

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 31/215		A1	(11) International Publication Number: WO 99/48494 (43) International Publication Date: 30 September 1999 (30.09.99)
(21) International Application Number:	PCT/US99/06049	(81) Designated States:	AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	19 March 1999 (19.03.99)	(30) Priority Data:	60/079,429 26 March 1998 (26.03.98) US
(71) Applicant:	ALZA CORPORATION [US/US]; 950 Page Mill Road, P.O. Box 10950, Palo Alto, CA 94303-0802 (US).	(72) Inventors:	GUPTA, Suneel, K.; 1331 Elsona Drive, Sunnyvale, CA 94087 (US). SAKS, Samuel, R.; 2404 Hillside Avenue, Burlingame, CA 94010 (US). SATHYAN, Gayatri; 970 South Clover Avenue, San Jose, CA 95128 (US).
(74) Agents:	SABATINE, Paul, L. et al.; Alza Corporation, 950 Page Mill Road, P.O. Box 10950, Palo Alto, CA 94303 (US).		

(54) Title: SUSTAINED-RELEASE COMPOSITION OF OXYBUTYNIN WITH REDUCED XEROSTOMIA EFFECT

(57) Abstract

A composition comprising oxybutynin, a device comprising oxybutynin, and a method for administering oxybutynin are disclosed for oxybutynin therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

1

2

3

4 **SUSTAINED-RELEASE COMPOSITION OF OXYBUTYNIN WITH REDUCED XEROSTOMIA**
5 **EFFECT**

6

7

8 **FIELD OF THE INVENTION**

9

10 This invention pertains to a novel dosage form comprising oxybutynin.
11 The invention relates also to a therapeutic composition comprising
12 oxybutynin, to a therapeutic bilayer comprising oxybutynin, and to a method
13 for administering oxybutynin to a patient in need of oxybutynin.

14

15 **BACKGROUND OF THE INVENTION**

16

17 Many people are affected by urinary incontinence. Incontinence is
18 particularly common in the elderly; urinary incontinence is present in
19 approximately fifty percent of nursing home patients, and urinary incontinence
20 is a well known urologic problem in women. It will affect nearly all women in
21 some form during their lifetime, and it is of significant social concern to all
22 humans who experience it.

23 Urinary incontinence arises from the anatomy and the physiology of
24 the urinary tract, which is composed of a bladder and a sphincter.
25 Anatomically, the bladder consists of the bladder musculature, also known as
26 detrusor, and the trigone. The sphincter includes the bladder neck and the
27 proximal urethra. The detrusor muscle is innervated by the pelvic nerve
28 through the parasympathetic nervous system, and the bladder neck and
29 proximal urethra are innervated by the sympathetic nervous system.

1 The major functions of the bladder are the storage and expulsion of
2 urine. The bladder is responsible for accommodating increasing volumes of
3 urine at low pressures. Normally, the bladder remains closed during bladder
4 filling and continence is maintained as long as the bladder neck and urethral
5 pressure exceeds intravesical pressure. Voluntary voiding occurs when
6 intravesical pressure exceeds bladder neck and urethral pressure, and
7 involuntary voiding occurs when the intravesical pressure exceeds the
8 bladder neck and urethral pressure.

9 Involuntary incontinence, also known as urge incontinence, occurs with
10 a loss of a large volume of urine accompanied by symptoms of urgency,
11 frequency and nocturia caused by an unstable bladder or detrusor instability.
12 The patient may lose urine with a change in position or with auditory
13 stimulation. The loss of small volumes of urine usually occurs because of
14 bladder overdistention by a large amount of residual urine referred to as
15 overflow incontinence.

16 The management of incontinence consists in administering a smooth
17 muscle relaxant, such as oxybutynin, which acts directly on the smooth
18 muscle at the site distal to the cholinergic receptor. The usual dose in the
19 pharmacologic management is repeated doses from two-to-four times a day
20 for oxybutynin. This is difficult to achieve as it requires rigid compliance and it
21 is cost ineffective. Also, oxybutynin is adversely affected by light and it needs
22 protection from air, which properties do not lend the drug to formulation into a
23 dosage form that can administer oxybutynin at a controlled and known rate
24 per unit time to produce the intended therapy.

25 In light of the above presentation it will be appreciated by those versed
26 in the medical and pharmaceutical dispensing arts to which this invention
27 pertains that a pressing need exists for a dosage form and for a therapeutic
28 composition that can deliver the valuable drug oxybutynin in a controlled,
29 extended dose to a patient in clinical need of incontinence management. The
30 pressing need exists for an oral dosage form, for a therapeutic composition

1 and for a method of therapy that can deliver oxybutynin at a controlled rate in
2 a substantially constant dose per unit time for its beneficial therapeutic effect.
3 The need exists further for a dosage form and a therapeutic composition that
4 can deliver oxybutynin protected from light to insure that a complete dose of
5 oxybutynin is administered to the patient and still remains substantially
6 independent of the changing environment of the gastrointestinal tract. The
7 need exists additionally for a dosage form comprising the therapeutic
8 composition that can deliver a therapeutic dose of oxybutynin for its intended
9 effect, for avoiding an overdose, and for lessening the side effects that can
10 accompany the drug. It will be appreciated further by those skilled in the
11 dispensing art that if such a novel and unique dosage form, therapeutic
12 composition and method are made available that can administer oxybutynin in
13 a beneficial dose over time and simultaneously provide oxybutynin while
14 lessening the incidence of both over and under dose, the dosage form, the
15 therapeutic composition, and their accompanying methods would represent
16 an advancement and a valuable contribution to the medical arts.

17

18 OBJECTS OF THE INVENTION

19

20 Accordingly, in view of the above presentation it is an immediate object
21 of this invention to provide a dosage form for delivering oxybutynin in a rate-
22 controlled dose, and which dosage form substantially overcomes the
23 deficiencies and omissions associated with the prior art.

24 Another object of the present invention is to provide a dosage form for
25 orally administering oxybutynin in a controlled dose for the nonsurgical
26 treatment of incontinence in a human afflicted with incontinence.

27 Another object of the invention is to provide a pharmacologic
28 composition comprising oxybutynin indicated for the pharmacologic
29 management of incontinence.

1 Another object of the present invention is to provide a pharmacologic
2 composition comprising oxybutynin, its racemate, its R-enantiomer and its S-
3 enantiomer, administrable to a human, for lessening the incidence of
4 incontinence.

5 Another object of the invention is to provide a dosage form comprising
6 a homogenous drug core for dispensing oxybutynin to a human patient.

7 Another object of this invention is to provide a novel composition that
8 makes available oxybutynin therapeutic activity to a patient in need of
9 oxybutynin therapy.

10 Another object of the invention is to provide a once-a-day oral
11 sustained release dosage form that delivers a member selected from the
12 group consisting of oxybutynin and its pharmaceutically acceptable salt at a
13 controlled rate over 24 hours.

14 Another object of the invention is to provide a dosage form
15 manufactured as an osmotic dosage form that can administer oxybutynin to a
16 biological receptor to produce the desired oxybutynin effects.

17 Another object of the present invention is to provide a dosage form
18 manufactured as an osmotic dosage form that maintains oxybutynin and
19 oxybutynin therapeutically acceptable salts in the dosage form, and thereby
20 provides protection from light until the oxybutynin is released from the dosage
21 form, thereby reducing and/or eliminating the unwanted influences of the
22 gastrointestinal environment of use and still provide controlled administration
23 of oxybutynin over time.

24 Another objective of the invention is to provide a sustained release
25 dosage form that administers oxybutynin at a sustained release rate
26 accompanied by a lessening of adverse reaction dry mouth.

27 Another object of the present invention is to provide a dosage form that
28 administers oxybutynin at a controlled rate over time for its therapeutic benefit
29 accompanied by a lessening of possible unwanted side effects.

1 Another object of the present invention is to provide a dosage form that
2 contains initially crystalline oxybutynin salt protected by a light resistant,
3 semipermeable polymeric wall which oxybutynin can be administered in a
4 controlled dose over time.

5 Another object of the present invention is to provide a dosage form
6 adapted for the oral administration of α -cyclohexyl- α -hydroxy-benzeneacetic
7 acid 4-(diethylamino)-2-butynyl ester salt in a first composition in contacting,
8 layered arrangement with a second, force-generating composition that
9 operates in combination for the administration of the beneficial ester salt.

10 Another objective of the invention is to provide a delivery system for a
11 member selected from the group consisting of oxybutynin and its
12 pharmaceutically acceptable salt that achieves an increase in the bioavail-
13 ability of the drug, reduces the formation of its active metabolites, and
14 achieves a flat drug and metabolite concentration profile as compared to an
15 immediate release dosage administered multiple times a day.

16 Another object of the present invention is to provide a complete
17 pharmaceutical oxybutynin regimen comprising a composition comprising
18 oxybutynin that can be dispensed from a drug delivery dosage form, the use
19 of which requires intervention only for initiation and possibly for termination of
20 the regimen.

21 Another object of the invention is to provide a method for treating
22 incontinence by orally administering oxybutynin from a delivery device in a
23 rate-controlled amount per unit time to a warm-blooded animal in need of
24 incontinence therapy.

25 Another object of the invention is to provide a method for lessening the
26 side-effects accompanying the administration of a member selected from the
27 group consisting of oxybutynin and its pharmaceutically acceptable salts by
28 administering the drug from a sustained-release dosage form over twenty-four
29 hours.

1 Another object of the invention is to provide a method of administering
2 oxybutynin to a patient to provide a plasma concentration of oxybutynin.

3 Another object of the invention is to provide a method for administering
4 oxybutynin from a controlled-release dosage form for lessening the incidence
5 of side effects.

6 Another object of the invention is to decrease dry-mouth in a patient
7 accompanying the administration of a drug selected from the group consisting
8 of oxybutynin and its pharmaceutically acceptable salts in a sustained-release
9 dose over twenty four hours.

10 Another object of the invention is to provide a method of administering
11 oxybutynin in a sustained-release profile to lessen side effects.

12 Other objects, features and advantages of this invention will be more
13 apparent to those versed in the delivery arts from the following detailed
14 specification, taken in conjunction with the accompanying claims.

15

16 DRAWING FIGURES OF THE INVENTION

17

18 Figures 1 to 6 illustrate the clinical benefits for delivering a member
19 selected from the group consisting of oxybutynin and its pharmaceutically
20 acceptable salts, according to the invention.

