

HU000030609T2

(19) **HU**

(11) Lajstromszám: **E 030 609**

(13) **T2**

MAGYARORSZÁG
Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM **SZÖVEGÉNEK FORDÍTÁSA**

(21) Magyar ügyszám: **E 05 798488**

(51) Int. Cl.: **A61P 25/20**

(2006.01)

(22) A bejelentés napja: **2005. 10. 26.**

A61K 9/00

(2006.01)

A61K 31/44

(2006.01)

(96) Az európai bejelentés bejelentési száma:

EP 20050798488

(86) A nemzetközi (PCT) bejelentési szám:

PCT/GB 05/004147

(97) Az európai bejelentés közzétételi adatai:

EP 1807156 A1 2006. 05. 04.

(87) A nemzetközi közzétételi szám:

WO 06046041

(97) Az európai szabadalom megadásának meghirdetési adatai:

EP 1807156 B1 2016. 10. 12.

(30) Elsőbbségi adatok:

0423800

2004. 10. 27.

GB

(73) Jogosult(ak):

Orexo AB, 751 05 Uppsala (SE)

(72) Feltaláló(k):

PETTERSSON, Anders, SE-442 97 Kode (SE)

NYSTRÖM, Christer, SE-117 32 Stockholm (SE)

BREDENBERG, Susanne, 751 05 Uppsala (SE)

(74) Képviselő:

**Advopatent Szabadalmi és Védjegy Iroda,
Budapest**

(54)

Új gyógyászati készítmények álmatlanság kezelésére

Az európai szabadalom ellen, megadásának az Európai Szabadalmi Közlönyben való meghirdetésétől számított kilenc hónapon belül, felszólalást lehet benyújtani az Európai Szabadalmi Hivatalnál. (Európai Szabadalmi Egyezmény 99. cikk(1))

A fordítást a szabadalmas az 1995. évi XXXIII. törvény 84/H. §-a szerint nyújtotta be. A fordítás tartalmi helyességét a Szellemi Tulajdon Nemzeti Hivatala nem vizsgálta.

(11)

EP 1 807 156 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
12.10.2016 Bulletin 2016/41

(51) Int Cl.:
A61P 25/20 (2006.01) A61K 9/00 (2006.01)
A61K 31/44 (2006.01)

(21) Application number: **05798488.2**(86) International application number:
PCT/GB2005/004147(22) Date of filing: **26.10.2005**(87) International publication number:
WO 2006/046041 (04.05.2006 Gazette 2006/18)**(54) NEW PHARMACEUTICAL FORMULATIONS USEFUL IN THE TREATMENT OF INSOMNIA**

NEUE PHARMAZEUTISCHE FORMULIERUNGEN ZUR BEHANDLUNG VON SCHLAFLOSIGKEIT
NOUVELLES PREPARATIONS PHARMACEUTIQUES UTILES DANS LE TRAITEMENT DE L'INSOMNIE

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
SK TR**

(30) Priority: **27.10.2004 GB 0423800**

(43) Date of publication of application:
18.07.2007 Bulletin 2007/29

(60) Divisional application:
11002406.4 / 2 340 872

(73) Proprietor: **Orexo AB
751 05 Uppsala (SE)**

(72) Inventors:

- **PETTERSSON, Anders
SE-442 97 Kode (SE)**
- **NYSTRÖM, Christer
SE-117 32 Stockholm (SE)**
- **BREDENBERG, Susanne
751 05 Uppsala (SE)**

(74) Representative: **Potter Clarkson LLP
The Belgrave Centre
Talbot Street
Nottingham NG1 5GG (GB)**

(56) References cited:

EP-A- 1 260 216	WO-A-00/16750
WO-A-00/33835	WO-A-01/30391
WO-A-03/059349	WO-A-2004/091585

- **DATABASE WPI Section Ch, Week 200368**
Derwent Publications Ltd., London, GB; Class B05, AN 2003-713684 XP002325581 & CN 1 418 631 A (WANG D) 21 May 2003 (2003-05-21)
- **DATABASE CA[Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 4 December 2001 (2001-12-04), YUAN, SHIJUN ET AL: "Freeze dried Zaleplon instant oral composition"**
XP002325587 retrieved from STN Database accession no. 2001:871521 & CN 1 290 525 CN (WANQUAN SUNLIGHT MEDICINE SCIENCE AND TECHNOLOGY CO., LTD., PEOP. REP.) 11 April 2001 (2001-04-11)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] This invention relates to new, fast acting pharmaceutical formulations comprising short acting hypnotic agents that are useful in the short-term treatment of insomnia, such as transient insomnia.

