternately such that when IGBT1 is turned on, IGBT2 is off and vice versa by respective drive circuits G1 and G2. IGBT1 and IGBT2 may be gated alternately with less than a 50% duty cycle so as to avoid cross-conduction between IGBT1 and IGBT2 (i.e. to avoid IGBT1 and IGBT2 being on at the same time). A floating voltage provided from array 111 substantially provides a positive voltage on node V+ and a negative voltage on node V- with respect to the ground. The voltages on node V+ and node V- may be substantially equal to the magnitude of the floating voltage. Step 303, which charges capacitor C1 may continue during alternate gating of switches IGBT1 and IGBT2.

When switch IGBT1 is turned on (and IGBT2 turned off), current flows from array 111 and a discharge current flows (step 305a) from storage capacitor C1 through collector and emitter of IGBT1, through inductor L1, into capacitor C3 and the input load of inverter 103a between ground (node D) and node V-. Inductor L1 and capacitor C3 form a series resonant circuit. The diode across IGBT1 is reverse biased with respect to the voltage at positive input terminal A. The input voltage to inverter 103a with respect to ground (node D) and node V- may be derived across capacitor C3. The resonant frequency of inductor L1 and capacitor C3 is given by Eq. 1 and the corresponding resonant periodic time T given in Eq. 2.

\[f_o = \frac{1}{2\pi (L1 \times C3)^{1/2}} \quad \text{Eq.1} \]

\[T = \frac{1}{f_o} \quad \text{Eq.2} \]
When **IGBT1** initially turns on, there may be both zero current through inductor **L1** and through the collector and emitter of **IGBT1**. After **IGBT1** initially turns on, the current through **L1** and the current through the collector and emitter of **IGBT1** may increase and then fall sinusoidally. When **IGBT1** turns off (the on period of the switch corresponds to half of the resonant periodic time **T**) there may be close to zero current through inductor **L1** and through the collector and emitter of **IGBT1**.

A negative current path between node **V-** and negative input terminal **B** may be completed through diode **CR2** corresponding to half of the resonant periodic time **T**.

Step **303** continues as capacitor **C1** is still being charged by the floating DC voltage of array **111** by virtue of capacitor **C1** being directly connected across array **111** at positive and negative input terminals **A** and **B**. When **IGBT2** is turned on (and **IGBT1** is turned off), current flows from array **111** and a discharge current (step **305b**) from storage capacitor **C1** through diode **CR1** through the input load of inverter **103a** between ground (node **D**) and node **V+**, through **C2**, through inductor **L1** and through the collector and emitter of **IGBT2**. Inductor **L1** and capacitor **C2** form a series resonant circuit. The diode across **IGBT2** may be reverse biased with respect to the voltage at negative input terminal **B**. The input voltage to inverter **103a** with respect to ground (node **D**) and node **V+** is derived across capacitor **C2**. Capacitor **C2** may have the same value as capacitor **C3**; therefore, the resonant frequency of inductor **L1** and capacitor **C2** and corresponding resonant periodic time **T** may be substantially the same. When **IGBT2** initially turns on, there may be both zero current through inductor **L1** and through the collector and emitter of **IGBT2** and may be substantially zero power loss at turn on of **IGBT2**. After **IGBT2** initially turns on, the current through **L1** and the current through the collector and emitter of **IGBT2** may increase and then fall sinusoidally. When **IGBT2** turns off (the on period of the switch corresponds to half of the resonant periodic time **T**) there may be close to zero current in inductor **L1** and close to zero current through the collector and emitter of **IGBT2**. Therefore, there may be zero power loss at turn off of **IGBT2**. A positive current path between node **V+** and positive input terminal **A** is completed through diode **CR1**.
corresponding to half of the resonant periodic time T. Zero current switching (ZCS) may, therefore, be provided for both turn on and turn off of both switches IGBT1 and IGBT2.

Zero current switching (ZCS) may permit the use and implementation of slower switching speed transistors for IGBT1 and IGBT2, which may have a lower voltage drop between collector and emitter. Thus, both switching losses and conduction losses may be reduced. Similarly, slower integrated diodes of IGBT1 and IGBT2 with lower voltage drop may be used. Slower diodes CR1 and CR2 may also be used. Resonant current shape through the collector and emitter of IGBT1 and IGBT2 may also reduce the turn-on losses in the diodes CR1 and CR2, as well as generated electromagnetic interference (EMI).