21

22 DETAILED DISCLOSURE OF SPECIFICATION

23

24 In one aspect, the present invention provides a therapeutic
25 composition comprising 240 ng to 650 mg (nanogram to milligrams) of
26 oxybutynin or an oxybutynin therapeutically acceptable salt. The oxybutynin
27 selected from the group consisting of oxybutynin and its pharmaceutically
28 acceptable salts can be present in a dosage form in, for example, 5 mg, 10
29 mg, 15 mg, 20 mg, 25 mg, and 30 mg doses and the like. The
30 pharmaceutically acceptable salt is selected from the group consisting of

1 acetate, bitartrate, citrate, edetate, edisylate, estolate, esylate, fumarate,
2 gluceptate, gluconate, glutamate, hydrobromide, hydrochloride, lactate,
3 malate, maleate, mandelate, mesylate, methylnitrate, mucate, napsylate,
4 nitrate, pamoate, pantothenate, phosphate, salicylate, stearate, succinate,
5 sulfate, tannate and tartrate. The drug oxybutynin can be present as the
6 racemate, as the R-enantiomer or as the S-enantiomer. The therapeutic
7 composition further contains 20 mg to 250 mg of a hydrogel, such as 20 mg
8 to 250 mg of a polyalkylene oxide of 75,000 to 600,000 weight-average
9 molecular weight. Representative polyalkylenes are a polyethylene oxide of
10 100,000 weight-average molecular weight or a polyethylene oxide of 200,000
11 weight-average molecular weight. The therapeutic composition comprises 1
12 mg to 50 mg of a hydroxypropylalkyl-cellulose of 9,000 to 150,000 average-
13 number molecular weight selected from the group consisting of
14 hydroxypropylmethylcellulose, hydroxypropylethyl-cellulose,
15 hydroxypropylbutylcellulose, and hydroxypropylpentylcellulose; 1 mg to 40 mg
16 of an osmotic solute selected from the osmotically effective compounds
17 consisting of sodium chloride, potassium chloride, potassium acid phosphate,
18 tartaric acid, citric acid, raffinose, magnesium sulfate, magnesium chloride,
19 urea, inositol, sucrose, glucose and sorbitol; and 0.01 mg to 5 mg of a
20 lubricant, such as calcium stearate, zinc stearate, magnesium stearate,
21 magnesium oleate, calcium palmitate, sodium suberate, potassium laurate,
22 salts of fatty acids, salts of alicyclic acids, salts of aromatic acids, stearic acid,
23 oleic acid, palmitic acid, and a mixture of salt of fatty, alicyclic or aromatic acid
24 and a fatty, alicyclic or aromatic acid.

25 The invention provides for the therapeutic composition comprising the
26 oxybutynin to be administered as the composition neat, that is, oxybutynin
27 alone, for increasing the urinary bladder capacity, for diminishing the
28 frequency of uninhibited contractions of the detrusor muscles and its
29 accompanying delay of the desire to void. The invention provides for the
30 therapeutic oxybutynin composition to be surrounded by a wall comprising a

1 semipermeable composition with an exit for delivering the therapeutic
2 composition to a human patient in need of oxybutynin therapy. The invention
3 provides, in an additional embodiment, the therapeutic composition
4 comprising oxybutynin as a therapeutic layer in layered, contacting
5 arrangement with a hydrogel layer that supports the therapeutic layer to yield
6 a bilayered matrix. The hydrogel layer comprises 40 mg to 250 mg of a
7 hydrogel, such as a member selected from the group consisting of 40 mg to
8 250 mg of a polyalkylene oxide of 1,000,000 to 8,000,000 weight-average
9 molecular weight which are selected from the group consisting of
10 polyethylene oxide and polypropylene oxide; or 40 mg to 250 mg of an alkali
11 carboxymethylcellulose of 10,000 to 6,000,000 weight-average molecular
12 weight such as sodium carboxymethylcellulose or potassium carboxy-
13 methylcellulose; or 0.1 mg to 250 mg of a hydroxyalkylcellulose of 7,500 to
14 4,500,000 weight-average molecular weight, represented by
15 hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose,
16 hydroxybutylcellulose, and hydroxypentylcellulose; 1 mg to 50 mg of an
17 osmagent selected from the group consisting of sodium chloride, potassium
18 chloride, potassium acid phosphate, tartaric acid, citric acid, raffinose,
19 magnesium sulfate, magnesium chloride, urea, inositol, sucrose, glucose and
20 sorbitol; 0 to 5 mg of a colorant, such as ferric oxide; 0.1 mg to 30 mg of a
21 hydroxypropylalkylcellulose of 9,000 to 225,000 average-number molecular
22 weight, selected from the group consisting of hydroxypropylethylcellulose,
23 hydroxypropylpentylcellulose, hydroxypropylmethylcellulose, and
24 hydroxypropylbutylcellulose; 0.00 to 1.5 mg of an antioxidant selected from
25 the group consisting of ascorbic acid, butylated hydroxyanisole,
26 butylatedhydroxyquinone, butylhydroxyanisol, hydroxycomarin, butylated
27 hydroxytoluene, cephalm, ethyl gallate, propyl gallate, octyl gallate, lauryl
28 gallate, propylhydroxybenzoate, trihydroxybutylrophenone, dimethylphenol,
29 diterlbetylphenol, vitamin E, lecithin and ethanolamine; and 0.1 mg to 7 mg of
30 a lubricant selected from the group consisting of calcium stearate,

1 magnesium stearate, zinc stearate, magnesium oleate, calcium palmitate,
2 sodium suberate, potassium laureate, salts of fatty acids, salts of alicyclic
3 acids, salts of aromatic acids, stearic acid, oleic acid, palmitic acid, a mixture
4 of a salt of a fatty, alicyclic or aromatic acid, and a fatty, alicyclic or aromatic
5 acid.

6 The invention provides for the therapeutic oxybutynin composition, the
7 therapeutic bilayer comprising the drug oxybutynin layer, and the
8 osmopolymer hydrogel layer to be administered as the composition or the
9 bilayer per se; that is, as the composition or the bilayer together for increasing
10 the urinary bladder capacity, for diminishing the frequency of uninhibited
11 contractions of the detrusor muscles and its accompanying delay of the desire
12 to void. The invention provides additionally for the therapeutic composition
13 and for the compositional bilayer to be surrounded by a wall comprising a
14 semipermeable composition with an exit for delivering the therapeutic
15 composition to a human patient in need of oxybutynin therapy. The invention
16 also provides for a subcoat to surround the therapeutic composition or to
17 surround the bilayer, which subcoat in either embodiment is surrounded by a
18 outer semipermeable wall.

19 The invention provides a dosage form for the delivery of the
20 therapeutic composition comprising oxybutynin. The dosage form comprises
21 a wall, which wall surrounds an internal lumen or compartment. The wall
22 comprises a semipermeable composition that is permeable to the passage of
23 fluid and impermeable to the passage of oxybutynin. The wall is nontoxic and
24 it comprises a polymer selected from the group consisting of a cellulose
25 acylate, cellulose diacylate, cellulose triacylate, cellulose acetate, cellulose
26 diacetate and cellulose triacetate. The wall comprises 75 wt% (weight
27 percent) to 100 wt% of the cellulosic wall-forming polymer; or, the wall can
28 comprise additionally 0.01 wt% to 10 wt% of polyethylene glycol, or 1 wt% to
29 25 wt% of a cellulose, either selected from the group consisting of
30 hydroxypropylcellulose or hydroxypropylalkylcellulose such as hydroxypropyl-

1 methylcellulose. The total weight percent of all components comprising the
2 wall is equal to 100 wt%. The internal compartment comprises the
3 therapeutic oxybutynin composition in layered position with an expandable
4 hydrogel composition. The expandable hydrogel composition in the
5 compartment increases in dimension by imbibing fluid through the
6 semipermeable wall, causing the hydrogel to imbibe the fluid, expand and
7 occupy space in the compartment, whereby the drug composition is pushed
8 from the dosage form. The therapeutic layer and the expandable layer act
9 together during the operation of the dosage form for the release of oxybutynin
10 to a patient over time. The dosage form comprises a passageway in the wall
11 that connects the exterior of the dosage form with the internal compartment.
12 The dosage form provided by the invention delivers oxybutynin from the
13 dosage form to the patient at a zero order rate of release over a period of 24
14 hours.

15 The expression "passageway" as used herein comprises means and
16 methods suitable for the metered release of the therapeutic drug from the
17 compartment of the dosage form. The exit means comprises at least one
18 passageway, including orifice, bore, aperture, pore, porous element, hollow
19 fiber, capillary tube, porous overlay, or porous element that provides for the
20 osmotic controlled release of oxybutynin. The passageway includes a
21 material that erodes or is leached from the wall in a fluid environment of use
22 to produce at least one dimensioned passageway. Representative materials
23 suitable for forming a passageway, or a multiplicity of passageways comprise
24 a leachable poly(glycolic) acid or poly(lactic) acid polymer in the wall, a
25 gelatinous filament, poly(vinyl alcohol), leachable polysaccharides, salts and
26 oxides. A pore passageway, or more than one pore passageway, can be
27 formed by leaching a leachable compound, such as sorbitol, from the wall.
28 The passageway possesses controlled-release dimensions, such as round,
29 triangular, square and elliptical, for the metered release of oxybutynin from
30 the dosage form. The dosage form can be constructed with one or more

1 passageways in spaced apart relationship on a single surface or on more
2 than one surface of the wall. The expression "fluid environment" denotes an
3 aqueous or biological fluid as in a human patient, including the
4 gastrointestinal tract. Passageways and equipment for forming passageways
5 are disclosed in U.S. Patent Nos. 3,845,770; 3,916,899; 4,063,064; 4,088,864
6 and 4,816,263. Passageways formed by leaching are disclosed in U.S.
7 Patent Nos. 4,200,098 and 4,285,987.

8

9 DESCRIPTION FOR MANUFACTURING THE COMPOSITION
10 AND DOSAGE FORM OF THE INVENTION

11

12 The wall of the dosage form can be formed by using the air suspension
13 procedure. This procedure consists in suspending and tumbling the
14 composition or the layers in a current of air and wall-forming composition until
15 a wall is applied to the oxybutynin forming compartment. The air suspension
16 procedure is well suited for independently forming the wall. The air
17 suspension procedure is described in U.S. Patent No. 2,799,241; J. Am.
18 Pharm. Assoc., Vol. 48, pp. 451-459 (1959); and ibid. Vol. 49, pp. 82-84
19 (1960). The wall can be formed with a wall-forming composition in a Wurster®
20 air suspension coater using an organic solvent, such as acetone-water
21 cosolvent 90:10 (wt:wt) with 2.5 wt% to 7 wt% polymer solids. An
22 Aeromatic® air suspension coater using, for example, a methylene dichloride
23 methanol cosolvent comprising 87:13 (v:v) can be used for applying the wall.
24 Other wall-forming techniques, such as pan coating, can be used for
25 providing the dosage form. In the pan coating system, wall forming
26 compositions are deposited by successive spraying of the composition or the
27 bilayered arrangement, accompanied by tumbling in a rotating pan. A larger
28 volume of cosolvent can be used to reduce the concentration of polymer
29 solids to produce a thinner wall. Finally, the wall of the coated compartments
30 are laser or mechanically drilled, and then dried in a forced air or humidity

1 oven for 1 to 3 days or longer to free the solvent. Generally, the walls formed
2 by these techniques have a thickness of 2 to 20 mils (0.051 to 0.510 mm) with
3 a preferred thickness of 2 to 6 mils (0.051 to 0.150 mm).

