
(19) United States
US 20080284.786A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0284786 A1
Airey et al. (43) Pub. Date: Nov. 20, 2008

(54) DISPLAY SYSTEM HAVING FLOATING
PONT RASTERIZATION AND FLOATING
PONT FRAMEBUFFERING

John M. Airey, Mountain View, CA
(US); Mark S. Peercy, Cupertino,
CA (US); Robert A. Drebin, Palo
Alto, CA (US); John Montrym,
Los Altos Hills, CA (US); David L.
Dignam, Belmont, CA (US);
Christopher J. Migdal, Cupertino,
CA (US); Danny D. Loh, Menlo
Park, CA (US)

(75) Inventors:

Correspondence Address:
Bromberg & Sunstein LLP
125 Summer Street
Boston, MA 02110-1618 (US)

(73) Assignee: SILICON GRAPHICS, INC.,
Sunnyvale, CA (US)

(21) Appl. No.: 12/168,578

(22) Filed: Jul. 7, 2008

:-

A
MESSRy

s:-
SR NEi SRC

Related U.S. Application Data

(63) Continuation of application No. 09/614.363, filed on
Jul. 12, 2000, which is a continuation of application
No. 09/098,041, filed on Jun. 16, 1998, now Pat. No.
6,650,327.

Publication Classification

(51) Int. Cl.
G09G 5/36 (2006.01)

(52) U.S. Cl. .. 34.5/545
(57) ABSTRACT

A floating point rasterization and frame buffer in a computer
system graphics program. The rasterization, fog, lighting,
texturing, blending, and antialiasing processes operate on
floating point values. In one embodiment, a 16-bit floating
point format consisting of one sign bit, ten mantissa bits, and
five exponent bits (s10e5), is used to optimize the range and
precision afforded by the 16 available bits of information. In
other embodiments, the floating point format can be defined
in the manner preferred in order to achieve a desired range and
precision of the data stored in the frame buffer. The final
floating point values corresponding to pixel attributes are
stored in a frame buffer and eventually read and drawn for
display. The graphics program can operate directly on the
data in the frame buffer without losing any of the desired
range and precision of the data.

ECE

Si3A
RSR: NS:

CCN: RL OUTRT
CQki.

Patent Application Publication

FASE
SFSR

A N

Fig
Niki SRC

Nov. 20, 2008 Sheet 1 of 7

CRSRR
CCN: ROL

3

FG.

US 2008/028478.6 A1

Si3A
NRS
OTR
Cfi $08

US 2008/0284.786 A1 Nov. 20, 2008 Sheet 2 of 7

wa it is is a we sh ar, r r r w w 'ks al. a' as a sa at, - - - - - - -

Patent Application Publication

#?????

X33 %

Patent Application Publication Nov. 20, 2008 Sheet 3 of 7 US 2008/028478.6 A1

{-}^sk2^-18x in 8:0000n-3003:0000

ess(OOstronics:0000:00

east):CCGs--1a:20000:00

positive inity e=1111s==0 mss; its 11111

negative inänity got it is: me: ; ; ; 11 it

* Nak: "Not artitate?, which is geneiated as the testi of an it wali operation
and also pepresents the concept of "negative zero

* Extaptation to se5 is teadily achievable

F.G. 3

<!--~~~~ $ #ffffffff;D-- - - - - - - - - - - -*~~~~ $3&######4

US 2008/0284.786 A1

E.

?

Nov. 20, 2008 Sheet 4 of 7

ELL

Patent Application Publication

Patent Application Publication

ENARESSABE

Nov. 20, 2008 Sheet 5 of 7

ANTAE, ASN3;SPP.E)

EASSISSS
(ANTAAS:NG}

INS St.
NET

ABS&SLE
(AN's ALASSS).

& S3

XE CCM.

POYGON OFFSET

FOLY GON
mir RASTERIZATION

N
SEGMENT

RASTER2AEON

PON .
RASTER2ATON “ GENERATION

i- Sists

RASS ERA

RAS ERASM

&

5& EX is R.A.EER

EXE

5

Sk

XE

XR

MEMORY
resssssssssssss FIG. 5A

US 2008/0284.786 A1

US 2008/0284.786 A1 Nov. 20, 2008 Sheet 6 of 7 Patent Application Publication

i.

US 2008/0284.786 A1 Nov. 20, 2008 Sheet 7 of 7

saararawasarawalalawarara-arrassrarakasawasakuraussuusur

Patent Application Publication

US 2008/028478.6 A1

DISPLAY SYSTEMI HAVING FLOATING
PONT RASTERIZATION AND FLOATING

PONT FRAMEBUFFERING

PRIORITY

0001. This patent application is a continuation of co-pend
ing U.S. patent application Ser. No. 09/614,363, filed Jul. 12,
2000, and entitled, “DISPLAY SYSTEM HAVING FLOAT
ING POINT RASTERIZATION AND FLOATING POINT
FRAMEBUFFERING, which in turn is a continuation of
U.S. patent application Ser. No. 09/098,041, now U.S. Pat.
No. 6,650,327, filed Jun. 16, 1998, and entitled, “DISPLAY
SYSTEM HAVING FLOATING POINTRASTERIZATION
AND FLOATING POINT FRAMEBUFFERING, the dis
closures of which are incorporated herein, in their entireties,
by reference.

TECHNICAL FIELD

0002 This invention relates to the field of computer graph
ics. Specifically, the present invention pertains to an appara
tus and process relating to floating point rasterization and
framebuffering in a graphics display system.

