

[54] BEVERAGE DISPENSING APPARATUS FOR
DISPENSING A PREDETERMINED
QUANTITY OF FLUID

[75] Inventor: Wilbert J. Jaeger, Orange, Calif.

[73] Assignee: Lincoln-Hall Research Company,
Santa Ana, Calif.

[22] Filed: Dec. 7, 1972

[21] Appl. No.: 312,926

Related U.S. Application Data

[63] Continuation of Ser. No. 38,800, May 19, 1970,
abandoned.

[52] U.S. Cl. 222/129.3, 222/144.5, 222/386

[51] Int. Cl. B67d 5/56

[58] Field of Search 222/129.4, 129, 129.1,
222/129.2, 129.3, 334, 386, 145, 144.5,
386.5, 309, 61; 239/305; 251/61.4, 63.6,
367, 33, 44

[56] References Cited

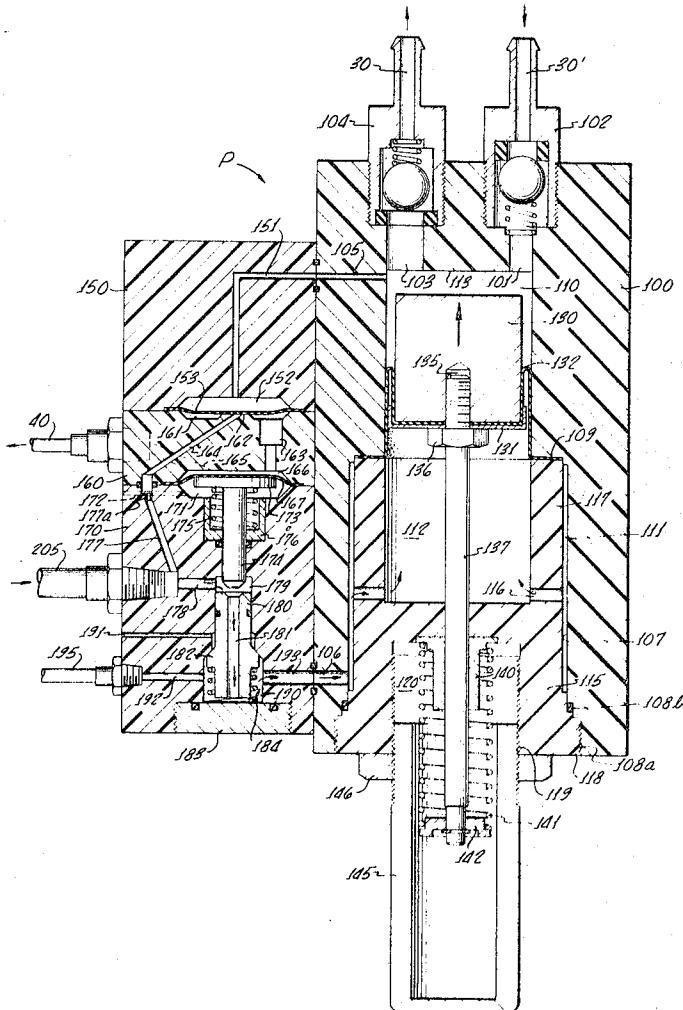
UNITED STATES PATENTS

3,447,576 6/1969 Gronlund 222/334 X

Primary Examiner—Stanley H. Tollberg

Assistant Examiner—James M. Slattery

[57]


ABSTRACT

An automated beverage dispensing system for dispensing liquor, soft drinks, or mixed drinks from a single dispensing nozzle assembly.

Liquor is drawn by vacuum from a vertically upright bottle having a tube inserted therein in loose fitting relationship so that atmospheric air pressure may be received within the bottle. Liquor is dispensed by a displacement pump having a liquid metering chamber whose volume may be adjusted. The displacement pump includes a reciprocating piston, and a gas expansion chamber at the rear of the piston to which pressurized gas is supplied for driving the piston forward.

The dispensing stroke of the liquor dispensing pump is initiated manually but is timed automatically. A push-button on the nozzle assembly is depressed for initiating the supply of energy to the dispensing pump, and the forward movement of the piston then generates liquid pressure which is detected in a control loop through a pressure-sensitive device and utilized for continuing the energization of the pump. When the piston strikes the forward end wall of the pump the operation of the control loop is interrupted.

10 Claims, 15 Drawing Figures

PATENTED AUG 20 1974

3,830,405

SHEET 1 OF 8

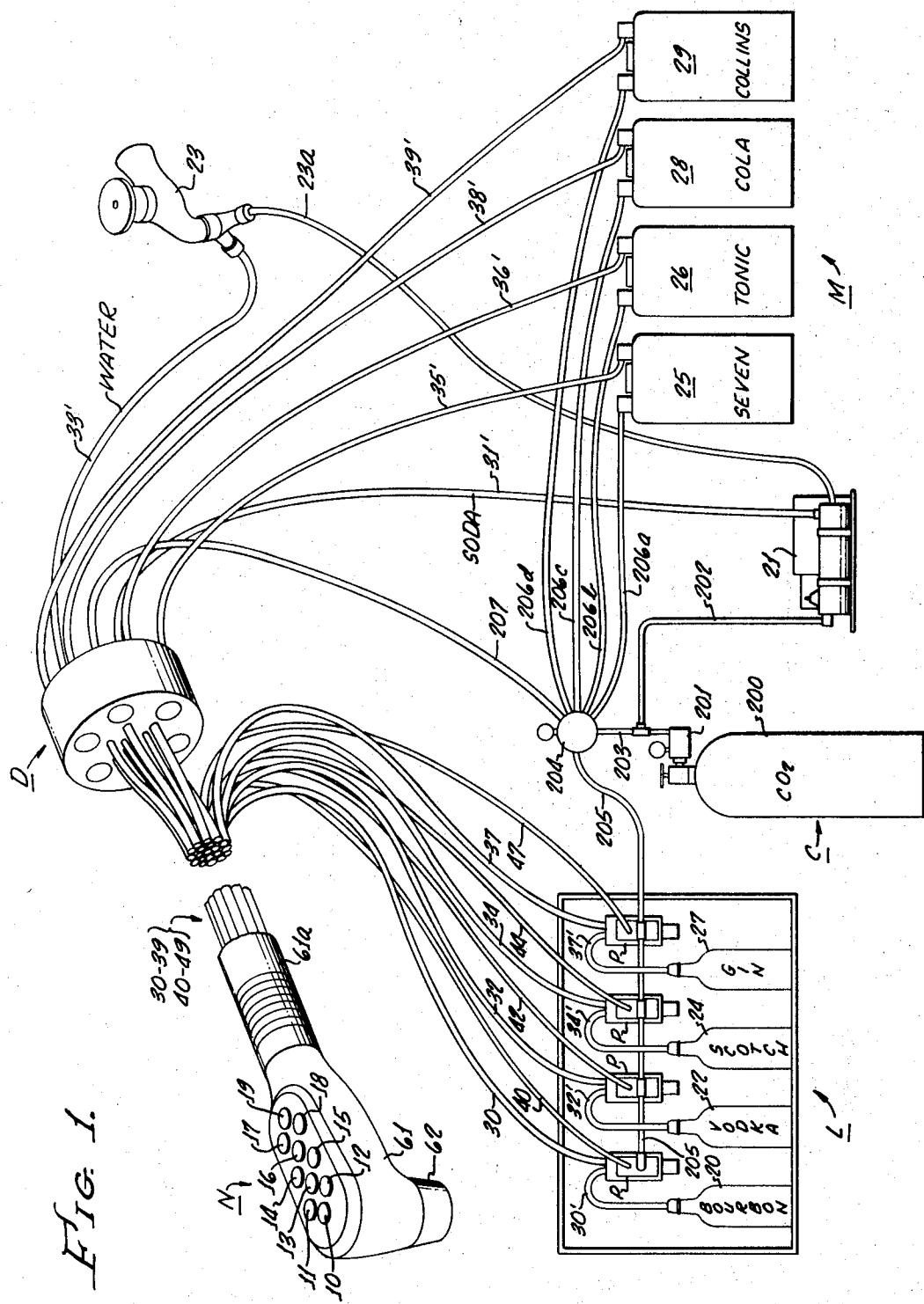
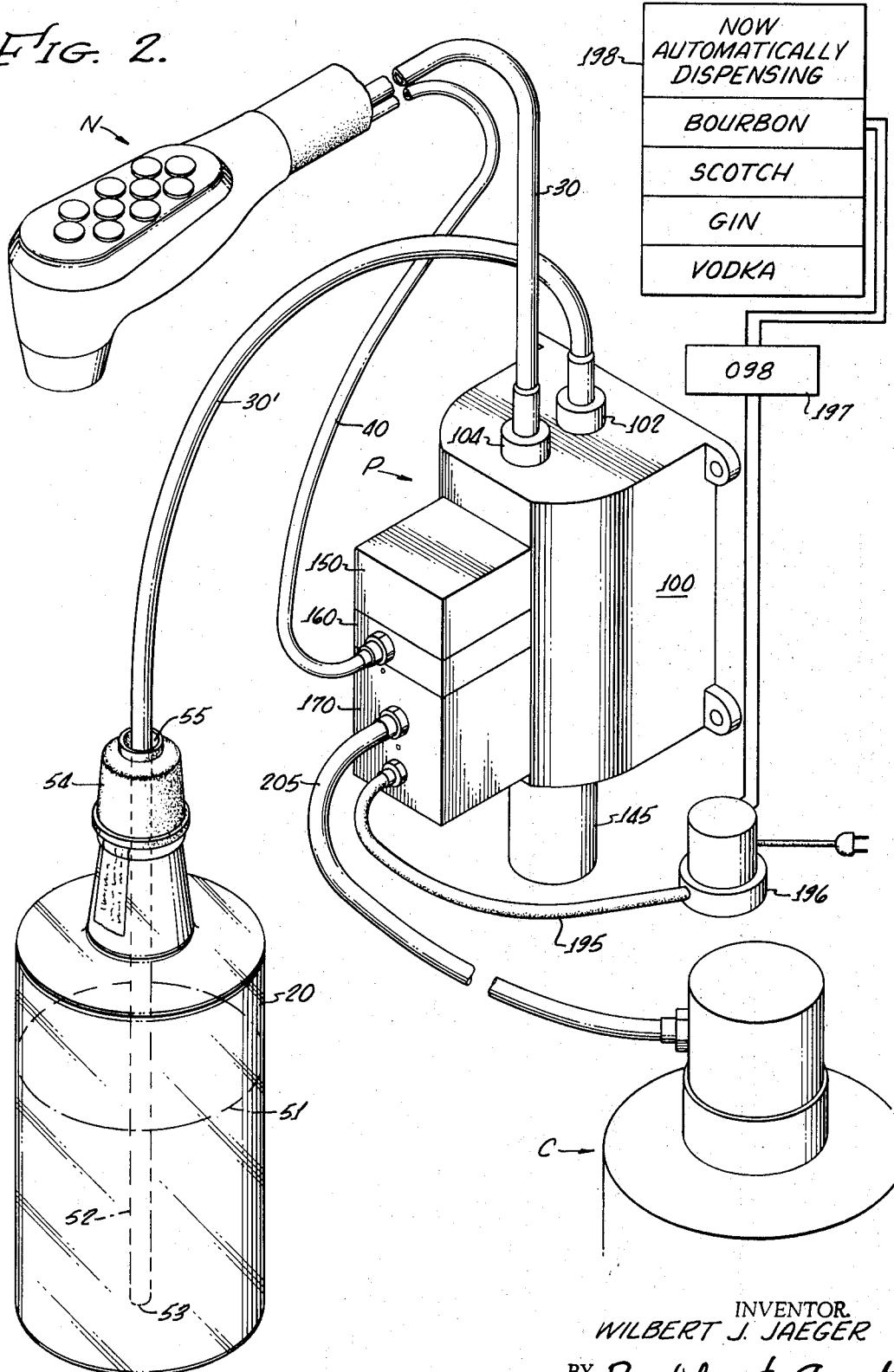


FIG. 1.