4 The dosage form of the invention is manufactured by standard
5 manufacturing techniques. For example, in one manufacture the beneficial
6 drug oxybutynin and other ingredients comprising a therapeutic composition
7 or comprising the first layer facing the exit means are blended, or they are
8 blended then pressed, into a solid layer. The oxybutynin and other
9 ingredients can be blended with a solvent and formed into a solid or semisolid
10 formed by conventional methods such as ball-milling, calendering, stirring or
11 roll-milling and then pressed into a selected shape. The layer possess
12 dimensions that correspond to the internal dimensions of the area the layer is
13 to occupy in the dosage form. The bilayer possess dimensions
14 corresponding to the internal lumen of the dosage form. Next, the oxybutynin
15 hydrogel layer is placed in contact with the oxybutynin drug layer. The
16 layering of the oxybutynin layer and the hydrogel layer can be fabricated by
17 conventional press-layering techniques. Finally, the two-layer compartment
18 forming members are surrounded and coated with an outer wall. A
19 passageway is laser drilled or mechanically drilled through the wall to contact
20 the oxybutynin layer, with the dosage form optically oriented automatically by
21 the laser equipment for forming the passageway on the preselected drug
22 surface.

23 In another manufacture, the dosage form is manufactured by the wet
24 granulation technique. In the wet granulation technique the oxybutynin and
25 the ingredients comprising the first layer are blended using an organic or
26 inorganic solvent, such as isopropyl alcohol-methylene dichloride 80:20 (v:v)
27 as the granulation fluid. Other granulating fluid, such as water, isopropyl
28 alcohol, or denatured alcohol 100% can be used for this purpose. The
29 ingredients forming the first layer are individually passed through a 40 mesh
30 screen and then thoroughly blended in a mixer. Next, other ingredients

1 comprising the first layer are dissolved in a portion of the granulation fluid,
2 such as the cosolvent described above. Then, the latter prepared wet blend
3 is slowly added to the oxybutynin blend with continual mixing in the blender.
4 The granulating fluid is added until a wet blend mass is produced, which wet
5 mass is then forced through a 20 mesh screen onto oven trays. The blend is
6 dried for 18 to 24 hours at 25°C to 40°C. The dry granules are then screened
7 with a 16 mesh screen. Next, a lubricant is passed through an 60 mesh
8 screen and added to the dry screened granule blend. The granulation is put
9 into milling jars and mixed on a jar mill for 2 to 10 minutes. The first and
10 second layer compositions are pressed into a layered tablet, for example, in a
11 Manesty® layer press.

12 Another manufacturing process that can be used for providing the
13 oxybutynin and hydrogel composition comprises blending their powdered
14 ingredients in a fluid bed granulator. After the powdered ingredients are dry
15 blended in the granulator, a granulating fluid, for example,
16 poly(vinylpyrrolidone) in a solvent, such as in water, is sprayed onto the
17 respective powders. The coated powders are then dried in a granulator. This
18 process coats the ingredients present therein while spraying the granulating
19 fluid. After the granules are dried, a lubricant, such as stearic acid or
20 magnesium stearate, is blended as above into the mixture. The granules are
21 then pressed in the manner described above. In another embodiment, when
22 the fluid bed granulating process is used to manufacture the hydrogel layer,
23 the antioxidant present in the polyalkylene oxide can be removed during the
24 processing step. If antioxidant is desired it can be added to the hydrogel
25 formulation; this can be accomplished during the fluid bed granulation
26 described above.

27 The dosage form of this invention is manufactured in another
28 embodiment by mixing the oxybutynin with composition-forming ingredients
29 and pressing the composition into a solid layer possessing dimensions that
30 correspond to the internal dimensions of the compartment space adjacent to

1 a passageway. In another embodiment, the oxybutynin and other drug
2 composition forming ingredients and a solvent are mixed into a solid, or semi-
3 solid, by conventional methods such as ball-milling, calendering, stirring or
4 roll-milling, and then pressed into a preselected, layer-forming shape.

5 In the manufactures as presented above, the manufacture comprising
6 a composition or comprising a layer of a composition comprising a hydrogel
7 osmopolymer and an optional osmagent are placed in contact with the layer
8 comprising the drug oxybutynin, and the two layers comprising the layers are
9 surrounded with a semipermeable wall. The layering of the first drug
10 oxybutynin composition and the second hydrogel osmopolymer and optional
11 osmagent composition can be accomplished by using a conventional two-
12 layer tablet press technique. The wall can be applied by molding, spraying or
13 dipping the pressed shapes into wall-forming materials. Another technique
14 that can be used for applying the wall is the air suspension coating procedure.
15 This procedure consists in suspending and tumbling the two layers in a
16 current of air until the wall forming composition surrounds the layers.

17 Manufacturing procedures are described in Modern Plastics Encyclopedia,
18 Vol. 46, pp. 62-70 (1969); and in Pharmaceutical Sciences, by Remington,
19 14th Ed., pp. 1626-1648 (1970), published by Mack Publishing Co., Easton,
20 PA. The dosage form can be manufactured by following the teaching in U.S.
21 Patent Nos. 4,327,725; 4,612,008; 4,783,337; 4,863,456; and 4,902,514.

22 Exemplary solvents suitable for manufacturing the wall, the
23 composition layers and the dosage form include inert inorganic and organic
24 solvents that do not adversely harm the materials, the wall, the layer, the
25 composition and the drug wall. The solvents broadly include members
26 selected from the group consisting of aqueous solvents, alcohols, ketones,
27 esters, ethers, aliphatic hydrocarbons, halogenated solvents, cycloaliphatics,
28 aromatics, heterocyclic solvents and mixtures thereof. Typical solvents
29 include acetone, diacetone alcohol, methanol, ethanol, isopropyl alcohol,
30 butyl alcohol, methyl acetate, ethyl acetate, isopropyl acetate, n-butyl acetate,

1 methyl isobutyl ketone, methyl propyl ketone, n-hexane, n-heptane, ethylene
2 glycol monoethyl ether, ethylene glycol monoethylacetate, methylene
3 dichloride, ethylene dichloride, propylene dichloride, carbon chloroform,
4 nitroethane, nitropropane, tetrachloroethane, ethyl ether, isopropyl ether,
5 cyclohexane, cyclo-octane, toluene, naphtha, 1,4-dioxane, tetrahydrofuran,
6 diglyme, aqueous and nonaqueous mixtures thereof, such as acetone and
7 water, acetone and methanol, acetone and ethyl alcohol, methylene
8 dichloride and methanol, and ethylene dichloride and methanol.

9

10 DETAILED DISCLOSURE OF EXAMPLES PROVIDED
11 BY THE INVENTION

13 The following examples are merely illustrative of the present invention
14 and they should not be considered as limiting the scope of the invention in
15 any way, as these examples and other equivalents thereof will become
16 apparent to those versed in the art in the light of the present disclosure and
17 the accompanying claims.

18

19 EXAMPLE 1

20

21 A therapeutic oxybutynin composition provided by the invention was
22 prepared as follows: first, 103 grams of oxybutynin hydrochloride was
23 dissolved in 1200 ml (milliliters) of anhydrous ethanol. Separately, 2,280 g of
24 polyethylene oxide of 200,000 weight-average molecular weight, 150 g of
25 hydroxypropylmethylcellulose of 9,200 average-number molecular weight and
26 450 g of sodium chloride were dry blended in a conventional blender for 10
27 minutes to yield a homogenous blend. Next, the oxybutynin ethanol solution
28 was added slowly to the blend, with the blender continuously blending until all
29 the ingredients were added to the three component dry blend, with the
30 blending continued for another 8 to 10 minutes. The blended wet

1 composition was passed through a 16 mesh screen and dried overnight at a
2 room temperature of 72°F (22.2°). Then, the dry granules were passed
3 through a 20 mesh screen, 18 g of magnesium stearate was added, and all
4 the ingredients blended again for 5 minutes. The fresh granules are ready for
5 formulation into a therapeutic oxybutynin composition. The therapeutic
6 composition comprises 3.4 wt% oxybutynin hydrochloride, 76 wt%
7 polyethylene oxide of 200,000 weight-average molecular weight, 5 wt% of
8 hydroxypropylmethylcellulose of 9,200 average-number molecular weight, 15
9 wt% sodium chloride, and 0.6 wt% magnesium stearate. The therapeutic
10 composition can be administered as the composition for its intended
11 oxybutynin therapy.

12

13 EXAMPLE 2

14

15 An osmopolymer hydrogel composition provided by the invention was
16 prepared as follows: first 1274 g of pharmaceutically acceptable polyethylene
17 oxide comprising a 7,500,000 weight-average molecular weight, 600 g of
18 sodium chloride, and 20 g ferric oxide were separately screened through a 40
19 mesh screen. Then, all the screened ingredients were mixed with 100 g of
20 hydroxypropylmethylcellulose of 11,200 average-number molecular weight to
21 produce a homogenous blend. Next, 300 ml of denatured anhydrous alcohol
22 was added slowly to the blend with continuous mixing for 5 minutes. Then,
23 1.6 g of butylated hydroxytoluene was added, followed by more blending, with
24 5 g of magnesium stearate added with 5 minutes of blending, to yield a
25 homogenous blend. The freshly prepared granulation is passed through a 20
26 mesh screen and allowed to dry for 20 hours at 22.2°C. The final composition
27 comprised 63.67 wt% polyethylene oxide of 7,500,000 weight-average
28 molecular weight, 30 wt% sodium chloride, 1 wt% ferric oxide, 5 mg
29 hydroxypropylmethylcellulose of 11,2000 average-number molecular weight,
30 0.08 wt% butylated hydroxytoluene, and 0.25 mg magnesium stearate.

1

2 EXAMPLE 3

3

4 An osmopolymer hydrogel composition provided by the invention was
5 prepared as follows: first 1274 g of pharmaceutically acceptable sodium
6 carboxymethylcellulose comprising a 5,250,000 weight-average molecular
7 weight, 600 g of sodium chloride, and 20 g ferric oxide were separately
8 screened through a 40 mesh screen. Then, all the screened ingredients were
9 mixed with 100 g of hydroxypropylmethylcellulose of 11,200 average-number
10 molecular weight and 100 g of hydroxypropylcellulose of 30,000 average-
11 number molecular weight to produce a homogenous blend. Next, 300 ml of
12 denatured anhydrous alcohol was added slowly to the blend with continuous
13 mixing for 5 minutes. Then, 1.6 g of butylated hydroxytoluene was added,
14 followed by more blending, with 5 g of magnesium stearate added with 5
15 minutes of blending, to yield a homogenous blend. The freshly prepared
16 granulation was passed through a 20 mesh screen and allowed to dry for 20
17 hours at 22.2°C. The final composition comprised 58.67 wt% the sodium
18 carboxymethylcellulose, 30 wt% sodium chloride, 1 wt% ferric oxide, 5 mg of
19 hydroxypropylmethylcellulose, 5 mg hydroxypropylcellulose, 0.08 wt%
20 butylated hydroxytoluene, and 0.25 mg of magnesium stearate.

21

22 EXAMPLE 4

23

24 The therapeutic oxybutynin composition and the osmopolymer
25 hydrogel composition were made into a bilayer tablet as follows: first, 147 mg
26 of the oxybutynin composition as prepared in Example 1 was added to a
27 punch die set and tamped. Then, 98 mg of the hydrogel composition as
28 prepared in Example 2 was added and the two layers compressed under a
29 pressure head of 1.0 ton (1000 kg) into a 11/32 inch (0.873 cm) diameter,
30 contacting intimate bilayered tablet. The example was repeated with the

1 hydrogel composition as prepared in Example 3 to produce the tablet
2 comprising two layers.

