This invention relates to a building siding construction and, more particularly, to a shingled construction and a mounting strip for supporting shingles on the exterior surface of a wall.

Broadly, it is an object of the present invention to provide a shingle mounting strip and a shingled siding construction which will be applicable to any type of exterior wall surface and which may be installed with a maximum facility and a minimum of labor time.

It is a further object of the invention to provide a suitable mounting strip which may be attached directly to a wall surface and which is adapted to support both a shingle insulating backing strip and an exterior or surface shingle with no nailing or other fastening being required through the individual shingles and insulating backing strips.

These and other objects and advantages of the invention will become apparent from the following description when read in conjunction with the accompanying drawing which is a perspective showing of a cut away portion of a building wall constructed in accordance with the present invention employing the shingle mounting strip.

Referring to the drawing, in a wall constructed in accordance with this invention, building framing studs 2 are mounted in the conventional fashion and an insulating wall sheathing material 4 is attached thereto by nails 3. While in the drawing this material is shown to be a fibrous insulating material, it will be evident that boarding may be used or that the studs and insulating panel shown may be replaced by, for example, a cinder block wall or other type of wall to which nails or other similar fastening means may be applied.

The shingle mounting strip indicated generally at 6 may be provided in extended lengths, for example, eight foot lengths, and is adapted to retain and support insulating shingle backing strips 8 which may be, for example, a fibrous material in four foot lengths, and exterior shingles 10 which are conventionally two feet in length.

The shingle mounting clips include an upper flange 14 which is adapted to be nailed by means of nails 16 to a wall surface. In the wall construction shown the nails 16 are selectively positioned so as to enter the wall framing studs 2. When insulating wall sheathing materials are employed, those materials are generally of such a soft nature that they do not reliably secure nails and thus the nailing of shingles to this type of material does not produce a reliable mounting for the shingles.

An outwardly extending flange 17 joins the lower edge of the upwardly extending flange 14 of the mounting strip and is adapted to seat upon a prior course of shingles and thus position each shingle mounting strip following the first course of shingles prior to nailing the strip to the building wall.

A second outwardly extending flange 20 extends from the lower edge of the retainer flange 18 and provides a seat for the shingle backing strips 8. Extending below the retainer flange 20 is a channel 22 which supports the exterior shingle 10. The outer flange 24 of the channel 22 is an exposed flange which is visible from the outside of the wall and serves not only to support and protect the exterior shingle but also serves to improve the appearance of the wall as will be described.

In this construction the first shingle mounting strip 6 is attached to the lower edge of the wall surface and must, of course, be installed so as to be straight and level. Upon the installation of this first strip insulating shingle backing strips 8 will be set on the flange 20 and exterior shingles 10 will be set in the channel 22. After the first shingle mounting strip is completely filled with the shingle backing strips and shingles the next successive mounting strip may be similarly installed in proper position against the wall. It will be evident that by merely resting the flange 17 of this next mounting strip upon the upper edges of the insulating backing strips 8 the mounting strip is thereby positioned in proper alignment and may thus be nailed to the wall without leveling or any other procedure being necessary for establishing proper location of the strip. Thereafter shingles and backing strips are placed in this mounting strip and succeeding strips and shingles are positioned on the wall.

As above noted, this type of shingled construction may be applied to any type of wall construction or wall material to which the mounting strip can be attached. However, the construction has particular advantage when used in conjunction with the soft fibrous insulating wall sheathing panels 4 in that it is possible to nail the shingle mounting strips directly to the framing studs and it is in no way necessary to rely upon the soft fibrous insulating sheathing material to support the mounting strips. Furthermore, inasmuch as the fastening of the strip is accomplished through the flange 14 and not through any of the shingles, any type of nail or screw or other fastening means may be employed and the fastening means are not limited to a type of means which is usually resistant and which must be passed through the external or surface shingle in specific and predetermined locations.

An additional advantage in this arrangement lies in the fact that the nailing is not limited or restricted by the interposition of a shingle between the head of the nail and the wall. When the head of the nail bears against a shingle, it is necessary that the nail be driven in only to an extent where it just bears lightly against the shingle in that most of the exterior shingles employed are of brittle material and are easily damaged.

The shingle mounting strip may be made of any type of metal which provides a suitable exterior weather resistant surface. The preferable materials are aluminum or stainless steel.

It should be noted that the flange 18 of the mounting strip serves to securely press the upper edges of the insulating backing strips firmly against the wall sheathing material and also to firmly press the upper edges of the exterior shingles back against their respective insulating backing strip. Thus there is substantially no opportunity for the movement of air or for the passage of moisture between the members at these edges.