INVENTOR.
WILBERT J. JAEGER
BY *Beehler & Arant*


ATTORNEYS.

PATENTED AUG 20 1974

3,830,405

SHEET 2 OF 8

FIG. 2.

INVENTOR
WILBERT J. JAEGER

BY *Beehler & Arant*

ATTORNEYS.

PATENTED AUG 20 1974

3,830,405

SHEET 3 OF 8

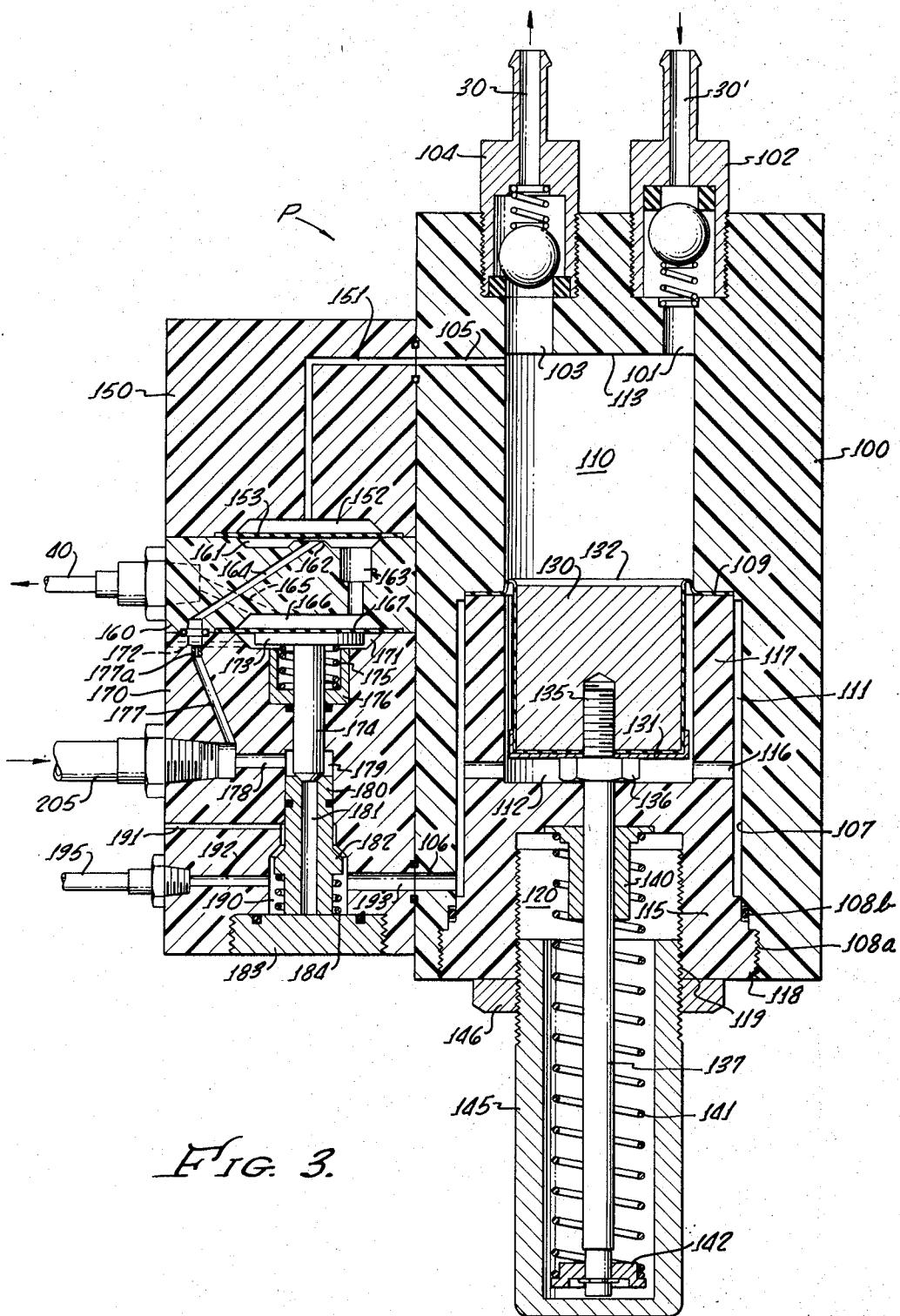
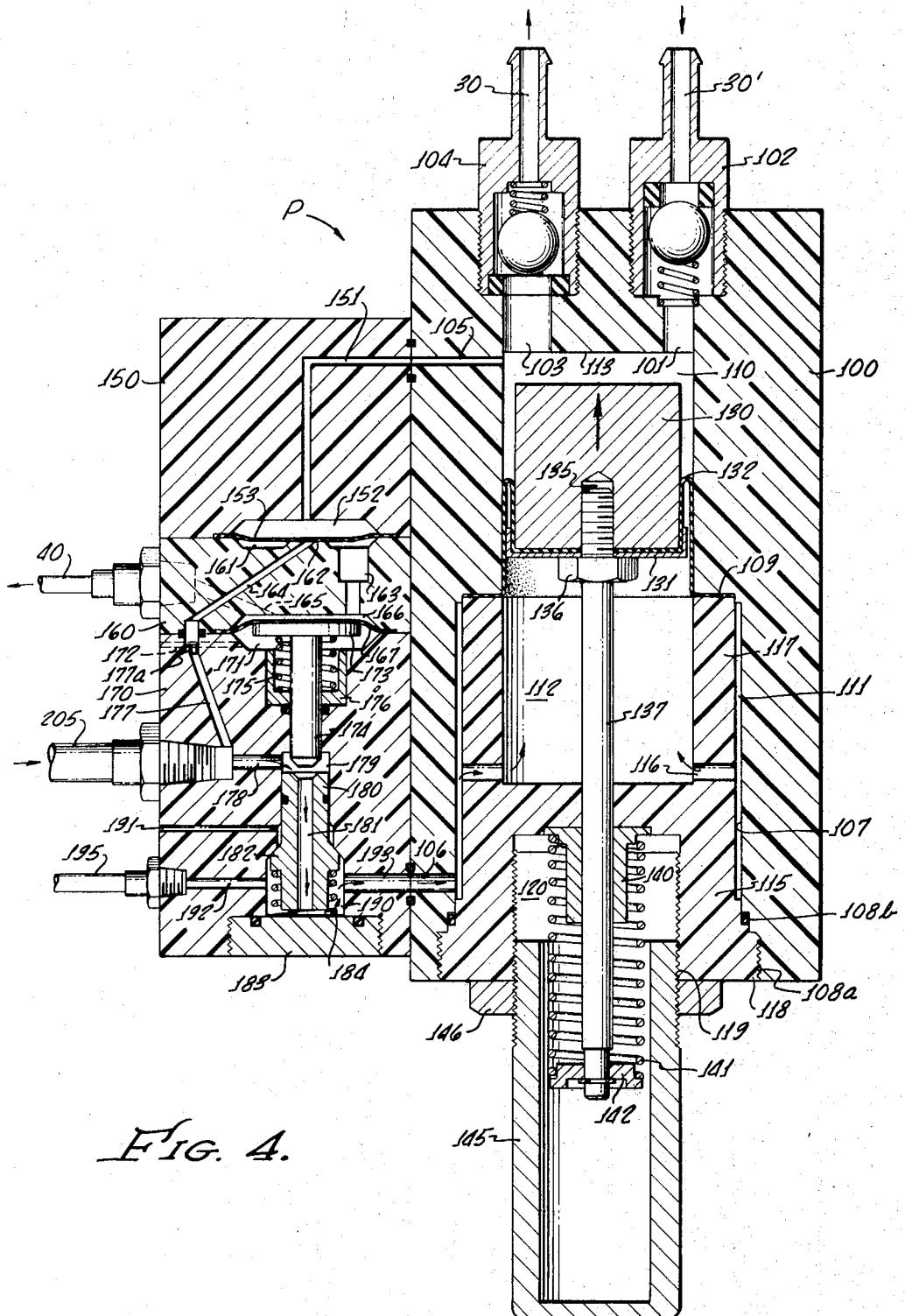


FIG. 3.

INVENTOR
WILBERT J. JAEGER


BY *Beehler & Bent*

ATTORNEYS.

PATENTED AUG 20 1974

3,830,405

SHEET 4 OF 8

INVENTOR.
WILBERT J. JAEGER

BY Beecher & Arnst

ATTORNEYS.

PATENTED AUG 20 1974

3,830,405

SHEET 5 OF 8

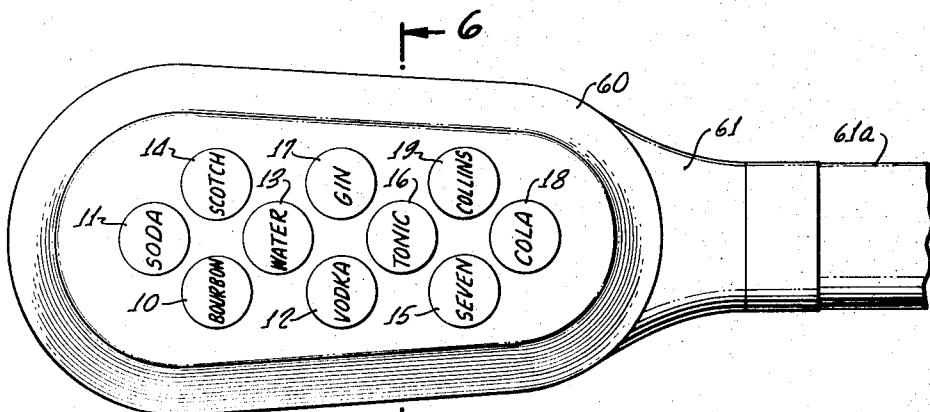
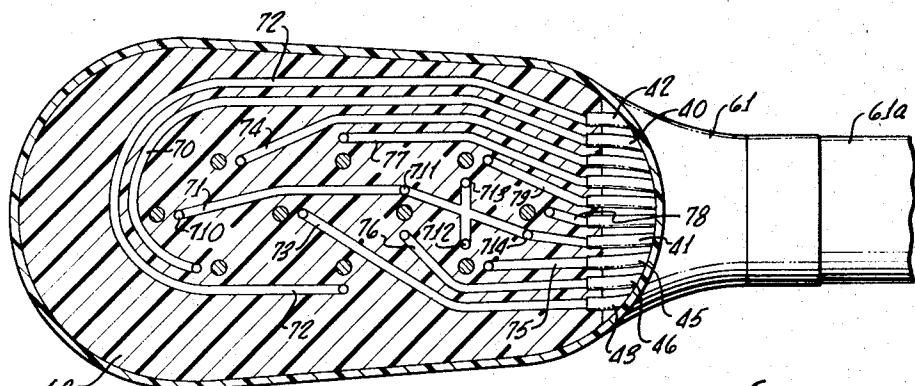



FIG. 5.

