发明名称
引导装置以及引导方法

摘要
提供一种引导装置、引导方法以及引导程序，可以对驾驶者进行适于再生能量的回收并且适于安全性的制动器操作量的引导，在具备摩擦制动器和再生制动器的车辆，进行与制动器踏板的操作量有关的引导的引导装置（80）具备；再生上限操作量计算部（81a），根据当前速度计算作为只有再生制动器作动的制动器踏板的操作量的上限值的再生上限操作量；安全减速必要操作量计算部（81b），根据当前速度、减速目标速度以及到减速目标位置的距离计算减速必要操作量，该减速必要操作量即为了使当前速度在减速目标位置成为减速目标速度所需要的制动器踏板的操作量；引导控制部（81d），根据再生上限操作量和减速必要操作量进行与制动器踏板的操作量有关的引导控制。
权利要求书

1. 一种引导装置，在装备了摩擦制动器和再生制动器的车辆上进行有关制动器踏板的操作量的引导，并具备减速必要操作量计算单元，该减速必要操作量计算单元根据车辆的当前速度、减速目标速度以及到减速目标位置为止的距离计算出减速必要操作量，即用来使上述车辆的当前速度在上述减速目标位置成为上述减速目标速度所需要的上述制动器踏板的操作量，其特征在于，具备：

再生上限操作量计算单元，根据上述车辆的当前速度计算出再生上限操作量，即只有上述再生制动器作用的上述制动器踏板的操作量的上限值；和

引导控制单元，根据上述再生上限操作量计算单元计算出的再生上限操作量和上述减速必要操作量计算单元计算出的减速必要操作量，进行有关上述制动器踏板的操作量的引导控制。

2. 按照权利要求1所述的引导装置，其中，

具备用来取得当前操作量、即上述制动器踏板的当前的操作量的当前操作量取得单元。

上述引导控制单元根据上述再生上限操作量计算单元计算出的再生上限操作量和上述减速必要操作量计算单元计算出的减速必要操作量和上述当前操作量取得单元取得的当前操作量，进行有关上述制动器踏板的操作量的引导控制。

3. 按照权利要求2所述的引导装置，其中，

上述引导控制单元进行以上述制动器踏板的上限操作量为基准的引导控制。

4. 按照权利要求3所述的引导装置，其中，

上述引导控制单元进行在作为显示上述制动器踏板的操作量的显示区域的，从与该制动器踏板的非操作状态对应的位置至与上述上限操作量对应的显示区域中，使显示上述当前操作量取得单元取得的当前操作量的当前操作量显示部、显示上述再生上限操作量计算单元计算出的再生上限操作量的再生上限操作量显示部、以及显示上述减速必要操作量计算单元计算出的减速必要操作量的减速必要操作量显示部显示的引导控制。

5. 按照权利要求1所述的引导装置，其中，

上述引导控制单元进行以上述制动器踏板的上限操作量为基准的引导控制。

6. 按照权利要求5所述的引导装置，其中，

具备用来取得当前操作量、即上述制动器踏板的当前的操作量的当前操作量取得单元。

上述引导控制单元进行在作为显示上述制动器踏板的操作量的显示区域的，从与该制动器踏板的非操作状态对应的位置至与上述上限操作量对应的显示区域中，使显示上述当前操作量取得单元取得的当前操作量的当前操作量显示部、显示上述再生上限操作量计算单元计算出的再生上限操作量的再生上限操作量显示部、以及显示上述减速必要操作量计算单元计算出的减速必要操作量的减速必要操作量显示部显示的引导控制。

7. 一种引导方法，是在装备了摩擦制动器和再生制动器的车辆上进行有关制动器踏板的操作量的引导的引导方法，并具备减速必要操作量计算步骤，该减速必要操作量计算步骤根据车辆的当前速度、减速目标速度以及到到达减速目标位置为止的距离，计算出减速必要操作量，即用来使上述车辆的当前速度在上述减速目标位置成为上述减速目标速度所需要的上述制动器踏板的操作量，其特征在于，具备：

2
再生上限操作量计算步骤，根据上述车辆的当前速度，计算出再生上限操作量，即只有上述再生制动器作动的上述制动器踏板的操作量的上限值；和

引导控制步骤，根据在上述再生上限操作量计算步骤中计算出的再生上限操作量和在上述减速必要操作量计算步骤中计算出的减速必要操作量，进行有关上述制动器踏板的操作量的引导控制。
引导装置以及引导方法