5 [0002] Insomnia is a common disorder characterised by difficulty in the initiation and/or maintenance of sleep. Insomnia periodically affects 30% of adults. Furthermore, more than 90% of the total population have trouble with sleep at some point during their lives.

10 [0003] Inadequate sleep impairs quality of life and ability to function normally in a general sense. It often results in adverse personal, medical or psychiatric consequences, in addition to increasing the risk of accidents.

15 [0004] The disorder can be transient or chronic. Although isolated incidents of short-term insomnia may be caused by, for example, grief, stress, or short-term exposure to substances that are known to impair sleep, many patients who suffer from transient insomnia may experience the disorder regularly and/or periodically on a short-term basis.

20 [0005] In the treatment of short-term insomnia, consideration needs to be given to the potential side effects of the medicament employed, including any associated drug dependency. The practitioner also needs to be aware of the potential for undesirable absorption of drug taking place several hours after administration, which may give rise to decreased alertness and impaired psychomotor function during normal activity the following day. In this respect, wherever possible, it is important to expose patients only to short-term, or "on-demand", use of the lowest effective dose of any particular drug.

25 [0006] Zolpidem (*N,N*-dimethyl-2-(6-methyl-2-*p*-tolylimidazo[1,2-*a*]pyridin-3-yl)acetamide) is a short-acting sedative that is used in the short-term management of insomnia. The drug possesses a short half-life and produces no active metabolites. It appears to act by binding to the benzodiazepine receptor component of the GABA receptor complex and accordingly possesses similar properties to the benzodiazepines. However, zolpidem has the general advantage of minimal anxiolytic, myorelaxant and convulsant properties.

30 [0007] Currently-available zolpidem formulations comprise doses of between 5 and 10 mg of the drug in the form of its hemitartrate salt (see, for example, British National Formulary, Volume 48, pages 174 and 175). These compositions are administered orally, typically before retiring, and rapidly disintegrate in the gastrointestinal tract to provide for systemic absorption of drug.

35 [0008] Although zolpidem is rapidly absorbed from the gastrointestinal tract, its bioavailability is reported to be 70% following oral administration. Peak plasma concentrations are thereby typically reached within 1 and 5 hours of oral administration using current formulations.

40 [0009] In view of this, onset of action can be delayed in many patients, leading to a frustrating lack of "on demand" sleep, in addition, in many cases, to undesirable residual effects (such as those mentioned hereinbefore) the following day. Equally importantly, in view of the first-pass and/or pre-systemic metabolism that is typically connected with oral administration, the use of currently-marketed zolpidem formulations is characterised by considerable inter- and intra-individual variability in terms of both onset of action and residual effects (see, for example, Holm et al, Drugs (2000) 59, 865; Darcourt et al, J. Pharmacol., (1999) 13, 81; Terzano et al, Drug Safety (2003) 26, 261; Salvà and Costa, Clin. Pharmacokin. (1995) 29, 142; Dровер et al, Clin. Ther. (2000) 22, 1443; and "Guidance for Industry; Labelling Guidance for Zolpidem Tablets", US Department of Health and Human Service (1997)).

45 [0010] Thus, there is a clear unmet clinical need for an improved formulation comprising a short acting hypnotic agent, such as zolpidem, which exhibits, in a consistent fashion, a more rapid, and preferably almost instantaneous, onset of action (e.g. within minutes rather than hours), as well as fewer residual effects the following day.

50 [0011] A biphasic peroral dosage form comprising zolpidem has recently been described in *inter alia* US patent No. 6,514,531 B1. This system provides for an initial immediate release phase to induce sleep as rapidly as is possible with existing commercial formulations. This is followed by a controlled-release phase with the objective of maintaining sleep following induction. Other biphasic tablets comprising zolpidem are disclosed in European patent application EP 1 260 216 A1.

55 [0012] US patent No. 6,638,535 B2 and WO 00/33835 also disclose sustained release pellets comprising short acting hypnotic agents, such as zolpidem, zopiclone and zaleplon which provides for an *in vitro* release of less than 60% of active ingredient within the first 5 minutes of the *in vitro* test.

