(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 April 2006 (13.04.2006)

lﬂb A 00 00

(10) International Publication Number

WO 2006/039595 A2

(51) International Patent Classification:
GOGF 11/00 (2006.01)

(21) International Application Number:
PCT/US2005/035375

(22) International Filing Date:
29 September 2005 (29.09.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
10/953,887 29 September 2004 (29.09.2004) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MUKHERJEE,
Shubhendu [IN/US]; 43 GATES STREET, FRAM-
INGHAM, MA 01702 (US). EMER, Joel [US/US]; 20
BLACKHORSE DRIVE, ACTON, MA 01720 (US).
REINHARDT, Steven [US/US]; 3158 KILBURN
PARK CIR., ANN ARBOR, MI 48105 (US). WEAVER,
Christopher [US/US]; 1009 APPLEBRIAR LANE,
MARLBOROUGH, MA 01752 (US).

(74) Agents: VINCENT, Lester, J. et al; BLAKELY
SOKOLOFF TAYLOR & ZAFMAN, 12400 Wilshire
Boulevardll7th Floor, Los Angeles, CA 950025 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,
SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
—  without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

06/039595 A2 I K O KO0 O 000 IO OO 0

(54) Title: EXECUTING CHECKER INSTRUCTIONS IN REDUNDANT MULTITHREADING ENVIRONMENTS

& (57) Abstract: A method and apparatus for a checker instruction in a redundant multithreading environment is described. In one

embodiment, when RMT requires, a processor may issue a checker instruction in both a leading thread and a trailing thread. The

checker instruction may travel down individual pipelines for each thread independently until it reaches a buffer at the end of each

pipeline. Then, prior to committing the checker instruction, the checker instruction looks for its counterpart and does a comparison
g of the instructions. If the checker instructions match, the checker instructions commit and retires otherwise an error is declared.



5

10

15

20

25

WO 2006/039595 PCT/US2005/035375

EXECUTING CHECKER INSTRUCTIONS IN

REDUNDANT Ml:lLTITHREADING ENVIRONMENTS

BACKGROUND INFORMATION

[0001] Current redundant-exécutibﬁ systems commonly employ a checker
circuit that is self-checking and is implemented in hardware. Similar to the
checker circuit is the compare instruction that would compare the results from
two threads (e.g., store address and data). It may be possible to duplicate the
compare instruction in both threads to get the effect of self-checking via
duplication.

[0002] Unfortunately, by duplicating the compare instruction the
architecture would lose the performance advantage of redundant multithreading
(RMT). RMT's performance advantage comes from having the leading and
trailing threads sufficiently apart such that the leading thread can prefetch
cache misses and branch mispredictions for the trailing thread. If the compare
instruction is duplicated, not only are additional queues needed, incurring
higher overhead, but also the architecture would be unable to keep the two
threads sufficiently apart because of the synchronization required in both
directions. Thus what is needed is an instruction that can achieve lower failure

rate without sacrificing the performance advantage of RMT.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Various features of the invention will be apparent from the following
description of preferred embodiments as illustrated in the accompanying

drawings, in which like reference numerals generally refer to the same parts



10

15

20

25

WO 2006/039595 PCT/US2005/035375

throughout the drawings. The drawings are not necessarily to scale, the
emphasis instead being placed upon illustrating the principles of the inventions.

[0004] Figure 1 is a block diagram of one embodiment of a multithreaded
architecture.

[0005] Figﬁré 2 is a flowchart illustrating one method of generating a
checker instruction.

[0006] Figure 3 is a flowchart illustrating one implementation of a checker
instruction in either thread.

[0007] Figure 4 is a block diagram of one embodiment of a checker
instruction.

[0008] Figure 5 is a block diagram of a system that may provide an
environment for multithreaded processors.

[0009] Figure 6 is a block diagram of an alternative system that may

provide an environment for multithreaded processors.

DETAILED DESCRIPTION

[0010] In the following description, for purposes of explanation and not
limitation, specific details are set forth such as particular structures,
architectures, interfaces, techniques, etc. in order to provide a thorough
understanding of the various aspects of the invention. However, it will be
apparent to those skilled in the art having the benefit of the present disclosure
that the various aspects of the invention may be practiced in other examples
that depart from these specific details. In certain instances, descriptions of
well-known devices, circuits, and methods are omitted so as not to obscure the

description of the present invention with unnecessary detail.