技术领域
[0001] 本发明涉及引导装置、引导方法以及引导程序。
[0002] 背景技术
[0003] 以往，关于用电机和发动机作为驱动源的混合动力车辆，提出了一种在车辆减速时，对与电机的制动力和油压式制动器的制动力的各自的分配比率相对应的区域进行显示的显示装置（例如参照专利文献1）。另外，关于混合动力车辆，提出了一种在进行制动器操作时，对通过当前的制动器操作回收的再生能量的能级进行表示的运行控制系统（例如参照专利文献2）。
[0004] [专利文献1]：日本特开2007-314100号公报（[0033]段）
[0005] [专利文献2]：日本特开2007-186045号公报（[0046]段）
[0006] 但是，制动器操作的基本目的是将车辆的当前速度在前方的减速度目标位置上减至希望的速度。对此，在如上所述的以往的装置中，没有考虑为了在减速度目标位置减至希望的速度所需要的制动器的操作量，只显示了通过当前的制动器操作能够回收的再生能量的能级等，所以无法向驾驶者引导适于再生能量的回收并且适于安全性的制动器操作量。
[0007] 发明内容
[0008] 本发明是鉴于上述问题而完成的，本发明的目的是提供一种引导装置、引导方法以及引导程序，可以向驾驶者引导适于再生能量的回收并且适于安全性的制动器操作量。
[0009] 为了解决上述问题并达成其目的，本发明之1所述的引导装置，在装备了摩擦制动器和再生制动器的车辆上进行有关制动器踏板的操作量的引导，其中，具备：再生上限操作量计算单元，根据上述车辆的当前速度计算出再生上限操作量、即只有上述再生制动器作用的上述制动器踏板的操作量的上限值；减速必要操作量计算单元，根据车辆的当前速度、减速度目标值以及到减速度目标位置为止的距离计算出减速必要操作量、即用来使上述车辆的当前速度在上述减速度目标位置成为上述减速度目标值所需要的上述制动器踏板的操作量；和引导控制单元，根据上述再生上限操作量计算单元计算出的再生上限操作量和上述减速必要操作量计算单元计算出的减速必要操作量，进行有关上述制动器踏板的操作量的引导控制。
[0010] 另外，本发明之2所述的引导装置，在本发明之1所述的引导装置中，其中，具备用来取得当前操作量、即上述制动器踏板的当前的操作量的当前操作量取得单元，上述引导控制单元根据上述再生上限操作量计算单元计算出的再生上限操作量、上述减速必要操作量计算单元计算出的减速必要操作量和上述当前操作量取得单元取得的当前操作量，进行有关上述制动器踏板的操作量的引导控制。
[0011] 另外，本发明之3所述的引导装置，在本发明之1或者本发明之2所述的引导装置中，上述引导控制单元进行上述制动器踏板的上限操作量为基准的引导控制。
[0012] 另外，本发明之4所述的引导装置，在本发明之3所述的引导装置中，具备用来取得当前操作量、即上述制动器踏板的当前的操作量的当前操作量取得单元，上述引导控制单元进行在作为显示上述制动器踏板的操作量的显示区域的、从与该制动器踏板的非操作
状态对应的位置至与上述上限操作量对应的位置的显示区域中，使显示上述当前操作量取得单元取得的当前操作量的当前操作量显示部、显示再生上限操作量计算单元计算出的再生上限操作量的再生上限操作量显示部，以及显示上述减速必要操作量计算单元计算出的减速必要操作量的减速必要操作量显示部显示的引导控制。

【0013】另外，本发明之5所述的引导方法，在装备了摩擦制动器和再生制动器的车辆上进行有关制动器踏板的操作量的引导的引导方法，其中，具备：再生上限操作量计算步骤，根据上述车辆的当前速度，计算出再生上限操作量，即只有上述再生制动器作动的上述制动器踏板的操作量的上限值，减速必要操作量计算步骤，根据车辆的当前速度，上述减速目标速度以及到达上述减速目标位置为止的距离，计算出减速必要操作量，即用来使上述车辆的当前速度在减速目标位置成为减速目标速度所需要的上述制动器踏板的操作量；引导控制步骤，根据在上述再生上限操作量计算步骤中计算出的再生上限操作量和在上述减速必要操作量计算步骤中计算出的减速必要操作量，进行有关上述制动器踏板的操作量的引导控制。

【0014】另外，本发明之6所述的引导程序用来使计算机执行本发明之5所述的方法。

【0015】根据本发明之1所述的引导装置，本发明之5所述的引导方法以及本发明之6所述的引导程序，计算出再生上限操作量和减速必要操作量，并根据这些再生上限操作量和减速必要操作量进行有关制动器踏板的操作量的引导控制，因此能够向驾驶者引导基于可回收再生能量的制动器踏板的操作量和使车辆的当前速度在减速目标位置变为减速目标速度所需要的制动器踏板的操作量的引导。因此，驾驶者可以进行考虑了这些再生上限操作量和减速必要操作量的制动器操作，除了有效地回收制动能量外，也容易进行考虑了安全性的减速。

【0016】另外，根据本发明之2所述的引导装置，除了再生上限操作量和减速必要操作量之外还计算出当前操作量，根据这些再生上限操作量，减速必要操作量和当前操作量进行有关制动器踏板的操作量的引导控制，所以可以向驾驶者引导基于再生上限操作量和减速必要操作量以及当前操作量的引导。因此，驾驶者可以进行考虑了再生上限操作量和减速必要操作量以及当前的制动器踏板的操作量的制动器操作，除了有效地回收制动能量以外，也使考虑了安全性的减速更加容易进行。

【0017】另外，根据本发明之3所述的引导装置，进行以制动器踏板的上限操作量为基准的引导控制，因此驾驶者可以以制动器踏板的上限操作量为基准考虑再生上限操作量、减速必要操作量或者当前操作量的相对关系。

【0018】另外，根据本发明之4所述的引导装置，因为进行在从与制动器踏板的非操作状态相对应的位置开始至与上限操作量相对应的位置的显示区域中，使当前操作量显示部、再生上限操作量显示部以及减速必要操作量显示部显示的引导控制，所以驾驶者能够以制动器踏板的非操作状态和上限操作量为基准来把握再生上限操作量、减速必要操作量或者当前操作量的相互的相关关系，并且通过目视在相同的显示区域中显示的再生上限操作量、减速必要操作量或者当前操作量容易地把握它们之间的相互的相对关系。因此，例如，驾驶者能够识别制动器踏板的当前操作量对于再生上限操作量和减速必要操作量来说是否适当。
附图说明