[0013] International patent application WO 00/16750 discloses a drug delivery system for the treatment of acute disorders by mucosal administration, in which the active ingredient is in microparticulate form and is adhered to the surface of larger carrier particles in the presence of a bioadhesion and/or mucoadhesion promoting agent.

[0014] International patent application WO 03/059349 discloses oral dosage forms comprising *inter alia* zolpidem, in addition to a solubility enhancer (e.g. a surfactant) and a spherulization agent (e.g. a distilled monoglyceride).

[0015] The skilled person would expect that transmucosal administration of an active ingredient across the pulmonary, nasal or oral mucosa (e.g. sublingual administration) would give rise to an enhanced rate of absorption of that active into plasma (as compared to an oral formulation), and thereby result in a vastly increased bioavailability at an early stage following administration. In the treatment of insomnia with a short acting hypnotic agent such as zolpidem, such an

enhanced rate of absorption might be expected to give rise to potential safety problems in patients that are sensitive to the drug, potentially giving rise to undesirable pharmacological effects, such as a more rapid onset of sleep than is convenient (e.g. when preparing for sleep; see, for example col. 2, lines 9 to 18 of US 6,638,535 B2). Moreover, the skilled person would also expect such a rapid absorption to compromise the duration of action of the relevant drug, and thereby the ability to maintain sleep during the night, especially given that short acting compounds are known to rapidly eliminated from plasma (see, for example, col. 2, lines 19 to 31 of US 6,638,535 B2).

[0016] Surprisingly, we have found that safe and reliable "on demand" sleep induction (and maintenance) may be provided by way of a formulation as described hereinafter.

[0017] There is described herein a pharmaceutical formulation suitable for transmucosal administration comprising a short acting hypnotic drug, which formulation provides a measurable plasma concentration of that drug within 10 minutes of administration.

[0018] The measurement of drug plasma concentration may be achieved by techniques that are well known in the art, for example as described hereinafter.

[0019] However, as a guide, we have found that formulations suitable for transmucosal administration are capable of providing a measurable plasma concentration of drug within 10 minutes of administration if, when measured in a standard *in vitro* dissolution (paddle) apparatus according to the United States Pharmacopoeia, using a phosphate buffer at pH 6.8 (USP) as dissolution medium, at least 50% of the active ingredient is released within 5 minutes, preferably within 4 minutes, for example within 3, or even 2, minutes. By the term "released" we mean that the active ingredient is released from the formulation and dissolved in the dissolution medium.

[0020] We have found that formulations according to the present invention are capable of providing first measurable plasma drug concentrations with a surprising degree of consistency, as expressed as the coefficient of variation (CV; a statistical measure of the deviation of a variable from its mean) for the time to first measurable plasma concentration. Observed CV values may be less than 50%, for example less than 40% for this variable.

[0021] Thus, as formulations according to the present invention consistently provide measurable plasma concentrations of drug within 10 minutes they are effectively capable of providing for consistent "on demand" sleep induction.

[0022] Further described herein is a transmucosal formulation suitable for providing sleep on demand, which formulation comprises a short acting hypnotic drug.

[0023] By "sleep on demand", we include that the formulation consistently induces sleep, i.e. in at least 90% of cases (on an intra- and/or inter-patient basis), within 60 minutes, preferably within 45 minutes, more preferably within 30 minutes and especially within 20 (e.g. 15) minutes.

[0024] We have also found, very surprisingly, that formulations according to the present invention are capable of providing rates of absorption of drug following administration that are not substantially different to those that are observed in currently-available oral formulations. In view of this, formulations according to the present invention are capable of reducing or preventing inconveniently rapid onset of sleep, or other undesirable pharmacological effects that might be associated with rapid absorption, for example, in patients that are particularly sensitive to the relevant drug, as discussed hereinbefore.

[0025] In this respect, there is also provided a transmucosal formulation suitable for providing sleep on demand, which formulation comprises a short acting hypnotic drug, wherein the formulation provides for a time difference between:

- 40 (a) the first measurable; and
- (b) the maximum measured

plasma concentration of drug following administration of the formulation, which time difference is within the range of about 50 minutes to about 250 minutes, preferably about 55 minutes to about 230 minutes, more preferably about 70 minutes to about 180 minutes and particularly about 80 to about 160 minutes.