PATENTED AUG 20 1974

3,830,405

SHEET 6 OF 8

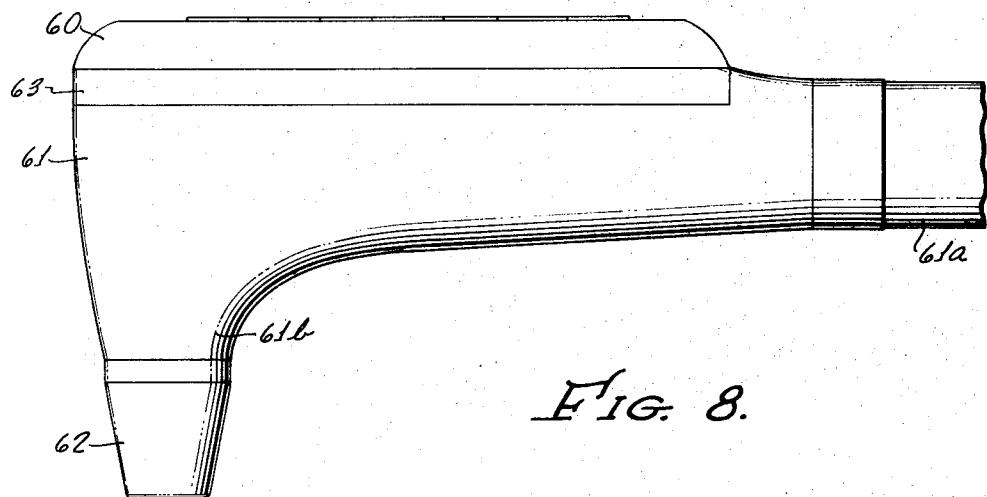


FIG. 8.

FIG. 9.

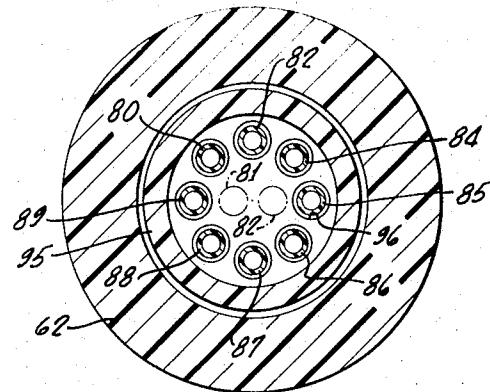
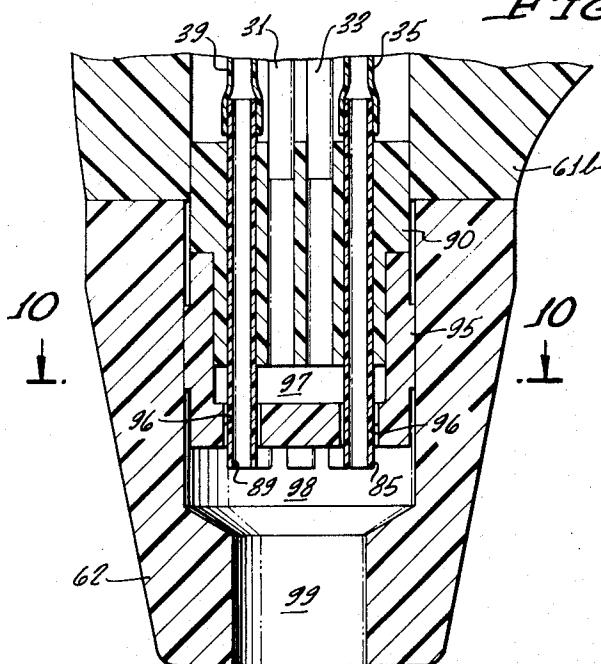



FIG. 10.

INVENTOR
WILBERT J. JAEGER

BY *Beebler & Arant*

ATTORNEYS.

PATENTED AUG 20 1974

3,830,405

SHEET 7 OF 8

FIG. 11 207

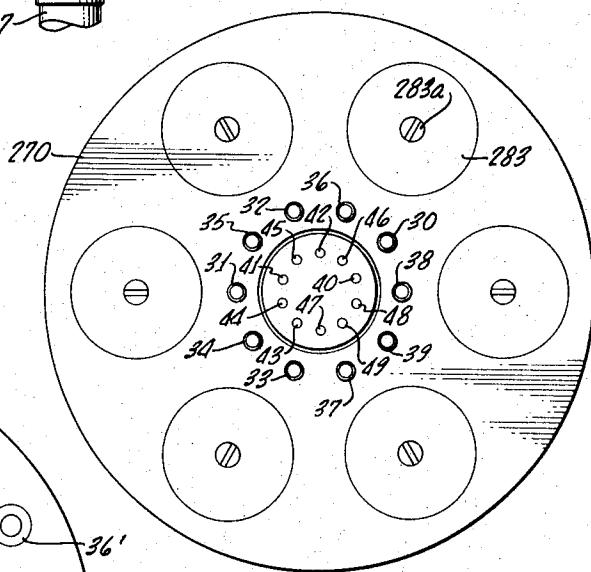


FIG. 13.

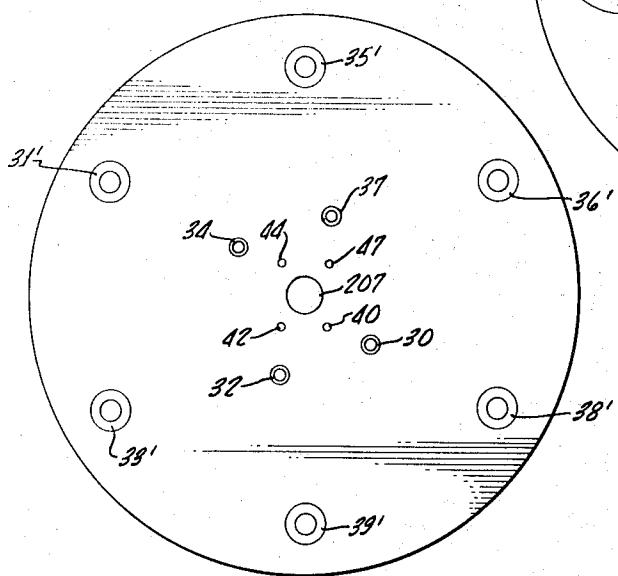
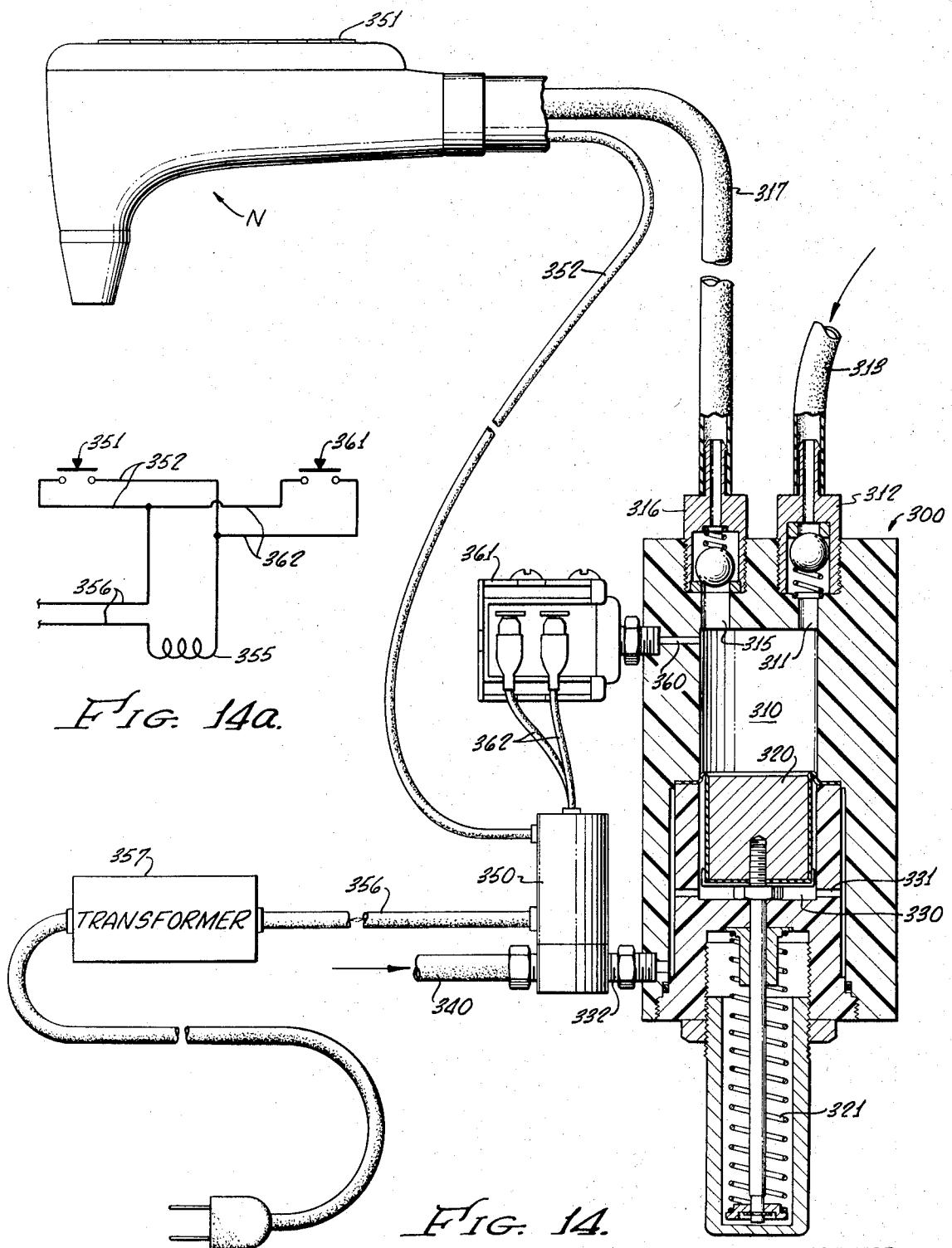


FIG. 12.

INVENTOR.
WILBERT J. JAEGER


BY *Bechler & Arant*

ATTORNEYS.

PATENTED AUG 20 1974

3,830,405

SHEET 8 OF 8

INVENTOR.
WILBERT J. JAEGER

BY Beehler & Ament

ATTORNEYS.

BEVERAGE DISPENSING APPARATUS FOR DISPENSING A PREDETERMINED QUANTITY OF FLUID

This is a continuation of application Ser. No. 38,800, filed May 19, 1970 and now abandoned.