BACKGROUND ART

0003 Graphics software programs are well known in the
art. A graphics program consists of commands used to specify
the operations needed to produce interactive three-dimen
sional images. It can be envisioned as a pipeline through
which data pass, where the data are used to define the image
to be produced and displayed. The user issues a command
through the central processing unit of a computer system, and
the command is implemented by the graphics program. At
various points along the pipeline, various operations specified
by the user's commands are carried out, and the data are
modified accordingly. In the initial stages of the pipeline, the
desired image is framed using geometric shapes such as lines
and polygons (usually triangles), referred to in the art as
“primitives.” The vertices of these primitives define a crude
shell of the objects in the scene to be rendered. The derivation
and manipulation of the multitudes of Vertices in a given
scene, entail performing many geometric calculations.
0004. In the next stages, a scan conversion process is per
formed to specify which picture elements or “pixels' of the
display screen, belong to which of the primitives. Many
times, portions or “fragments’ of a pixel fall into two or more
different primitives. Hence, the more sophisticated computer
systems process pixels on a per fragment basis. These frag
ments are assigned attributes such as color, perspective (i.e.,
depth), and texture. In order to provide even better quality
images, effects such as lighting, fog, and shading are added.
Furthermore, anti-aliasing and blending functions are used to
give the picture a Smoother and more realistic appearance.
The processes pertaining to scan converting, assigning colors,
depth buffering, texturing, lighting, and anti-aliasing are col
lectively known as rasterization. Today's computer systems
often contain specially designed rasterization hardware to
accelerate 3-D graphics.
0005. In the final stage, the pixel attributes are stored in a
frame buffer memory. Eventually, these pixel values are read
from the frame buffer and used to draw the three-dimensional
images on the computer screen. One prior art example of a
computer architecture which has been Successfully used to

Nov. 20, 2008

build 3-D computer imaging systems is the OpenGL archi
tecture invented by Silicon Graphics, Inc. of Mountain View,
Calif.
0006 Currently, many of the less expensive computer sys
tems use its microprocessor to perform the geometric calcu
lations. The microprocessor contains a unit which performs
simple arithmetic functions. Such as add and multiply. These
arithmetic functions are typically performed in a floating
point notation. Basically, in a floating point format, data is
represented by the product of a fraction, or mantissa, and a
number raised to an exponent; in base 10, for example, the
number “n” can be presented by n-m.times. 10.sup.e. where
“m' is the mantissa and 'e' is the exponent. Hence, the
decimal point is allowed to “float.” Hence, the unit within the
microprocessor for performing arithmetic functions is com
monly referred to as the “floating point unit.” This same
floating point unit can be used in executing normal micropro
cessor instructions as well as in performing geometric calcu
lations in Support of the rendering process. In order to
increase the speed and increase graphics generation capabil
ity, some computer systems utilize a specialized geometry
engine, which is dedicated to performing nothing but geomet
ric calculations. These geometry engines have taken to han
dling its calculations on a floating point basis.
0007 Likewise, special hardware have evolved to accel
erate the rasterization process. However, the rasterization has
been done in a fixed point format rather than a floating point
format. In a fixed point format, the location of the decimal
point within the data field for a fixed point format is specified
and fixed; there is no exponent. The main reason why raster
ization is performed on a fixed point format is because it is
much easier to implement fixed point operations in hardware.
For a given set of operations, a fixed point format requires less
logic and circuits to implement in comparison to that of a
floating point format. In short, the floating point format per
mits greater flexibility and accuracy when operating on the
data in the pipeline, but requires greater computational
resources. Furthermore, fixed point calculations can be
executed much faster than an equivalent floating point calcu
lation. As such, the extra computational expenses and time
associated with having a floating point rasterization process
has been prohibitive when weighed against the advantages
conferred.

0008. In an effort to gain the advantages conferred by
operating on a floating point basis, some prior art systems
have attempted to perform floating point through software
emulation, but on a fixed point hardware platform. However,
this approach is extremely slow, due to the fact that the soft
ware emulation relies upon the use of a general purpose CPU.
Furthermore, the prior art software emulation approach
lacked a floating point frame buffer and could not be scanned
out. Hence, the final result must be converted back to a fixed
point format before being drawn for display. Some examples
offloating point Software emulation on a fixed point hardware
platform include Pixar's RenderMan software and software
described in the following publications: Olano, Marc and
Anselmo Lastra, “A Shading Language on Graphics Hard
ware: The PixelFlow Shading System.” Proceedings of SIG
GRAPH 98, Computer Graphics, Annual Conference Series,
ACM SIGGRAPH, 1998; and Anselmo Lastra, Steve Molnar,
Marc Olano, and Yulan Wang, “Real-Time Programmable
Shading.” Proceedings of the 1995 Symposium of Interactive
3D Graphics (Monterey, Calif., Apr. 9-12, 1995), ACM SIG
GRAPH, New York, 1995.

US 2008/028478.6 A1

0009 But as advances in semiconductor and computer
technology enable greater processing power and faster
speeds; as prices drop; and as graphical applications grow in
Sophistication and precision, it has been discovered by the
present inventors that it is now practical to implement some
portions or even the entire rasterization process by hardware
in a floating point format.
0010. In addition, in the prior art, data is stored in the
frame buffer in a fixed point format. This practice was con
sidered acceptable because the accuracy provided by the fixed
point format was considered satisfactory for storage pur
poses. Other considerations in the prior art were the cost of
hardware (e.g., memory chips) and the amount of actual
physical space available in a computer system, both of which
limited the number of chips that could be used and thus,
limited the memory available. Thus, in the prior art, it was not
cost beneficial to expand the memory needed for the frame
buffer because it was not necessary to increase the accuracy of
the data stored therein.
0011 Yet, as memory chips become less expensive, the
capability of a computer system to store greater amounts of
data increases while remaining cost beneficial. Thus, as
memory capacity increases and becomes less expensive, soft
ware applications can grow in complexity; and as the com
plexity of the software increases, hardware and software
designs are improved to increase the speed at which the
Software programs can be run. Hence, due to the improve
ments in processor speed and other improvements that make
it practical to operate on large amounts of data, it is now
possible and cost beneficial to utilize the valuable information
that can be provided by the frame buffer.
0012. Also, it is preferable to operate directly on the data
stored in the frame buffer. Operating directly on the frame
buffer data is preferable because it allows changes to be made
to the frame buffer data without having to unnecessarily
repeat some of the preceding steps in the graphics pipeline.
The information stored in the frame buffer is a rich source of
data that can be used in Subsequent graphics calculations.
However, in the prior art, some steps typically need to be
repeated to restore the accuracy of the data and allow it to be
operated on before it is read back into the frame buffer. In
other words, data would need to be read from the frame buffer
and input into the graphics program at or near the beginning
of the program, so that the data could be recalculated in the
floating point format to restore the required precision and
range. Thus, a disadvantage to the prior art is that additional
steps are necessary to allow direct operation on the frame
buffer data, thus increasing the processing time. This in turn
can limit other applications of the graphics program; for
example, in an image processing application, an image oper
ated on by the graphics program and stored in the frame buffer
could be subsequently enhanced through direct operation on
the frame buffer data. However, in the prior art, the accuracy
necessary to portray the desired detail of the image is lost, or
else the accuracy would have to be regenerated by repeated
passes through the graphics pipeline.
0013 Another drawback to the prior art is the limited
ability to take advantage of hardware design improvements
that could be otherwise employed, if direct operation on the
frame buffer without the disadvantages identified above was
possible. For example, a computer system could be designed
with processors dedicated to operating on the frame buffer,
resulting in additional improvements in the speed at which
graphics calculations are performed.