Another approach to generate dual DC rails, according to conventional art, may be to use boost or transformer-isolated circuits. If a boost circuit is used, the boost circuit conduction and switching losses may be very high. The boost inductor may be large and lossy and a reverse recovery problem of the output diode of the boost circuit may also be significant. Using a silicon carbide diode for the output of the boost circuit may remove the reverse recovery problem but may also increase the conduction loss. The overall cost of the boost circuit may be high if a number of expensive carbide diodes are paralleled together to accommodate high power levels. Also, some circuit topologies to generate dual DC rails from a solar panel may make the solar panel voltage vary with respect to ground. If the solar panel voltage is changing at a fast rate, ground circulating currents may be created and current levels set by safety agencies may be exceeded. The circuit topology described in various features and aspects below may address the above mentioned design considerations of circuit topologies to generate dual DC rails from a solar panel.

Reference is now made to Figure 4a which shows a circuit 40a according to an aspect of the present invention. Interconnected photovoltaic array 111 is connected across capacitor C1 at nodes A and B. Connected to node A is the collector of transistor IGBT1. The emitter of IGBT1 is connected to the collector of transistor IGBT2 at node C. Both transistors IGBT1 and IGBT2 have an integral diode with an anode connected to the emitter and a cathode connected to the collector of each transistor respectively. Drive
circuits G_1 and G_2 are connected to the bases of $IGBT_1$ and $IGBT_2$ respectively. The emitter of $IGBT_2$ is connected to node B and the cathode of diode CR_1. The anode of diode CR_1 connects to the cathode of diode CR_2 at node F. One end of inductor L_1 connects to node C and the other end of inductor L_1 connects to one end of capacitor C_4. The other end of capacitor C_4 connects to node F. The anode of diode CR_2 connects to the negative direct current (DC) input V_- of DC to alternating current (AC) inverter 103a. The anode of diode CR_2 also connects to one end of capacitor C_3, the other end of C_3 connects to ground or neutral center-point node D. Node D connects to the ground input to inverter 103a. One end of capacitor C_2 connects to node D, the other end of capacitor C_2 connects to node A and the positive direct current (DC) input V_+ of DC to inverter 103a. Inverter 103a may have a 3 level inverter topology with dual DC input from nodes V_+, V_- and node D which may be converted to a single phase or a 3 phase AC voltage output which supplies a load 105 which may be single phase or 3 phase.

Alternately in circuit 40a, diodes CR_1 and CR_2 may be placed in a series connection between node A and node V_+. The series connection has the anode of diode CR_2 connected to node A and the collector of $IGBT_1$. The cathode of diode CR_2 connected to the anode of diode CR_1. The cathode of diode CR_1 connected to node V_+ and one end of capacitor C_2. Tank circuit T_1 still has one end of L_1 connected to node C and the other end of L_1 connected to one end of capacitor C_4. The other end of C_4 connects to the cathode of diode CR_2. The emitter of $IGBT_2$ and node B are now connected to node V_- and one end of capacitor C_3.

Reference is now made to Figure 4c which shows a method 401, according to a feature of the present invention. $IGBT_1$ and $IGBT_2$ in circuit 40a are gated alternately with a pulse width modulation (PWM) cycle by drive circuits G_1 and G_2. $IGBT_1$ and $IGBT_2$ in circuit 40a are gated alternately with up to almost 50% duty cycle so as to avoid cross conduction between $IGBT_1$ and $IGBT_2$. During the first half of the PWM cycle applied by drive circuit G_1, $IGBT_1$ is turned on at zero current (loss-less turn-on). Current then flows between the collector and emitter of $IGBT_1$ into the series connected resonant tank T_1 formed by inductor L_1 and capacitor C_4, diode CR_1, and is returned to the negative
input terminal (node B) of panel 111. Full solar panel 111 voltage V_{in} (across nodes A and B) is applied to resonant tank T1. As the current through the resonant tank T1 rises, capacitor C4 charges (step 403). When the voltage of capacitor C4 reaches the input voltage V_{in} (across nodes A and B), the current in tank T1 is reduced to be substantially zero. By the time IGBT1 turns off, the current through IGBT1 and tank T1 is already substantially zero, and turn-off of IGBT1 is also substantially loss-less.