[0026] Equally surprisingly, we have also found that formulations according to the present invention are capable of providing levels of drug at an appropriate time after administration and following sleep induction that are not substantially different to those that are observed in currently-available oral formulations. In view of this, formulations according to the present invention are capable of maintaining a drug-induced sleep throughout the night.

[0027] In this respect, there is also provided a transmucosal formulation suitable for providing sleep on demand, which formulation comprises a short acting hypnotic drug, wherein the formulation provides for a plasma concentration of drug that is capable of maintaining sleep at least about 3 hours after administration of the formulation, preferably at least about 4 hours, more preferably at least about 5 hours and particularly at least about 6 hours, after administration. In otherwise healthy adult patients below the age of 60, plasma concentrations of drug that are capable of maintaining sleep are for example in the range of about 40 to about 100 ng/mL of plasma, for example about 50 to about 90 ng/mL, such as about 60 to about 85 ng/mL.

[0028] Furthermore, formulations according to the present invention are capable of providing levels of drug at an appropriate time after administration that do not give rise to the undesirable residual effects mentioned hereinbefore the

following day.

[0029] In this respect, there is also provided a transmucosal formulation suitable for providing sleep on demand, which formulation comprises a short acting hypnotic drug, wherein the formulation provides for a plasma concentration of drug that does not result in decreased alertness and/or impairment of psychomotor function in a patient following sleep at least about 8 hours, such as about 7 hours after administration. In otherwise healthy adult patients below the age of 5 60, plasma concentrations of drug that are not capable of producing such effects, which effects may be objective (i.e. measurable by some test or marker) or subjective (i.e. the subject gives an indication of, or feels, such effects), are, for example, less than about 40 ng/mL of plasma, for example less than about 30 ng/mL, such as less than about 25 ng/mL.

[0030] It will be appreciated by the skilled person that the aforementioned plasma concentration ranges of active 10 ingredient are exemplary of the average case and are likely to vary with the severity of the insomnia that is to be treated, as well as the age, weight, sex, renal function, hepatic function and response of the particular patient to be treated. There can, of course, be individual instances where plasma concentrations that are outside the ranges specified above 15 may give rise to the stated effects, and such are within the scope of this invention. For example, for children or elderly patients, the aforementioned plasma concentration ranges may be approximately halved in order to produce (or not produce) the relevant effect.

[0031] Transmucosal drug delivery is provided over the oral mucosa.

[0032] Formulations according to the present invention are in the form of sublingual tablets. Sublingual tablets that provide for sleep on demand may be prepared as described hereinafter.

[0033] According to the invention there is provided a sublingual tablet formulation that is suitable for providing sleep 20 on demand, which formulation comprises:

- (a) microparticles of a short acting hypnotic drug; and
- (b) particles of a mucoadhesion promoting agent,

25 which particles of components (a) and (b) are each presented, at least in part, upon the surfaces of larger carrier particles, and wherein the dose of drug per tablet is in the range of about 5 mg to about 12 mg.

[0034] It will be clear to the skilled person that formulations according to the present invention will comprise a pharmacologically effective amount of short acting hypnotic drug (i.e. the "active" ingredient of the formulation). The term "pharmacologically effective amount" refers to an amount of active ingredient, which is capable of conferring the desired 30 therapeutic effect on a treated patient, whether administered alone or in combination with another active ingredient. Such an effect may be objective (i.e. measurable by some test or marker) or subjective (i.e. the subject gives an indication of, or feels, an effect).

[0035] Short acting hypnotic drugs that may be employed in formulations according to the present invention include zopiclone, zaleplon, indeplon or, preferably, zolpidem, and pharmaceutically acceptable salts of all of these. Also included 35 are diastereomeric (e.g. enantiomeric) forms, as well as active metabolites, of these compounds/salts.

[0036] Preferred salts of zolpidem that may be employed include hydrochloride salts, methanesulphonate salts, tosylate salts, fumarate salts, sulphate salts and tartrate salts, such as the hydrogen tartrate or the hemitartrate salt.

[0037] The active ingredient is presented in the form of microparticles, preferably with a weight based mean diameter 40 of between about 0.5 μm and about 15 μm , such as about 1 μm and about 10 μm . The term "weight based mean diameter" will be understood by the skilled person to include that the average particle size is characterised and defined from a particle size distribution by weight, i.e. a distribution where the existing fraction (relative amount) in each size class is defined as the weight fraction, as obtained e.g. by sieving.