Nov. 20, 2008

0014 Consequently, the use of fixed point formatting in
the frame buffer is a drawback in the prior art because of the
limitations imposed on the range and precision of the data
stored in the frame buffer. The range of data in the prior art is
limited to 0 to 1, and calculation results that are outside this
range must be set equal to either 0 or 1, referred to in the art
as “clamping.” Also, the prior art does not permit Small
enough values to be stored, resulting in a loss of precision
because smaller values must be rounded off to the smallest
value that can be stored. Thus, the accuracy of the data cal
culated in the graphics pipeline is lost when it is stored in the
frame buffer. Moreover, in the prior art, the results that are
calculated by operating directly on the data in the frame
buffer are not as accurate as they can and need to be. There
fore, a drawback to the prior artis that the user cannot exercise
sufficient control over the quality of the frame buffer data in
Subsequent operations.
0015 Thus, there is a need for a graphical display system
which predominately uses floating point throughout the entire
geometry, rasterization, and frame buffering processes. The
present invention provides one such display system. Further
more, the display system of the present invention is designed
to be compatible to a practical extent with existing computer
systems and graphics Subsystems.

SUMMARY OF THE INVENTION

0016. The present invention provides a display system and
process whereby the geometry, rasterization, and frame
buffer predominately operate on a floating point format. Ver
tex information associated with geometric calculations are
specified in a floating point format. Attributes associated with
pixels and fragments are defined in a floating point format. In
particular, all color values exist as floating point format. Fur
thermore, certain rasterization processes are performed
according to a floating point format. Specifically, the scan
conversion process is now handled entirely on afloating point
basis. Texturing, fog, and antialiasing all operate on floating
point numbers. The texture map stores floating point texel
values. The resulting data are read from, operated on, written
to and stored in the frame buffer using floating point formats,
thereby enabling Subsequent graphics operations to be per
formed directly on the frame buffer data without any loss of
accuracy.
0017 Many different types offloating point formats exist
and can be used to practice the present invention. However, it
has been discovered that one floating point format, known as
“s 10e5, has been found to be particularly optimal when
applied to various aspects of graphical computations. As
Such, it is used extensively throughout the geometric, raster
ization and frame buffer processes of the present invention.
To optimize the range and precision of the data in the geom
etry, rasterization, and frame buffer processes, this particular
s10e5 floating point format imposes a 16-bit format which
provides one sign bit, ten mantissa bits, and five exponent
bits. In another embodiment, a 17-bit floating point format
designated as “s1 le5” is specified to maintain consistency
and ease of use with applications that uses 12 bits of mantissa.
Other formats may be used in accordance with the present
invention depending on the application and the desired range
and precision.

BRIEF DESCRIPTION OF THE DRAWINGS

0018 FIG. 1 shows a computer graphics system upon
which the present invention may be practiced.

US 2008/028478.6 A1

0019 FIG. 2 is a flow chart illustrating the stages for
processing data in a graphics program in accordance with the
present invention.
0020 FIG.3 is a tabulation of the representative values for

all possible bit combinations used in the preferred embodi
ment of the present invention.
0021 FIG. 4 shows a block diagram of the currently pre
ferred embodiment of the display system.
0022 FIG. 5 shows a more detailed layout of a display
system for implementing the floating point present invention.

BEST MODE FOR CARRYING OUT THE
INVENTION

0023 Reference will now be made in detail to the pre
ferred embodiments of the invention, examples of which are
illustrated in the accompanying drawings. While the inven
tion will be described in conjunction with the preferred
embodiments, it will be understood that they are not intended
to limit the invention to these embodiments. On the contrary,
the invention is intended to cover alternatives, modifications
and equivalents, which may be included within the spirit and
Scope of the invention as defined by the appended claims.
Furthermore, in the following detailed description of the
present invention, numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. However, it will be obvious to one of ordinary skill
in the art that the present invention may be practiced without
these specific details. In other instances, well known meth
ods, procedures, components, and circuits have not been
described in detail as not to unnecessarily obscure aspects of
the present invention.
0024. Some portions of the detailed descriptions which
follow are presented in terms of procedures, logic blocks,
processing, and other symbolic representations of operations
on data bits within a computer memory. These descriptions
and representations are the means used by those skilled in the
data processing arts to most effectively convey the Substance
of their work to others skilled in the art. In the present appli
cation, a procedure, logic block, process, or the like, is con
ceived to be a self-consistent sequence of steps or instructions
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
although not necessarily, these quantities take the form of
electrical, or magnetic signals capable of being stored, trans
ferred, combined, compared, and otherwise manipulated in a
computer system. It has proven convenient at times, princi
pally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, fragments, pixels,
or the like.