During the second half of the PWM cycle IGBT1 is off and IGBT2 turns on at zero current. The charged capacitor C4 buffered by L1 is connected in series with the input voltage V_{in} (across nodes A and B). The voltage at the cathode of diode CR2 goes negative so that diode CR2 begins to conduct. A current path is formed from the positive input terminal (node A), through load and output filter capacitance provided by C2, C3 and inverter 103a, through CR2, through capacitor C4 and inductor L1, through IGBT2 and to the negative input terminal (node B). The current path flowing through resonant tank T1 discharges (step 405) capacitor C4. Just as with IGBT1, both turn-on and turn-off of IGBT2 occurs at zero current, due to sinusoidal current in tank T1.

Resonant action of tank T1 may therefore allow the use of slower lower cost silicon output diodes CR1 and CR2 and possibly without reverse recovery problems of diodes used in conventional topologies to produce dual DC rails from a single DC source. Similarly, IGBT1 and IGBT2 can be slower, have lower voltage drop and therefore may be less expensive. Output voltage across terminals V+ and V- is substantially equal to twice the input voltage V_{in}. With circuit 40a no voltage feedback is needed to regulate the two DC outputs V+ and V-.

Reference is now made to Figure 4b which shows a circuit 40b which is an interleaved topology version of circuit 40a shown in Figure 4a, according to an aspect of the present invention. The interleaved topology version has additional transistors IGBT3 and IGBT4, inductor L2, capacitor C5, diodes CR3 and CR4. Both transistors IGBT3 and IGBT4 have an integral diode with an anode connected to the emitter and a cathode connected to the collector of each transistor respectively. Connected to node A is the collector of
transistor IGBT3. The emitter of IGBT3 is connected to the collector of transistor IGBT4 at node E. Drive circuits G1 and G2 are also connected to the bases of IGBT4 and IGBT3 respectively. The emitter of IGBT4 is connected to node B and the cathode of diode CR3. The anode of diode CR3 connects to the cathode of diode CR4 at node G. One end of inductor L2 connects to node E and the other end of inductor L2 connects to one end of capacitor C5. The series connection of inductor L2 and capacitor C5 forms resonant tank T2. The other end of capacitor C5 connects to mode G. The anode of diode CR4 connects to the negative direct current (DC) input V- of DC to alternating current (AC) inverter 103a.

Alternately in circuit 40b, diodes CR1, CR2, CR3 and CR4 may be placed in a series connections between node A and node V+. The series connection between CR1 and CR2 has the anode of diode CR2 connected to node A and the collectors of IGBT1 and IGBT3. The cathode of CR2 connected to the anode of diode CR1. The cathode of diode CR1 connected to node V+ and one end of capacitor C2. Similarly, the series connection between CR3 and CR4 has the anode of diode CR4 connected to node A and the collectors of IGBT1 and IGBT3. The cathode of CR4 connected to the anode of diode CR3. The cathode of diode CR3 connected to node V+ and one end of capacitor C2. Tank circuit T1 still has one end of L1 connected to node C and the other end of L1 connected to one end of capacitor C4. The other end of C4 connects to the cathode of diode CR2. The emitters of IGBT2, IGBT4 and node B are now connected to node V- and one end of capacitor C3. Similarly, Tank circuit T2 still has one end of L2 connected to node E and the other end of L2 connected to one end of capacitor C5. The other end of C5 connects to the cathode of diode CR4.

At high power, in conventional circuit topologies, semiconductor switches and output diodes usually may be paralleled together. In practice it may not feasible to parallel silicon diodes directly. Likewise, not all types of IGBTs may be paralleled directly also. Instead, as with circuit 40b, the same number of switches and diodes may be re-arranged into interleaved topology, as shown in Figure 4b. Ripple current ratings of C1, C2 and C3 capacitors can be greatly reduced (along with cost and size) due to partial cancellation of
ripple currents in them. The diodes CR1, CR2, CR3, CR4 and IGBT1, IGBT2, IGBT3 and IGBT4 share a load (input to inverter 103a) without having to be paralleled directly, so sharing of power to be delivered to the load may no longer be an issue.