BACKGROUND OF THE INVENTION

Automatic beverage dispensing systems have come into use during recent years, and have had many advantages. Existing systems have been generally satisfactory, however, my careful reevaluation of existing apparatus did disclose deficiencies or limitations which appeared to offer the possibility for improvement.

The present invention, therefore, provides a number of specific improvements in beverage dispensing apparatus, the various improvements being essentially independent of each other and hence of significant value whether used separately or together.

Among the advantages of the invention are centralized control of the beverage dispensing system, higher operating speed, precision control of quantity in dispensing liquor shots, elimination of safety risks from exploding bottles, minimizing safety risks of use of electricity in the moist environment of a bar, and economizing on the use of liquor supplies.

Centralized control is achieved by dispensing both liquor and mix from a single dispensing nozzle which carries control pushbuttons for both.

Higher operating speed is achieved by automating the dispensing of liquor shots.

Precision control of the quantity of liquor shots is achieved by using a displacement pump having a liquid metering chamber of predetermined volume, and automatically timing the dispensing stroke so that full completion of the stroke is assured.

Safety risks from exploding bottles are eliminated by avoiding pressurization of the liquor bottles altogether. Instead, a novel vacuum drive is utilized for drawing liquor from the bottles.

Electrical safety risks are minimized by employing a fluidic control system instead of the conventional electrical control system. Specifically, CO₂ gas at a relatively low pressure is utilized for actuating control valves.

Economy of liquor supplies is achieved in part by automatic dispensing of precisely measured shots, and in part by use of half-gallon bottles which are easily handled by the vacuum drive method.

DRAWING SUMMARY

FIG. 1 illustrates my new beverage dispensing system, being shown partly in perspective and partly in diagrammatic form;

FIG. 2 illustrates an individual liquor dispensing unit in accordance with my invention, being shown partly in perspective and partly in diagrammatic form;

FIG. 3 is a cross-sectional elevational view of an individual liquor dispensing pump and its associated control mechanism;

FIG. 4 is a view like FIG. 3 but showing an alternate position which the pump assumes during a dispensing operation;

FIG. 5 is a top plan view of the dispensing nozzle assembly of FIG. 1;

FIG. 6 is a vertical cross-sectional view of the dispensing nozzle assembly taken on the line 6-6 of FIG. 5;

FIG. 7 is an internal horizontal cross-sectional view of the dispensing nozzle assembly taken on the line 7-7 of FIG. 6;

FIG. 8 is a side elevational view of the dispensing nozzle assembly;

FIG. 9 is a side elevational view of the diffuser and nozzle;

FIG. 10 is a horizontal cross-sectional view of the diffuser taken on line 10-10 of FIG. 9;

FIG. 11 is a cross-sectional view of the distributor D of FIG. 1;

FIG. 12 is a view of a slightly modified form of the distributor, seen from its upper end as shown in FIG. 11;

FIG. 13 is a view of the underneath end of the modified form of the distributor; and

FIGS. 14 and 14a show an alternate form of the liquor dispenser unit, being electrically controlled, and illustrated partly in cross-section and partly in perspective and diagrammatic forms.

GENERAL SYSTEM ARRANGEMENT — FIG. 1

Reference is now made to FIG. 1 which generally illustrates the complete beverage dispensing system of the present invention. Among the principal elements are a dispensing nozzle assembly N; a liquor cabinet L; drink mix sources M; a distributor D; and a compressed gas source C.

Dispensing nozzle assembly N is designed to be held in one hand by the bartender, and includes a set of ten push-buttons designated by numerals 10 to 19, respectively. Each button may be depressed for dispensing either a particular liquor or a particular mix. In FIG. 5 each push-button is identified by the name of the beverage whose dispensing it controls, as well as by its associated reference numeral.

The liquor cabinet L contains a bottle 20 of bourbon, a bottle 22 of vodka, a bottle 24 of scotch, and a bottle 27 of gin. Drink mix sources M include a carbonator 21 for providing soda, a water faucet 23 for providing water, and syrup tanks designated 25 for Seven, 26 for tonic, 28 for cola and 29 for collins. It will be seen that in the assignment of reference numerals each beverage source is numbered 10 greater than the push-button which controls it; thus the push-button 10 controls the dispensing of bourbon from the bourbon bottle 20, while pushbutton 19 controls the dispensing of collins from the collins tank 29.

Liquor is dispensed from each one of the liquor bottles by means of a separate displacement pump P. Since all four of these pumps are identically constructed they are identified in FIG. 1 by the same reference character. Details of construction and operation of the pump P are shown in FIGS. 2, 3 and 4, and subsequently described. The function of the displacement pump P is to dispense a predetermined and precisely controlled amount of liquor, such as for example, one ounce. However, as will appear from the later detailed description, it is also possible to adjust the pump so as to vary the precise quantity that is to be dispensed. The liquor cabinet L may be kept locked by the bar owner in order to avoid unauthorized removal of the liquor bottles or tampering with the adjustment of the dispensing pumps.

In the preferred form of the invention as illustrated in FIG. 1 there is no electricity required for the beverage dispensing operations, except to drive the carbonator. Water is dispensed from the water faucet 23 under ordinary line pressure, and the liquors and the other drink mixes are dispensed under energization from the compressed gas source C. The gas source C includes a tank 200 of compressed carbon dioxide (CO₂) at a rather high pressure level, in excess of 100 psi. A high-pressure regulator 201 is attached to the tank 200, supplying the gas at a relatively high pressure level to carbonator 21 by means of a gas line 202, and also by means of line 203 to a low-pressure regulator 204. The carbonator 201 is of entirely conventional construction, and in addition to the high-pressure CO₂ gas received from line 202 it also receives water from the faucet 23 by means of a line 23a. The carbonator 21 also contains a pump driven by an electric motor, not specifically shown. The output of the carbonator 21 is soda, or carbonated water, supplied on a line 31'.

From the output side of the low-pressure regulator 204 the compressed gas is supplied at a pressure level such as 20 psi, and is used not only to energize the dispensing of liquor and of mix, but also to energize the controls for the dispensing operations. From the regulator 204 an output line 205 provides low-pressure gas to all of the liquor pumps P, the main line 205 having four separate branches each of which is connected to a separate one of the pumps. The exact manner in which the gas is used for energizing both the dispensing of liquor, and the control of the dispensing, is described subsequently in connection with other drawing figures. From the low-pressure regulator 204 separate output lines 206a, 206b, 206c and 206d go to respective ones of the syrup tanks 25, 26, 28 and 29. Another output line 207 is coupled from the regulator 204 to distributor D, where it energizes the various controls contained within the distributor, as will be more specifically described in conjunction with FIGS. 11, 12 and 13.

Dispensing of syrups from the tanks 25, 26, 28 and 29 is done in an entirely conventional manner. Compressed gas occupies the upper part of the tank, and an elongated tubular probe (not specifically shown) is located in the interior of the tank and extends to a point near its bottom, the upper end of the tubular probe being connected to the output line. Thus from the tonic tank 26 the tonic syrup is dispensed on an output line 36'; and from cola tank 28 the cola syrup is dispensed on an output line 38'. The soda line 31', water line 33', Seven line 35', tonic line 36', cola line 38' and collins line 39' are all coupled to the distributor D, where the dispensing operations for these beverages are actually controlled. On the other side of the distributor the continuations of these same lines extend to the nozzle assembly N, but are there designated by the same numerals without the primes.

In the liquor cabinet L a short tube section 30' extends from bourbon bottle 20 to the pump P which controls the dispensing of burbon, and from the output of that pump a line 30 extends to nozzle assembly N. In similar fashion a short tubing line 32' couples the vodka bottle 22 to its pump, a short tubing line 34' couples the scotch bottle 24 to its pump P, and a short tubing line 37' couples the gin bottle 27 to its pump. The output lines from these three pumps are designated 32, 34 and 37, respectively, and are coupled directly to the nozzle assembly N.

The beverage dispensing system of the present invention also includes a number of pressure release lines, one for each beverage to be dispensed, which are coupled to the nozzle assembly N. The function of each of the pushbuttons 10 . . . 19 is to relieve the pressure from an associated pressure relief line, as will be described in detail in conjunction with FIGS. 5, 6 and 7. In the assignment of reference numerals each relief line has a number which is greater by 30 than its associated pushbutton. For example, the dispensing pump P for bourbon receives the bourbon from bottle 20 on the line 30', and dispenses it on line 30, under control of pressure relief line 40 which is in turn controlled by the pushbutton 10. Pressure relief line 44 for the scotch 24 is controlled by button 14, relief line 42 for vodka 22 is controlled by button 12, and relief line 47 for gin 27 is controlled by button 17.

In a similar manner the pressure relief lines for soda, water, and the four syrups are controlled by the buttons 11, 13, 15, 16, 18 and 19, respectively. These relief lines are designated by numerals 41, 43, 45, 46, 48 and 49, respectively. Since the dispensing of soda, water, and the four syrups is controlled in the distributor D, these relief lines extend only to the distributor and do not extend back to the drink mix sources themselves.

VACUUM-DRAW LIQUOR DISPENSER UNIT FIGS. 2 - 4

Reference is now made to FIG. 2 which illustrates a complete liquor dispensing unit in accordance with the present invention. FIG. 2 shows the dispensing nozzle assembly N, the bourbon bottle 20, the bourbon dispensing line 30 which is coupled to the nozzle assembly, the pressure relief line 40 coupled to the nozzle assembly for controlling the dispensing of bourbon, the pump P for the bourbon, and the other apparatus which is required for dispensing the bourbon. The drink mix sources and the other liquor dispensing units contained in the system of FIG. 1 are not shown in FIG. 2.

The pump P shown generally in FIG. 2 (its internal construction being shown in detail in FIGS. 3 and 4) includes a main housing 100 within which the dispensing operation is performed, and an auxiliary or control housing. The control housing includes an upper block 150, a middle block 160, and a lower block 170. The tube section 30' extending from bourbon bottle 20 is coupled to the upper end of dispensing housing 100 through a valve unit 102. Dispensing tube 30 leading to the nozzle N is also coupled to the upper end of dispensing housing 100, through a valve unit 104. Adjusting handle 145, which is used for adjusting the precise amount of liquor to be dispensed in each shot, protrudes from the bottom of housing 100.

The pressure relief line 40 from the nozzle assembly N is coupled into the center section 160 of the control housing. Gas pressure line 205 for energizing the dispensing operations is coupled into the lower section 170 of the control housing. In FIG. 2 the CO₂ tank C is shown, but for simplicity of illustration the regulators 201 and 204 are omitted.

FIG. 2 also illustrates an indicator system which may be used as optional equipment, and is not shown in FIG. 1. A pulse transducer 196 is coupled to the lower section 170 of the control housing by means of a pulse tube 195. The pulse transducer 196 is plugged into a source of electrical energy, and its function is to pro-

duce an electrical output pulse each time that it receives a gas pressure pulse at its input. The operation of lower section 170 of the control housing (FIGS. 3 and 4) is such that each time a shot of liquor is dispensed a pulse of gas pressure is applied to the line 195 and hence to the transducer 196. The transducer 196 has its output coupled both to a counter 197 and to a display sign 198. The operation of the counter is cumulative, and it keeps track of all the shots that have been dispensed by this particular dispensing unit. In the drawing the counter reading is shown, as an example, at 098. The display sign 198 has an illuminated upper portion reading "Now Automatically Dispensing," and after the pulse is received on line 195 a lower portion reading "BOURBON" is also illuminated for a brief interval.