2



10

15

20

25

WO 2006/039595 PCT/US2005/035375

[0011] Method and apparatuses for a checker instruction in a redundant
multithreading environment are described. In the following description, for
purposes of explanation, numerous specific details are set forth in order to
provide a through understanding of the invention. It will be apparent, however,
to one skilled in twh‘;a“awrt that the invention can be praéticed without these
specific details.

[0012] Figure 1 is a block diagram of one embodiment of a redundantly
multithreaded architecture. In a redundantly multithreaded architecture faults
can be detected by executing two copies of a program as separate threads.

[0013] Each thread is provided with identical inputs and the outputs are
compared to determine whether an error has occurred. Redundant
multithreading can be described with respect to a concept referred to herein as
the “sphere of replication.” The sphere of replication is the boundary of
logically or physically redundant operation.

[0014] Components within the sphere of replication 100 (e.g., a processor
executing leading thread 105 and a processor executing trailing thread 110) are
subject to redundant execution. In contrast, components outside sphere of
replication 100 (e.g., memory 115) are not subject to redundant execution.
Fault protection is provided by other techniques, for example, error correcting
code for memory 115. Other devices may be outside of sphere of replication
100 and/or other techniques can be used to provide fault protection for devices
outside of sphere of replication 100.

[0015] Data entering sphere of replication 100 enter through input
replication agent 120 that replicates the data and sends a copy of the data to

leading thread 105 and to trailing thread 110. Similarly, data exiting sphere of

3



10

15

20

25

WO 2006/039595 PCT/US2005/035375

replication 100 exit through output comparison agent 125 that compares the
data and determines whether an error has occurred. Varying the boundary of
sphere of replication 100 results in a performance versus amount of hardware
tradeoff. For example, replicating memory 115 would allow faster access to
memory by avoidiﬁg o-ﬁt[.au.t_comparison of store instructioﬁé, but would
increase system cost by doubling the amount of memory in the system.

[0016] One embodiment of the present invention proposes a mechanism to
check a checker circuit in a software implementation of RMT. Because RMT
compares outputs of committed instructions (requiring instruction-by-instruction
comparison), it may also be implemented in software. If the software
implementation of RMT compared every instruction, it would incur significant
overhead. Instead, however, RMT allows the comparison of only store
instructions and replication of only load instructions, which may significantly
reduce the software overhead of an RMT implementation.

[0017] Figure 2 illustrates one method of generating a checker instruction.
Initially, as in most computers, a complier generates instructions. From the
complier, the computer now has a binary program which may be, but not limited
to, a sequence of store instructions 200. Next, a binary translator may insert a
checker instruction prior to each store instruction in the binary program 205.
The binary translator may be any binary translator well known in the art. Upon
translating the binary program, the system creates a binary program for both
the leading thread and the trailing thread. The binary program for the leading
thread adds the checker instruction to the store instruction 210. The binary
program for the trailing thread replaces the store instruction with the peer

checker instruction of the leading thread 215.

4



10

15

20

25

WO 2006/039595 PCT/US2005/035375

[0018] Figure 3 illustrates one implementation of the checker instruction.
When RMT requires a compare, a processor may issue a checker instruction in
both the leading thread and the trailing thread 300. Each checker instruction
may carry a 64-bit quantity from each thread. The checker instruction may
travel down individual pipeliﬁeé for each thread independently 305 until it
reaches a buffer at the end of each pipeline. The checker instruction waits for
its peer checker instruction in the buffer 310. These two checker instructions
may then do a comparison of the 64-bit quantities they' are carrying 315. On a
mismatch, both may report errors. On a match, they may let the processors
commit the checker instruction 320. The pipelines can be from different
processors in a CMP or from the same multithreaded processor as in a SMT
processor.

[0019] In this implementation, the checker instruction does not hold up the
leading instruction from processing instructions from the instruction queue.
Rather, it only holds up the retire pointer till the corresponding checker
instruction from the trailing thread shows up. Also, if the environment is not a
RMT environment, then the checker instruction may be treated as a NOP.

