发明名称
电加热式催化装置

摘要
本发明提供电加热式催化装置，抑制电加热式催化装置(1)的壳体(5)流动。具备：因通电而发热的发热体(3)；收纳发热体(3)的壳体(5)；设置于发热体(3)和壳体(5)之间并且为电绝缘的衬垫(6)；以及内管(4)，该内管(4)设置于壳体(5)的内侧并且发热体(3)的外侧的位置，将衬垫(6)分割成壳体(5)一侧的衬垫和发热体(3)一侧的衬垫并且该内管由衬垫(6)支承，在衬垫(6)所存在的部位，内管(4)和壳体(5)之间的距离被设定为支承内管(4)所需要的远离，而在内管(4)从衬垫(6)突出的部位，内管(4)和壳体(5)之间的距离被设定为避免在内管(4)和壳体(5)之间产生放电所需要的距离。
1. 一种电加热式催化装置，其特征在于，
所述电加热式催化装置具备：
因通电而发热的发热体；
收纳所述发热体的壳体；
衬垫，该衬垫设置于所述发热体和所述壳体之间并且为电绝缘；以及
内管，该内管设置于所述壳体的内侧且是所述发热体的外侧的位置，将所述衬垫分割成所述壳体一侧衬垫和所述发热体一侧衬垫并且该内管由所述衬垫支承，
所述内管从所述衬垫突出。
在所述衬垫存在的部位，所述内管和所述壳体之间的距离被设定为支承所述内管所需要的支承，而在所述内管从所述衬垫突出的部位，所述内管和所述壳体之间的距离被设定为避免在所述内管和所述壳体之间产生放电所需要的支承。
2. 根据权利要求1所述的电加热式催化装置，其特征在于，
所述内管在所述内管与所述衬垫接触的部位具有连通所述壳体侧和所述发热体侧的连通部。
3. 根据权利要求1或2所述的电加热式催化装置，其特征在于，
所述内管处于所述衬垫所存在的部位的厚度大于所述内管从所述衬垫突出出来的部分的厚度。
4. 根据权利要求1至3中任一项所述的电加热式催化装置，其特征在于，
所述壳体处于所述衬垫所存在的部位的厚度大于所述壳体处于所述内管从所述衬垫突出的部位的厚度。
5. 根据权利要求1至4中任一项所述的电加热式催化装置，其特征在于，
所述发热体由能够吸水的材料形成。
电加热式催化装置

技术领域
[0001] 本发明涉及电加热式催化装置。

背景技术
[0002] 已知有在因通电而发热的催化剂的载体、和收纳该催化剂的载体的壳体之间设置绝缘体的衬垫的技术（例如，参照专利文献1）。根据该衬垫，当对催化剂的载体通电时，能够抑制电向壳体流动。然而，在内燃机刚刚起动不久之后等时，存在排气中的水凝结于排气管壁面的情况。成为液态的水被排气挤压而向下游侧流动，进而到达催化剂。若该液态的水浸入衬垫内进而到达电极，则存在因电极和壳体之间的绝缘电阻降低而使得电从电极向壳体流动的担忧。
[0003] 专利文献1：日本特开平05-269387号公报