The operation of the displacement pump P, as will be subsequently described in more detail, is such as to draw a vacuum on the line 30'. A cap 54 is placed on top of the bourbon bottle 20, and has an opening 55 through which the tube 30' extends with a very loose fit. Air passes freely through the opening 55 around the tube 30' so that the atmospheric pressure is fully applied to the upper surface level of the bourbon within the container, this surface level being indicated at 51. An extension of tube 30' designated at 52 extends down into the interior of the bottle 20, with its lower extremity 53 being an open end positioned very near to the bottom of the bottle 20. When displacement pump P draws a vacuum on the line 30' the atmospheric pressure pushes down on the surface 51 of the bourbon within the bottle 20, pushing a quantity of bourbon in through the open lower end 53 of the line 30' and hence up through the line to the pump.

The vacuum method of drawing liquor from each of the liquor containers has some very important advantages. First, in some prior dispensing systems the liquor containers have been pressurized, and the pressurization has caused small particles of glass to chip off into the liquor and some of these particles have from time to time been dispensed to the customer with resulting undesirable effects. In other instances the pressurization of the liquor container has resulted in explosion of the container. These difficulties of the prior art are completely avoided by the present invention because the pressure level both inside and outside the liquor bottle is never greater than atmospheric pressure. Another important advantage of the vacuum draw method of the present invention is that the label on the liquor bottle can remain intact and fully exposed to view, as required by law. A further advantage of the vacuum draw method is that it is amenable to the use of half gallon liquor bottles, or larger sizes if desired, which result in a significant cost saving.

Reference is now made to FIGS. 3 and 4 illustrating the structure and operation of the dispensing pump P.

The dispensing housing 100 contains a chamber having forward end portion 110 and rearward end portion 112, and a piston 130 which reciprocates between the end portions of the chamber. In the retracted position of piston 130 as shown in FIG. 3 the chamber portion 110 holds a precisely measured quantity of liquor. As the piston 130 travels forward the liquor is dispensed through valve fitting 104 into output line 30. FIG. 4 shows the piston as it is moving forward and prior to striking the end wall 113 of the chamber.

More specifically, the dispensing housing 100 on its upper end has a passageway 101 which opens through the end wall 113 of the chamber 110, 112. A standard check valve unit 102 is screwed into the outer end of passageway 101, and receives the end of tube 30'. Valve fitting 102 contains a check valve which permits liquor to flow from the tube 30' into the chamber 110, but will not permit flow in the opposite direction.

In similar fashion a passageway 103 communicates from the upper end of housing 100 through the wall 113 of the chamber. A valve fitting 104 is screwed into the outer end of passageway 103, and receives the output tubing line 30. Valve fitting 104 contains a check valve which permits liquor to flow from the chamber 110 out into the line 30, but not in the opposite direction.

A separate piston housing 115 provides the chamber portion 112 within which piston 130 may be retracted. Dispensing housing 100 is normally open at its lower end, and piston housing 115 is inserted therein to confine the piston 130 in the chamber thereby provided. The piston 130 is of generally cylindrical configuration and is covered by a flexible bellofram 132 which covers the lower end of the piston as well as its cylindrical sidewall and extends peripherally outwardly from the upper end of the piston (as seen in FIG. 3). The peripheral extremity of bellofram 132 is retained between annular shoulder 109 of housing 100 and the upper circumferential end face of the piston housing 115.

A metal end cap 131 fits over the lower end of piston 130 to retain bellofram 132 in place. A piston stem or rod 137 has its upper end threaded at 135 and screwed into a threaded opening in the piston 130. A nut 136 carried on the threaded portion of stem 137 is tightened against the metal cap 131 for retaining the piston and piston rod in assembled relationship, and at the same time firmly pressing the end cap 131 against the bellofram. When the piston 130 travels forwardly the bellofram 132 is progressively peeled back from the circumference of the piston, and hence serves to maintain a tight pressure seal between the chamber portion 110 and the chamber portion 112 (see FIG. 4).

Below its annular shoulder 109 the housing 100 has a cylindrical opening 107 within which the piston housing 115 is disposed in spaced relationship so as to define an annular space 111 therebetween. This annular space becomes filled with pressurized gas when it is necessary to drive the piston upward. Below the cylindrical opening 107 a recessed threaded portion 108a of housing 100 is engaged by a threaded flange 118 of the piston housing 115. Above these interengaging threads a sealing ring 108b seals the space between housing 115 and housing 100, thus preventing leakage of the pressurized gas from the lower end of annular space 111.

The piston housing 115 in its lower center has a cylindrical recess 120 with a threaded wall 119. A member 140 is seated at the upper end of opening 120, and acts both as a spring retainer for a spring 141 and also as a sliding seal for the piston rod 137. Thus, the piston rod 137 reciprocates through a central opening in the piston housing 115, through a central opening in the member 140, and extends rearwardly through the space 120 into the interior of adjusting handle 145. The adjusting handle 145 is a hollow tubular member with exterior threads on its upper end which engage the threads 119 of opening of 120, the lower end of the adjusting han-

dle 145 being closed. In the fully lowered or fully retracted position of piston 130 as shown in FIG. 3 the lower end of piston rod 137 strikes the end wall of adjusting handle 145. A spring retainer 142 is attached to piston rod 137 near its lower end, the expansion spring 141 being held between the retainer 142 and the member 140 and thus urging the piston 130 always towards its lowered or fully retracted position. The adjusting handle 145 may be screwed inwardly from its position as shown in FIG. 3, in order to limit the downward or retracting movement of the piston 130, and thus diminish the volume of the dispensing chamber 110. A threaded nut 146 carried on the external threads of handle 145 is tightened against the lower end of piston housing 115 in order to lock the adjusting handle 155 in its particular position of adjustment.

As best seen in FIG. 2 the control housing 150, 160, 170 is attached on one side of the dispensing housing 100. A single horizontal passageway 106 communicates from the annular space 111 through the wall of housing 100 and into the lower section 170 of the control housing, for receiving the pressurized gas which will drive piston 130 in an upward stroke. A plurality of passageways 116 are spaced circumferentially about the piston housing 115, and communicate between the annular space 111 and the lower chamber portion 112. Two of these passageways 116 are shown in the cross-sectional view of FIGS. 3 and 4.

Thus, it will be seen that when the piston 130 is to be driven upward, pressurized gas is supplied from the control housing 170 into the passageway 106, and then fills up the entire annular space 111 around the entire circumference of the piston housing 115. The pressurized gas passes through a number of the openings 116 into the lower chamber 112, and hence is applied to the retaining cap 131 for pushing piston 130 upward. Upon completion of its upward stroke the upper end of piston 130 strikes the chamber wall 113, which mechanically prevents a further upward travel of the piston, and the cessation of movement by the piston results in a shutting off of the pressurized gas from its source, as will subsequently be explained. Not only is the source of gas pressure shut off but the pressurized gas is also relieved to atmosphere, so that the pressurized gas contained within chamber portion 112 flows back through the passages 116 and annular space 111 and hence through the passageway 106 and through further channels as will be described. The relief of gas pressure in the chamber portion 112 permits the spring 141 to return the piston 130 to its fully withdrawn position as shown in FIG. 3.

The dispensing housing 100 also has a sensing passageway 105 formed therein, which communicates from the upper end of chamber portion 110 to the control housing 150. The purpose of passageway 105 is to sense the liquid pressure in the chamber portion 110, the response to this liquid pressure being utilized in the control system in a manner which will subsequently be described. The net flow of liquor back and forth in the sensing passageway 105 is of minuscule proportions, however, and it therefore does not affect the precision metering action achieved by the chamber 110.

The operation of the displacement pump P in dispensing a predetermined and precisely measured quantity of liquor will now be described. Let it be assumed that piston 130 is in its fully retracted position as shown in FIG. 3. Let it also be assumed that the chamber 110

is full of liquor and that the passageways 101, 103, and 105 are likewise full of liquor. As piston 130 moves upward the valve 102 remains closed, hence there is no loss or gain of liquor with respect to passageway 101. There is also no significant change with respect to passageway 105. Upward movement of the piston 130 forces the liquor from chamber 110 through passageway 103 and through the valve fitting 104 into the output line 130. When piston 130 strikes the chamber wall 113 the amount of liquor which has been supplied to the output line 30 is precisely equal to the volume which piston 130 has displaced within chamber 110.

In the operation of the system it is also significant, as will be shown, that the output line 30 remains full of liquor at all times as does also the associated portion of the nozzle N. Capillary action is relied upon to prevent these passageways from becoming empty. The result is that the quantity of liquor dispensed at the nozzle N is precisely equal to the volume of chamber 110 that was displaced by the stroke of piston 130.

During upward travel of piston 130 the valve 102 was closed while the valve 104 was open. When the piston ceases its forward travel the valve 104 closes. Upon the decay of gas pressure in chamber portion 112 the spring 141 forces the piston to retract, whereupon a partial vacuum is created within the chamber portion 110. Valve 102 now opens and liquor is drawn from the bottle 20 through the line 30'. The dispensing cycle may then be repeated.

In the operation of the dispensing pump P the setting up of the apparatus for dispensing the first shot involves conditions different from the repetitive dispensing operations thereafter. For proper starting conditions it is highly desirable, if not altogether indispensable, that both of the passageways 101 and 103 be at the upper end of chamber portion 110, so that air bubbles cannot easily be entrapped. If air bubbles were to become entrapped in the chamber the precision of the dispensing operation would be destroyed.

CONTROL OF PUMP P

The method of controlling the operation of dispensing pump P is, in general, as follows:

The supply of compressed gas from the supply line 205 to the chamber 112 of the pump is controlled by a pilot-operated valve. This valve including moveable members 174 and 180 is shown in its closed position in FIG. 3, while in FIG. 4 it is shown in its open position. The pilot-operated valve is in turn controlled by a pressure-sensitive diaphragm 153. FIG. 3 shows the position of diaphragm 153 when the system has been pressurized by tank 200 and is ready to operate, while FIG. 4 shows the alternate position which the diaphragm assumes after pressure has been relieved through pressure relief line 40 by actuation of the button 10 of nozzle N.

The control housing 150, 160, 170 and mechanisms contained therein will now be described in detail.

The upper control housing section 150 is a solid member such as a plastic block having a chamber 152 formed in its lower end surface. A sensing passage 151 communicates with chamber 152 and with the sensing passage 105 of housing 100. The peripheral edge of chamber 152 is recessed for receiving the diaphragm 153. The peripheral edge of diaphragm 153 is supported upon the flat surface of control housing section 160.