3

4 EXAMPLE 5

5

6 The bilayered tablet was manufactured into a sustained-release
7 dosage form that provides a controlled-release of oxybutynin as follows: first,
8 a semipermeable wall-forming composition was prepared comprising 95 wt%
9 cellulose acetate having a 39.8% acetyl content and 5 wt% polyethylene
10 glycol having a number-average molecular weight of 3350 by dissolving the
11 ingredients in a cosolvent comprising acetone and water in 90:10 wt:wt
12 composition to make a 4% solid solution. The wall-forming composition was
13 sprayed onto and around the bilayered cores as prepared in Examples 2 and
14 to provide a 26.4 mg semipermeable wall.

15 Next, the semipermeable walled, bilayered tablet was laser drilled to
16 provide a 20 mil (0.51 mm) orifice to contact the oxybutynin layer and the
17 exterior of the dosage form. The residual solvent was removed by drying for
18 48 hours at 50°C and 50% relative humidity. Next, the dosage forms were
19 dried further for 1 hour at 50°C to remove excess moisture. The dosage form
20 provided by this manufacture provides 3.4 wt% oxybutynin hydrochloride, 76
21 wt% polyethylene oxide of 200,000 weight-average molecular weight, 5 wt%
22 hydroxypropylmethylcellulose of 9,200 average-number molecular weight, 0.6
23 wt% magnesium stearate, and 15 wt% sodium chloride in the therapeutic
24 oxybutynin composition. The osmopolymer hydrogel push composition
25 comprises 63.67 wt% polyethylene oxide of 7,500,000 weight-average
26 molecular weight, 30 wt% sodium chloride, 1 wt% ferric chloride, 5 wt%
27 hydroxypropylmethylcellulose of 9,200 average-number molecular weight,
28 0.08 wt% butylated hydroxytoluene, and 0.25 wt% magnesium stearate. The
29 semipermeable wall comprises 95 wt% cellulose acetate comprising 39.8%
30 acetyl content, and 5 wt% polyethylene glycol of 3350 number-average

1 molecular weight. The dosage form comprises an exit passage of 20 mils
2 (0.50 mm) and it has a mean release rate of 0.260 mg/hr for 23.8 hours. The
3 semipermeable wall provides substantial protection from photo (light)
4 degradation of the oxybutynin in the dosage form.

5

6 EXAMPLE 6

7

8 A dosage form is prepared according to the above examples,
9 comprising a drug layer consisting of 6.67 wt% oxybutynin hydrochloride,
10 87.83 wt% polyethylene oxide of 200,000 weight-average molecular weight,
11 5.00 wt% hydroxypropylmethylcellulose of 9,200 average-number molecular
12 weight, and 0.50 wt% magnesium stearate; in layered contact with a push
13 hydrogel layer comprising 58.75 wt% sodium carboxymethylcellulose of
14 6,000,000 weight-average molecular weight, 30 wt% sodium chloride, 5.00
15 wt% hydroxypropylmethylcellulose of 9,200 average-number molecular
16 weight, 1.00 wt% ferric oxide, 5.00 wt% hydroxypropylcellulose of 75,000
17 average-number molecular weight and 0.25 wt% magnesium stearate; which
18 bilayered core is surrounded by a semipermeable wall comprising cellulose
19 acetate and polyethylene glycol; and an exit port through the wall for
20 delivering the oxybutynin at a controlled rate over thirty hours.

21

22 EXAMPLE 7

23

24 The dosage form according to Example 6 wherein the polyethylene
25 oxide has a 300,000 weight-average molecular weight; the
26 hydroxypropylcellulose is a member selected from the group consisting of
27 25,000, 30,000 or 40,000 average-number molecular weight; and the dosage
28 form comprises 5 mg to 250 mg of oxybutynin pharmaceutically acceptable
29 salt.

30

1

EXAMPLE 8

2

3 A dosage form was prepared according to the above examples
4 wherein the dosage form of this example comprises a drug oxybutynin layer
5 comprising 5 mg oxybutynin, 111.60 mg polyethylene oxide of 200,000
6 weight-average molecular weight, 7.35 mg hydroxypropylmethylcellulose of
7 9,200 average-number molecular weight, 0.88 mg magnesium stearate, 22.05
8 mg of sodium chloride, and 0.12 mg of butylated hydroxytoluene; a hydrogel
9 push layer comprising 62.40 mg of polyethylene oxide of 7,000,000 weight-
10 average molecular weight, 29.40 mg of sodium chloride, 4.90 mg
11 hydroxypropylmethylcellulose of 9,200 average-number molecular weight,
12 0.08 mg of butylated hydroxytoluene, 0.98 mg of red ferric oxide, and 0.24 mg
13 of magnesium stearate; a wall comprising cellulose acetate consisting of a
14 39.8% acetyl content and polyethylene glycol of 3350 number-average
15 molecular weight in the percentage ratio of 95 wt% cellulose acetate to 5 wt%
16 polyethylene glycol, and an exit passageway in the wall.

17

18

EXAMPLE 9

19

20 A dosage form was prepared according to the examples provided by
21 this invention wherein the dosage form comprises: a drug oxybutynin layer
22 comprising 5.3 wt% oxybutynin, 82.37 wt% polyethylene oxide of 200,000
23 weight-average molecular weight, 2 wt% hydroxypropylmethylcellulose of
24 9,200 average-number molecular weight, 0.25 wt% magnesium stearate, 10
25 wt% sodium chloride, and 0.08 wt% butylated hydroxytoluene; a push
26 hydrogel layer comprising 63.37 wt% polyethylene oxide of 2,000,000 weight-
27 average molecular weight, 30 wt% sodium chloride, 5 wt% hydroxypropyl-
28 methylcellulose of 9,200 average-number molecular weight, 0.08 wt%
29 butylated hydroxytoluene, 1 wt% black ferric oxide and 0.25 wt% magnesium
30 stearate; a wall comprising 99 wt% cellulose acetate comprising a 39.8%

1 acetyl content and 1 wt% polyethylene glycol of 3350 number-average
2 molecular weight; and an exit passageway through the wall for delivering the
3 oxybutynin to a patient.

4

5 EXAMPLE 10

6

7 An oxybutynin composition was prepared according to the above
8 examples, wherein the composition comprises 10.6 wt% oxybutynin
9 hydrochloride, 79.57 wt% polyethylene oxide of 200,000 weight-average
10 molecular weight, 2 wt% hydroxypropylmethylcellulose of 9,200 average-
11 number molecular weight, 0.25 wt% of magnesium stearate, 7.5 wt% of
12 sodium chloride, and 0.08 wt% butylated hydroxytoluene.

13

14 EXAMPLE 11

15

16 An oxybutynin composition was prepared according to the above
17 examples wherein the composition comprises 16 wt% oxybutynin
18 hydrochloride, 76.67 wt% polyethylene oxide of 200,000 weight-average
19 molecular weight, 2 wt% hydroxypropylmethylcellulose of 9,200 average-
20 number molecular weight, 0.25 wt% magnesium stearate, 5 wt% sodium
21 chloride and 0.08 wt% butylated hydroxytoluene.

22

23 EXAMPLE 12

24

25 A hydrogel composition was prepared according to the above
26 examples wherein the composition comprises 58.75 wt% hydroxyethyl-
27 cellulose of 1,300,000 molecular weight, 30 wt% sodium chloride, 10 wt%
28 polyvinylpyrrolidone of 42,000 viscosity-average molecular weight, 1 wt% red
29 ferric oxide, and 0.25 wt% magnesium stearate.

30

1

2

3

4 A dosage form was prepared according to the present invention
5 wherein the dosage form comprises: a drug layer comprising 3.4 wt%
6 oxybutynin hydrochloride, 76 wt% polyethylene oxide of 200,000 weight-
7 average molecular weight, 5 wt% hydroxypropylmethylcellulose of 9,200
8 average-number molecular weight, 0.6 wt% magnesium stearate, 15 wt%
9 sodium chloride; a push hydrogel layer comprising 58.75 wt% hydroxyethyl-
10 cellulose of 1,300,000 average-number molecular weight, 30 wt% sodium
11 chloride, 10 wt% polyvinylpyrrolidone of 42,000 viscosity-average molecular
12 weight, 1 wt% red ferric oxide, and 0.25 wt% magnesium stearate; a wall
13 comprising 95 wt% cellulose acetate comprising a 39.8% acetyl content, and
14 5 wt% polyethylene glycol of 3350 number-average molecular weight, an exit
15 orifice of 20 mil (0.50 mm); and a release rate of 0.292 mg per 1 hour for 16.9
16 hours.

17

18

19

20 A dosage form was manufactured according to the present examples
21 wherein the dosage form comprises: a drug oxybutynin layer comprising 3.4
22 wt% oxybutynin hydrochloride, 76 wt% polyethylene oxide of 200,000 weight-
23 average molecular weight, 5 wt% hydroxypropylmethylcellulose of 9,200
24 average-number molecular weight, 0.6 wt% of magnesium stearate, and 15
25 wt% sodium chloride; a push hydrogel layer for pushing the drug oxybutynin
26 layer from the dosage form comprising 63.67 wt% polyethylene oxide of
27 7,000,000 weight-average molecular weight, 30 wt% sodium chloride, 1 wt%
28 red ferric oxide, 5 wt% hydroxypropylmethylcellulose of 9,200 average-
29 number molecular weight, 0.08 wt% butylated hydroxytoluene, and 0.25 wt%
30 magnesium stearate; a subcoat that surrounds the drug oxybutynin layer and

1 push hydrogel layer wherein the subcoat comprises 95 wt% hydroxyethyl-
2 cellulose, a nonionic water soluble polymer of 90,000 average-number
3 molecular weight; a wall or overcoat comprising 95 wt% cellulose acetate
4 possessing an acetyl content of 39.8% and 5 wt% polyethylene glycol of 3350
5 number-average molecular weight; a 20 mil (0.50 mm) exit passageway; and
6 an oxybutynin release rate of 0.295 mg per 1 hour over 19.9 hours.

7

8 EXAMPLE 15

9

10 A sustained-release dosage form manufactured as a tablet designed
11 for oral administration comprising 240 ng to 650 mg of a member selected
12 from the group consisting of oxybutynin and its pharmaceutically acceptable
13 salts was made according to the above example, which dosage form provide
14 an essentially flat release profile essentially-free of peaks-and trough plasma
15 oxybutynin concentrations. The dosage form when administered results in a
16 lessening in dry mouth over 24 hours, and the bioavailability of oxybutynin in
17 the lower gastrointestinal tract including the colon.