Although selected features of the present invention have been shown and described, it is to be understood the present invention is not limited to the described features. Instead, it is to be appreciated that changes may be made to these features without departing from the principles and spirit of the invention, the scope of which is defined by the claims and the equivalents thereof.
CLAIMS

1. An electronic circuit for converting power from a floating source of DC power to a dual direct current (DC) output, the electronic circuit including:
 a positive input terminal and a negative input terminal connectible to the floating source of DC power;
 a positive output terminal connected to said positive input terminal, a negative output terminal and a ground terminal connectible to the dual DC output;
 a series connection of a first power switch and a second power switch across said positive input terminal and said negative input terminal, wherein said series connection provides a power output terminal between said first power switch and said second power switch;
 a negative return current path between said negative output terminal and said negative input terminal;
 wherein said negative return path includes a first diode and a second diode;
 wherein the cathode of said first diode connects to said negative input terminal;
 wherein the cathode of said second diode connects to the anode of said first diode to provide a diode terminal;
 wherein the anode of said second diode connects to said negative output terminal; and
 a resonant circuit connects between said power output terminal and said diode terminal, wherein said resonant circuit is adapted to alternately charge said resonant circuit and discharge said resonant circuit to said negative output terminal by an alternating switching signal applied to respective drive terminals of said first power switch and said second power switch.

2. The electronic circuit of claim 1, further including:
 a charge storage device connected in parallel to the positive input terminal and the negative input terminal.
wherein said charge storage device is charged from the positive input terminal and the negative input terminal.

3. The electronic circuit of claim 1, wherein said series connection includes:
 a first power terminal of said first power switch connects to said positive output terminal and said positive input terminal;
 a second power terminal of said first power switch connects to a third power terminal of said second power switch to provide said power output terminal;
 a fourth power terminal of said second power switch connects to said negative input terminal;

4. The electronic circuit of claim 1, wherein said alternating switching signal causes both said first power switch and said second power switch to turn on and turn off with substantially zero current.

5. The electronic circuit of claim 1, further including:
 a second series connection of a third power switch and a fourth power switch, wherein said second series connection includes:
 a fifth power terminal of said third power switch connected to said positive output terminal and said positive input terminal;
 a sixth power terminal of said third power switch connected to a seventh power terminal of said fourth power switch to give a second power output terminal;
 an eighth power terminal of said fourth power switch connected to said negative input terminal;
 a third diode and a fourth diode connected in series between the negative output terminal and the negative input terminal;
 wherein a cathode of said third diode connects to said negative input terminal;
 wherein a cathode of said fourth diode connects to an anode of said third diode to give a second diode terminal;
 wherein an anode of said fourth diode connects to said negative output terminal;
a second resonant circuit connected between said second power output terminal and said second diode terminal, wherein said second resonant circuit is adapted to alternately charge said second resonant circuit and discharge said second resonant circuit to said negative output terminal by said alternating switching signal applied to respective drive terminals of said third power switch and said fourth power switch.

6. The electronic circuit of claim 5, wherein said alternating switching signal causes both said third power switch and said fourth power switch to turn on and turn off with substantially zero current.

7. The electronic circuit of claim 1, wherein the positive output terminal, the negative output terminal and the ground terminal feed a three phase inverter.

8. A method for converting power from a floating source of DC power to a dual direct current (DC) output with respect to electrical earth, wherein the floating source of DC power includes a positive input terminal and a negative input terminal, the dual DC output includes a positive output terminal, a negative output terminal and a ground terminal, wherein the positive input terminal connects to the positive output terminal, wherein a cathode of a second diode and an anode of a first diode are connected together, wherein the anode of the second diode connects to the negative output terminal and the cathode of the first diode connects to the negative input terminal, the method comprising:

 charging a resonant circuit in a first switching cycle applied to a first power switch, wherein the first switching cycle connects the resonant circuit across the positive input terminal and to the negative input terminal through the first diode; and

 discharging the resonant circuit in a second switching cycle applied to a second power switch, wherein the second switching cycle connects the resonant circuit in series between the negative input terminal and the negative output terminal through the second diode.