[0019] 图 1 是本发明的实施方式涉及的引致系统的方框图。

[0020] 图 2 是实施方式涉及的引致处理的流程图。

[0021] 图 3 是表示再生上限操作量、安全减速必要操作量或当前操作量的显示装置上的显示例的图。

[0022] 图 4 是图 3 的继续，是表示再生上限操作量、安全减速必要操作量或当前操作量的显示装置上的显示例的图。

[0023] 图 5 是表示再生上限操作量、安全减速必要操作量或当前操作量的显示装置上的显示例的变形例的图。

[0024] 符号的说明：

[0025] 1... 引导系统
[0026] 10... 当前位置检测处理部
[0027] 20... 车速传感器
[0028] 30... 门锁机构
[0029] 40... 制动器机构
[0030] 50... 电池控制部
[0031] 60... 显示器
[0032] 70... 扬声器
[0033] 80... 引导装置
[0034] 81... 控制部
[0035] 81a... 再生上限操作量计算部
[0036] 81b... 安全减速必要操作量计算部
[0037] 81c... 当前操作量取得部
[0038] 81d... 引导控制部
[0039] 82... 数据记录部
[0040] 82a... 地图信息 DB
[0041] 90... 显示区域
[0042] 91... 区域
[0043] 92... 当前操作量显示部
[0044] 93... 再生上限操作量显示部
[0045] 94... 安全减速必要操作量显示部
[0046] P1... 非操作位置
[0047] P2... 上限操作位置

具体实施方式

[0048] 以下参照附图详细说明本发明涉及的引导装置、引导方法以及引致程序的实施方式。但是，本发明并不限定于此实施方式。

[0049] （构成）

[0050] 首先，对本实施方式涉及的引致系统的构成进行说明。图 1 是举例说明本实施方
式涉及的引导系统1的方框图。如图1所示，引导系统1具备当前位置检测处理部10、车速
传感器20、油门机构30、制动器机构40、电池控制部50、显示装置60、扬声器70以及引导装
置80。
[0051]（构成-当前位置检测处理部）
[0052]当前位置检测处理部10是用来检测安装有引导装置80的车辆（以下，本车辆）
的当前位置的当前位置检测单元。具体来说，当前位置检测处理部10至少具有GPS、地磁传
感器、距离传感器、或者是陀螺仪传感器（全部省略图示）中的至少一个，用周知的方法检
测出当前本车辆的位置（坐标）以及方位等。
[0053]（构成-车速传感器）
[0054]车速传感器20将本车辆的车轮的旋转速度等向引导装置80输出，可以使用周知
的车速传感器20。
[0055]（构成-油门机构）
[0056]油门机构30是本车辆的驱动机构。该油门机构30根据油门踏板（省略图示）的
操作量（踏入量）来控制发动机和电机，由周知的机构构成。该油门机构30将油门踏板的
当前的操作量，即油门踏板当前操作量向引导装置80输出。
[0057]（构成-制动器机构）
[0058]制动器机构40是本车辆的制动机构。该制动器机构40由摩擦制动器（油压式制
动器）和再生制动器2种组合构成，可以用制动器踏板（省略图示）来操作这2种制动
器。也就是说，本车辆作为搭载有作为动力源的发动机及电机的混合动力汽车而构成，能
够把利用本车辆的制动能量再生发电的电力对电池中蓄电，并利用该电池的电力对电机进
行驱动等（全部省略图示）。而且，在制动器踏板上设置了用来检测制动器踏板的操作量
（踏入量、也就是除去了游隙的量）的踏板传感器（省略图示），通过基于该踏板传感器的
输出协调控制摩擦制动器和再生制动器来进行制动。利用借助于未图示的制动器控制部和
油压机构等的周知的方法进行这样的摩擦制动器和再生制动器的协调控制。该制动器机构
40将作为制动器踏板的当前的操作量的制动器踏板当前操作量向引导装置80输出。
[0059]（构成-电池控制部）
[0060]电池控制部50是来控制上述的将再生发电得到的电力进行蓄电的电池的控制
单元，并将作为关于电池的充电状态的信息的电池充电信息向引导装置80输出。
[0061]（构成-显示部）
[0062]显示器60是显示由引导装置80引导的图像的显示单元。显示器60的具体构成
是任意的，可以使用周知的液晶显示器和如有机EL显示器那样的平板显示器。
[0063]（构成-扬声器）
[0064]扬声器70是基于引导装置80的控制输出各种语音的输出单元。由扬声器70输出
语音的具体方式是任意的，可以根据需要输出生成的合成语音和预先录制的语音。
[0065]（构成-引导装置）
[0066]引导装置80是进行有关制动器踏板的操作量的引导控制的引导控制单元，具备
控制部81和数据记录部82。
[0067]（构成-引导装置-控制部）
[0068]控制部81是控制引导装置80的控制单元，具体来说，是具有CPU、在该CPU上被解
释执行的各种程序（包含OS等的基本控制程序和在OS上被启动来实现特定功能的应用程序）以及用于存储程序和各种数据的如RAM的那样的内部存储器所构成的计算机。特别是，通过将本实施例方式的引导程序经由任意的记录介质或者网络安装于引导装置80，来实际构成控制部81的各部分。

【0069】该控制部81，从功能概念上来说具备再生上限操作量计算部81a、安全减速必要操作量计算部81b、当前操作量取得部81c以及引导控制部81d。

【0070】再生上限操作量计算部81a是基于本车辆的当前速度计算出只有再生制动器作用的制动器踏板的操作量的上限值（以下称作“再生上限操作量”）的再生上限操作量计算单元。

【0071】安全减速必要操作量计算部81b是基于本车辆的当前速度、减速目标速度以及到达减速目标位置的距离，计算出使本车辆的当前速度在减速目标位置变成减速目标速度所需要制动器踏板的操作量（以下称作“减速必要操作量”）的减速必要操作量计算单元。