18

19 METHOD OF PRACTICING THE INVENTION

20

21 The invention pertains additionally to the use of the therapeutic
22 composition and the dosage form by providing a method for delivering
23 oxybutynin orally to a warm-blooded animal, including a human patient, in
24 need of oxybutynin therapy. The method comprises administering orally the
25 composition to a patient for oxybutynin therapy. The method comprises: (A)
26 admitting orally into the patient a dosage form comprising (B) a
27 semipermeable wall that surrounds (C) a therapeutic composition comprising
28 (A) oxybutynin. The dosage form imbibes fluid through the wall into the
29 dosage form in response to the concentration gradient across the
30 semipermeable wall. The therapeutic composition in the dosage form

1 develops osmotic energy that causes the therapeutic composition to be
2 administered through the exit (D) from the dosage form over a prolonged
3 period of time up to 24 hours to provide controlled and sustained oxybutynin
4 therapy. The method of the invention comprises also: (A) admitting into the
5 warm-blooded animal a dosage form comprising: (1) a wall surrounding a
6 compartment, the wall comprising a semipermeable polymeric composition
7 permeable to the passage of fluid and substantially impermeable to the
8 passage of oxybutynin; (2) an oxybutynin drug layer in the compartment
9 comprising oxybutynin; (3) a hydrogel push layer in the compartment
10 comprising an osmotic formulation for imbibing and absorbing fluid for
11 expanding in size for pushing the oxybutynin composition from the delivery
12 device; and (4) at least one passageway in the wall for releasing the
13 oxybutynin; (B) imbibing fluid through the semipermeable wall at a fluid-
14 imbibing rate determined by the permeability of the semipermeable wall and
15 the osmotic pressure across the semipermeable wall causing the push layer
16 to expand; and (C) delivering the therapeutically active oxybutynin from the
17 delivery device through the exit passageway to a warm-blooded animal over a
18 prolonged period of time up to 24 hours. The oxybutynin is administered by
19 the method of the invention in the therapeutic range that avoids a toxic dose
20 and avoids an ineffective dose for antispasmodic therapy. The oxybutynin is
21 administered to patients with uninhibited neurogenic and reflex neurogenic
22 bladder for increased vesical capacity which diminishes the frequency of
23 uninhibited contractions of the detrusor muscle and delays the desire to void.
24 The dosage form is indicated for the relief of symptoms associated with
25 voiding such as urgency, urge incontinence, frequency, nocturia and
26 incontinence in patients in neurogenic bladder.

27 The drug oxybutynin, identified as OXY, was administered in a clinical
28 study to a number of patients. Oxybutynin is used for treating urinary-
29 incontinence. Patients administered oxybutynin often quit or discontinue
30 treatment in the prior art due to its anti-cholinergic side effects, which appear

1 to be peak-concentration related. The present invention provides a
2 sustained-release (SR) dosage form that provides a controlled-release (CR)
3 rate of oral administration of oxybutynin designed to provide a continuous
4 plasma drug concentration and avoid peak and valley concentrations. That
5 is, the controlled-extended release dosage form of this invention maintains a
6 therapeutic plasma concentration free of an overdose and free of an
7 ineffective underdose of oxybutynin. In a multiple dose, crossover study, 13
8 healthy female volunteers of 41 to 68 years of age received either 5 mg of
9 oxybutynin immediate release (IR) every 8 hours, or three 5 mg controlled
10 release (CR) once a day, for four days. The patients blood was sampled on
11 days 1 and 4 to quantify oxybutynin and its desethyl-metabolite (DESOXY) by
12 liquid chromatography mass spectroscopy (LC/MS). The oxybutynin was
13 absorbed rapidly following immediate-release (IR) dosing with mean C_{MAX} of
14 12 ng/ml. C_{MAX} is the maximum concentration after dosing in the plasma. The
15 drug release kinetics for the controlled-release (CR) plasma concentration
16 rose slowly, reaching a mean peak-concentration C_{MAX} value of 4.2-6.7 ng/ml.
17 The metabolite DESOXY was formed rapidly following immediate release,
18 and its formation paralleled the slow absorption of oxybutynin following
19 controlled release. The DESOXY had a shorter $t_{1/2}$ life compared to OXY,
20 indicating presystemic metabolite formation assuming it to be true metabolite
21 $t_{1/2}$. Single and multiple dose AUC values were similar for both the controlled
22 release and the immediate release suggesting time invariant
23 pharmacokinetics. AUC denotes the area under the plasma concentration
24 profile. The day 4 OXY and DESOXY AUC and their ratios are presented in
25 the Table, where BA denotes the percent bioavailable, that is, BA denotes the
26 relative amount of oxybutynin absorbed from the controlled release (CR)
27 dosage form compared to the immediate release (IR) dosage form, and C_{MAX}
28 denotes the maximum concentration.

	OXY (AUC) (ng.h/mL)	DESOXY (AUC) (ng.h/mL)	OXY/DESOXY Ratio	OXY (BA%)	DESOXY (BA%)
IR	81	483	0.18		
CR	109	304	0.41	153	69

1

2 The higher ratio of OXY-BA following CR compared to IR suggests
3 lower metabolic formation on first pass. This indicates CR could reach the
4 colon within 3-5 hours post dosing. Presystemic cytochrome P450-mediated
5 oxidation may occur in the upper part of the gastrointestinal tract; then, drug
6 released from CR in the colon escapes presystemic metabolism, which could
7 explain the higher OXY/DESOXY ratio and increased OXY BA following CR.

8 A further clinical study was performed that compared the results from a
9 sustained-release dosage form of the invention with an immediate-release
10 dosage form manufactured as a conventional capsule. The study was a
11 double blind placebo controlled comparison in 82 female urge urinary
12 incontinence patients. In the clinical study, 34 of the female patients were
13 administered the sustained release dosage form of the invention, 32 female
14 patients were administered the immediate release dosage form, and 16 were
15 administered placebo. The dosing program for the sustained release dosage
16 form comprised of 5 mg/day for 2 weeks, then 10 mg/day for two weeks, and
17 finally 15 mg/day for two weeks, administered once a day. The dosing
18 program for the immediate release dosage form comprised of 5 mg/day for 2
19 weeks, then 10 mg/day for two weeks, and finally 15 mg/day for two weeks,
20 administered in divided doses three times a day. During the study decrease
21 in urge urinary incontinence and anticholinergic side effect observations were
22 made for each dose level.

23 The mean plasma oxybutynin concentration was maintained flat during
24 a 24 hour period for the sustained release dosage form administered once a
25 day; at steady state (after dosing for 4 days) the mean plasma oxybutynin
26 concentration ranged from 3.2 to 5.5 ng/ml following a 15 mg dose. The

1 plasma oxybutynin concentration following the immediate release
2 administered three times a day showed peak-through fluctuation; at steady
3 state (after dosing for 4 days) the mean peak plasma concentration following
4 5 mg three times a day was 12.4 ng/ml and the trough concentration was 1.4
5 ng/ml. The concentrations at other dose levels are proportional to dose.

6 The clinical study evaluated the number of urge urinary incontinence at
7 each week. The number of urge urinary incontinence episodes was
8 documented by the patients in weekly study-diaries provided to them. The
9 decrease in urge urinary incontinence episodes from baseline was evaluated
10 for the sustained release dosage form and the immediate release dosage
11 form compared to the placebo and were also compared to each other.

12 Efficacy (decrease in urge urinary incontinence) was seen at each dose level
13 for both sustained release dosage form and immediate release dosage form.

14 The dose vs. urge urinary incontinence relationship was analyzed by
15 modeling. The results of the modeling analysis shows a trend towards higher
16 decrease in the urge urinary incontinence episodes for the sustained release
17 dosage form compared to immediate release dosage form. Accompanying
18 Figure 1 depicts the urge-urinary incontinence, U-UI, for patients administered
19 oxybutynin by the sustained release, SR dosage form tablet of the invention,
20 by an immediate release, IR, dosage form and a placebo. The figure depicts
21 the unexpected and striking decrease in urge-urinary incontinence achieved
22 by the invention. Accompanying Figure 2, depicts the decrease in urge-
23 urinary incontinence following administration of oxybutynin by the sustained
24 release dosage form of the invention compared to the immediate release
25 dosage form.

26 The clinical study considered the anticholinergic side-effect, dry mouth
27 in the patient; dry mouth was classified using a four scale category consisting
28 of no-dry mouth, mild dry mouth, moderate dry mouth, and severe dry mouth.
29 At each weekly clinic visit, patients completed the subjective assessment of
30 anticholinergic effects questionnaire. In addition, the clinic staff telephoned

1 patients at other times during the study to solicit information about
2 anticholinergic effects and other adverse effects. Overall during the study,
3 the side effect dry mouth was reported in fewer patients receiving the
4 sustained release formulation (85% of patients) compared to immediate
5 release formulation (100% of patients). The dose vs. probability of dry mouth
6 relationship was also analyzed by modeling. This modeling analysis shows
7 that the probability of dry mouth is higher for the immediate release dosage
8 form. Accompanying Figure 3 depicts the incidence of dry mouth following
9 treatment by the sustained release, SR, dosage form, the immediate release,
10 IR, dosage form, and a placebo. The drawing figure depicts the dose
11 administered and the degree of dry mouth as none, mild, moderate, and
12 severe.

13 A therapeutic index was obtained for the clinical study by combining
14 the dose delivered versus the urge urinary incontinence relationship and the
15 dose versus dry mouth relationship. Accompanying Figure 4 is a
16 representation of the therapeutic index comparison between the sustained
17 release, SR, dosage form and the immediate release dosage form,
18 evidencing the decrease in urge-urinary incontinence episodes from the
19 baseline and the probability of dry mouth. In the drawing figure, U-UI denotes
20 urge-urinary incontinence, DM denotes dry mouth, SR denotes sustained
21 release and IR denotes immediate release. The broad-double pointed arrow
22 denotes the unexpected decrease in dry mouth achieved by the sustained
23 release dosage form compared to the very small decrease in dry mouth seen
24 in the narrow-double pointed arrow.

25 The therapeutic index is defined as the dose or concentration range
26 within which optimum therapy with minimum toxicity i.e. successful therapy is
27 achieved. It can be evaluated as the relative position of the dose vs. efficacy
28 (urge urinary incontinence in this case) and dose vs. toxicity (dry mouth in this
29 case) curve. It is also recognized that a drug with wider therapeutic index is
30 better than a drug with a narrow index.