0025. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated that
throughout the present invention, discussions utilizing terms
Such as “processing.” “operating. "calculating.” “determin
ing.” “displaying,” or the like, refer to actions and processes
of a computer system or similar electronic computing device.
The computer system or similar electronic computing device
manipulates and transforms data represented as physical
(electronic) quantities within the computer system memories,
registers or other such information storage, transmission or

Nov. 20, 2008

display devices. The present invention is well suited to the use
of other computer systems, such as, for example, optical and
mechanical computers.
0026 Referring to FIG. 1, a computer graphics system
upon which the present invention may be practiced is shown
as 100. System 100 can include any computer-controlled
graphics systems for generating complex or three-dimen
sional images. Computer system 100 comprises abus or other
communication means 101 for communicating information,
and a processing means 102 coupled with bus 101 for pro
cessing information. System 100 further comprises a random
access memory (RAM) or other dynamic storage device 104
(referred to as main memory), coupled to bus 101 for storing
information and instructions to be executed by processor 102.
Main memory 104 also may be used for storing temporary
variables or other intermediate information during execution
of instructions by processor 102. Data storage device 107 is
coupled to bus 101 for storing information and instructions.
Furthermore, an input/output (I/O) device 108 is used to
couple the computer system 100 onto a network.
0027 Computer system 100 can also be coupled via bus
101 to an alphanumeric input device 122, including alphanu
meric and other keys, that is typically coupled to bus 101 for
communicating information and command selections to pro
cessor 102. Another type of user input device is cursor control
123. Such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec
tions to processor 102 and for controlling cursor movement
on, display 121. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), which allows the device to specify positions in a
plane.
0028. Also coupled to bus 101 is a graphics subsystem
111. Processor 102 provides the graphics subsystem 111 with
graphics data Such as drawing commands, coordinate vertex
data, and other data related to an object's geometric position,
color, and Surface parameters. The object data are processed
by graphics subsystem 111 in the following four pipelined
stages: geometry Subsystem, scan conversion Subsystem, ras
ter Subsystem, and a display Subsystem. The geometry Sub
system converts the graphical data from processor 102 into a
screen coordinate system. The scan conversion Subsystem
then generates pixel databased on the primitives (e.g., points,
lines, polygons, and meshes) from the geometry Subsystem.
The pixel data are sent to the raster Subsystem, whereupon
Z-buffering, blending, texturing, and anti-aliasing functions
are performed. The resulting pixel values are stored in a frame
buffer 140. The frame buffer is element 140, as shown in FIG.
2 of the present application. The display Subsystem reads the
frame buffer and displays the image on display monitor 121.
(0029. With reference now to FIG. 2, a series of steps for
processing and operating on data in the graphics Subsystem
111 of FIG. 1 are shown. The graphics program 130, also
referred to in the art as a state machine or a rendering pipeline,
provides a software interface that enables the user to produce
interactive three-dimensional applications on different com
puter systems and processors. The graphics program 130 is
exemplified by a system such as OpenGL by Silicon Graph
ics; however, it is appreciated that the graphics program 130
is exemplary only, and that the present invention can operate
within a number of different graphics systems or state
machines other than OpenGL.
0030. With reference still to FIG. 2, graphics program 130
operates on both vertex (or geometric) data 131 and pixel (or

US 2008/028478.6 A1

image) data 132. The process steps within the graphics pro
gram 130 consist of the display list 133, evaluators 134,
per-vertex operations and primitive assembly 135, pixel
operations 136, texture assembly 137, rasterization 138, per
fragment operations 139, and the frame buffer 140.
0031 Vertex data 131 and pixel data 132 are loaded from
the memory of central processor 102 and saved in a display
list 133. When the display list 133 is executed, the evaluators
134 derive the coordinates, or vertices, that are used to
describe points, lines, polygons, and the like, referred to in the
art as “primitives.” From this point in the process, vertex data
and pixel data follow a different route through the graphics
program as shown in FIG. 2.
0032. In the per-vertex operations 135A, vertex data 131
are converted into primitives that are assembled to represent
the Surfaces to be graphically displayed. Depending on the
programming, advanced features Such as lighting calcula
tions may also be performed at the per-vertex operations
stage. The primitive assembly 135B then eliminates unnec
essary portions of the primitives and adds characteristics Such
as perspective, texture, color and depth.
0033. In pixel operations 136, pixel data may be read from
the processor 102 or the frame buffer 140. A pixel map pro
cesses the data from the processor to add Scaling, for example,
and the results are then either written into texture assembly
137 or sent to the rasterization step 138. Pixel data read from
the frame buffer 140 are similarly processed within pixel
operations 136. There are special pixel operations to copy
data in the frame buffer to other parts of the frame buffer or to
texture memory. A single pass is made through the pixel
operations before the data are written to the texture memory
or back to the frame buffer. Additional single passes may be
Subsequently made as needed to operate on the data until the
desired graphics display is realized.
0034 Texture assembly 137 applies texture images—for
example, woodgrain to a table top—onto the Surfaces that are
to be graphically displayed. Texture image data are specified
from frame buffer memory as well as from processor 102
memory.

0035 Rasterization 138 is the conversion of vertex and
pixel data into “fragments. Each fragment corresponds to a
single pixel and typically includes data defining color, depth,
and texture. Thus, for a single fragment, there are typically
multiple pieces of data defining that fragment.
0036 Per-fragment operations 139 consist of additional
operations that may be enabled to enhance the detail of the
fragments. After completion of these operations, the process
ing of the fragment is complete and it is written as a pixel to
the frame buffer 140. Thus, there are typically multiple pieces
of data defining each pixel.
0037. With reference still to FIG. 2, the present invention
uses floating point formats in the process steps 131 through
139 of graphics program 130. In other words, the vertex data
is given in floating point. Likewise, the pixel data is also given
in floating point. The display list 133 and evaluators 134 both
operate on floating point values. All pixel operations in block
136 are performed according to a floating point format. Simi
larly, per-vertex operations and primitive assembly 135A are
performed on a floating point format. The rasterization 138 is
performed according to a floating point format. In addition,
texturing 137 is done on floating point basis, and the texture
values are stored in the texture memory as floating point. All
per-fragment operations are performed on a floating point

Nov. 20, 2008

basis. Lastly, the resulting floating point values are stored in
the frame buffer 140. Thereby, the user can operate directly on
the frame buffer data.