Control housing section 160 has a chamber 161 formed in its upper central surface, and chamber 161 in its center has a raised surface portion 162 which is spaced only a short distance away from the under surface of diaphragm 153, when diaphragm 153 is in its flat position as shown in FIG. 3. A chamber 166 is formed in the center of the under surface of housing section 160. A vertical passageway 163 interconnects chamber 161 with chamber 166. Pressure relief line 40 is connected at one side of the control housing section 160, and a passageway 165 couples the relief line 40 to the chamber 166. Another passageway 164 has its upper end opening through the raised surface portion 162 of the chamber 161, while its lower end extends to the lower surface of housing section 160, but to one side of the chamber 166. The peripheral edge of chamber 166 is recessed to receive the peripheral edge of a diaphragm 167.

In the control housing section 170 the compressed gas line 205 is connected at one side, and is coupled to passageways 177 and 178. Passageway 177 extends upward through the housing block 170 and communicates with passageway 164 of the housing block 160. Passageway 178 communicates with one side of a central opening 179 which is formed in the lower center of the block 170.

Housing block 170 in its upper center has a complex recess or chamber 171 formed therein, for receiving various parts of the mechanism. A base plate 173 is centrally located beneath the diaphragm 167 and secured to the under surface of the diaphragm. A plunger 174 is attached underneath the base plate 173 and extends vertically downward to the chamber 179. A cup-shaped bushing 176 occupies the lower portion of recess 171 and has a central opening through which the plunger 174 passes. An expansion spring 175 is located within the cup 176, its lower end being retained by the bottom wall of the cup while its upper end is retained by the plate 173. Spring 175 is effective to urge the plate 173, and hence the diaphragm 167, in an upward direction.

The recess 179 is generally cylindrical but enlarged at its lower end. Located within the recess 179 is a perforated valve member 180, which is of a generally cylindrical configuration to fit the dimensions of the recess, and is enlarged near its lower end by means of a flange 182. A central passageway 181 extends vertically through the complete length of member 180. The lower end of recess 179 is closed by a plug 183, which is screwed into a threaded opening representing an enlargement of the lower end of recess 179. Below the flange 182 there is an annular space 190 between the lower end of valve member 180 and the circumferential wall of recess 179. An expansion spring 184 occupies the annular space 190, the lower end of the spring resting on plug 183 while its upper end engages the under surface of the flange 182. Spring 184 normally urges the valve member 180 toward an upward position. The upper end of passageway 181 in the valve member 180 is conically tapered, and the lower end of plunger 174 is likewise conically tapered, and in the normal position of the valve mechanism the passageway 181 is closed off by the plunger 174, as shown in FIG. 3.

The housing block 170 also contains a vent opening 172 which communicates between chamber 171 and the exterior surface of the block, or atmosphere. Vent opening 172 does not intersect the passageway 177.

Another vent opening 191 communicates between chamber or recess 179, just above the location of flange 182, and the atmosphere. The pulse output line 195 is coupled to one side of the housing block 170 and hence through a passageway 192 to the annular space 190. On the other side of annular space 190 a passageway 193 communicates with passageway 106 of the dispensing housing 100.

In the valve position shown in FIG. 3 the chamber 166 above diaphragm 167 is occupied by pressurized gas at a significant pressure level. The pressure level is sufficient to hold the diaphragm 167, base plate 173, and plunger 174 in the downward position against the force of spring 175. Furthermore, the gas pressure is also sufficient to hold the perforated valve member 180 (whose upper end opening is engaged by plunger 174) in its downward position against the force of spring 184. The pressure in chamber 166 exists by virtue of open communication from the supply line 205 through passageway 177, passageway 164, chamber 161, and passageway 163.

The chamber 152 above diaphragm 153 is normally filled with liquor, and remains so. The gas pressure on the underside of diaphragm 153 is normally sufficient to offset the weight of the liquor in chamber 152, so that the diaphragm remains in a flat or unstressed condition.

It will be noted that pressure relief line 40 communicates directly with chamber 166 through the passageway 165. When button 10 is depressed the pressure in relief line 40 is relieved, and the pressurized gas in chamber 166 also escapes through passageway 165 into the relief line 40 and hence to atmosphere. Gas continues to flow from the supply line 205 through passageways 177, 164, 161 and 163 into the chamber 166, but there is a drop in the pressure level within the chamber 166. The pressure drop is significant because of a flow restriction 177a that is deliberately inserted in the passageway 177. Passageway 177 is more restricted than relief line 40. Therefore, the spring 175 pushes the plunger 174, base plate 173, and diaphragm 167 into their upper position as shown in FIG. 4.

When the valve moves to its open position as shown in FIG. 4, the perforated valve member 180 is driven upward by its spring 184, but can move only a short distance until its flanged portion 182 is stopped by the associated wall surface of the recess 179. A vertical separation does result between the lower end of valve member 180 and the upper surface of plug 183. The upward movement of valve member 180 is much less than the upward movement of plunger 174, so a large gap exists between the lower end of plunger 174 and the passageway 181 of member 180. Hence pressurized gas is able to flow from the supply line 205 through passageway 178 into the upper portion of recess 179, and thence through the passageway 181 in the valve member 180 and down to the lower end of recess 179 above the surface of the plug 183, from whence it escapes into the annular space 190 and then into passage 193 and passage 106 to reach the annular space 111 of dispensing housing 100.

When the valve first moves to its open position as shown in FIG. 4 the diaphragm 153 initially remains spaced from the raised portion 162 which has the end of passageway 164 formed therein. After a slight time delay, however, a sufficient quantity of pressurized gas flows into the annular space 111 and hence into the

chamber 112 so that piston 130 is propelled in a forwardly (upwardly) direction. The forward movement of piston 130 not only drives liquor out of chamber 110 through the valve mechanism 104 into the output line 30, but it also raises the liquid pressure in the sensing passageway 105, 151. This sharp increase in the liquid pressure is also transmitted to the chamber 152, driving the diaphragm 153 strongly down against the protuberance 162 and thus closing off passageway 164. This position of diaphragm 153 is shown in FIG. 4. The flow of gas from supply line 205 into gas chamber 166 is therefore interrupted, and the gas pressure in chamber 166 drops even further. It is then no longer necessary for relief line 40 to bleed pressurized gas out of the chamber 166, in order to keep the valve mechanism open.

As a matter of fact, one of the very desirable features of my invention is that a liquor push-button such as button 10, for example, need be depressed only momentarily in order to control the dispensing of a shot of liquor. Once the piston 130 has started to move forwardly the button 10 may be released, closing the relief line 40, but the high level of liquid pressure in chamber 152 will keep the valve mechanism locked in its open position. Meantime, the bartender, after having pressed the liquor button only momentarily, can then move his thumb or finger to another button to control the dispensing of a mix for a desired period of time.

The chamber 171 on the underside of diaphragm 167 is vented to atmosphere through passageway 172, hence the under surface of diaphragm 167 is subject only to atmospheric pressure. The vent 172 permits air to move freely into chamber 171 when the diaphragm 167 is raised to its position as shown in FIG. 4, and permits the air to move freely outward when the diaphragm returns to its original position.

The dispensing movement of piston 130 as shown in FIG. 4 comes to an end when the piston strikes the wall 113 at the end of chamber 110. The fluid pressure level immediately drops in the chamber 110 and in the passageways 101, 103, and 105. The valve 104 which was open during the forward movement of the piston now closes under pressure of its spring. The drop in fluid pressure is transmitted through passageway 151 to chamber 152, permitting diaphragm 153 to return to its normal position. This movement of diaphragm 153 is aided by the fact that gas pressure has continued to exist in the passageway 164. Hence the initial movement of diaphragm 153 is to open the end of passageway 164, but the gas pressure then rises rapidly in chamber 166, passageway 163, and chamber 161, resulting in restoring the diaphragm 153 to its normally flat or horizontal position as shown in FIG. 3. At the same time the rising pressure in gas chamber 166 causes diaphragm 167 to move downward to its normal position, and the valve mechanism then re-assumes its closed position shown in FIG. 3. The gas pressure in chamber 166 is not bled off at this time through the relief line 40, because the pushbutton 10 had been closed earlier.

When the valve mechanism is in its open position as shown in FIG. 4 the vent 191 is effectively closed by the wedging of flange 182 against the sloping walls of recess 179, hence there is no bleeding off of the gas pressure in annular space 190. However, when the valve mechanism returns to its closed position of FIG. 3, the flange 182 disengages from the wall of recess 179 and

there is a communicating space which couples the vent 191 to the annular space 190. Therefore, the pressurized gas in chamber 112 which had driven the piston 130 in the forward direction now passes out through the passageways 116, annular space 111, passageways 106 and 193, annular space 190, and the space around the circumference of valve member 180 into the passageway 191 by which it is vented to atmosphere. The apparatus is now in condition to repeat the dispensing cycle when the button 10 is depressed again.

The pulse line 195 is simply coupled in communication with annular space 190 by means of the passageway 192, hence every increase or decrease in the gas pressure in space 190 is communicated through the line 195 to the transducer 196. While details of design and operation of the transducer 196 are not shown, they are within the skill of the art and need not be described in detail here.

20 DISPENSING NOZZLE ASSEMBLY N FIGS. 5 TO 10

Reference is now made to FIGS. 5 to 10, inclusive, illustrating the dispensing nozzle assembly N of the present invention.

As shown in FIGS. 1 and 8 the nozzle assembly N has a gun or handle portion 61 which is equipped with a rearward extension 61a, and the ten beverage tubes 30 to 39, inclusive, and ten pressure relief lines 40 to 49, inclusive, enter the handle 61 through the extension portion 61a. The gun or handle 61 is actually a hollow housing, as best seen in FIG. 6, being open at the top and having through most of its length a cross-sectional configuration which corresponds approximately to a half-circle. At its forward end, as best shown in FIG. 8, the gun or housing 61 has a L-shaped downward extension portion 61b, to which is affixed the diffuser cover 62. The otherwise open top of the housing 61 is covered by a channel plate 63 which is in turn covered by an escutcheon plate 60.

As best seen in FIG. 6, the channel plate 63 has a number of channels formed in its underside, which is covered by the cover plate 64. The plan or arrangement of these channels is shown in FIG. 7. Thus it will be seen that the relief line 40 is connected to a channel 70, relief line 41 is connected to a channel 71; and so on, there being a separate channel for each of the relief lines 40 to 49, inclusive. At the end of each channel, located in the interior of the nozzle structure, there is a vent opening formed through the cover plate 64. For example, for the tonic channel 76 there is a vent opening 760 which is shown in plan view in FIG. 7 and in a cross-sectional view in FIG. 6. Each of these vent openings is normally closed, but may be opened by depressing the associated one of the control pushbuttons 10 to 19, inclusive.

The interior of the hollow housing 61 is not sealed, but is open to the outside atmosphere. Thus one or more openings such as the opening 61c shown in FIG. 6 are formed in the wall of the housing 61, so that gas pressure released from the channels may in turn be released to the surrounding atmosphere.

The channel plate 63 is a relatively thick plate made of a suitable plastic material, and has its lower longitudinal edges notched at 63a and 63b so as to fit precisely onto the upper longitudinal edges of the housing 61. See FIG. 6. The cover plate 64 is glued or otherwise secured to the channel plate 63 prior to assembly with the

housing 61. The escutcheon plate 60 has its longitudinal edge surfaces curved downward so as to engage the upper longitudinal edges of the channel plate 63, where they are firmly secured. The central portion of the escutcheon plate 60 is spaced some distance above the channel plate 63 to provide suitable space for the pushbutton mechanisms.