发明内容
[0004] 本发明是鉴于上述问题点完成的，其目的在于抑制电向电加热式催化装置的壳体流动。
[0005] 为了解决上述课题，基于本发明的电加热式催化装置具备：
[0006] 因通电而发热的发热体；
[0007] 收纳上述发热体的壳体；
[0008] 衬垫，该衬垫设置于上述发热体和上述壳体之间并且为电绝缘；以及
[0009] 内管，该内管设置于上述壳体的内侧且是上述发热体的外侧的位置，将上述衬垫分割成上述壳体一侧和上述发热体一侧衬垫并且该内管由上述衬垫支撑，
[0010] 上述内管从上述衬垫突出，
[0011] 在上述衬垫存在的部位，上述内管和上述壳体之间的距离被设定为支撑上述内管所需的距离；而在上述内管从上述衬垫突出的部位，上述内管和上述壳体之间的距离被设定为避免上述内管和上述壳体之间产生放电所需要的距离。
[0012] 发热体可以作为催化式载体的载体，也可以设置在比催化式载体更近上游侧的位置。由于因对发热体通电而使得该发热体发热，所以能够使催化器的温度升高。由于内管将衬垫分割成壳体一侧的衬垫和发热体一侧衬垫，所以衬垫所存在的部位位于内管的内侧和外侧。并且，由于内管由衬垫支撑，所以该内管不与发热体以及壳体接触。
[0013] 然而，由于内燃机的排气中含有水分，因此存在水凝结于壳体等处的情况。该水分在壳体的内表面而流动而附着于衬垫，然后被衬垫吸收。此处，由于内管从衬垫突出，从而使水在壳体的内表面上流过来的水难以向比内管更靠发热体侧的位置流动，因此能够抑制在发热体的前端及端部处发热体和壳体之间短路的情况。并且，由于在比衬垫更突出的部位温度易于升高，因此即使附着有排气中的粒子状物质，该粒子状物质也立刻被氧化除去。由此，能够抑制因附着于衬垫的前端或端部的粒子状物质引起的短路。
[0014] 此处，虽然被衬垫吸收的水在该衬垫内移动，但是从壳体侧朝发热体侧的水的移
动被内管隔断。于是,能够抑制因水导致的短路。并且,由于被衬垫吸收的水因排气的热量以及发热体的热量而蒸发,因此随着时间的流逝会被除去。进而,通过使薄衬垫能够使被该衬垫吸收的水的量减少。由此,能够促进水的蒸发。但是,若使衬垫变得过薄,则难以支承衬垫。因此,将衬垫的厚度设定成用于支承内管的必要最低限度的厚度。由此,确定衬垫所存在的部位的内管和壳体之间的距离。另一方面,若根据支承内管所必要的衬垫的厚度来决定内管和壳体之间的距离,则存在于内管从衬垫突出的部位在内管和壳体之间产生放电的担忧。对此,在内管从衬垫突出的部位确保避免在内管和壳体之间产生放电的必要最低限度的距离。即,在衬垫所存在的部位、和内管从衬垫突出的部位,改变内管和壳体之间的距离。这样,能够抑制放电并支承内管。

【0015】并且,在本发明中,在与上述衬垫接触的部位,上述内管也可以在上述内管与上述衬垫接触的部位具有连接上述壳体侧和上述发热体侧的连通部。由于连通部在上述内管与衬垫接触的部位连通壳体侧和发热体侧,因此在连通部的壳体侧和发热体侧均存在衬垫。因此,若大量的水被衬垫吸收,则水通过连通部从壳体侧的衬垫向发热体侧的衬垫移动。由此,由于能够抑制水的电极,因此能够抑制电极和壳体之间的绝缘电阻降低。并且,由于通过连通部的水更易于接受排气的热量以及发热体的热量,因此更易于蒸发。并且,由于若使水被发热体吸收,则通过排气的流动促进水的蒸发,因此能够更迅速地除去水。

【0016】在本发明中,能够使上述内管处于上述衬垫所存在的部位的厚度大于上述内管从上述衬垫突出的部位的厚度。若以该方式改变内管的厚度,则能够在具备衬垫的部位和内管从衬垫突出的部位改变内管和壳体之间的距离。

【0017】并且,在本发明中,能够使上述壳体处上述衬垫所存在的部位的厚度大于上述壳体处上述内管从上述衬垫突出的部位的厚度。若以该方式改变壳体的厚度,则能够在具备衬垫的部位和内管从衬垫突出的部位改变内管和壳体之间的距离。

【0018】在本发明中,能够由能够吸水的材料构成所述发热体。于是,从壳体侧朝发热体侧经由连通部浸入的水被发热体吸收。该水在发热体内移动,被在发热体内流通的气体从该发热体除去。由此能够迅速地从衬垫及发热体除去水。

【0019】根据本发明,能够抑制电向电加热式室温装置的壳体流动。

附图说明

【0020】图1是示出实施例1所涉及的电加热式催化装置的概要结构的图。

【0021】图2是示出实施例2所涉及的电加热式催化装置的概要结构的图。

【0022】图3是示出实施例3所涉及的电加热式催化装置的概要结构的图。

具体实施方式

【0023】以下,基于附图对本发明所涉及的电加热式催化装置的具体的实施方式进行说明。另外,能够适当地组合以下的实施例。

【0024】实施例1

【0025】图1是示出本实施例所涉及的电加热式催化装置1的概要结构的图。另外,本实施例所涉及的电加热式催化装置1,设置在搭载于车辆的内燃机的排气管2。内燃机可以是柴油机,也可以是汽油机。并且,在具备电机的采用混合动力系统的车辆中也能够使用。
[0026] 图 1 所示的电加热式催化装置 1,是沿排气管 2 的中心轴 A 将电加热式催化装置 1 在纵向剖开的剖视图。另外,由于电加热式催化装置 1 的形状相对于中心轴 A 线对称,因此在图 1 中仅示出上侧的部分。