【0072】在此，“减速目标位置”是指当对本车辆的当前速度进行减速时应该完成该减速而成为目标的位置，例如包含只基于地图信息自动地确定的位置（临时停止地点、立交交叉道的ETC门、右转地点、T字路、规定曲率以上的转弯的入口、障碍物等地上物等）和针对地图信息本车辆的驾驶者任意设定的位置（中途休息地和目的地等）。另外，“减速目标速度”是指本车辆到达减速目标位置的时间点时应该得到的速度。另外，除了特别记载的情况以外，设定“减速”中包括“停止”，因此“减速目标位置”包含“停止目标位置”，“停止目标位置”的“减速目标速度”为“速度＝0”。在此，安全减速必要操作量计算部81b算出从当前位置开到达减速目标位置为止以一定的减速G进行减速时的减速必要操作量。此处把“一定的减速G”设为本车辆的动作稳定的减速G（以下称作“安全减速G”）。该安全减速G不是固定的值而是在计算该安全减速G时可以根据车辆的当前速度、减速目标速度以及到达减速目标位置的距离而变动的值。将这样以安全减速G进行减速时的减速必要操作量在后面称作“安全减速必要操作量”。

【0073】当前操作量取得部81c是用来取得作为制动器踏板的当前的操作量的当前操作量的当前操作量取得单元。

【0074】引导控制部81d是基于由再生上限操作量计算部81a计算出的再生上限操作量和由安全减速必要操作量计算部81b计算出的安全减速必要操作量，进行有关制动器踏板的操作量的引导控制的引导控制单元。有关这些由控制部81的各个构成要素所执行的处理的详细情况在后面进行说明。

【0075】（构成－引导装置－数据记录部）

【0076】数据记录部82是来作记录引导装置80的动作所需要的程序以及各种数据的记录单元，例如，使用作为外部记录装置的硬盘（省略图示）来构成。但是，可以代替硬盘或者和硬盘一起使用包含如磁盘那样的磁记录介质或者如DVD和蓝光盘那样的光学记录介质的其他任意的记录介质。

【0077】此数据记录部82具备地图信息数据库（以下将数据库称为“DB”）82a。地图信息DB82a是来作存储地图信息的地图信息存储单元。所谓“地图信息”是确定包含交叉点和临时停止地点的各种位置时所需要的信息，例如包含交叉点数据（交叉点坐标等）和用于将地图显示在显示器60上的地图显示数据等来构成。还可以在数据记录部82中在后述的引
导处理中以任意形式存储为了取得再生上极限操作量、安全减速必要操作量以及当前操作量所需要的信息。

[0079] 其次，对于由这样构成的引导装置 80 执行的引导处理进行说明。图 2 是引导处理的流程图（在以下的各处理的说明中将步骤省略记述为“S”）。例如在本车辆的发动机启动后自动驾驶启动该引导处理。

[0080] 在启动引导处理后，控制部 81 持续监视在本车辆的前方是否有减速目标位置（SA1）。对于是否有减速目标位置的判定，例如，基于存储于地图信息 DB82a 的地图信息，根据在本车辆的行驶路线上（例如，在设定了本车辆的行驶路径的情况下按该行驶路径上）在没有设定本车辆的行驶路径的情况下为本车辆当前正在行驶的道路上）是否存在符合特定条件的减速目标位置来进行判定。作为此特定条件，例如可以将减速目标位置是否位于以当前位置为基准的距离、即对“在当前位置将油门断开而停止加速的情况下，利用本车辆的惯性力能够达到的距离（以下称作“惯性达到距离”）加“用于确保为了计算出再生上极限操作量和安全减速必要操作量所需的当前的富余部分的距离”后的距离（以下称作“惯性达到富余距离”）位置设为条件。也就是说，控制部 81 从车速传感器 20 取得当前速度，根据该取得的当前速度计算出惯性达到富余距离，当在当前位置的前方的惯性达到富余距离以内存在减速目标位置的情况下，将该减速目标位置判定为是符合规定条件的减速目标位置。

[0081] 而且，在判定为存在减速目标位置的情况下（SA1、是），再生上极限操作量计算部 81a 计算再生上限操作量（SA2）。例如，因为可以根据本车辆的车速预先检测是否再生制动器的动动摩擦制动器不作动的制动器踏板的操作量，所以事先将表示制动器踏板的操作量与车速的对应关系的数据以表格或曲线图等任意的形式存储于数据记录部 82。而且，再生上限操作量计算部 81a 基于从车速传感器 20 取得的当前速度，通过参照该数据记录部 82 的数据，计算再生上限操作量。另外，这时也可以参照由电池控制部 50 输出的电池充电信息，考虑电池的充电率计算出再生上限操作量。

[0082] 其次，安全减速必要操作量计算部 81b 计算出安全减速必要操作量（SA3）。例如，在从当前位置开始到到达减速目标位置为止以安全减速 G 进行减速的情况下，能够基于本车辆的当前位置速度、减速目标速度以及到达减速目标位置的距离以周周的方法来计算为了在减速目标位置减速到目标速度所需制动器踏板的操作量。因此，安全减速必要操作量计算部 81b 基于从车速传感器 20 取得的当前速度，用规定方法确定的减速目标速度和从当前位置开始到在 SAI 被判定为符合特定条件的减速目标位置的距离来计算出安全减速必要操作量。在此，减速目标速度的确定方法是任意的，但是，例如也可以将与减速目标位置相应的减速目标速度预先存储于地图信息 DB82a，并根据需要读取来进行确定。例如，在减速目标位置是临时停止地点、中途休息地或者目的地的情况下，可以设定“减速目标速度＝0”，在减速目标位置是规定曲率以上的弯道的入口的情况下，可以设定为“减速目标速度＝可以安全地在该弯道转弯的且与该弯道的曲率相应的速度”。可以根据判定为符合特定条件的减速目标位置、由当前位置检测处理部 10 输出的本车辆的当前位置和地图信息 DB82a 的地图信息来求出从当前位置到减速目标位置的距离。