The tonic pushbutton 16 is shown in full detail in FIG. 6. The button itself is not supported from the escutcheon plate, and is located within a circular opening in the escutcheon plate, protruding a short distance above the surface of that plate. A spring 66 located beneath the button has one end resting upon the upper surface of the channel plate 63 while its other end engages the button. From the center of the button a fixed shank 67 projects downwardly through the spring 66, and also through openings which are provided for that purpose in the plates 63 and 64. A closure member 68 is fastened to the lower end of the shaft 67 and normally closes the vent opening 760 in the cover plate 64. In the normal position of pushbutton 16, as shown in FIG. 6, the spring 66 is sufficiently compressed so that the closure member 68 provides a reliable seal for the vent opening 760.

When a pushbutton such as button 16 is to be actuated it is simply pressed downwardly, which further compresses the spring 66, and moves the closure member 68 down and away from the plate 64 with its opening 760. Gas then escapes from the relief line 46 through channel 76 and vent opening 760 into the interior of housing 61, and thence through opening 61c into the surrounding atmosphere. As soon as the pushbutton is released the vent opening is again closed by action of spring 66.

The soda channel 71 differs from the other channels in that it has a number of the vent openings associated with it. Thus at the outer end of the channel adjacent the soda pushbutton 11 there is a vent opening 710. Adjacent the tonic button 16 there is a vent opening 711, and as can be seen in FIG. 6 the operation of the tonic button 16 is effective to release gas from both the tonic channel 76 and the soda channel 71. Soda channel 71 also has branches with end openings 712 and 713 which are positioned adjacent to the Seven button 15 and collins button 19, respectively. Soda channel 71 also has a vent opening 714 adjacent the cola button 18. Thus for each of the four mixes, tonic, Seven, collins and cola, the operation of the corresponding pushbutton not only causes the syrup to be dispensed from the syrup tank, but at the same time causes soda to be dispensed. The manner of operation will be described subsequently in greater detail, in conjunction with the distributor D.

Although the pressure relief lines 40 to 49, inclusive, terminate on the rearward end of the channel plate 63 (see FIG. 7) the associated beverage lines 30 to 39, inclusive, extend into the hollow housing 61 beneath the channel plate (see FIG. 6). The beverage lines continue to the forward end of housing 61 and are turned downward to connect to the mixer, diffuser, and nozzle, as shown in FIGS. 9 and 10.

The structure as shown in FIG. 9 includes the barrel 90, diffuser 95, and nozzle 62. The barrel 90 is a generally cylindrical structure which is vertically disposed, and has ten vertical passageways which correspond to the beverage tubes 30 to 39, respectively. The housing portion 61b has a cylindrical opening therein which is

vertically disposed, and the upper end of barrel 90 is inserted within that opening.

The passageways in barrel 90 are identified by reference numerals 80 to 89, inclusive, and to these passageways are attached the beverage lines or hoses 30 to 39, respectively. The passageway 81 for soda and the passageway 83 for water are positioned in the center of barrel 90, as is best seen in FIG. 10. The other passageways are positioned in a circular arrangement. The barrel 90 is preferably an integral structure formed of plastic material, and the passageways for the liquors and syrups (all the passageways except 81 and 83) are in the form of tubes which extend below the lower end of the barrel. Thus in FIG. 9 the downwardly projecting ends of the tubes 85 and 89 are shown.

The diffuser 95 has a generally cylindrical configuration with its lower end being closed. The lower end of diffuser 95 has a set of eight openings 96 which are arranged in a circular pattern so as to receive the projecting ends of the liquor and syrup tubes. The barrel 90 on its lower end has its exterior surface recessed to receive diffuser 95, and the diffuser extends downward a sufficient distance so that the lower end wall of the diffuser is spaced from the lower end of the barrel 90 to provide a diffusion chamber 97 therebetween. The soda and water passageways 81, 83 from the barrel 90 empty directly into the diffusion chamber 97. The liquor and syrup tubes, however, pass through the diffusion chamber 97, and through the openings 96 and project somewhat below the lowermost end of the diffuser 95.

The nozzle 62 has a cylindrical opening therein which fits over the barrel 90 and diffuser 95. The nozzle 62 also provides a mixing chamber 98 which opens into the discharge port 99. All of the liquor and syrup tubes open into the mixing chamber 98, whose lateral dimension is somewhat greater than that of the discharge port 99.

It is significant that each of the openings 96 in the diffuser 95 is large enough so that there is an annular space surrounding the particular liquor tube or syrup tube which passes through that opening. The only exit from the diffuser chamber 97 is through the eight openings 96, hence whenever soda or water is dispensed it impinges directly on the flat bottom surface of the chamber 97 (i.e., the bottom wall of cap 95), then spreads laterally in all directions and is discharged through all of the openings 96 into the mixing chamber 98. This method of diffusing the soda and the water has the advantage of continuously washing the ends of the liquor and syrup tubes, and provides a continuous cleaning action. The actual mixing of the liquor and/or syrup with the soda or water takes place in the mixing chamber 98.

A problem of prior art dispensers has been that dispensing of a particular liquor and/or syrup has left a residue which affects the flavor or taste of the next succeeding drink. According to the present invention this problem is solved by the continuous washing of the liquor and syrup tube ends.

DISTRIBUTOR D FIGS. 11 TO 13

Reference is made to FIG. 11 illustrating the internal construction of distributor D. The function of the distributor is to control, through a separate valve mechanism for each, the flow of the four syrups, water and soda.

The six valve mechanisms contained within the distributor are all identical to each other, and for that reason only one of them will be described in detail. Furthermore, each of these valve mechanisms is very much similar to the valve mechanism that controls the flow of pressurized gas to chamber 112 of piston P, as shown in FIGS. 3 and 4. Where a part in the distributor valve corresponds to a similar or identical part in the pump valve it is given the same reference numeral, but raised by 100. For example, the diaphragm 267 of the distributor valve is constructed in essentially the same manner and has essentially the same function as the diaphragm 167 of the pump valve.

More specifically, the distributor D includes a housing formed of two separate blocks 260, 270. These blocks are preferably formed of hard plastic material, like the blocks 100, 115, 150, 160 and 170. The block 260 includes a flat cylindrical base with a smaller cylinder rising up from the center of the upper surface of the base. The block 270 is of annular configuration and fits over the raised portion of block 260, so that the two blocks together form essentially a cylinder.

The block 260 has circumferentially spaced around the upper flat surface of its base part a group of six gas chambers 266. Each of these gas chambers receives pressurized gas through a passageway 263 from the supply line 207. Supply line 207 is connected by a fitting to the lower center of the block 260. Each of the chambers 266 is also connected through a passageway 265 to one of the relief lines, such as line 48.

Each of the chambers 266 is covered by a diaphragm 267. The block 270 fits over the peripheral edge of diaphragm 267 and holds it in place. A chamber formed in block 270 above the diaphragm 267 is designated 271. Base plate 273 is secured to the upper surface of diaphragm 267. A plunger 274 is attached above the base plate and extends vertically upward through a sliding seal opening in the block 270 into an enlarged chamber 279. A cup-shaped bushing 276 occupies the upper portion of chamber 271 and has a central opening through which the plunger 274 passes. An expansion spring 275 is located within the cup 276, its upper end being retained by the bottom wall of the cup while its lower end is retained by the plate 273. Spring 275 urges plate 273 and diaphragm 267 in a downward direction.

Chamber 279 is generally cylindrical but enlarged at its upper end. Located within chamber 279 is a perforated valve member 280, of a generally cylindrical configuration but enlarged near its upper end by means of a flange 282. A central passageway 281 extends vertically through the entire length of member 280. The upper end of chamber 279 is closed by a threaded plug 283, against the lower surface of which the member 280 normally rests. Above the flange 282 there is an annular space 290 within the circumferential wall of chamber 279 and surrounding the upper end of valve member 180. An expansion spring 284 occupies the space 190, its upper end engaging plug 283 while its lower end engages the upper surface of flange 282. Spring 284 normally urges valve member 280 toward a downward position. The lower end of passageway 281 in valve member 280 is conically tapered, the upper end of plunger 274 being likewise conically tapered, and in the normal position of the valve mechanism as shown in FIG. 11 the passageway 281 is closed off by the plunger 274. In the normal position of the valve

mechanism the gas pressure in chamber 266 holds diaphragm 267 in an elevated position.

A vent opening 272 (not shown) may, if desired, be used to relieve pressure in chamber 271 to atmosphere.

It will be noted that the associated pressure relief line such as relief line 48 communicates directly with chamber 266 through the passageway 265. When the associated button 18 of dispensing nozzle assembly N is depressed, the pressure in relief line 48 is relieved, and the pressurized gas in chamber 266 escapes through passageway 265 and the relief line 48 to atmosphere. A restriction 263a in passageway 263 makes the flow of gas from line 207 insufficient to maintain the pressure in chamber 266. Therefore, spring 275 pushes the plunger 274, base plate 273, and diaphragm 267 into a lowered position (not specifically shown). Diaphragm 267 closes off passageway 263. This is the open position of the valve mechanism.

When the valve moves to its open position the valve member 280 is driven downward by its spring 284, but can move only a short distance before its flanged portion 282 is stopped by an associated sloping wall section of the chamber 279. A vertical separation results between the upper end of valve member 280 and the lower surface of plug 283. The downward movement of valve member 280 is much less than the downward movement of plunger 274, hence a large gap exists between the lower end of member 180 and the upper end of plunger 274.

The cola syrup line 38' is coupled through a passageway 278 to the lower end of chamber 279. When the valve mechanism moves to its open position the syrup is able to flow through its supply line 38', the passageway 278, the lower end portion of chamber 279, the passageway 281 in valve member 280, through the space between the upper end of valve member 280 and plug 283, into the annular space 290. A passageway 293 couples the annular space 290 to cola output line 38.

There is no self-locking feature for the valve mechanisms of distributor D. It is therefore necessary that the pressure in the pressure relief line controlling the particular valve mechanism continue to be relieved as long as the valve is required to remain open. In other words, the associated pushbutton must remain depressed so long as it is desired for the flow of syrup to continue. When a sufficient amount of syrup has been dispensed from the dispensing nozzle assembly N (as judged by the eye of the bartender) then he releases his thumb or finger from the drink mix pushbutton. Gas pressure immediately builds up in the chamber 266, the valve mechanism returns to its position as shown in FIG. 11, and the flow of syrup is interrupted.

It has previously been explained that the control channel for soda in the dispensing nozzle assembly N is so arranged that soda is not only dispensed in response to the soda pushbutton, but also in response to each of the four drink mix pushbuttons. Thus, for example, when the cola button 18 is depressed the result is that cola syrup and soda flow concurrently through the distributor D and thence through their respective supply lines 38, 31 to the dispensing nozzle assembly N. When the pushbutton is released the flow of both ingredients is discontinued at the same time.