[0020] Figure 4 is a block diagram of one example of a checker instruction
flowing through two pipelines. Assuming a store instruction: R1 — [R2], stores
the value in register R1 to the memory location pointed by the address in
register R2. This store instruction may be replicated in both the leading thread
and the trailing thread with the checker instruction. The store instruction in the
leading thread may include both the checker instruction and the store
instruction as shown below:

Checkerinst R1



5

10

15

20

25

WO 2006/039595 PCT/US2005/035375

Checkerinst R2

Store: R1 — [R2]. Thus, the leading thread may contain the checker
instruction along with the store instruction when traveling through its
pipeline 400.

[0021] The store instruction in Athe“tbrailing thread may include only the

checker instruction as shown below:
Checkerinst R1
Checkerinst R2. Thus, the trailing thread does not have the store
instruction traveling through its pipeline 405.

[0022] The checkerinst R1 from the leading thread in pipeline 400 waits for
peer checker instruction in buffer 410. The checkerinst R1 from the trailing
thread in pipeline 405 waits for it peer checker instruction in buffer 415. The
checker instruction always looks or waits for its counterpart or peer. If there is
a mirror thread, the checker instruction will look or wait for the thread in the
buffers 410, 405 to make sure the mirror thread is there and then compares the
checker instructions.

[0023] The checkerinst R1 from the leading thread and checkerinst R1 from
the trailing thread may pair up, due to commit order, and compare the register
specifier and value of R1 to ensure that the registers did not have any errors in
them. If no errors are found, the checker instructions commit 420. Once the
checker instructions commit, the value of R1 is stored. The value of R1 is
carried through to the commit point and then stored. Thus, the system is able
to check all the stores simultaneously instead store by store as done
previously.

[0024] Figure 5 is a block diagram of a system that can provide an

6



10

15

20

25

WO 2006/039595 PCT/US2005/035375

environment for multithreaded processors. The system illustrated in Fig.5 is
intended to represent a range of systems. Alternative systems may include
more, fewer and/or different components.

[0025] System 500 includes bus 510 or other communication device to
communicate information, and processor(s) 520 coupled to bus 510 to process
information. System 500 further includes random access memory (RAM) or
other dynamic memory as well as static memory, for example, a hard disk or
other storage device 535 (referred to as memory), couple to bus 510 via
memory controller 530 to store information and instructions to be executed by
processor(s) 520. Memory 535 also can be used to store temporary variables
or other intermediate information during execution of instructions by
processor(s) 520. Memory controller 530 can include one or more components
to control one or more types of memory and/or associated memory devices.
System 500 also includes read only memory (ROM) and/or other static storage
device 540 coupled to bus 510 to store static information and instructions for
processor(s) 520.

[0026] System 500 can also be coupled via a bus 510 to input/output (1/O)
interface 550. 1/0 interface 550 provides an interface to I/O devices 555, which
can include, for example, a cathode ray tube (CRT) or liquid crystal display
(LCD), to display information to a computer user, an alphanumeric input device
including alphanumeric and other keys and/or a cursor control device, such as
a mouse, a trackball, or cursor direction keys. System 500 further includes
network interface 560 to provide access to a network, such as a local area
network, whether wired or wireless.

[0027] Instructions are provided to memory 535 from a storage device,

7



10

15

20

25

WO 2006/039595 PCT/US2005/035375

such as magnetic disk, a read-only memory (ROM) integrated circuit,
CD_ROM, DVD, via a remote connection (e.g., over a network via network
interface 860) that is either wired or wireless, etc.

[0028] Referring now to Fig, 6, thé system 600 generally shows a system
where processors, memory, and inf;ut/output devices are interconnected by a
number of point-to-point interfaces. The system 600 may also include several
processors, of which only two, processors 605, 610 are shown for clarity.
Processors 605, 610 may each include a local memory controller hub (MCH)
615, 620 to connect with memory 625, 630. Processors 605, 610 may
exchange data via a point-to-point interface 635 using point-to-point interface
circuits 640, 645. Processors 605, 610 may each exchange data with a chipset
650 via individual point-to-point interfaces 655, 660 using point to point
interface circuits 665, 670, 675, 680. Chipset 650 may also exchange data with
a high-performance graphics circuit 685 via a high-performance graphics
interface 690.