[0083] 其次，引导控制部 81d 判定应该显示这些再生上限操作量和安全减速必要操作量
的规定的显示时刻是否到来（SA4）。该显示时刻的确定方法是任性的，可以设定能有效地向本车辆的驾驶者报告这些再生上限操作量和安全减速必要操作量的任意的时刻。例如，在油门踏板断开且加速目标位置位于距离本车辆的当前位置在上述惯性达到距离以内的位置的情况下，认为成为了安全减速需要进行某些制动器操作的状态，判定为显示时刻已到来。在此，可以基于由油门机构 30 输出的油门踏板当前操作量来判定油门踏板是否已断开。

【0084】在判断为显示时刻已到的情况下（SA1、是），引导控制部 81d 将在 SA2 计算出的再生上限操作量和在 SA3 计算出的安全减速必要操作量以规定的显示形式显示于显示器 60（SA5）。关于此显示例将在后面进行说明。

【0085】接着，引导控制部 81d 判定是否操作了制动器踏板（SA6）。也就是说，当前操作量取回的 81c 从制动器机构 40 取得制动器踏板的当前操作量，引导控制部 81d 基于该取得的当前操作量判定是否操作了制动器踏板。而且，在操作了制动器踏板的情况下（SA6、是），引导控制部 81d 将当前操作量取回的 81c 取得的当前操作量与在 SA5 中已显示的再生上限操作量及安全减速必要操作量一起以规定的显示形式显示于显示器 60（SA7）。关于此显示例将在后面进行说明。

【0086】此后，控制部 81 监视本车辆是否已经到达 SA1 的减速目标位置（SA8），在还未到达的情况下（SA8、否）转移到 SA2。以后同样，在本车辆到达 SA1 的减速目标位置以前反复执行 SA2 至 SA8，由此来将再生上限操作量、安全减速必要操作量以及当前操作量始终更新为最新的值并显示于显示器 60。而且，在本车辆到达 SA1 的减速目标位置的情况下（SA8、是），转移到 SA1，继续监视在本车辆的前方是否有下一个减速目标位置（SA1）。而且，在存在下一个减速目标位置的情况下（SA1、是），对每个减速目标位置执行 SA2 至 SA8 的处理。以后同样，对各个减速目标位置执行 SA2 至 SA8 的处理。

【0087】（显示例）

【0088】接着，对图 2 的 SA5 以及 SA7 的显示例进行说明。图 3 及图 4 是表示再生上限操作量、安全减速必要操作量或者当前操作量的显示器 60 上的显示例。

【0089】在对这些显示例的个别内容进行说明之前，先就各显示例的共同的显示形式进行说明。如图 3 及图 4 所示那样，显示制动器踏板的操作量的显示区域 90 被显示于显示器 60（在图 3 及图 4 里省略图示）。该显示区域 90 整体是半圆状的区域，在以曲率中心为中心左右均等分割周边的情况下，左右任意一边（此处显示了左侧的边）表示与制动器踏板的非操作状态相对应的位置（以下称作“非操作位置”）P1，该左右任意的另一边（此处显示了右侧的边）表示与制动器踏板的上限操作量（是制动器踏板被踏入最深的状态的操作量，且是根据每个车辆的机构而决定的）相对应的位置（以下称作“上限操作位置”）P2，这些从非操作位置 P1 开始到上限操作位置 P2 为止的区域 91 表示与制动器踏板的操作量相对应的区域。

【0090】而且，在该区域 91 显示用来显示当前操作量的当前操作量显示部 92，用来显示再生上限操作量的再生上限操作量显示部 93 以及用来显示安全减速必要操作量的安全减速必要操作量显示部（减速必要操作量显示部）94。这些各量以由上限操作位置 P2 表示的制动器踏板的上限操作量为基准，被显示在与该上限操作量的接近程度相对应的位置。这些各量的具体显示方式是任意的，但此处显示成以曲率中心为中心进行旋转的显示指针。
优选该显示指针以相互容易区别的方式进行显示，例如，用“黑色”的显示指针显示当前操作量显示部 92，用“绿色”的显示指针显示再生上限操作量显示部 93，用“红色”的显示指针显示安全减速必要操作量显示部 94。

[0091] 图 3 中 (a) 表示在图 2 的 SA4 中判定为显示时刻已到来的时间点上的显示例。因为在这个时间点上，当前车速比较高，所以再生上限操作量较小，因此再生上限操作量显示部 93 被显示于距离非操作位置 P1 较近的位置。通过观察此再生上限操作量显示部 93，驾驶者可知通过以进入从非操作位置 P1 开始到再生上限操作量显示部 93 为止的区域所表示的制动器踏板的操作量的范围内的方式操作制动器踏板，可以 100% 回收本车辆的制动能量。另外，因为在这个时间点上，是在减速目标位置刚从本车辆的当前位置进入惯性达到距离以内以后，安全减速必要操作量几乎为零，所以安全减速必要操作量显示部 94 被显示在与非操作位置 P1 几乎相同的位置。通过观察此安全减速必要操作量显示部 94，驾驶者可知通过以进入超过从非操作位置 P1 开始到安全减速必要操作量显示部 94 为止的区域的区域（从安全减速必要操作量显示部 94 开始至上限操作位置 P2 为止的区域）所表示的制动器踏板的操作量的范围内的方式操作制动器踏板，可以以目标减速 G 持续进行减速而从在减速目标位置减速至速目标位置（也就是说，可以安全地减速）。此外，因为在这个时间点上，驾驶者未操作制动器踏板，所以当前操作量显示部 92 未被显示。另外，通过这样将再生上限操作量显示部 93 和安全减速必要操作量显示部 94 在相同显示区域 90 上以相同基准进行显示，驾驶者可以把握再生上限操作量和安全减速必要操作量的相对关系。也就是说，在图 3 中 (a) 的显示例中，根据再生上限操作量比安全减速必要操作量大，驾驶者可知通过以进入这些再生上限操作量显示部 93 和安全减速必要操作量显示部 94 之间的区域所表示的制动器踏板的操作量的范围内的方式操作制动器踏板，可以 100% 回收本车辆的制动能量并且通过以目标减速 G 持续地进行减速能够在减速目标位置上减速至减速目标速度。