[0038] Microparticles of active ingredients may be prepared by standard techniques, such as grinding, dry milling, wet 45 milling, precipitation, micronisation, etc.

[0039] The amount of active ingredient that may be employed in a sublingual tablet may be determined by the physician, or the skilled person, in relation to what will be most suitable for an individual patient. This is likely to vary with the severity 50 of the condition that is to be treated, as well as the age, weight, sex, renal function, hepatic function and response of the particular patient to be treated.

[0040] Suitable quantities of active ingredient that may be employed in tablet formulations may be in the range 2 to 50% by weight based upon the total weight of the formulation. More preferably, formulations may contain between 4 and 17% by weight of active ingredient, and especially from about 5 to about 15%.

[0041] Tablet formulations described herein comprise one or more mucoadhesion promoting agent and may thus facilitate the partial or complete adhesion of active ingredients to a biological surface, such as a mucosal membrane.

[0042] In the context of the present invention, the terms "mucoadhesive" and "mucoadhesion" refer to adhesion or 55 adherence of a substance to a mucous membrane within the body. The skilled person will appreciate that the expressions "mucoadhesion" and "bioadhesion" may often be used interchangeably. In this respect, the presence of a mucoadhesion promoting agent helps facilitate the partial or complete adhesion of sublingual tablets comprising active ingredient to the mucosal membrane under the tongue.

[0043] A variety of substances known in the art can be used as mucoadhesion promoting agents, for example polymeric substances, preferably with an average (weight average) molecular weight above 5,000. It is preferred that such materials are capable of rapid swelling when placed in contact with water and/or, more preferably, mucous, and/or are substantially insoluble in water at room temperature and atmospheric pressure.

[0044] Examples of suitable mucoadhesion promoting agents include cellulose derivatives such as modified cellulose gum and, more particularly, hydroxypropylmethyl cellulose (HPMC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), methyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and sodium carboxymethyl cellulose (NaCMC); starch derivatives such as modified starch, sodium starch glycolate and, more particularly, moderately cross-linked starch; acrylic polymers such as carbomer and its derivatives (Polycarbophil, Carbopol®, etc.); polyvinylpyrrolidone; polyethylene oxide (PEO); chitosan (poly-(D-glucosamine)); natural polymers such as gelatin, sodium alginate, pectin; scleroglucan; xanthan gum; guar gum; poly co-(methylvinyl ether/maleic anhydride); and crosscarmellose (e.g. crosscarmellose sodium). Such polymers may be crosslinked. Combinations of two or more bio/mucoadhesive polymers can also be used.

[0045] Suitable commercial sources for representative bio/mucoadhesive polymers include: Carbopol® acrylic copolymer (BF Goodrich Chemical Co, Cleveland, OH, USA); HPMC (Dow Chemical Co., Midland, MI, USA); NEC (Natrosol; Hercules Inc., Wilmington, DE, USA); HPC (Klucel®; Dow Chemical Co., Midland, MI, USA); NaCMC (Hercules Inc. Wilmington, DE, USA); PEO (Aldrich Chemicals, USA); sodium alginate (Edward Mandell Co., Inc., Carmel, NY, USA); pectin (BF Goodrich Chemical Co., Cleveland, OH, USA); crosslinked polyvinylpyrrolidone (Kollidon CL®, BASF, Germany, Polyplasdone XL®, Polyplasdone XL-10® and Polyplasdone INF-10®, ISP Corp., US); Ac-Di-Sol® (modified cellulose gum with a high swellability; FMC Corp., USA); Actigum (Mero-Rousselot-Satia, Baupre, France); Satifaxana (Sanofi BioIndustries, Paris, France); Gantrez® (ISP, Milan, Italy); chitosan (Sigma, St Louis, MS, USA); and sodium starch glycolate (Primojel®, DMV International BV, Netherlands, Vivastar®, J. Rettenmaier & Söhne GmbH & Co., Germany, Explotab®, Roquette America, US).

[0046] However, preferred mucoadhesion promoting agents that may be employed in sublingual tablet formulations described herein include sodium carboxymethylcellulose.

[0047] Suitable forms of sodium carboxymethylcellulose include internally crosslinked sodium carboxymethylcellulose, such as crosscarmellose sodium NF (e.g. Ac-Di-Sol® (FMC Corp., USA)).