[0027] 本实施例所涉及的电加热式催化装置 1 具备以中心轴 A 为中心的圆柱形的催化剂载体 3。进而,从中心轴 A 侧起依次具有催化剂载体 3、内管 4、壳体 5。并且,在催化剂载体 3 和内管 4 之间,以及在内管 4 和壳体 5 之间设置有衬垫 6。

[0028] 将成为电阻且具有因通电而发热的性质的材料用于催化剂载体 3。例如将 SiC 用作催化剂载体 3 的材料。催化剂载体 3 具有沿排气的流动方向 (即,中心轴 A 的方向) 延伸且与排气的流动方向垂直的截面形成为蜂窝状的多条通路。排气在该通道内部流通。催化剂载体 3 的外形,例如为以排气管 2 的中心轴 A 为中心的圆柱形。另外,基于与中心轴 A 正交的截面的催化剂载体 3 的截面形状,例如可以为椭圆形。中心轴 A 为对排气管 2、催化剂载体 3、内管 4 以及壳体 5 共通的中心轴。另外,在本实施例中,催化剂载体 3 相当于本发明中的发热体。另外,即使是在比催化剂更靠近上游侧的位置配备发热体的情况,也同样能够适用本实施例。

[0029] 在催化剂载体 3 载有催化剂。对于催化剂,例如能够举出氧化催化剂、三元催化剂、吸留还原式 NO_x 催化剂、选择还原式 NO_x 催化剂。在催化剂载体 3 连接有 2 个电极 7,通过对该电极 7 之间施加电压而对催化剂载体 3 通电。该催化剂载体 3 因该催化剂载体 3 的电阻而发热。

[0030] 将绝缘材料用于衬垫 6。例如使用以氧化铝为主成分的陶瓷纤维。衬垫 6 卷绕于催化剂载体 3 的外周面以及内管 4 的外周面。由于衬垫 6 覆盖催化剂载体 3 的外周面 (与中心轴 A 平行的面),因此在催化剂载体 3 通电时,能够抑制电向内管 4 以及壳体 5 流动。

[0031] 将例如氧化铝那样的电绝缘材料用作内管 4 的材料。内管 4 形成为以中心轴 A 为中心的管状。该内管 4 的中心轴 A 方向的长度比衬垫 6 长。因此,内管 4 从衬垫 6 向上下游侧以及下游侧突出。内管 4 的内径,与利用衬垫 6 覆盖催化剂载体 3 时的该衬垫 6 的外径大致相同,在将衬垫 6 以及催化剂载体 3 收纳于内管 4 内时,该衬垫 6 被压缩,因此借助该衬垫 6 的反弹力将催化剂载体 3 固定于内管 4 内。

[0032] 进而,在作为与衬垫 6 接触的部位的中央部 41、和在作为比衬垫 6 更向下游侧以及下游侧突出的部位的端部 42,内管 4 的厚度不同。该厚度被设定成端部 42 与壳体 5 之间的距离比中央部 41 与壳体 5 之间的距离长。

[0033] 作为壳体 5 的材料使用金属,例如能够使用不锈钢材料。壳体 5 构成为具备,构成为包括与中心轴 A 平行的曲面的收纳部 51;以及在比该收纳部 51 更靠上游侧以及下游侧的位置连接该收纳部 51 和排气管 2 的锥形部 52-53。在收纳部 51 的内侧收纳催化剂载体 3、内管 4 以及衬垫 6。锥形部 52-53 形成为随着远离收纳部 51 而通路截面积缩小的锥形状。即,在比催化剂载体 3 更靠上游侧的锥形部 52,越靠向下游侧截面积越小,在比催化剂载体 3 更靠下游侧的锥形部 53,越靠向下游侧截面积越小。收纳部 51 的内径与利用衬垫 6 覆盖内管 4 的外周时的该衬垫 6 的外径大致相同,在将衬垫 6 以及内管 4 收纳在收纳部 51 时,该衬垫 6 被压缩,因此借助该衬垫 6 的反弹力将内管 4 固定于收纳部 51 内。

[0034] 在催化剂载体 3 连接有 2 个电极 7。为了使该电极 7 通过,在内管 4 以及壳体 5 开设有孔 43-54。并且,在直至电极 7 与催化剂载体 3 连接为止的该电极 7 的周围未设置衬
垫 6。进而，在开设于壳体 5 的孔 54 设置有对电极 7 进行支承的绝缘件 8。该绝缘件 8 无任何地设置于壳体 5 和电极 7 之间。这样，在壳体 5 内形成在电极 7 的周围闭合的空间 9。