0038. For example, the maximum value that can be used in
the 8-bit fixed point format is 127 (i.e., 2-1), which is written
as 01111111 in binary, where the first digit represents the sign
(positive or negative) and the remaining seven digits represent
the number 127 in binary. In the prior art, this value is
clamped and stored as 1.0 in the frame buffer. In an 8-bit
floating point format, a value “n” is represented by the format
nS eee mmmmm, where's represents the sign, 'e' repre
sents the exponent, and “m' represents the mantissa in the
binary formula n-mx2. Thus, in a floating point format, the
largest number that can be written is 31x2", also written in
binary as 01111111. In the present invention, the value is
written to and stored in the frame buffer without being
clamped or otherwise changed. Thus, use of the floating point
format in the frame buffer permits greater flexibility in how a
number can be represented, and allows for a larger range of
values to be represented by virtue of the use a portion of the
data field to specify an exponent.
0039. The present invention uses floating point formats in
the frame buffer to increase the range of the data. “Range' is
used herein to mean the distance between the most negative
value and the most positive value of the data that can be
stored. The present invention permits absolute values much
greater than 1.0 to be stored in the frame buffer, thereby
enabling the user to generate a greater Variety of graphics
images. Increased range is particularly advantageous when
the user performs operations such as addition, multiplication,
or other operations well known and practiced in the art,
directly on the data in the frame buffer. Such operations can
result in values greater than 1.0, and in the present invention
these values can be written to and stored in the frame buffer
without clamping. Thus, the present invention results in a
Substantial increase in the range of data that can be stored in
the frame buffer, and preserves the range of data that was
determined in steps 131 through 139 of the graphics program
illustrated in FIG. 2.

0040. With reference still to FIG. 2, the present invention
utilizes floating point formats in the frame buffer 140 to
maintain the precision of the data calculated in the preceding
steps 131 through 139 of the graphics program 130. “Preci
sion' is used herein to mean the increment between any two
consecutive stored values of data. Precision is established by
the smallest increment that can be written in the format being
used. Increased precision is an important characteristic that
permits the present invention to store a greater number of
gradations of data relative to the prior art, thereby providing
the user with a greater degree of control over the graphics
images to be displayed. This characteristic is particularly
advantageous when the user performs an operation Such as
addition, multiplication, or other operations well known and
practiced in the art, on the data in the frame buffer. Such
operations can result in values that lie close to each other, i.e.,
data that are approximately but not equal to each other. In the
present invention; data typically can be stored without having
to be rounded to a value permitted by the precision of the
frame buffer. If rounding is needed, the present invention
permits the data to be rounded to a value very close to the
calculated values. Thus, the present invention results in a
Substantial increase in the precision of the data that can be
stored in the frame buffer relative to the prior art, and pre

US 2008/028478.6 A1

serves the precision of the data that was determined in steps
131 through 139 of the graphics program illustrated in FIG.2.
0041. In one embodiment of the present invention, a 16-bit
floating point format is utilized in the frame buffer. The 16 bits
available are applied so as to optimize the balance between
range and precision. The 16-bit floating point format utilized
in one embodiment of the present invention is designated
using the nomenclature's 10e5”, where “s' specifies one (1)
sign bit, “10 specifies ten (10) mantissa bits, and “e5' speci
fies five (5) exponent bits, with an exponent bias of 16. FIG.
3 defines the represented values for all possible bit combina
tions for the s10e5 format. In this embodiment, the smallest
representable number (i.e., precision) is 1.0000 0000
002' and the range is plus/minus 1.1111 1111 102'.
(In base 10, the range corresponds to approximately plus/
minus 65,000.) In this embodiment, the range and precision
provided by this specification are sufficient for operating
directly on the frame buffer. The 16-bit format in this embodi
ment thus represents a cost-effective alternative to the single
precision 32-bit IEEE floating point standard.
0042. However, it is appreciated that different sizes other
than 16-bit, such as 12-bit, 17-bit or 32-bit, can be used in
accordance with the present invention. In addition, other
floating point formats may be used in accordance with the
present invention by varying the number of bits assigned to
the mantissa and to the exponent (a sign bit is typically but not
always needed). Thus a floating point format can be-specified
in accordance with the present invention that results in the
desired range and precision. For example, if the format speci
fied is “s9e6' (nine mantissa bits and six exponent bits), then
relative to the s10e5 format a greater range of data is defined
but the precision is reduced. Also, a 17-bit format designated
as “s 11 e5” may be used in accordance with the present inven
tion to preserve 12 bits of information, for consistency and
ease of application with programs and users that work with a
12-bit format.
0043. In the present invention, the user can apply the same
operation to all of the data in the frame buffer, referred to in
the art as Single Instruction at Multiple Data (SIMD). For
example, with reference back to FIG. 2, the user may wish to
add an image that is coming down the rendering pipeline 130
to an image already stored in the frame buffer 140. The image
coming down the pipeline is in floating point format, and thus
in the present invention is directly added to the data already
stored in the frame buffer that is also in floating point format.
The present invention permits the results determined by this
operation to be stored in the frame buffer without a loss of
precision. Also, in the present invention the permissible range
is greater than 1.0, thereby permitting the results from the
operation to be stored without being clamped.
0044) With continued reference to FIG. 2, in the present
invention the data in the frame buffer 140 are directly oper
ated on within the graphics program without having to pass
back through the entire graphics program to establish the
required range and precision. For example, it is often neces
sary to copy the data from the texture memory 137 to the
frame buffer 140, then back to the texture memory and back
to the frame buffer, and so on until the desired image is
reached. In the present invention, such an operation is com
pleted without losing data range and precision, and without
the need to pass the data through the entire graphics program
130.