[0048] Suitably, the amount of mucoadhesion promoting agent that is present in a tablet formulation may be in the range 0.1 to 25%, such as 0.5 to 15% and preferably 1 to 10% by weight based upon the total weight of the formulation. A preferred range is from 2 to 8%, such as from about 3.5 to about 6.5% (e.g. about 5%) by weight.

[0049] Tablet formulations described herein may comprise one or more binder and/or disintegrating agent or "disintegrant". A binder may be defined as any material that is capable of acting as a bond formation enhancer, facilitating the compression of the powder mass into coherent compacts.

[0050] A disintegrant may be defined as any material that is capable of accelerating to a measurable degree the disintegration/dispersion of a tablet formulation, and in particular carrier particles, as defined herein. This may be achieved, for example, by the material being capable of swelling and/or expanding when placed in contact with water and/or mucous (e.g. saliva), thus causing the tablet formulations/carrier particles to disintegrate when so wetted.

[0051] Suitable disintegrants include cross-linked polyvinylpyrrolidone, carboxymethyl starch and natural starch, and suitable binders include cellulose gum and, particularly, microcrystalline cellulose.

[0052] Preferred forms of microcrystalline cellulose include silicified microcrystalline cellulose (a mixture of microcrystalline cellulose and a small amount of colloidal silicon dioxide), such as ProSolv® (JRS Pharma, Germany).

[0053] If present, binders and/or disintegrating agents are preferably employed in an amount of between 0.5 and 10% by weight based upon the total weight of the formulation. A preferred range is from 1 to 8% (e.g. 5%), such as from about 2.0 to about 3.0% (e.g. about 2.25%) by weight.

[0054] It should be noted that sodium carboxymethylcellulose may function in tablet formulations described herein both as mucoadhesion promoting agent and as a disintegrating agent.

[0055] Preferably, carrier particles for use in tablet formulations described herein are of a size that is between about 50 and about 750 μm , and preferably between about 100 and about 600 μm , such as between about 150 μm and about 400 μm (e.g. about 200 μm). Suitable carrier particle materials include carbohydrates, e.g. sugar, mannitol and lactose; pharmaceutically-acceptable inorganic salts, such as sodium chloride, calcium phosphate, dicalcium phosphate hydrate, dicalcium phosphate dehydrate, tricalcium phosphate, calcium carbonate, and barium sulfate; polymers, such as microcrystalline cellulose, cellulose and crosslinked polyvinylpyrrolidone; or mixtures thereof. It is preferred that the carrier particle material comprises a pharmaceutically-acceptable substance that is adequately soluble in water (e.g. exhibits a solubility of greater than 0.01 g/mL at room temperature and atmospheric pressure). Preferred materials thus include sugar alcohols and/or sugars, such as mannitol and lactose, or pharmaceutically-acceptable inorganic salts, such as sodium chloride.

[0056] Preferred carrier particle materials include mannitol, such as granulated mannitol (Pearlitol 400 DC; Roquette, France) and spray-dried mannitol (Parteck M200; Merck, Germany).

[0057] Carrier particles preferably comprise an amount of between 50 and 95% by weight based upon the total weight of the formulation. A preferred range is from 60 to 90%, such as from 65 to 85% (e.g. between about 70 and about 85%) by weight.

[0058] It is preferred that the relative sizes and amounts of the particles of active ingredient and the carrier particles that are employed are sufficient to ensure that the carrier particles may be at least about 90% covered by the active ingredient, for example at least about 100% and up to about 200% (e.g. between about 130% and about 180%) covered. The skilled person will appreciate in this context that "100% coverage" of the carrier particles by the active ingredient means that the relative particle sizes and amounts of the relevant particles that are employed are sufficient to ensure that the entire surface area of each carrier particle could be covered by the particles of the active ingredient notwithstanding that other ingredients (e.g. mucoadhesion promoting agent) may also be present in a tablet formulation. Obviously, if other such ingredients are employed, then the actual degree of coverage of carrier particles by active ingredient may be less than the amounts specified above. 200% coverage means that there is sufficient particles of active ingredient to cover the surfaces of the carrier particles twice over, notwithstanding the presence of other ingredients.

[0059] It is surprising that such tablet formulations with greater than 90% theoretical coverage are effective. Based on current knowledge, the skilled person would understand that, in order to ensure rapid dissolution, it would be important to ensure that the relative sizes/amounts of active ingredient/carrier particles are sufficient to ensure that 70% or less of the surfaces of the latter could be covered by the former.