[0092] 下面的图 3 中 (b) 的显示例表示在与图 3 中 (a) 的情况相比本车辆更接近减速目标位置上显示点即当前速度比图 3 中 (a) 的情况小且驾驶者还没有操作制动器踏板的时间点上的显示例。因为在该时间点上，与图 3 中 (a) 的时间点相比，再生上限操作量与当前车速变小的程度相应地变大，所以再生上限操作量显示部 93 显示在稍微接近了上限操作位置 P2 的位置。另外，因为在该时间点上，与图 3 中 (a) 的时间点相比，安全减速必要操作量变大了，所以安全减速必要操作量显示部 94 显示在稍微接近了上限操作位置 P2 的位置。此外，因为在该时间点上，驾驶者还未对制动器踏板进行操作，所以未显示当前操作量显示部 92。

[0093] 下面的图 3 中 (c) 的显示例表示在与图 3 中 (b) 的情况相比本车辆更接近减速目标位置上显示的时间点即时当前速度比图 3 中 (b) 的情况小且在图 2 的 SA6 中被判定为存在制动器踏板操作的时间点上的显示例。因为在该时间点上，与图 3 中 (b) 的时间点相比，再生上限操作量与当前车速进一步变小的程度相应地变大，所以再生上限操作量显示部 93 显示在稍微接近了上限操作位置 P2 的位置。另外，因为在该时间点上，与图 3 中 (b) 的时间点相比，安全减速必要操作量变大了，所以安全减速必要操作量显示部 94 显示在稍微接近了上限操作位置 P2 的位置。并且，因为在该时间点上，驾驶者操作了制动器踏板，所以显示了当前操作量显示部 92。通过观察此当前操作量显示部 92，驾驶者能够相对地把握再生上限操作量和安全减速必要操作量相对应的当前操作量。
[0094] 下面的图 4 中 (a) 的显示例表示在与图 3 中 (c) 的情况相比本车辆更接近减速目标位置的时间点即当前速度比图 3 中 (c) 的情况小而且没有到达减速目标位置的时间点上的显示例。因为在该时间点上，与图 3 中 (c) 的时间点相比，再生上限操作量与当前车速进一步变小的程度相应地变大，所以再生上限操作量显示部 93 显示在稍微接近了上限操作位置 P2 的位置。另外，因为在该时间点上，与图 3 中 (c) 的时间点相比，安全减速必要操作量变大了，所以安全减速必要操作量显示部 94 显示在稍微接近了上限操作位置 P2 的位置。还有，因为在该时间点上，驾驶者操作了制动器踏板，所以显示了该当前操作量显示部 92。

[0095] 下面的图 4 中 (b) 的显示例表示在与图 4 中 (a) 的情况相比本车辆更接近减速目标位置的时间点即当前速度比图 4 中 (a) 的情况小而且即将到达减速目标位置之前的时间点而且是驾驶者进行了适当的制动器操作的时间点上的显示例。在该时间点上，与图 4 中 (a) 的时间点相比，因为当前车速变小，再生上限操作量变大，所以再生上限操作量显示部 93 显示在稍微接近了上限操作位置 P2 的位置。另外，在该时间点上，与图 4 中 (a) 的时间点相比，因为安全减速必要操作量变大，所以安全减速必要操作量显示部 94 显示在稍微接近了上限操作位置 P2 的位置。特别是由于驾驶者进行了适当的制动器操作，所以再生上限操作量、安全减速必要操作量及当前操作量相互一致，再生上限操作量显示部 93、安全减速必要操作量显示部 94 及当前操作量显示部 92 显示在相同位置。由此，驾驶者可知能够将本车辆的制动能量 100% 回收的制动器踏板的操作量与通过以目标减速 G 持续地进行减速而能够在减速目标位置减速至减速目标速度的制动器踏板的操作量相互一致，并且以与该操作量一致的操作量操作了制动器踏板（即进行了适当的制动器操作）。

[0096] 下面的图 4 中 (c) 的显示例表示在与图 4 中 (a) 的情况相比本车辆更接近减速目标位置的时间点即当前速度比图 4 中 (a) 的情况小而且即将到达减速目标位置之前的时间点而且是驾驶者的制动器操作与图 4 中 (b) 的情况相比延迟后的时间点上的显示例。在该时间点上，与图 4 中 (b) 的时间点相比，因为由于制动器操作延迟导致当前车速变大，再生上限操作量变小，所以再生上限操作量显示部 93 显示在稍微接近了非操作位置 P1 的位置。另外，在该时间点上，与图 4 中 (b) 的时间点相比，因为安全减速必要操作量变大，所以安全减速必要操作量显示部 94 显示在稍微接近了上限操作位置 P2 的位置。特别是由于制动器操作延迟了，为了在减速目标位置上减速至减速目标速度，只靠再生制动是不够的，所以安全减速必要操作量超过了再生上限操作量，安全减速必要操作量显示部 94 显示在比再生上限操作量显示部 93 更接近上限操作位置 P2 的位置。

[0097] （效果）这样，根据本实施方式，计算出再生上限操作量和安全减速必要操作量，基于这些再生上限操作量和安全减速必要操作量进行制动器踏板的操作量的引导控制，因此可以向驾驶者引导基于能够回收再生能量的制动器踏板的操作量及车辆的当前速度在减速目标位置上变成减速目标速度所需要的制动器踏板的操作量的引导。因此，驾驶者可以在把握这些再生上限操作量和减速必要操作量的基础上进行制动器操作，除了有效地回收制动能量以外，还可以容易地进行考虑了安全性的减速。