0.045 For example, agraphics program in accordance with
the present invention can use multipass graphics algorithms

Nov. 20, 2008

Such as those that implement lighting or shading programs to
modify the frame buffer data that define the appearance of
each pixel. The algorithm approximates the degree of lighting
or shading, and the component of the data that specifies each
of these characteristics is adjusted accordingly. Multiple
passes through the shading/lighting program may be needed
before the desired effect is achieved. In the present invention,
the results of each pass are accumulated in the present inven
tion frame buffer, and then used for the basis for subsequent
passes, without a loss of precision or range. Such an operation
requires the use of floating point formats in the frame buffer
to increase the speed and accuracy of the calculations.
0046. Also, in the present invention the user of the graph
ics program is able to enhance a portion of data contained
within the frame buffer. For example, such an application will
arise when the data loaded into the frame buffer represent an
image obtained by a device capable of recording images that
will not be visible to the human eye when displayed, such as
an image recorded by a video camera in very low light, or an
infrared image. The present invention is capable of storing
such data in the frame buffer because of the range and preci
sion permitted by the floating point format. The user specifies
a lower threshold for that component of the data representing
how bright the pixel will be displayed to the viewer. Data
falling below the specified threshold are then operated on to
enhance them; that is, for each piece of data below the thresh
old, the component of the data representing brightness is
increased by addition, until the brightness is increased suffi
ciently so that the displayed image can be seen by the human
eye. Such an operation is possible because of the precision of
the data stored in the frame buffer in the present invention.
Other operations involving the manipulation of the data in the
frame buffer are also possible using the present invention.
0047. Therefore, in the present invention the data are read
from the frame buffer, operated on, then written back into the
frame buffer. The use of a floating point frame buffer permits
operation on the data stored in the frame buffer without a loss
of range and precision. The floating point format is specified
to optimize the range and precision required for the desired
application. The present invention also allows the data stored
in the frame buffer to be operated on and changed without the
effort and time needed to process the data through the graph
ics program 130 of FIG. 2. As such, the present invention will
increase the speed at which operations can be performed,
because it is not necessary to performall the steps of a graph
ics program to adequately modify the data in the frame buffer.
In addition, processing speed is further improved by applying
hardware such as processor chips and computer hard drives to
work directly on the frame buffer. Thus, application of the
present invention provides the foundation upon which related
hardware design improvements can be based, which could
not be otherwise utilized.

0048 Referring now to FIG. 4, a block diagram of the
currently preferred embodiment of the display system 400 is
shown. Display system 400 operates on vertices, primitives,
and fragments. It includes an evaluator 401, which is used to
provide a way to specify points on a curve or Surface (or part
of a surface) using only the control points. The curve or
Surface can then be rendered at any precision. In addition,
normal vectors can be calculated for Surfaces automatically.
The points generated by an evaluator can be used to draw dots
where the surface would be, to draw a wireframe version of
the Surface, or to draw a fully lighted, shaded, and even
textured version. The values and vectors associated with

US 2008/028478.6 A1

evaluator and vertex arrays 401 are specified in a floating
point format. The vertex array contains a block of vertex data
which are stored in an array and then used to specify multiple
geometric primitives through the execution of a single com
mand. The vertex data, Such as vertex coordinates, texture
coordinates, Surface normals, RGBA colors, and color indi
ces are processed and stored in the vertex arrays in a floating
point format. These values are then converted and current
values are provided by block 402. The texture coordinates are
generated in block 403. The lighting process which computes
the color of a vertex based on current lights, material proper
ties, and lighting-model modes is performed in block 404. In
the currently preferred embodiment, the lighting is done on a
per pixel basis, and the result is a floating point color value.
The various matrices are controlled by matrix control block
405.

0049 Block 406 contains the clipping, perspective, and
viewport application. Clipping refers to the elimination of the
portion of a geometric primitive that is outside the half-space
defined by a clipping plane. The clipping algorithm operates
on floating point values. Perspective projection is used to
perform foreshortening so that he fartheran object is from the
viewport, the Smallerit appears in the final image. This occurs
because the viewing Volume for a perspective projection is a
frustum of a pyramid. The matrix for a perspective-view
frustum is defined by floating point parameters. Selection and
feedback modes are provided in block 407. Selection is a
mode of operation that automatically informs the user which
objects are drawn inside a specified region of a window. This
mechanism is used to determine which object within the
region a user is specifying or picking with the cursor. In
feedback mode, the graphics hardware is used to perform the
usual rendering calculations. Instead of using the calculated
results to draw an image on the screen, however, this drawing
information is returned. Both feedback and selection modes
Support the floating point format.
0050. The actual rasterization is performed in block 408.
Rasterization refers to converting a projected point, line, or
polygon, or the pixels of a bitmap or image, to fragments,
each corresponding to a pixel in the frame buffer 412. Note
that all primitives are rasterized. This rasterization process is
performed exclusively in a floating point format. Pixel infor
mation is stored in block 409. A single pixel (x,y) refers to the
bits at location (x,y) of all the bitplanes in the frame buffer
412. The pixels are all in floating point format. A single block
410 is used to accomplish texturing, fog, and anti-aliasing.
Texturing refers to the process of applying an image (i.e., the
texture) to a primitive. Texture mapping, texels, texture val
ues, texture matrix, and texture transformation are all speci
fied and performed in floating point. The rendering technique
known as fog, which is used to simulate atmospheric effects
(e.g., haze, fog, and Smog), is performed by fading object
colors in floating point to a background floating point color
value(s) based on the distance from the viewer. Antialiasingis
a rendering technique that assigns floating point pixel colors
based on the fraction of the pixel’s area that is covered by the
primitive being rendered. Antialiased rendering reduces or
eliminates the jaggies that result from aliased rendering. In
the currently preferred embodiment, blending is used to
reduce two floating point color components to one floating
point color component. This is accomplished by performing a
linear interpolation between the two floating point color com
ponents. The resulting floating point values are stored in
frame buffer 412. But before the floating point values are

Nov. 20, 2008

actually stored into the frame buffer 412, a series of opera
tions are performed by per-fragment operations block 411
that may alter or even throw out fragments. All these opera
tions can be enabled or disabled. It should be noted that
although many of these blocks are described above in terms of
floating point, one or several of these blocks can be performed
in fixed point without departing from the scope of the present
invention. The blocks of particular interest with respect to
floating point include the rasterization 408; pixels 409; tex
turing fog, and antialiasing 410, per-fragment operations 411;
and frame buffer and frame buffer control 412 blocks.