1 The results of the clinical study are presented in Figures 1 to 4 and
2 summarized hereafter. Figure 1 shows the urge urinary incontinence in
3 logarithmic scale for all treatments - the line with the star represents a
4 placebo treatment, the line connected by square represents urge urinary
5 incontinence obtained for an immediate release dosage form, and the line
6 connected with dark circles depicts urge urinary incontinence obtained by the
7 sustained release dosage form of the invention. In Figure 1, the expression
8 "U-UI" means urge urinary incontinence, visit day denotes the days the
9 patient visited the clinic and the dose level denotes the mg of oxybutynin
10 delivered by the dosage form on that day, "SR" refers to sustained release
11 dosage form and "IR" refers to immediate release dosage form. As expected
12 and shown in Figure 1, placebo treatment has really no effect on urge urinary
13 incontinence episodes. Whereas following both sustained release and
14 immediate release treatment the number of urge urinary incontinence
15 episodes decrease. Figure 2 depicts the effect produced by the administered
16 drug. In this case higher the decrease better the efficacy. In Figure 2, the
17 solid line which is the decrease in urge urinary incontinence from baseline for
18 the placebo treatment subtracted from the decrease in urge urinary
19 incontinence from baseline for the sustained release dosage form and the
20 dash line which is the decrease in urge urinary incontinence from baseline for
21 the placebo treatment subtracted from decrease in urge urinary incontinence
22 from baseline for the immediate release dosage form. Figure 2 shows the
23 unexpected greater effect in urge urinary incontinence episodes for sustained
24 release dosage form compared to the immediate release dosage form.
25 Figure 3 depicts the incidence of dry mouth following the administration of
26 placebo, sustained release oxybutynin dosage forms and immediate release
27 oxybutynin dosage forms. In the Figure "SR" refers to sustained release
28 dosage form and "IR" refers to immediate release dosage form, clean area
29 denotes the probability of absence of dry mouth relief, lines slanted left
30 denote the probability of mild dry mouth, crossed lines denotes the probability

1 of severe dry mouth for the administered dose of dry mouth. Figure 4 is a
2 representation of the therapeutic index comparison between the sustained
3 release dosage form and the immediate release oxybutynin dosage form.
4 The therapeutic index is the dose or concentration range within which
5 optimum therapy with minimum toxicity i.e. successful therapy is achieved. It
6 can be evaluated as the relative position of the dose vs. efficacy (urge urinary
7 incontinence in this case) and dose vs. toxicity (dry mouth in this case) curve.
8 Both the dose vs. urge urinary incontinence curve and the dose vs. dry mouth
9 curve is presented in Figure 4. The broad continuous dark line presents the
10 dose vs. urge urinary incontinence relationship for sustained release dosage
11 form and the narrow continuous line presents the dose vs. urge urinary
12 incontinence relationship for immediate release dosage form; the broken dark
13 line represents the occurrence of dry mouth for the sustained release dosage
14 form and the broken narrow line represents the occurrence of dry mouth for
15 the immediate release dosage form. The heavy longer dark double pointed
16 arrow depicts the unexpected greater separation for the dose vs. urge urinary
17 incontinence curve and the dose vs. dry mouth curve for the sustained
18 release dosage form compared to the small double pointed arrow for the
19 immediate release dosage form. This teaches that the therapeutic index is
20 wider for the sustained release dosage form as compared to immediate
21 release dosage form.

22 The once-daily delivery system provided by this invention maintains an
23 essentially flat concentration throughout the dosing duration of 24 hours, as
24 seen by the absence of peak-to-trough fluctuation, whereas peak-to-trough
25 fluctuation are seen with the multiple daily administration of the immediate
26 release dosage form, as depicted in accompanying Figure 5.

27 Figure 5 depicts the mean plasma oxybutynin concentration, in ng/mL,
28 steady state on day 4, for an immediate release, IR, dosage form and a
29 sustained release, SR, dosage form.

1 The delivery system provided by this invention maintains its chemical
2 and physical integrity in a gastrointestinal environment and generally reaches
3 the colo within 3 to 5 hours after oral administration. For some drugs,
4 metabolic activity is higher in the duodendum and jejunum and decreases in
5 the ileum and colon and for some drugs other anti-transport are more
6 prevalent in the colon. The physiological disposition of a drug and its
7 metabolites can depend on the gastrointestinal site of absorption. The clinical
8 studies made available by this invention demonstrated unexpectedly a
9 decrease in oxybutynin metabolism when administered by the sustained
10 release dosage form of the invention. Following the administration of
11 oxybutynin chloride according to the mode and manner of the invention, the
12 relative bioavailability is higher for the drug, combined R+S (racemic)
13 oxybutynin (153%) and also for the individual R- and S- enantiomers of
14 oxybutynin (156% and 187%, respectively) compared to immediate release
15 dosage form (base of 100%); the relative bioavailability is lower for the
16 metabolite, combined R+S (racemic) desethyloxybutynin (69%) and also for
17 the individual R- and S- enantiomers of desethyloxybutynin (73% and 92%,
18 respectively) compared to immediate release dosage form (base of 100%).
19 The relative bioavailability is defined as the following ratio, wherein the
20 Relative Bioavailability for SR = [Total AUC_{inf}(SR) +Dose(SR)] / [Total
21 AUC_{inf}(IR) +Dose(IR)] where AUC_{inf}(SR) is the area under the plasma
22 concentration curve for the sustained release dosage form and AUC_{inf}(IR) is
23 the area under the plasm concentration curve for the immediate release
24 dosage form. The plasma concentration curves are shown in Figure 5 for
25 both sustained release dosage form and the immediate release dosage form.
26 The ratio, (drug AUC_{inf} / metabolite AUC_{inf}) for the sustained release dosage
27 form was more than twice that for the immediate release. It has been
28 hypothesized that oxybutynin metabolites may be responsible for the side
29 effects (Massad et, J Urol 1992;148:595-597), however, both drug and the
30 metabolite desethyloxybutynin have been shown to have similar potency

1 (Waldeck et al, J Urol 1997;157:1093-1097). The clinical study demonstrated
2 further for an immediate release oxybutynin system, following repeated
3 dosing within a day, the peak drug concentrations are lower in the evening as
4 compared to morning drug administration. This suggests that with a zero-
5 order release rate from a sustained release dosage form, the plasma
6 concentration would go down towards the end of the day. However for the
7 dosage forms provided by this invention delivering oxybutynin hydrochloride it
8 is not the case. On the contrary, with the dosage forms provided by this
9 invention, the plasma concentrations in an essentially steady-state are
10 maintained throughout the day ranging from 3.2 to 5.5 ng/mL following a 15
11 mg dose. Additionally, the plasma concentration for the sustained release
12 dosage form of the invention administered in the fasting state is similar to that
13 observed when taken after a meal as seen in drawing Figure 6. Drawing
14 Figure 6 illustrates the mean observed plasma R-oxybutynin concentration
15 following the sustained delivery of oxybutynin hydrochloride by the dosage
16 form tablet of the invention 1 X 10 mg qd, wherein qd denotes once-a-day
17 dose, in the fed and fasting states with 43 patients. The data shows food
18 does not affect the manner in which the drug is absorbed from the sustained
19 release dosage form of the invention. Whereas, another delivery product for
20 oxybutynin reported by (Lukkari et al, Eur J Pharmacol, 1996; 50-221-223;
21 Lukkari et al, 1997; 81:31-34; Nilsson et al, Neurol Urodyn, 1997;16:533-542)
22 has properties very different from the sustained release dosage form of this
23 invention. The prior art product is a matrix tablet from which the drug is
24 released by a first order process with about 50% released in 4 hours. The
25 relative oxybutynin bioavailability for the product is similar (approximately
26 103%) to that of the immediate release product (base 100%) and the relative
27 bioavailability of the metabolite desethyloxybutynin is lower (approximately
28 68%) as compared to immediate release product (base 100%). The ratio,
29 (drug AUC / metabolite AUC) for the product was only slightly higher (0.13) as
30 compared to IR oxybutynin (0.09). Additionally, when the prior art product is

1 taken after meals the peak oxybutynin (6.2 ng/mL) and desethoxybutynin
2 concentration (75.5 ng/mL) are two times higher as compared to the fasting
3 state (2.8 ng/mL and 39.5 ng/mL, for oxybutynin and desethoxybutynin
4 respectively). That is, the prior art delivery product loses the sustained
5 release property when taken with meals.

6 The sustained release dosage form of the invention was further
7 evaluated in safety and efficacy studies and compared to immediate release.
8 The data from this study was modeled and a dose vs. therapeutic effect (urge
9 urinary incontinence) relationship and a dose vs. side effect (dry mouth)
10 relationship was established. The results of the urge urinary incontinence
11 modeling analysis shows a trend towards higher decrease in the urge urinary
12 incontinence episodes for the sustained release dosage form compared to
13 immediate release dosage form. The dry mouth modeling analysis shows
14 that the probability of dry mouth is higher for the immediate release as
15 compared to the sustained release dosage form of this invention. A
16 therapeutic index was obtained for the clinical study by combining the dose
17 versus the urge urinary incontinence relationship and the dose versus dry
18 mouth relationship. The therapeutic index is defined as the dose or
19 concentration range within which optimum therapy with minimum toxicity i.e.
20 successful therapy is achieved. It can be evaluated as the relative position of
21 the dose vs. efficacy (urge urinary incontinence in this case) and dose vs.
22 toxicity (dry mouth in this case) curve. The sustained release dosage form of
23 this invention was shown to have an increased therapeutic index (wider
24 separation between the dose vs. urge urinary incontinence curve and dose
25 vs. dry mouth curve) as compared to the immediate release dosage form, as
26 seen in Figure 4. In two additional clinical trials, a SR was administered in
27 doses up to and comprising 30 mg/day which was efficacious in reducing
28 urge urinary incontinence and was well-tolerated with respect to
29 anticholinergic side-effects and especially dry mouth.

1 In conclusion, the sustained release dosage form of this invention, the
2 oxybutynin plasma concentrations are maintained constant avoiding the rapid
3 rise and peak concentration seen with immediate release oxybutynin, the
4 metabolism of the drug is reduced giving rise to higher oxybutynin
5 bioavailability compared to immediate release oxybutynin and the sustained
6 plasma concentrations are not affected by meals taken with the drug. Finally,
7 the sustained release dosage form of this invention has an increased
8 therapeutic index as compared to immediate release oxybutynin.

9 The dosage form and the oxybutynin composition of this invention, as
10 seen from the above disclosure, can be used in a method for administering a
11 drug by the oral route, and, in another method, the dosage form and
12 composition can be sized and shaped for administering a drug by the
13 sublingual and buccal routes. The sublingual and buccal routes can be used
14 for quicker therapy, and they can be used when a smaller dose of drug is
15 needed for immediate therapy. The latter routes can be used as a by-pass of
16 the first pass of hepatic metabolism of the drug.

17 In summary, it will be appreciated that the present invention
18 contributes to the art an unobvious dosage form that possesses practical
19 utility, can administer a drug at a dose-metered release rate per unit time.
20 While the invention has been described and pointed out in detail with
21 reference to operative embodiments thereof, it will be understood by those
22 skilled in the art that various changes, modifications, substitutions and
23 omissions can be made without departing from the spirit of the invention. It is
24 intended, therefore, that the invention embrace those equivalents within the
25 scope of the application.

26

27

28

29

30

1 We Claim:

2

3 1. A sustained release dosage form comprising oxybutynin for use
4 in managing the plasma concentration of oxybutynin and dry mouth
5 associated with the use of oxybutynin, wherein the sustained dosage form
6 upon once daily administration is characterized by the sustained release of a
7 therapeutically effective dose of oxybutynin to a patient responsive to
8 oxybutynin for managing the plasma concentration and dry mouth associated
9 therewith.

10

11 2. The sustained release dosage form according to claim 1,
12 wherein the plasma concentration is proportional to the sustained release
13 dose.

14

15 3. The sustained release dosage form according to claim 1,
16 wherein the sustained release dosage form releases up to 25 mg per hour of
17 oxybutynin, or oxybutynin therapeutically acceptable salt.