[0029] The chipset 650 may exchange data with a bus 616 via a bus
interface 695. In either system, there may be various input/output /O devices
614 on the bus 616, including in some embodiments low performance graphics
controllers, video controllers, and networking controllers. Another bus bridge
618 may in some embodiments be used to permit data exchanges between bus
616 and bus 620. Bus 620 may in some embodiments be a small computer
system interface (SCSI) bus, an integrated drive electronics (IDE) bus, or a
universal serial bus (USB) bus. Additional I/0 devices may be connected with
bus 620. These may include keyboard and cursor control devices 622,

including mouse, audio I/0 624, communications devices 626, including

8



10

15

WO 2006/039595 PCT/US2005/035375

modems and network interfaces, and data storage devices 628. Software code
630 may be stored on data storage device 628. In some embodiments, data
storage device 628 may be a fixed magnetic disk, a floppy disk drive, an optical
disk drive, a magneto-optical disk drive, a magnetic tape, or non-volatile
memory including flash memory. |

[0030] Throughout the specification, the term, “instruction” is used generally
to refer to instructions, macro-instructions, instruction bundles or any of a
number of other mechanisms used to encode processor operations.

[0031] In the following description, for purposes of explanation and not
limitation, specific details are set forth such as particular structures,
architectures, interfaces, techniques, etc. in order to provide a thorough
understanding of the various aspects of the invention. However, it will be
apparent to those skilled in the art having the benefit of the present disclosure
that the various aspects of the invention may be practiced in other examples
that depart from these specific details. In certain instances, descriptions of
well-known devices, circuits, and methods are omitted so as not to obscure the

description of the present invention with unnecessary detail.



10

15

20

WO 2006/039595 PCT/US2005/035375

WHAT IS CLAIMED |S:

1. A method comprising:
generating checker instructions in a leading thread and a trailing thread;
waiting for a peer checker instruciton from the leading thread and the
trailing thread; and
comparing the peer checker instructions from the leading thread and the
trailing thread.
2. The method of claim 1 wherein the leading thread includes the checker
instruction and a selected instruction and the trailing thread includes the checker
instruction.
3. The method of claim 2 wherein the generating checker instruction in
leading thread further includes inserting the checker instruction prior to the
selected instruction.
4, The method of claim 1 wherein the checker instructions traveling through

corresponding pipelines for the leading thread and the trailing thread.

5. The method of claim 1 further comprising generating a checker instruction.
0. The method of claim 2 further comprising committing the checker
instructions.

7. The method of claim 6 further comprising storing the selected instruction for

the leading thread if the comparing the corresponding checker instructions from
the leading thread and the trailing thread match.
8. The method of claim 1 wherein the leading thread and the trailing thread

are executed by a single processor.

10



10

15

20

WO 2006/039595 PCT/US2005/035375

9. The method of claim 1 wherein the leading thread and the trailing thread
are executed by multiple processors.
10.  An apparatus comprising:
leading thread circuitry to execute a leading thread of instructions;
trailing thread circuitry to execute a trailing thread of instructions; and
a commit unit to commit corresponding checker instructions from the
leading thread and the trailing thread.
11.  The apparatus of claim 10 wherein the leading thread of instructions l
comprises checker instructions and selected instructions.
12.  The apparatus of claim 11 wherein the trailing thread of instructions
comprises checker instructions.
13.  The apparatus of claim 10 wherein the leading thread circuitry and trailing
thread circuitry include a pipeline.
14.  The apparatus of claim 13 wherein the leading thread and trailing thread
are executed by a single processor.
15.  The apparatus of claim 13 wherein the leading thread and the trailing
thread are executed by multiple processors.
16.  The apparatus of claim 12 further comprising buffers coupled to the leading
thread circuitry and the trailing thread circuitry.
17.  The apparatus of claim 16 wherein the checker instruction of the leading
thread and the checker instruction of the trailing thread wait for corresponding
checker instructions in the buffer.
18.  The apparatus of claim 2 wherein the selected instruction is stored if the

corresponding checker instructions match.