0051 FIG. 5 shows a more detailed layout of a display
system for implementing the floating point present invention.
In the layout, the process flows from left to right. Graphics
commands, Vertex information, and pixel data generated by
previous circuits are input to the polygon rasterization 501,
line segment rasterization 502, point rasterization 503, bit
map rasterization 504, and pixel rasterization 505. Floating
point format can be applied to any and/or all of these five
rasterization functions. In particular, the polygons are raster
ized according to floating point values. The outputs from
these five blocks 501-505 are all fed into the texel generation
block 506. In addition, texture data stored in texture memory
507 is also input to texel generation block 506. The texture
data is stored in the texture memory 507 in a floating point
format. Texel values are specified in a floating point format.
The texel data is then applied to the texture application block
508. Thereupon, fog effects are produced by fog block 509.
Fog is achieved by fading floating point object colors to a
floating point background color. A coverage application 510
is used to provide antialiasing. The antialiasing algorithm
operates on floating point pixels colors. Next, several tests are
executed. The pixel ownership test 511 decides whether or
not a pixel’s stencil, depth, index, and color values are to be
cleared. The scissor test 512 determines whether a fragment
lies within a specified rectangular portion of a window. The
alpha test 513 allows a fragment to be accepted or rejected
based on its alpha value. The stencil test 514 compares a
reference value with the value stored at a pixel in the stencil
buffer. Depending on the result of the test, the value in the
stencil buffer is modified. A depth buffer test 515 is used to
determine whether an incoming depth value is in front of a
pre-existing depth value. If the depth test passes, the incom
ing depth value replaces the depth value already in the depth
buffer. Optionally, masking operations 519 and 520 can be
applied to data before it is written into the enabled color,
depth, or stencil buffers. A bitwise logical AND function is
performed with each mask and the corresponding data to be
written.

0.052 Blending 516 is performed on floating point RGBA
values. Color resolution can be improved at the expense of
spatial resolution by dithering 517 the color in the image. The
final operation on a fragment is the logical operation 518.
such as an OR, XOR, or INVERT, which is applied to the
incoming fragment values and/or those currently in the color
buffer. The resulting floating point values are stored in the
frame buffer 522 under control of 521. Eventually, these
floating point values are read out and drawn for display on
monitor 523. Again, it should be noted that one or more of the
above blocks can be implemented in a fixed point format
without departing from the scope of the present invention.
However, the blocks of particular importance for implemen
tation in a floating point format include the polygon raster

US 2008/028478.6 A1

ization 501, texel generation 506, texture memory 507, fog
509, blending 516, and frame buffer 522.
0053. In the currently preferred embodiment, the proces
sor for performing geometric calculations, the rasterization
circuit, and the frame buffer all reside on a single semicon
ductor chip. The processor for performing geometric calcu
lations, the rasterization circuit, and the frame buffer can all
have the same substrate on that chip. Furthermore, there may
be other units and/or circuits which can be incorporated onto
this single chip. For instance, portions or the entirety of the
functional blocks shown in FIGS. 4 and 5 can be fabricated
onto a single semiconductor chip. This reduces pin count,
increases bandwidth, consolidates the circuit board area,
reduces power consumption, minimizes wiring requirements,
and eases timing constraints. In general, the design goal is to
combine more components onto a single chip.
0054 The preferred embodiment of the present invention,
a floating point frame buffer, is thus described. While the
present invention has been described in particular embodi
ments, it should be appreciated that the present invention
should not be construed as limited by such embodiments, but
rather construed according to the following claims.
What is claimed is:
1. A rendering circuit comprising:
a geometry processor;
a rasterizer coupled to the geometry processor, the raster

izer comprising a scan converter having an input and an
output, the scan converter being configured to scan con
vert data received at the input, at least a portion of the
data received at the input being in floating point format,
the scan converter being configured to output data from
the output, at least a portion of the data from the output
being floating point data; and

a frame buffer coupled to the rasterizer for storing a plu
rality of color values in floating point format.

2. The rendering circuit as defined by claim 1 wherein the
scan converter is configured to Scan convert on an entirely
floating point basis.

3. The rendering circuit as defined by claim 1 wherein the
data received at the input comprises color data.

4. The rendering circuit as defined by claim 1 wherein the
rasterizer further includes a floating point texture circuit.

5. The rendering circuit as defined by claim 1 wherein the
rasterizer further includes a floating point texture memory.

6. The rendering circuit as defined by claim 1 wherein the
rasterizer further includes a floating point fog circuit.

7. The rendering circuit as defined by claim 1 wherein the
rasterizer further includes a floating point blender.

8. The rendering circuit as defined by claim 1 wherein the
rasterizer further includes a floating point lighting circuit.

9. The rendering circuit as defined by claim 1 wherein the
rasterizer operates entirely on a floating point basis.

10. The rendering circuit as defined by claim 1 further
comprising a circuit board coupled with the geometry pro
cessor, rasterizer, and frame buffer.

11. A rendering circuit comprising:
a rasterizer for performing a rasterization process, at least

a portion of the rasterization process performed in a
floating point format; and

a floating point frame buffer coupled to the rasterizer for
storing a plurality of floating point color values.

12. The rendering circuit as defined by claim 11 wherein
the floating point color values are read out from the frame
buffer in the floating point format for display.

Nov. 20, 2008

13. The rendering circuit as defined by claim 11 wherein
the rasterization process is performed on an entirely floating
point basis.

14. The rendering circuit as defined by claim 11 wherein
the rasterizer comprises an input and an output, the rasterizer
configured to process floating point data received at the input,
the rasterizer configured to output floating point data at the
output.

15. The rendering circuit as defined by claim 11 wherein
the rasterizer includes a floating point texture circuit.

16. The rendering circuit as defined by claim 11 wherein
the rasterizer includes a floating point texture memory.

17. The rendering circuit as defined by claim 11 wherein
the rasterizer includes a floating point fog circuit.

18. The rendering circuit as defined by claim 11 wherein
the rasterizer includes a floating point blender.

19. The rendering circuit as defined by claim 11 wherein
the rasterizer includes a floating point lighting circuit.

20. The rendering circuit as defined by claim 11 wherein
the rasterizer includes a floating point Scan converter.

21. The rendering circuit as defined by claim 11 further
comprising a circuit board coupled with the rasterizer and
frame buffer.