[0060] Tablet formulations may be prepared by standard techniques, using standard equipment known to the skilled person.

[0061] Active ingredient and other essential constituents mentioned hereinbefore may be combined with conventional pharmaceutical additives and/or excipients used in the art for such preparations, and thereafter preferably directly compressed/compacted into tablets. (See, for example, *Pharmaceutical Dosage Forms: Tablets*. Volume 1, 2nd Edition, Lieberman et al (eds.), Marcel Dekker, New York and Basel (1989) p. 354-356 and the documents cited therein.)

[0062] Suitable further additives and/or excipients may thus comprise:

- (a) surfactants or wetting agents, which may enhance that hydration of the active ingredient and carrier particles, resulting in faster initiation of both mucoadhesion and dissolution. If present, the surfactant should be provided in finely dispersed form and mixed intimately with the active ingredients. Examples of suitable surfactants include sodium lauryl sulphate, polysorbates, bile acid salts and mixtures thereof. If present, the surfactant may comprise between 0.3 and 5% by weight based upon the total weight of the tablet formulation, and preferably between 0.5 and 3% by weight;
- (b) lubricants (such as sodium stearyl fumarate or, preferably, magnesium stearate). When a lubricant is employed it should be used in very small amounts (e.g. up to about 3%, and preferably up to 2%, by weight based upon the total weight of the tablet formulation);
- (c) flavourings (e.g. lemon, menthol or, preferably, peppermint powder), sweeteners (e.g. neohesperidin) and dye-stuffs; and/or
- (d) other ingredients, such as carrier agents, preservatives and gliding agents.

[0063] The various ingredients may be dry mixed together in several ways for a sufficient time in order to produce a mixture. This results in discrete particles of drug and other relevant excipients, in particular the mucoadhesion promoting agent, being presented on, and/or adhered to, the surfaces of the carrier particles. Standard mixing equipment may be used in this regard. The mixing time period is likely to vary according to the equipment used.

[0064] Suitable compacting equipment includes standard tabletting machines, such as the Kilian SP300 or the Korsch EKO.

[0065] Irrespective of the foregoing, the tablet formulation should be essentially free (e.g. less than 20% by weight based on the total weight of the formulation) of water. It will be evident to the skilled person that "premature" hydration will dramatically decrease the mucoadhesion promoting properties of a tablet formulation and may result in premature dissolution of the active ingredient.

[0066] Suitable final sublingual tablet weights are in the range 30 to 400 mg, such as 50 to 200 mg, for example 60 to 180 mg, more preferably between about 70 and about 160 mg. Suitable final tablet diameters are in the range 4 to 10 mm, for example 5 to 9 mm, and more preferably about 6 to about 8 mm. A preferred tablet weight is about 80 mg and a preferred tablet diameter is about 6 mm.

[0067] Wherever the word "about" is employed herein in the context of concentrations (e.g. of drug in plasma), timescales (e.g. *in vitro* drug release and measured/measurable drug plasma concentrations), dimensions (e.g. particle and tablet sizes), surface coverage (e.g. of carrier particles by active ingredient), and amounts (e.g. absolute doses of active ingredient and relative amounts of individual constituents), it will be appreciated that such variables are approximate and as such may vary by \pm 10%, e.g. \pm 5%, from the numbers specified herein.

[0068] The tablet formulations described herein may be administered sublingually by way of appropriate dosing means

known to the skilled person. A sublingual tablet may be placed under the tongue, and the active ingredients absorbed through the surrounding mucous membrane.

[0069] The formulations according to the present invention are useful in the treatment of insomnia and particularly transient insomnia. According to a further aspect of the invention there is provided a formulation according to the invention for use in a method of treatment of insomnia comprising administration of such a formulation to a person suffering from, or susceptible to, such a condition.

[0070] For the avoidance of doubt, by "treatment" we include the therapeutic treatment, as well as the symptomatic treatment, the prophylaxis, or the diagnosis, of a condition.

[0071] The formulations according to the present invention are easy and inexpensive to manufacture, and consistently enable the rapid uptake of the active ingredient through the oral mucosa. This enables "on demand" sleep, which is achievable before retiring, following an interruption of sleep, or in other situations when rapid sleep induction is desired. Most usefully, formulations according to the present invention are capable of providing this effect, whilst at the same time reducing or preventing inconveniently rapid onset of sleep in, for example, patients that are particularly sensitive to the relevant drug.