18

19 4. The sustained release dosage form according to claim 1,
20 wherein the sustained release dosage form comprises up to 650 mg of
21 oxybutynin, or oxybutynin therapeutically acceptable salt.

22

23 5. A sustained release dosage form comprising oxybutynin and
24 pharmaceutically acceptable carrier for managing dry mouth associated with
25 oxybutynin, wherein the sustained release dosage form upon once daily use
26 is characterized by a sustained release therapeutically effective dose up to 25
27 mg per hour to a patient responsive to oxybutynin therapy to provide a
28 plasma concentration proportional to the sustained release dose for
29 managing dry mouth.

1 6. Oxybutynin for use in providing a sustained release dosage
2 form comprising oxybutynin and a pharmaceutically acceptable carrier,
3 wherein the sustained release dosage form is characterized by comprising up
4 to 650 mg of oxybutynin and up to 450 mg of a pharmaceutically acceptable
5 carrier for releasing up to 25 mg per hour of oxybutynin to an oxybutynin
6 receptive environment.

7

8 7. A method for managing dry-mouth in a patient administered
9 oxybutynin, wherein the method comprises orally administering to the patient
10 a sustained release dosage form comprising an oxybutynin selected from the
11 group consisting of oxybutynin and its pharmaceutically acceptable salt, that
12 administers the oxybutynin in a controlled rate over twenty-four hours for
13 managing dry mouth in a patient.

14

15 8. A method for managing dry mouth in a patient administered
16 oxybutynin for the management of incontinence, wherein the method
17 comprises administering a sustained-release dose of 5 mg to 30 mg of a
18 member selected from the group consisting of oxybutynin and its
19 pharmaceutically acceptable salt up to twenty-four hours for managing dry
20 mouth in the patient.

21

22 9. A method for relaxing bladder muscles and for managing
23 concomitantly dry mouth in a patient administered oxybutynin hydrochloride,
24 wherein the method comprises administering 5 mg to 30 mg of oxybutynin
25 hydrochloride in a sustained rate up to twenty-four hours for producing the
26 intended effect.

27

28 10. A method for decreasing the incidence of dry-mouth in a patient
29 administered oxybutynin, wherein the method comprises orally administering
30 to the patient a sustained-release dosage form comprising an oxybutynin

1 selected from the group consisting of oxybutynin and its pharmaceutically
2 acceptable salt, that administers the oxybutynin in a controlled rate over
3 twenty-four hours for decreasing the incidence of dry-mouth in the patient.

4

5 11. A method for decreasing dry-mouth in a patient administered
6 oxybutynin for the management of incontinence, wherein the method
7 comprises administering a sustained-release dose of 5 mg to 30 mg of a
8 member selected from the group consisting of oxybutynin and its
9 pharmaceutically acceptable salt up to twenty-four hours for decreasing dry-
10 mouth in the patient.

11

12 12. A method for relaxing bladder muscles and for decreasing
13 concomitantly dry-mouth in a patient administered oxybutynin hydrochloride,
14 wherein the method comprises administering 5 mg to 30 mg of oxybutynin
15 hydrochloride in a sustained-rate up to twenty-four hours for producing the
16 intended effects.

17

18 13. The use of a sustained release dosage form in the manufacture
19 of once daily oxybutynin therapy and the management of dry mouth
20 associated therewith, which manufacture comprises the incorporation into a
21 sustained release dosage form adapted for once daily admittance into an
22 environment of use for oxybutynin therapy and concomitantly dry mouth
23 associated therewith.

24

25 14. The use of oxybutynin in the manufacture of a sustained release
26 dosage form indicated for oxybutynin therapy and for the management of dry
27 mouth associated therewith, the manufacture comprising the step of
28 incorporating oxybutynin into a sustained release dosage form, which when
29 admitted daily into an environment of use release oxybutynin and provides
30 management of dry mouth associated therewith.