[0098] 另外，除了再生上限操作量和减速必要操作量以外还计算出当前操作量，基于这些再生上限操作量、减速必要操作量和当前操作量，进行制动器踏板的操作量的引导控制，因此可以向驾驶者引导基于再生上限操作量和减速必要操作量以及当前操作量的引导。因此，驾驶者可以进行除了考虑再生上限操作量和减速必要操作量还考虑了当前的制
动器踏板的操作量的制动员操作，除了有效地回收制动力量，也更加容易地进行考虑了安全性的减速。

[0099] 另外，因为进行以制动员踏板的上限操作量为基准的引导控制，驾驶者能够以制动员踏板的上限操作量为基准来考虑再生上限操作量、减速必要操作量或者当前操作量的相互的关系。

[0100] 另外，进行在从与制动员踏板的非操作状态相对应的位置开始到与上限操作量相对应的位置为止的显示区域 90 中，使当当前操作量显示部 92、再生上限操作量显示部 93 以及减速必要操作量显示部 94 进行显示的引导控制，因此驾驶者能够以制动员踏板的非操作状态和上限操作量为基准来把握再生上限操作量、减速必要操作量或者当前操作量的相互的关系，并且通过目视在相同的显示区域显示的再生上限操作量、减速必要操作量或者当前操作量能够容易地把握它们相互的相对关系。

[0101] （针对实施方式的变形例）

[0102] 以上，就本发明涉及的实施方式进行了说明，但是可以在记载于权利要求的各发明的技术思想的范围内，对本发明的具体构成及手段进行任意的改变及改善。下面对这种变形例进行说明。

[0103] （关于要解决的课题和发明的效果）

[0104] 首先，发明要解决的问题和发明的效果不限定于上述的内容，存在根据发明的实施环境和构成的细节不同而不同的可能性，有时只解决上述课题的一部分，或只得到上述效果的一部分。

[0105] （关于本车辆的构成）

[0106] 在上述的实施方式中，对本车辆是混合动力汽车的情况进行了说明，但即使在是只用电机作为动力源的电动汽车的情况下，本发明也能够同样适用。

[0107] （关于减速目标位置）

[0108] 对于是否存在减速目标位置的判定，设为基于存储于地图信息 DB92a 的地图信息来进行判定，但是，例如也可以通过以摄像机等对本车辆的前方摄像并进行图像分析来判定本车辆的前方地上物的有无及其种类，在判定为存在规定种类的地上物（例如临时停止标志）的情况下，判定为存在减速目标位置。

[0109] （关于再生上限操作量、减速必要操作量、当前操作量的计算方法）

[0110] 也可以用上述的计算方法以外的方法来计算再生上限操作量、安全减速必要操作量或者当前操作量。例如，也可以预先将有关于当前位置开始到减速目标位置为止的路面的坡度的坡度信息包含在地图信息中，根据需要从地图信息中读取坡度信息并用于所述各个量的计算中。另外，也可以只基于再生上限操作量和安全减速必要操作量进行引导控制，省略当前操作量。因为即使在这种情况下，也可以进行例如图 3 的（a）、（b）那样的显示，所以驾驶者可以在考虑了这些再生上限操作量和安全减速必要操作量的基础上进行制动器操作，从而除了有效地回收制动力量以外，还可以容易地进行考虑了安全性的减速。

[0111] （关于减速必要操作量）

[0112] 作为基于减速必要操作量的引导，也可以进行进一步考虑了舒适减速必要操作量的引导。此处的“舒适减速必要操作量”是以一定的减速 G 从当前位置开始到减速目标位置为止运行减速的情况下的减速必要操作量，是以本车辆的动作稳定并且对驾驶者来说舒
适的减速 G（以下称作“舒适减速 G”）。例如 0.2G 的固定值）进行减速的情况下的减速必要
操作量。这种考虑了舒适减速必要操作量的引导控制的方法是任意的，但是，例如，在图 3.4
的显示例中，也可以在已显示了安全减速必要操作量显示部 94 的情况下，当安全减速必要
操作量＝舒适减速必要操作量时强调显示安全减速必要操作量显示部 94。在这种情况下，
驾驶者可以在进一步把握舒适减速必要操作量的基础上进行制动器操作，除了有效地回收
制动能量和考虑安全性之外，还容易进行进一步考虑了舒适性的减速。

[0113] （关于安全减速 G）

[0114] 作为安全减速 G，也可以应用与在实施方式中说明的减速 G 不同的减速 G。例如，在
最终把以舒适减速 G 进行减速（以舒适减速必要操作量进行制动器操作）作为前提的情况下
下，假设为了从当前位置开始到达减速目标位置为止进行一定的减速而成为减速目标速
度所需要的减速 G 已超过舒适减速 G 规定减速 G 以上的情况。在这种情况下，也可以构成为，本车辆从当前位置开始到达规定距离前的位置（称作“中间位置”）以中间的减
速 G（以下称作“中间减速 G”）使本车辆减速，从中间位置开始到达减速目标位置为止以
舒适减速 G 来进行减速。作为该中间减速 G 可以应用上述的安全减速 G。另外，作为规定距
离可以应用基于本车辆的当前速度和本车辆在当前位置应该取得的速度（基于用于直到
到达减速目标位置以舒适减速 G 进行减速的减速曲线决定的速度）所计算出的距离。也即
是说，也可以构成为，安全减速必要操作量计算部 81b 基于车辆的当前速度、本车辆在当前
位置应该取得的速度以到中间位置的距离来计算从当前位置开始到中间位置为
止以安全减速 G 进行减速时的减速必要操作量，引导控制部 81d 向驾驶者引导该减速必要操作量。在到
达中间位置的情况下，安全减速必要操作量计算部 81b 基于中间位置的本车辆的当
前速度、减速目标速度以及到减速目标位置的距离从中间位置开始到减速目标位置为
止以舒适减速 G 进行减速时的舒适减速必要操作量，引导控制部 81d 向驾驶者引导该舒适
减速必要操作量。这样，对于作为目标的减速 G，也可以根据需要应用不同的减速 G，或者，
以多级的方式组合多个减速 G。