The lower edges of the shingle backing strips and the shingles are supported on the successive flanges 20 and 22 respectively. The outer or exterior shingles have their lower edges positioned substantially below the lower edges of the insulating backing strips. This arrangement serves to effectively protect the lower edges of the backing strips from contact with moisture. The exterior shingles will generally be made of a material which will absorb only relatively little more moisture because of their being posi-
tioned in the channel 22 than if they hung with their lower edges completely exposed when rain is washing down the surfaces of the shingles. The shingles are, however, sufficiently porous that as soon as their exterior surfaces become dry, any remaining moisture in the channel is drawn upwardly into the shingles by capillary action and is thus absorbed.

The flange 24 of the channel 22 which extends upwardly over the outer surfaces of the shingles adjacent to the lower edges of the shingles provides both a protection for the lower edges of the shingles and a considerably improved appearance for the shingles. It is well known that the deep shadow effect of a heavy siding is vastly superior in the quality of its architectural appearance than is the very narrow or shallow overlap of the conventional asbestos or other composition siding material which is approximately 1/8 to 3/16 of an inch in thickness. The appearance produced when the exterior shingle and an insulating shingle are mounted in the clip which has been described is that of a highly desirable deeply stepped or recessed shingle and the upturned exposed metal edge 24 adds to this effect when the wall is viewed from a distance.

The shingle construction described does not require pierced shingles and thus the wall appearance is more uniform, and when shingles are cut to fit around window and door openings in a wall there is no problem arising with regard to the piercing of holes in the cut portions of the shingles in order to mount those portions of the wall. It is also of importance to note that in this type of construction the degree of overlap of the shingles is greatly reduced from that which is required when nails are extended through the shingles and thus a much greater amount of wall coverage is obtained by each shingle or, as stated otherwise, a lesser number of shingles are required to cover a predetermined wall area. It will also be evident that the clip type of mounting facilitates the replacement of shingles which may become damaged after they have been installed, whereas nailed shingles particularly when the nails are covered under a prior course of shingles can be replaced only with extreme difficulty.

A further advantage obtained by the construction disclosed is that the cost in labor and time of installing the shingles on a wall is greatly reduced. There is no nailing of each individual shingle, there is no searching by means of a nail extended through a hole in a shingle about to be mounted for either the upper edge of or a hole through a prior mounted shingle, there is no balancing or juggling of a shingle in order to hold it in position while a nail is being driven through a nail hole and thus not only is the rate of speed of installation greatly increased but also the risk of damage to the shingles is greatly reduced. The wall construction provided by this invention is of the most modern type and in the specific form shown in the drawing provides exceptional insulating properties in that both the lower and upper edges of the shingles are firmly secured and the passage of air past the shingles is reduced to a minimum. Thus the air space back of each of the shingle backing strips provides an insulating chamber which further adds to the insulating effect of the entire wall.

It will be evident that the type of shingle mounting strip shown in the drawing can be used to support a shingle without the shingle being associated with an insulating shingle backing strip. Such a structure will not have all of the advantages of the fully insulated structure but would present the same appearance as the fully insulated structure. This and other modifications may be made to the embodiment of the invention disclosed herein without departing from the scope of the invention as set forth in the following claim.

What is claimed is:
A building wall construction comprising a plurality of vertically extending framing studs, a wall sheathing attached to said studs, a plurality of vertically spaced parallel rows of horizontally extending shingle mounting strips secured to the surface of the sheathing by fastening means extending into said studs, said mounting strips each comprising an elongated sheet formed longitudinally with a first flange placed against the sheathing and secured thereto, a second flange extending outwardly from below the upper edge of said first flange, a third flange extending downwardly from the outer edge of said second flange, a fourth flange extending outwardly from the lower edge of said third flange, a fifth flange extending downwardly from the lower edge of said fourth flange and the lower edge of said fifth flange terminating in an outwardly positioned shallow channel-formed portion, and shingle backing panels resting upon the fourth flanges of said strips, shingles resting in the channel-formed portions of said strips with the upturned outer flanges of said channels positioned exteriorly of the shingles, said backing panels and said shingles being of thicknesses substantially equal to the widths of their respective supporting flanges, and said shingles and backing panels being in overlapping substantially superimposed relation and in contact with each other over substantially their entire superimposed surfaces with the upper edges of panels and superimposed shingles being positioned behind the third flanges and below the second flanges of said strips.

References Cited in the file of this patent

UNITED STATES PATENTS

2,292,984 Alvarez ------------ Aug. 11, 1942
2,467,637 Strohm ------------ Apr. 19, 1949
2,533,620 Alvarez ------------ Dec. 26, 1950
2,648,104 Scott et al. -------- Aug. 11, 1953
2,659,323 Alvarez ------------ Nov. 17, 1953
2,718,673 Nelsson ----------- Sept. 27, 1955