[0035] 在以该方式构成的电加热式催化装置 1 中，存在在比催化剂载体 3 更靠近上侧的位置凝结的水，在排气管 2 及壳体 5 的内壁流动而附着于衬垫 6 的情况。此时，由于水在收纳部 51 的内壁流动，因此该水附着于内管 4 和收纳部 51 之间的衬垫 6。即，由于内管 4 比衬垫 6 更向上侧以及下游侧突出，因此水进入比内管 4 更靠内侧的位置的情况得以抑制。由此，在衬垫 6 的上游端以及下游端因水使壳体 5 和催化剂载体 3 之间短路的情况得以抑制。

[0036] 并且，若排气中的粒子状物质（以下，称作 PM）附着于衬垫 6 以及内管 4，存在因该 PM 使壳体 5 和催化剂载体 3 之间短路的担忧。但是，通过使内管 4 比衬垫 6 更突出，在突出的部位接受排气的压力而温度升高，因此能够使附着于该内管 4 的 PM 氧化而将其除去。由此，因 PM 导致壳体 5 和催化剂载体 3 之间短路的情况得以抑制。

[0037] 然而，附着于衬垫 6 的水因排气的热量以及催化剂载体 3 的热量而蒸发。但是，若附着的水的量增多，则其一部分不会立刻蒸发而滞留于衬垫 6 内。进而，存在水通过衬垫 6 内到达电极 7 周围的空间 9 并滞留于该空间 9 的情况。这样，在该空间 9 存在的水即使蒸发也难以除去。进而，若在空间 9 内存在水蒸气，则电极 7 和壳体 5 之间的绝缘电阻大幅降低。于是，当要求升高催化剂载体 3 的温度时，存在无法通电的担忧。

[0038] 此处，由于中央部 41 和壳体 5 之间的距离越长，则其间的衬垫 6 越厚，因此在衬垫 6 的上游端以及下游端衬垫 6 露出的面积增大，从而水易被吸收。并且，若衬垫 6 内的水的滞留量增多，则至全部蒸发需要时间。因此，存在于内管 4 和壳体 5 之间的衬垫 6 以薄为宜。但是，若衬垫 6 过薄，则难以支承内管 4。因此，将中央部 41 和壳体 5 之间的距离设定成能够支承内管 4 的必要最低限度的距离。由此，中央部 41 和壳体 5 之间的距离变得较短。

[0039] 另一方面，在内管 4 的端部 42，若端部 42 和壳体 5 之间的距离缩短，则存在发生放电的担忧。因此，若与中央部 41 相应地使端部 42 靠近壳体 5，则可能发生放电。因此，将端部 42 和壳体 5 之间的距离设定成能够避免放电的距离。由此，端部 42 和壳体 5 之间的距离变得比中央部 41 和壳体 5 之间的距离长。

[0040] 这样，在内管 4 的中央部 41 和端部 42，所要求的至壳体 5 的距离不同。因此，在内管 4 的中央部 41 和端部 42，以成为与各自的要求相应的距离的方式形成内管 4 的外周面。另外，在中央部 41 和端部 42，从中心轴 A 至内管 4 的外周面的距离相同。即，为了使中央部 41 比端部 42 靠近壳体 5，增大该中央部 41 的厚度。因此，在中央部 41 和端部 42 之间存在阶梯。

[0041] 根据以上所说明的本实施例，由于能够减薄内管 4 和壳体 5 之间的衬垫 6，因此能够限制该衬垫 6 的吸水力。由此，能够缩短从衬垫 6 除去水的时间。因此，能够抑制电向壳体 5 流动。

[0042] 另外，虽然在实施例中增加了中央部 41 的厚度，但是也可以对此进行改变，在内管 4 的外周面安装无吸水性的其它部件。

[0043] 实施例 2

[0044] 图 2 是示出本实施例所涉及的电加热式催化装置 10 的概要构成的图。对与实施例 1 所示的电加热式催化装置 1 不同之处进行说明。另外，对与实施例 1 所示的电加热式
催化装置1相同的部件标注相同的符号。

【0045】在本实施例所涉及的内管4设置有多个将壳体5侧和催化剂载体3侧连通的连通孔44。该连通孔44设置于衬垫6和内管4接触的部位。将该连通孔44的直径设定成被衬垫6吸收的水能够通过的大小。另外，本实施例中的连通孔44相当于本发明中的连通部。