11



10

15

20

WO 2006/039595 PCT/US2005/035375

19.  The apparatus of claim 2 wherein the commit unit generates an error if the
corresponding checker instructions do not match.
20. The apparatus of claim 11 wherein the checker instruction is placed prior to
the selected instruction by a binary franslator.
21.  The apparatus of claim 11 wherein the selected instruction is a store
instruction.
22. A system comprising: -
a first proc;essor comprising:
leading thread circuitry to execute a leading thread of checker
instructions;
trailing thread circuitry to execute a trailing thread of the checker
instructions; and
a retire unit to retire corresponding checker instructions from the
leading thread and the trailing thread,
a first interface to a second processor;
a second interface to input/output devices; and
an audio input-output device coupled to the second interface.
23.  The system of claim 22 wherein the leading thread of instructions
comprises checker instructions and selected instructions.
24.  The system of claim 23 wherein the trailing thread of instructions comprises
checker instructions.
25. The system of claim 22 wherein the leading thread circuitry and trailing

thread circuitry include a pipeline.

12



10

WO 2006/039595 PCT/US2005/035375

26. The system of claim 24 wherein the selected instructions are stored if the
corresponding checker instructions from the leading thread and the trailing thread
match.

27.  The system of claim 26 further comprising buffers coupled with the leading
thread circuitry and thé >trailing thread circuitry.

28.  The system of claim 26 wherein the retire unit generates an error if the
corresponding checker instructions do not match.

29.  The system of claim 23 wherein the checker instruction is place prior to the
selected instruction by a binary translator.

30. The system of claim 23 wherein the selected instruction is a store
instruction.

31. The system of claim 22 wherein the first and second interfaces are point to

point interfaces.

13



PCT/US2005/035375

WO 2006/039595

1/6

1614

Gl 1 Aows

GZlLueby | — Jusby
uoslt 0D uoneol|

Indino induj
0oLl Gol
pealyl peaiy L
Buijied | Bulpes




PCT/US2005/035375

WO 2006/039595

2/6

AR

GLz uononysul
J9)094d Y}IM $810]S
Buioe|dal Agq peaiy)

Buijiesy Joy Aleulq
mau buesausn)

t
0] 74
uononJISul Ja)oayo
Buippe Aq pealy}
Buipes| 1o} Aleulq
moau bunessuan

G0c
lojejsuel | Aleulg

00¢
welbold Ateuig




PCT/US2005/035375

WO 2006/039595

3/6

¢ "Bi-

0Z€ uononnsul
Jo)98Y9 Jlwwo)

H

G|l ¢ suononssul
Jayoayo Jaad
1suiebe ajedwo)

0Lg
Jayng JIWwo9 u

uonoNJISul 1829y
12ad 1o} Jlepp

A

Gog seuijadid
|lenpiAlpul ybnoayy
S|oARl] uoljoNJISu|

A

00€ peaJy} ul
uonoNASUl J8)oaYo
9]Nd9X8 pue anssj




PCT/US2005/035375

WO 2006/039595

4/6

¥ "Bi-

e

GOy

0z Ywwo) |
pue o8y

\

Gly 19ing

A W g —

d
f

1SU| J9)08Y)D

Olv Je94ng

Z

A W 4

d
1

1SU| Jayo8y)D

00¥



PCT/US2005/035375

WO 2006/039595

5/6

GGG savlned O/l

G ‘B4

0GG =9deusiu] O/

09G @deLalu] }10M]oN

0LG sng

0vG WOH

0€sg
J9]j0J1u0) AlowBy

00G

Geg Aows|y

025 (s)iossasold




PCT/US2005/035375

WO 2006/039595

6/6

0€9 °@p0D
9¢9 ¢c9 esnowl
gz9 abrioig eleq 029 201AB(J WIWoD pieoghey
¥29 O/ oIpny L9 819 eBpug sng
: seolneq O/l :
919 \
G69 /i 069 4/1 889
solydeso pod-ubiH
089 d-d 0S91esdiyD | 029 d-d
099 H H <599
G.9dd Gv9 » 019 G99 d-d
dd || dd
G19 HOW Gg9 Aowsy
059 Auoway 029
HOW
019 lossadoly G09 10Ss8201d
o 9 ‘b4

009



	Abstract
	Bibliographic
	Description
	Claims
	Drawings