1/6

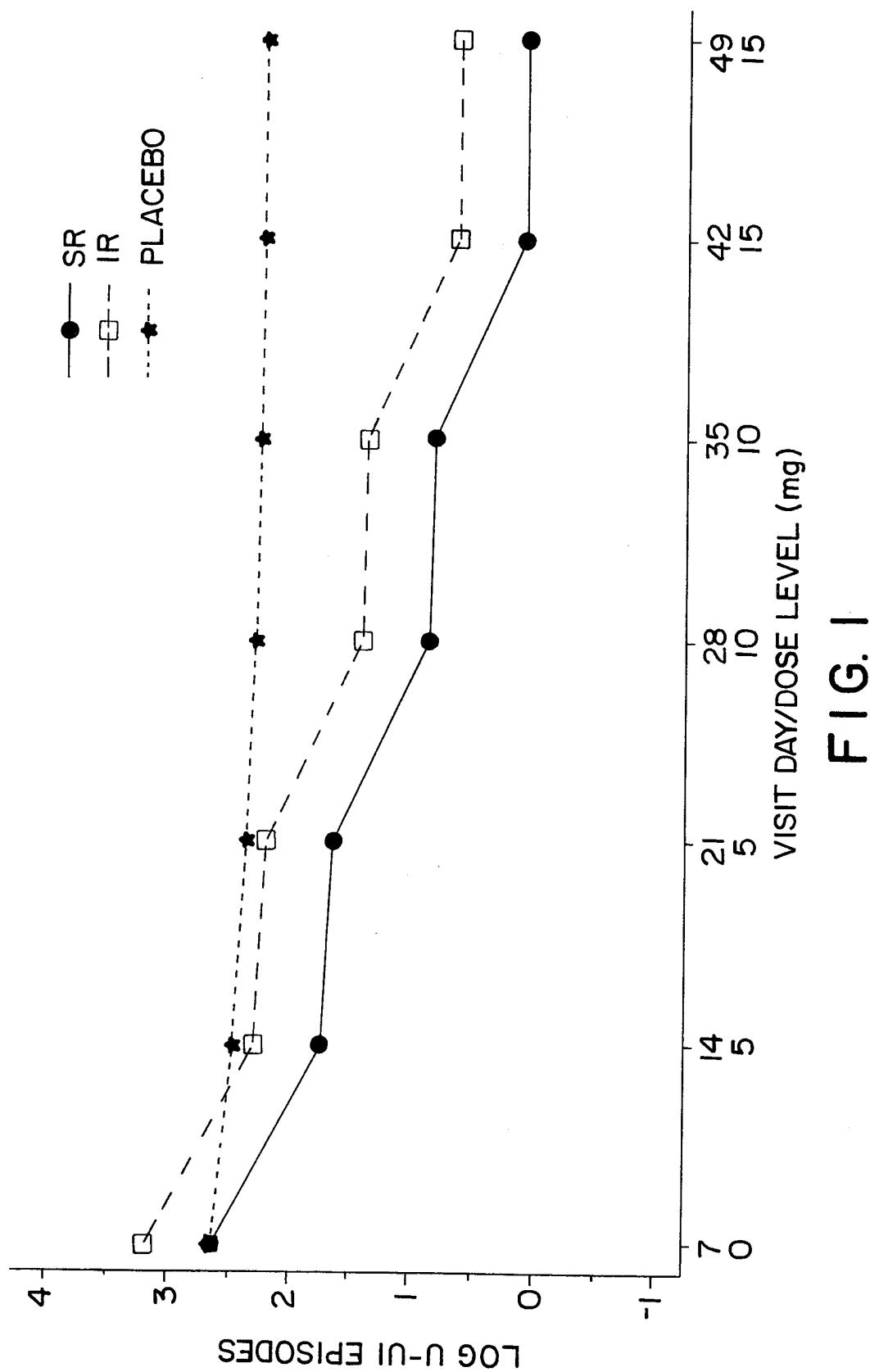


FIG. I

2/6



FIG. 3

4 / 6

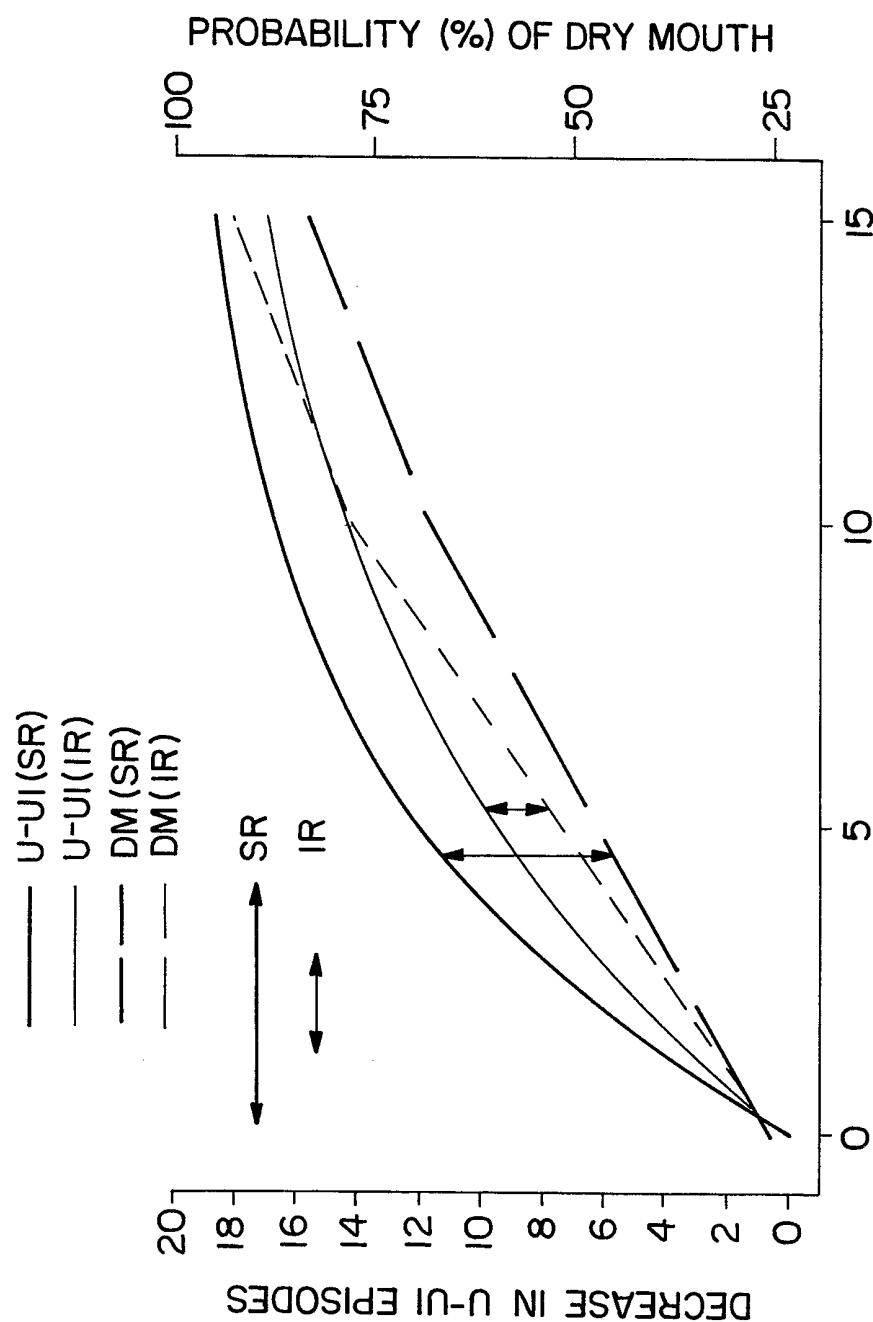
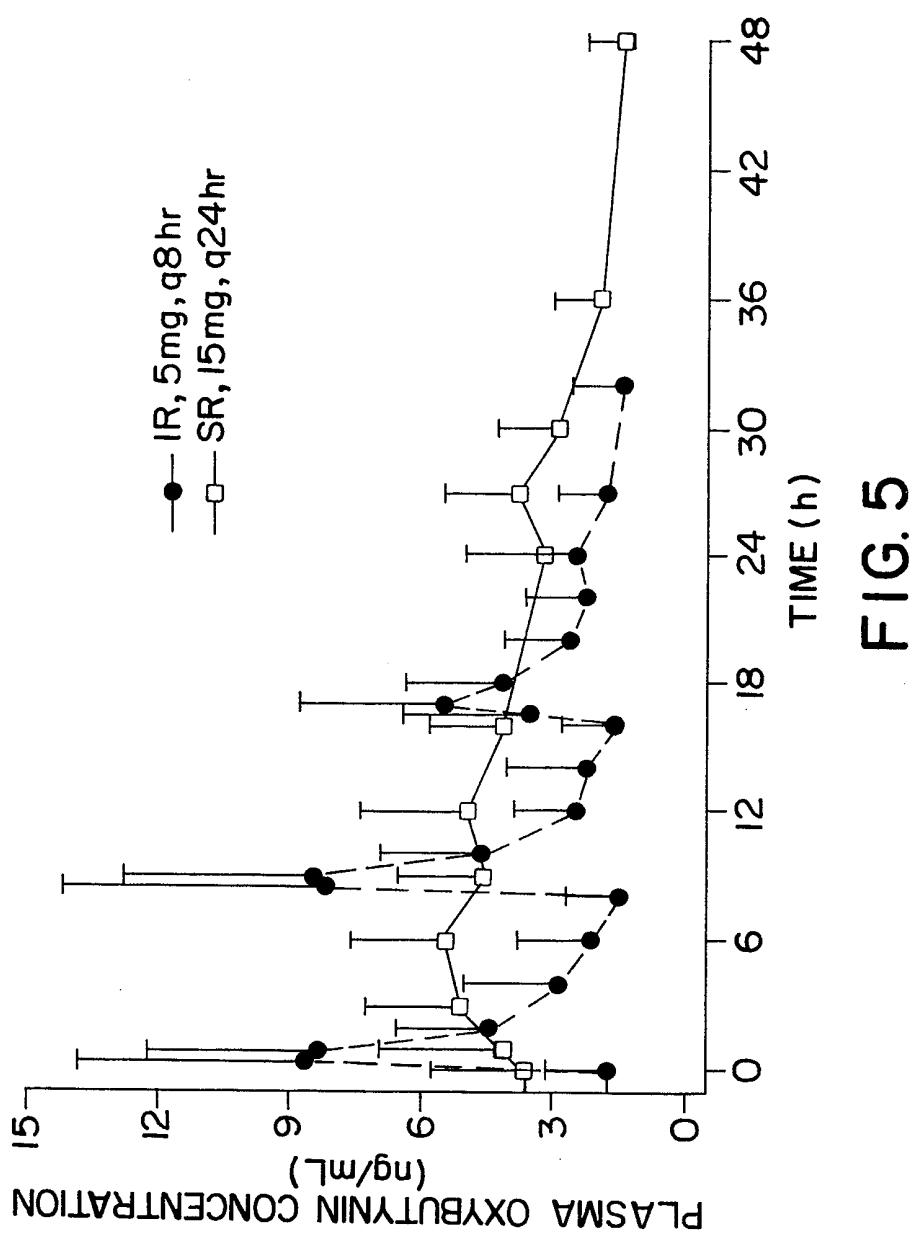



FIG. 4

5/6

6/9

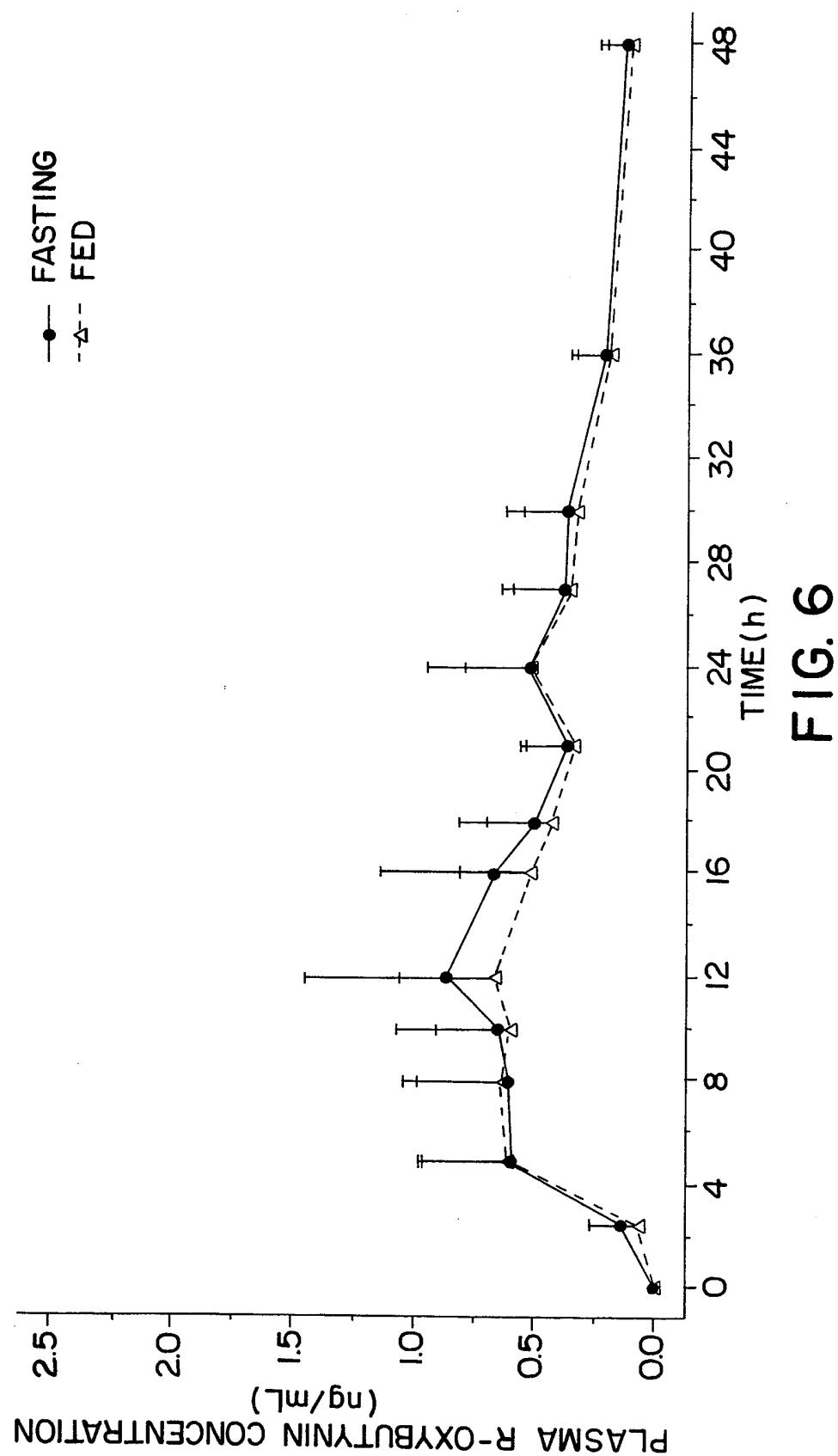


FIG. 6

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/06049

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61K31/215

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
L	US 5 840 754 A (GUILTARD GEORGE V ET AL) 24 November 1998 (1998-11-24) * col.2, 1.45-47 and 1.62-65; claims 1-6 *	1-14
X	WO 96 12477 A (LEIRAS OY ;RANTALA PERTTI (FI)) 2 May 1996 (1996-05-02) * p.5, 1.3-7; p.6, 1.33-p.7,1.2; claims 1-18 *	1-14
X	US 5 674 895 A (GUILTARD GEORGE V ET AL) 7 October 1997 (1997-10-07) * col.2, 1.37-40; claims 1-7 *	1-14
X	US 5 399 359 A (BAICHWAL ANAND R) 21 March 1995 (1995-03-21) * col.2, 1.37-44; Ex. 1-13; Tables 1-18; claims 1-18 *	1-14
	----- -/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

21 July 1999

06/08/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Uiber, P

INTERNATIONAL SEARCH REPORT

Int'l Application No

PCT/US 99/06049

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE WPI Section Ch, Week 9404 Derwent Publications Ltd., London, GB; Class A96, AN 94-031722 XP002109873 & JP 05 339151 A (KODAMA KK), 21 December 1993 (1993-12-21) abstract --- WO 98 43555 A (POINT BIOMEDICAL CORP) 8 October 1998 (1998-10-08) * p.1, 1.5-20; claim 4, 6-50 *	1-14
P, X		1-14

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No

PCT/US 99/06049

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5840754	A	24-11-1998		US 5674895 A US 5912268 A AU 695194 B AU 5639296 A AU 9052298 A BE 1009462 A CA 2218714 A DE 19681389 T FR 2734483 A GB 2318055 A, B IT T0960427 A NL 1003185 C NL 1003185 A NZ 307116 A WO 9637202 A	07-10-1997 15-06-1999 06-08-1998 11-12-1996 14-01-1999 01-04-1997 28-11-1996 23-04-1998 29-11-1996 15-04-1998 21-11-1997 03-12-1996 25-11-1996 29-03-1999 28-11-1996
WO 9612477	A	02-05-1996		AU 7994694 A	15-05-1996
US 5674895	A	07-10-1997		AU 695194 B AU 5639296 A AU 9052298 A BE 1009462 A CA 2218714 A DE 19681389 T FR 2734483 A GB 2318055 A, B IT T0960427 A NL 1003185 C NL 1003185 A NZ 307116 A WO 9637202 A US 5840754 A US 5912268 A	06-08-1998 11-12-1996 14-01-1999 01-04-1997 28-11-1996 23-04-1998 29-11-1996 15-04-1998 21-11-1997 03-12-1996 25-11-1996 29-03-1999 28-11-1996 24-11-1998 15-06-1999
US 5399359	A	21-03-1995		AU 676556 B AU 6588894 A CA 2161103 A CN 1111507 A EP 0700284 A FI 955215 A HU 72981 A IL 112637 A JP 9501445 T WO 9523593 A	13-03-1997 18-09-1995 08-09-1995 15-11-1995 13-03-1996 01-11-1995 28-06-1996 26-01-1999 10-02-1997 08-09-1995
JP 5339151	A	21-12-1993		JP 2665858 B	22-10-1997
WO 9843555	A	08-10-1998		AU 6876498 A	22-10-1998