【0046】即，由于水可透过连通孔44，因此浸入比内管4更靠近两侧的衬垫6的水，通过连通孔44浸入内管4更靠近内侧的衬垫6内。此时，由于催化剂载体3的湿度及排气的热量而升高，因此靠近催化剂载体3的水易于蒸发。并且，由于SiC的吸水性大，因此若水到达催化剂载体3，则水被该催化剂载体3吸收。该水与在催化剂载体3内流动的排气一起被从该催化剂载体3内排出。这样，能够抑制水滞留于衬垫6内。由此，由于能够抑制水浸入电极7周围的空间9，因此能够抑制电极7和壳体5之间的绝缘电阻大幅降低。

【0047】并且，通过调节连通孔44的位置，能够调节水通过该连通孔44浸入内管4更靠近内侧的位置的时期。例如，由于若使连通孔44的位置靠近电极7，则到浸入衬垫6的水通过连通孔44为不需要时间，因此能够抑制因浸入该衬垫6的水导致的短路。并且，若浸入衬垫6的水量少，则该水在通过连通孔44之前蒸发。即，能够仅在产生水浸入空间9的担忧时使水通过连通孔44。并且，若使连通孔44的位置过于靠近电极7，则存在水浸入空间9的担忧。能够通过实验等求得连通孔最佳的位置以及大小。

【0048】根据以上所说明的本实施例，由于能够抑制水滞留于空间9，因此能够抑制电从电极7向壳体5流动。

【0049】实施例3

【0050】图3是示出本实施例所涉及的电加热式催化装置11的概要结构的图。对与实施例1所示的电加热式催化装置1不同之处进行说明。另外，对与实施例1所示的电加热式催化装置1相同的部件标注相同的符号。

【0051】图3所示的电加热式催化装置11的内管40，壳体50以及衬垫61的形状与实施例1不同。即，在与衬垫61接触的部位的中央部501，和未与衬垫61接触的部位的端部502，壳体50的收纳部55的厚度不同。并且，在与衬垫61接触的部位和从衬垫61突出的部位，内管40的厚度相同。另外，虽然在图3中示出了连通孔44，但是也可以与实施例1同样地不具有连通孔44。

【0052】此处，由于内管40和中央部501之间的距离越长，其间的衬垫61越厚，因此在衬垫61的上游端以及下游端，衬垫61露出的面积增大，从而水易被吸收。并且，若衬垫61内的水的滞留量增多，则到全部蒸发为止需要时间。因此，存在于内管40和壳体50之间的衬垫61以薄为宜。然而，若衬垫61过薄，则难以支撑内管40。因此，将内管40和中央部501之间的距离设定成能够支撑内管40的必要最低限度的距离。由此，内管40和中央部501之间的距离变得较短。

【0053】另一方面，在收纳部55的端部502，若内管40和壳体50之间的距离缩短，则存在产生放电的担忧。因此，若与中央部501相应地使端部502靠近内管40，则可能产生放电。因此，将内管40和端部502之间的距离设定成能够避免放电的距离。由此，内管40和端部502之间的距离变短。从而，内管40和中央部501之间的距离长。

【0054】这样，在收纳部55的中央部501和端部502，所要求的至内管40的距离不同。因此，在收纳部55的中央部501和端部502，以成为与各自的要求相应的距离的方式形成收纳
部 55 的内周面。另外，在中部 501 和端部 502，从中心轴 A 至壳体 50 的外周面的距离相同。即，为了使中部 501 靠近内管 40 而增大该中部 501 的厚度。因此，在中部 501 和端部 502 之间存在阶梯。

[0055] 并且，若将中部 501 的厚度增大至在壳体 50 设置的孔 54 的部位，则向空间 9 露出的中部 501 的面积增大。于是，在电极 7 和中部 501 之间产生放电的担忧。因此，在本实施例中，在孔 54 的周围，设定成中部 501 和端部 502 具有相同的厚度。使中部 501 的厚度与端部 502 的厚度相同的范围，作为能够避免在电极 7 和中部 501 之间放电的范围，可以预先通过实验等求出。

[0056] 根据以上所说明的本实施例，由于能够减薄内管 40 和壳体 50 之间的衬垫 61，因此能够限制该衬垫 61 的吸水力。由此，能够缩短将水从衬垫 61 除去的时间。

[0057] 另外，虽然在本实施例中增加了中部 501 的厚度，但是也可以对此进行改变，在壳体 50 的内周面安装无吸水性的其它部件。

[0058] 符号说明：
[0059] 1... 电加热式催化装置; 2... 排气管; 3... 催化剂载体; 4... 内管; 5... 壳体; 6... 衬垫; 7... 电极; 8... 绝缘件; 9... 空间; 10... 电加热式催化装置; 11... 电加热式催化装置; 12... 中部; 13... 端部; 14... 孔; 15... 收纳部; 16... 锥形部; 17... 锥形部; 18... 孔。