[0115] （关于当前操作量）

[0116] 另外，在实施方式中，将制动器踏板的操作量设为除了所谓的信息部分后的量
进行了说明，但也可以设为包含了信息部分的量，在这种情况下，优选与信息部分相对应的
制动器踏板的操作量可以能够从与信息部分以外的部分相对应的制动器踏板的操作量区
别开来的方式向驾驶者进行引导。作为该引导例，例如，在图 3.4 的显示例中，可以考虑只
将与制动器踏板的操作量相对应的区域 91 中的、与信息部分的制动器踏板的操作量相对
应的区域用与其他区域不同的颜色来显示。

[0117] （关于计算时刻）

[0118] 计算再生上限操作量、安全减速必要操作量、舒适减速必要操作量或者当前操作量的时刻也可以是上述时刻以外的时刻。例如，在实施方式中，在显示时刻的到来进行判
定之前计算出再生上限操作量和安全减速必要操作量，但是也可以在判定为显示时刻已到
来后进行计算。

[0119] （关于显示时刻）

[0120] 将再生上限操作量、安全减速必要操作量、舒适减速必要操作量或者当前操作量
显示于显示器 60 的时刻也可以是上述时刻以外的时刻。例如，在实施方式中，作为显示再
生上界操作量和安全减速必要操作量的时刻的一个例子，对是油门踏板断开的情况并且是
减速目标位置从本车辆的当前位置进入道惯性达到距离以内的情况进行了说明。但是，也
可以设为与油门踏板是否断开无关，在减速目标位置从本车辆的当前位置进入道惯性达到
距离以内的情况下进行显示，并促使断开油门踏板。

[0121] （关于辅助内容）

[0122] 另外，例如，可以改为将再生上界操作量、安全减速必要操作量、舒适减速必要操
作量或者当前操作量依次输出，或者，也可以在依次输出的同时，当这些各个量最终成为规
定状态或规定关系时输出表示已经成为该最终状态的信息。例如，也可以在安全减速必要
操作量超过再生上界操作量时，将表示“只利用再生制动的减速无法进行安全的减速”信
息的引导显示于显示器 60，或从扬声器 70 进行语音输出。

[0123] （关于引导方式）

[0124] 作为再生上界操作量、安全减速必要操作量、舒适减速必要操作量或者当前操作
量的引导方式，也可以取代利用显示器 60 进行显示或者与利用显示器 60 进行显示的同时，
使用其他方式。例如，也可以利用扬声器 70 进行输出。作为这样进行输出的情况的例子，
可以列举，在各个量成为规定基准值以上的情况下输出告知该情况的声音，在这些各个量
的相对关系成为规定关系的情况下输出告知该情况的声音，或者输出基于各个量的相对关
系辅助驾驶者的信息器操作的声音。作为后者的具体例，可以列举出：在成为图 4 中 (b) 的
状态的时间点，输出“请维持当前的踏板操作”合成语音，或者在成为图 4 中 (c) 的状态的
时间点，输出用于对制动器踏板的操作延迟进行警报的蜂鸣声。

[0125] （关于显示方式）

[0126] 另外，即使在利用显示器 60 进行显示的情况下，也可以用上述的显示方式以外的
方式来显示。例如，在利用显示指针显示再生上界操作量显示部、安全减速必要操作量显示
部、舒适减速必要操作量显示部或者当前操作量显示部的情况下，为了能够将这些显示部
相互区别开来，也可以改变显示指针的线种类、粗细、或者闪烁或亮灯的有无和间隔。另外，
也可以不用显示指针而是利用显示面来进行显示。将这样的基于显示面的显示例表示于图
5 的 (a)。在图 5 的 (a) 中，在与图 3 相同的半圆状的显示区域 90 中，用从上限操作位置 P2
开始连续的显示面（图示的阴影面）显示再生上界操作量显示部 93，用从非操作位置 P1
开始连续的显示面（图示的阴影面）显示安全减速必要操作量显示部 94，用与图 3 相同的显
示指针显示当前操作量。或者也可以将显示区域设为半圆状以外的形状。将这样的半圆
状以外的形状的显示例示于图 5 的 (b)。在图 5 的 (b) 中，显示区域 90 作为整体是横长
带状的区域，左 右任意一边（此处是图示左侧的边）表示与制动器踏板的非操作状态相对
应的位置（以下称作“非操作位置”）P1，该左右任意另一边（此处是图示右侧的边）表示
与制动器踏板的上限操作量相对应的位置（以下称作“上限操作位置”）P2，这些从非操作位
置 P1 开始到上限操作位置 P2 的区域 91 表示与制动器踏板的操作量相对应的区域。而
且，在该区域 91 上，显示了当前操作量显示部 92、再生上界操作量显示部 93 以及安全减速
必要操作量显示部 94。在此，将这些各个显示部按照与显示区域 90 的横长方向垂直的方向
上的显示指针。优选以容易相互区别的方式来显示此显示指针，例如，用“黑色”的显示指针
显示当前操作量显示部 92，用“绿色”的显示指针显示再生上界操作量显示部 93，用“蓝色”
的显示指针显示安全减速必要操作量显示部 94。另外，对于如图 3 至图 5 那样进行显示时
的显示区域 90，除了显示于显示器 60 的情况之外，也可以通过投影等显示在速度表附近和挡风玻璃。