In the distributor D each of the valve plugs 283 carries an associated adjusting screw 283a. The adjusting

screw occupies a threaded opening in the plug 283 and extends all the way through the plug. The lower end of the adjusting screw has a conical tip which occupies the upper end of passageway 281 when the valve mechanism is in its closed position. When the valve mechanism is in its open position the flow volume out of the upper end of passageway 281 is influenced by the position of the adjusting screw 283a. More specifically, if the adjusting screw is raised so that its point does not project below the under surface of plug 283, then a maximum flow is achieved. But if the adjusting screw is set down to a lower position it will limit the volume of flow of liquid coming out of the passageway 281. By use of these adjusting screws it is therefore possible to adjust the rates of flow for each of the syrups, for water and for soda. More specifically, the adjusting screws for the syrup valves and the adjusting screw for the soda valve may be utilized to establish a desired ratio of flow of soda relative to the flow of syrup. Once this adjustment has been established it does not normally need to be changed. Depressing one of the drink mix buttons for tonic, collins, Seven, or cola, therefore, results in a flow of the syrup and of soda in a particular desired ratio.

While in FIG. 11 the distributor D is shown in a particular gravitational orientation, the springs 275 and 284 and gas pressure in chamber 266 provide sufficiently positive controls so that any gravitational position may be used.

In the overall arrangement of the dispensing apparatus as shown in FIG. 1 the liquor output lines 30, 32, 34 and 37 are shown as being coupled directly from the dispensing pumps P to the dispensing nozzle assembly N. However, from the standpoint of mechanical packaging it is actually preferred to have these liquor lines, and their associated pressure relief lines, pass through the distributor. This alternate arrangement is shown in FIGS. 12 and 13. The reason for passing these lines through the distributor is that on the output side of the distributor all twenty lines are conveniently bunched together, which makes it easier to wrap them in a tight bundle for connection to the dispensing nozzle assembly N.

Thus FIG. 12 shows the face of the distributor housing block 270 with the six plugs 283 located therein. The cola line 38, tonic line 36, Seven line 35, soda line 31, water line 33, and collins line 39 are located adjacent their respective controlling valve mechanisms (as indicated by the location of the respective plug 283). Interspersed among these lines are the liquor lines 30, 32, 34, and 37 which simply pass through suitable openings in the distributor housing without having any internal connections thereto.

FIG. 13 shows the face of the distributor housing block 260. The product lines 38', 36', 35', 31', 33', and 39' are shown coupled to the block 260 near its peripheral edge, for delivering the respective products under control of the respective valve mechanisms located inside the distributor. In the center of block 260 is shown the gas pressure line 207. Also shown in the distributor block 260, in positions near the gas pressure line 207, are the liquor lines 30, 32, 34, 37 and their associated pressure relief lines 40, 42, 44, 47.

ELECTRICALLY CONTROLLED DISPENSING UNIT FIGS. 14 & 14a

Reference is made to FIGS. 14 and 14a illustrating an

electrically controlled form of the liquor dispensing unit. The arrangement of the dispensing pump is the same as before but the three-way valve is controlled electrically, rather than by pressurized gas.

Thus the displacement pump 300 has a metering chamber 310 with inlet opening 311 and outlet 315. Beverage flows into the chamber 310 from a supply line 313 through a check valve 312 that is coupled to the inlet opening 311. Beverage flows out from chamber 310 through an outlet opening 315, outlet check valve 316, and output line 317 to the dispensing nozzle assembly N.

A reciprocating piston 320 within the chamber 310 is normally retracted from that end of the chamber in which the passageways 311, 315 are located. Spring means 321 normally keeps the piston 320 in its retracted position.

Drive means for the piston 320 are provided by a space 330 at the rearward end of chamber 310. Pressurized gas enters the space 330 through inlet openings 31, being supplied from the pressure line 332. A source of pressurized gas such as CO₂ is represented by a supply line 340, and the liner 340 is selectively coupled to the line 332 by means of a three-way valve 350.

While the details of construction of the three-way valve 350 are not shown, it is of conventional construction. In one position of the valve mechanism there is an open passageway from supply line 340 through supply line 332 into the chamber space 330. In the other position of the valve mechanism there is an open passageway from supply line 332 through the interior of the valve to atmosphere, which permits pressurized gas from the chamber portion 330 to be discharged; at the same time the pressure line 340 is closed off. The three-way valve normally occupies its latter position, but is selectively driven to its former position by energization of the solenoid winding 355 (FIG. 14a).

A step-down transformer 357 is used in order to supply energy on a line 356 at voltage substantially below the standard 115V level. Line 356 is permanently coupled to one side of the coil 355, and may be selectively coupled to the other side of the coil by closing either the switch 351 or the switch 361. Switch 351 is a push-button switch carried by the nozzle assembly N, and coupled to valve 350 by means of conductors 352. Switch 361 is a pressure-sensitive switch coupled to valve 350 by means of conductors 362. Conductors 362 are connected in parallel with conductors 352.

At the upper end of chamber 310 the liquid pressure is sensed through a passageway 360 which communicates with the pressure-sensitive switch 361. While the mechanism of switch 361 is not illustrated here in detail, it is of conventional construction, and includes a bellows responsive to applied pressure for closing a pair of switch contacts. When piston 320 strikes the upper end wall of chamber 310 the liquid pressure drops, and the switch contacts of switch 361 open.

Thus the liquor dispensing unit of FIGS. 14 and 14a operates in the same general manner as the dispensing unit of FIGS. 2 to 4. That is, a push-button carried on the dispensing nozzle assembly N is momentarily depressed by the thumb or finger of the bartender, and that actuates a three-way valve which in turn permits driving energy to be supplied to the reciprocating piston. Forward movement of the piston causes an increase of liquid pressure, which is sensed by a sensing device coupled to the forward end of the metering

chamber. The pressure-sensing device is coupled to the three-way valve in a parallel control arrangement with the push-button. Once the liquid pressure increase resulting from forward movement of the piston has been sensed by the device, the release of thumb or forefinger from the push-button on the dispensing nozzle does not interfere with the continued operation of the pump. On the contrary, the pump is locked in by its own action, and continues its cycle to completion, at which time the loss of liquid pressure causes the three-way valve to switch in the opposite direction and thus discontinue the driving energy for the piston.

The invention has been described in considerable detail in order to comply with the patent laws by providing a full public disclosure of at least one of its forms. However, such detailed description is not intended in any way to limit the broad features or principles of the invention, or the scope of patent monopoly to be granted.

What is claimed is:

1. Beverage dispensing apparatus comprising: a source of beverage to be dispensed; a dispensing nozzle; a normally open pilot-operated valve coupled between said beverage source and said nozzle; a moveable diaphragm mechanically coupled to said valve for controlling the operation thereof, said diaphragm having one surface exposed to a gas chamber; a source of pressurized gas coupled to said chamber for keeping said valve closed until the pressure in said chamber is relieved; a normally-closed push-button valve supported from said dispensing nozzle and having one side open to atmosphere; and a relief line coupled between said chamber and the other side of said push-button valve, for relieving the gas pressure in said chamber while the push-button remains depressed to thereby permit liquid to flow through said first-named valve to said dispensing nozzle.

2. Apparatus as claimed in claim 1 wherein said beverage source is a tank, and said source of pressurized gas is also coupled to said tank for energizing the flow of beverage from said tank to said nozzle.

3. Apparatus as claimed in claim 1 wherein said diaphragm is responsive to the resumption of normal gas pressure in said chamber for closing off said first-named valve and thereby shutting off the flow of beverage.

4. Beverage dispensing apparatus comprising: a displacement pump having a liquid metering chamber; a piston adapted to move forward in said chamber for discharging liquid therefrom; means for driving said piston; a source of energy for said drive means; first control means operable manually for initially coupling said energy source to said drive means; and second control means responsive to the forward movement of said piston for maintaining the coupling of said energy source to said drive means; whereby the timing of the dispensing stroke of said piston is independent of said first control means.

5. Apparatus as in claim 4 wherein said drive means includes a gas expansion chamber at the rearward end

5 of said piston, and passageways coupled to said expansion chamber for conveying pressurized gas thereto.

6. Apparatus as in claim 4 wherein said first control means is a push-button switch having two electrical contacts.

7. Apparatus as in claim 4 wherein said first control means includes a pressure relief line and a pushbutton valve for selectively coupling said relief line to atmosphere.

8. Beverage dispensing apparatus comprising: a displacement pump having a liquid metering chamber, an outlet port communicating with one end of said chamber, an outlet check valve associated with said outlet port, a reciprocating piston within said chamber, and spring means normally urging said piston into the other end of said chamber; a dispensing nozzle coupled to said outlet port; means for selectively driving said piston forward into said one end of said chamber so that a predetermined quantity of liquid measured by said chamber is delivered to said nozzle; said one end of said chamber also having an inlet port, and an associated inlet check valve, for admitting liquid to refill said chamber each time that said piston is withdrawn by said spring means; an energy source for said driving means; first manually operated control means selectively coupling said energy source to said driving means for initiating the forward movement of said piston, said first control means including a push-button mounted on said dispensing nozzle and normally held in unoperated position by associated spring means;

and second control means coupled in parallel with said first control means, including means for sensing the liquid pressure in said one end of said chamber and being operable in response to liquid pressure generated by the forward movement of said piston;

the forward movement of said piston thus serving to maintain the energization of said driving means, after said push-button has been released, until said piston is stopped by striking the end of said chamber.

9. Apparatus for dispensing a beverage in precisely controlled individual shots, comprising:

- a beverage container having means for admitting atmospheric pressure therein;
- a suction tube having an input end submerged beneath the beverage in said container, and having an output end;
- a displacement pump having
 1. a liquid metering chamber,
 2. an inlet port communicating with one end of said chamber, and
 3. an outlet port also communicating with said one end of said chamber, said output end of said tube being coupled to said inlet port;
- d. an outlet tube having one end coupled to said outlet port, and also having a remote end;
- e. a hand-held nozzle carried on said remote end of said outlet tube;
- f. said pump also having
 4. a reciprocating piston within said chamber,
 5. an inlet check valve normally closing said inlet port and openable in response to a pressure differential condition in which the pressure level in

21

side said suction tube is higher than the pressure level inside said chamber, and

6. an outlet check valve normally closing said outlet port and openable in response to a pressure differential condition in which the pressure level inside said chamber is higher than the pressure level inside said outlet tube;

g. spring means normally maintaining said piston in a retracted position at the other end of said chamber;

h. means for selectively driving said piston forward from its retracted position to said one end of said chamber; and

i. a push-button mounted on said nozzle and coupled to said drive means for actuating the same; whereby when said liquid chamber and said tubes are initially filled with beverage and said push-button is depressed, the forward movement of said piston

10

22

closes said inlet valve and opens said outlet valve and delivers a measured quantity of beverage from said chamber through said outlet port and said nozzle, and the subsequent withdrawal of said piston to the other end of said chamber under control of said spring means creates a partial vacuum in said chamber, closes said outlet valve, and opens said inlet valve so that the atmospheric pressure on the upper surface of the beverage in said container drives the beverage in said tube upwards against the force of gravity and hence into said chamber.

10. Apparatus as claimed in claim 9 which further includes a flexible diaphragm coupled between said piston and the chamber wall for sealing the rearward end of said chamber.

* * * * *

20

25

30

35

40

45

50

55

60

65