9. An electronic circuit for converting power from a floating source of DC power to a dual direct current (DC) output, the electronic circuit including:
a positive input terminal and a negative input terminal connectible to the floating source of DC power;

a negative output terminal connected to said negative input terminal, a negative output terminal and a ground terminal connectible to the dual DC output;

a series connection of a first power switch and a second power switch across said positive input terminal and said negative input terminal, wherein said series connection provides a power output terminal between said first power switch and said second power switch;

wherein a positive return path is connected between said positive output terminal and said positive input terminal;

wherein said positive return path includes a first diode and a second diode;

wherein the cathode of said first diode connects to said positive output terminal;

wherein the cathode of said second diode connects to the anode of said first diode to provide a diode terminal;

wherein the anode of said second diode connects to said positive input terminal; and

a resonant circuit connects between said power output terminal and said diode terminal, wherein said resonant circuit is adapted to alternately charge said resonant circuit and discharge said resonant circuit to said positive output terminal by an alternating switching signal applied to respective drive terminals of said first power switch and said second power switch.

10. The electronic circuit of claim 9, further including:

a charge storage device connected in parallel to the positive input terminal and the negative input terminal.

wherein said charge storage device is charged from the positive input terminal and the negative input terminal.

11. The electronic circuit of claim 9, wherein said series connection includes:
a first power terminal of said first power switch connects to said positive output terminal and said positive input terminal;

a second power terminal of said first power switch connects to a third power terminal of said second power switch to provide said power output terminal;

a fourth power terminal of said second power switch connects to said negative input terminal;

12. The electronic circuit of claim 9, wherein said alternating switching signal causes both said first power switch and said second power switch to turn on and turn off with substantially zero current.

13. The electronic circuit of claim 9, further including:

a second series connection of a third power switch and a fourth power switch, wherein said second series connection includes:

a fifth power terminal of said third power switch connected to said positive output terminal and said positive input terminal;

a sixth power terminal of said third power switch connected to a seventh power terminal of said fourth power switch to give a second power output terminal;

an eighth power terminal of said fourth power switch connected to said negative input terminal;

a third diode and a fourth diode connected in series between the positive output terminal and the positive input terminal;

wherein a cathode of said third diode connects to said positive output terminal;

wherein a cathode of said fourth diode connects to an anode of said third diode to give a second diode terminal;

wherein an anode of said fourth diode connects to said positive input terminal;

a second resonant circuit connected between said second power output terminal and said second diode terminal, wherein said second resonant circuit is adapted to alternately charge said second resonant circuit and discharge said second resonant circuit to said positive output terminal by said alternating switching signal applied to respective drive terminals of said third power switch and said fourth power switch.
14. The electronic circuit of claim 13, wherein said alternating switching signal causes both said third power switch and said fourth power switch to turn on and turn off with substantially zero current.

15. The electronic circuit of claim 9, wherein the positive output terminal, the negative output terminal and the ground terminal feed a three phase inverter.
Application No: GB1203763.6 | Examiner: Mr Rowland Hunt
Claims searched: All | Date of search: 23 June 2012

Patents Act 1977
Corrected Search Report under Section 17

Documents considered to be relevant:

<table>
<thead>
<tr>
<th>Category</th>
<th>Relevant to claims</th>
<th>Identity of document and passage or figure of particular relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>US 2009/0034304 A1 (ENGEL et a.) see particularly fig. 2</td>
</tr>
</tbody>
</table>

Categories:

<table>
<thead>
<tr>
<th>X</th>
<th>Document indicating lack of novelty or inventive step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Document indicating lack of inventive step if combined with one or more other documents of same category.</td>
</tr>
<tr>
<td>&</td>
<td>Member of the same patent family</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>Document indicating technological background and/or state of the art.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Document published on or after the declared priority date but before the filing date of this invention.</td>
</tr>
<tr>
<td>E</td>
<td>Patent document published on or after, but with priority date earlier than, the filing date of this application.</td>
</tr>
</tbody>
</table>

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKC:

H01L; H02J; H02M

Worldwide search of patent documents classified in the following areas of the IPC

EPODOC, WPI

International Classification:

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Subgroup</th>
<th>Valid From</th>
</tr>
</thead>
<tbody>
<tr>
<td>H02M</td>
<td>0003/156</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>H01L</td>
<td>0031/042</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>H02J</td>
<td>0003/38</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>H02M</td>
<td>0003/158</td>
<td>01/01/2006</td>
</tr>
</tbody>
</table>