22. A rendering circuit comprising:
a rasterizer including at least one of a floating point fog

Subsystem and a floating point texture Subsystem; and
a frame buffer coupled to the rasterizer for storing a plu

rality of color values in the floating point format.
23. The rendering circuit as defined by claim 22 wherein

the rasterizer comprises both the floating point fog Subsystem
and the floating point texture Subsystem.

24. The rendering circuit as defined by claim 22 wherein
the at least one floating point fog Subsystem is configured to
perform fog operations on an entirely floating point basis.

25. The rendering circuit as defined by claim 22 wherein
the at least one floating point texture Subsystem is configured
to perform texture operations on an entirely floating point
basis.

26. The rendering circuit as defined by claim 22 wherein
the rasterizer comprises an input and an output, the rasterizer
configured to process floating point data received at the input,
the rasterizer configured to output floating point data at the
output.

27. The rendering circuit as defined by claim 22 wherein
the rasterizer further comprises at least one of a floating point
blending Subsystem and a floating point antialiasing Sub
system.

28. The rendering circuit as defined by claim 22 further
comprising texture memory configured to store texture data
on a floating point basis.

29. A rendering circuit comprising:
a geometry processor configured to perform geometric

calculations on a plurality of Vertices of a three-dimen
sional primitive;

a rasterizer coupled with the geometry processor, the ras
terizer comprising a first raster portion and a second
raster portion, the first raster portion configured to trans
late three-dimensional primitives into a set of corre
sponding fragments or pixels, the second raster portion
configured to fill-in the set offragments or pixels, at least
a portion of the second raster portion operating on a
floating point basis; and

a floating point frame buffer coupled to the rasterizer for
storing a plurality of floating point color values.

US 2008/028478.6 A1

30. The rendering circuit as defined by claim 29 wherein
the first raster portion operates on an entirely floating point
basis.

31. The rendering circuit as defined by claim 29 wherein
the second raster portion includes a floating point texture
circuit.

32. The rendering circuit as defined by claim 29 wherein
the second raster portion includes a floating point texture
memory.

33. The rendering circuit as defined by claim 29 wherein
the second raster portion includes a floating point fog circuit.

34. The rendering circuit as defined by claim 29 wherein
the second raster portion includes a floating point blender.

35. The rendering circuit as defined by claim 29 wherein
the second raster portion includes a floating point lighting
circuit.

36. The rendering circuit as defined by claim 29 where the
second raster portion operates entirely on a floating point
basis.

37. The rendering circuit as defined by claim 29 where the
second raster portion operates at least in part on a fixed point
basis

38. A rendering circuit comprising:
means for performing geometric calculations on a plurality

of vertices of a primitive; and
buffer means for storing a plurality of color values in the

floating point format.
39. The rendering circuit as defined by claim 38 further

comprising means for rasterizing the primitive at least par
tially on a floating point basis.

40. The rendering circuit as defined by claim 39 wherein
the rasterizing means comprises means for filling fragments
and pixels on an entirely floating point basis.

41. The rendering circuit as defined by claim 39 wherein
the rasterizing means comprises means for Scan converting on
an entirely floating point basis.

42. A rendering circuit comprising:
a floating point frame buffer for storing a plurality offloat

ing point color values, the floating point color values
being written to, read from, and stored in the frame
buffer using a specification of the floating point color
values that corresponds to a level of range and precision.

43. A rendering circuit comprising:
a floating point frame buffer for storing a plurality offloat

ing point color values, the frame buffer being configured
So that floating point color values can be written to, read
from, and stored in the frame buffer using a specification
of the floating point color values that corresponds to a
level of range and precision.

44. The rendering circuit as defined by claim 43 further
comprising a read block configured to read floating point
color values from the frame buffer.

45. The rendering circuit as defined by claim 43 further
comprising a write block configured to write floating point
color values to the frame buffer.

Nov. 20, 2008

46. The rendering circuit as defined by claim 45 further
comprising:

a read block configured to read floating point color values
from the frame buffer; and

a operation block configured to operate directly on floating
point color values read from the frame buffer.

47. The rendering circuit as defined by claim 43 further
comprising a rasterizer that at least partially operates on a
floating point basis.

48. In a rendering circuit, a method for operating on data
stored in a frame buffer, the method comprising:

storing the data in the frame buffer in a floating point
format;

reading the data from the frame buffer in the floating point
format; and

writing the data to the frame buffer in the floating point
format,

writing, storing, and reading the data in the frame buffer in
the floating point format further comprising a specifica
tion of the floating point format, wherein the specifica
tion corresponds to a level of range and precision.

49. The method as defined by claim 48 further comprising
operating directly on the data in the floating point format.

50. The method as defined by claim 49 wherein storing is
performed before reading, reading is performed before oper
ating, and operating is performed before writing.

51. The method as defined by claim 48 wherein storing is
performed before reading, reading being performed before
writing.

52. A rendering circuit comprising:
a rasterizer for performing a rasterization process; and
a hardware floating point frame buffer coupled to the ras

terizer for storing a plurality of floating point color val
CS.

53. The rendering circuit as defined by claim 52 wherein
the frame buffer and rasterizer are implemented on a single
chip.

54. The rendering circuit as defined by claim 53 wherein at
least a portion of the rasterization process is performed in a
floating point format.

55. The rendering circuit as defined by claim 52 wherein
the rasterizer and frame buffer form a dedicated rendering
pipeline.

56. The rendering circuit as defined by claim 52 further
comprising a block configured to read floating point color
values from the frame buffer.

57. The rendering circuit as defined by claim 56 wherein
the floating point color values are processed to produce pro
cessed floating point color values, the circuit further compris
ing a store block configured to store processed floating point
color values in the frame buffer.

c c c c c