[0072] Furthermore, formulations according to the present invention are capable of maintaining a drug-induced sleep throughout the night, whilst at the same time preventing or reducing the post-sleep residual effects mentioned herein-before.

[0073] Finally, the present invention enables these surprising effects to be achieved in a highly consistent manner, in which inter- and intra-individual variations are significantly reduced or eliminated, providing the physician and end user with a dosage form that is capable of providing far more reliable sleep, both in terms of induction and duration.

[0074] Formulations according to the present invention may also have the advantage that they may be prepared using established pharmaceutical processing methods and employ materials that are approved for use in foods or pharmaceuticals or of like regulatory status.

[0075] Formulations according to the present invention may also have the advantage that they may be more efficacious than, be less toxic than, be more potent than, produce fewer side effects than, be more easily absorbed than, and/or have a better pharmacokinetic profile than, and/or have other useful pharmacological, physical, or chemical properties over, pharmaceutical formulations known in the prior art, whether for use in the treatment of insomnia or otherwise.

[0076] The invention is illustrated by way of the following examples with reference to Figure 1, which shows a comparison of plasma concentrations of zolpidem produced by way of two sublingual tablet formulations according to the present invention *versus* a commercially-available peroral formulation.

Example 1

Preparation of Sublingual Tablets

[0077] Sublingual tablets comprising 5 mg and 10 mg of zolpidem hemitartrate were prepared as follows.

[0078] Zolpidem hemitartrate (Boehringer Ingelheim, Germany) was firstly ground for 20 minutes in a ball mill.

[0079] The active ingredient was then accurately weighed out, along with the other excipients (see below), in appropriate proportions that would enable the production of tablets with the absolute amounts of various ingredients mentioned below.

[0080] Pre-weighed quantities of zolpidem hemitartrate and mannitol (Parteck M200; Merck, Germany) were then mixed in a Turbula mixer for 96 hours. Then, pre-weighed quantities of silicified microcrystalline cellulose (ProSolv®; JRS Pharma, Germany), sodium carboxymethylcellulose (Crocarmellose Sodium NF; Ac-Di-Sol®; FMC Corp., USA), Neohesperidin DC (Exquim, Spain) and peppermint powder (Finnenich, Germany) were added and mixing was continued for 30 minutes. Finally, a pre-weighed quantity of magnesium stearate (Peter Greven, Netherlands) was added and mixing continued for another 2 minutes.

[0081] The powder mixture was then compacted using a single punch press (Korsch EK0) with 6 mm flat bevel edged punches, to produce tablets of a total weight of 80 mg.

[0082] The absolute amounts of individual ingredients are as presented in the table below.

[0083] In-process controls were employed (tablet weight, crushing strength, friability and disintegration time), with test samples being withdrawn throughout the tabletting process. Tablets were packaged and labelled for use in Example 2.

Ingredient	5 mg Tablet	10 mg Tablet
	Amount (mg)	Amount (mg)
zolpidem hemitartrate	5.00	10.00
mannitol	65.00	60.00
silicified microcrystalline cellulose	1.80	1.80

(continued)

5	Ingredient	5 mg Tablet	10 mg Tablet
		Amount (mg)	Amount (mg)
	sodium carboxymethylcellulose	4.00	4.00
	neohesperidin	0.20	0.20
	peppermint powder	3.00	3.00
	magnesium stearate	1.00	1.00
10	Total tablet weight	80.00	80.00

Example 2**Clinical Study**

[0084] An open randomized three-period crossover single-centre study was devised to evaluate the pharmacokinetic profile of the sublingual zolpidem 5 mg and 10 mg tablets prepared by way of Example 1 above, as compared to a peroral zolpidem formulation (Stilnoct® 10 mg; Sanofi-Synthélabo, France).

[0085] The trial was a pharmacokinetic study in healthy male and female volunteers to test for dose proportionality as between the two sublingual tablet formulations. The pharmacokinetic profiles were evaluated, focussing on bioavailability and time and rate of absorption. The study also included a subjective assessment of efficacy, i.e. the subjects' perceived degree of sedation.

[0086] 18 healthy subjects aged between 18 and 40 were used in this study. Signed informed consents were obtained in all cases.

[0087] Each of the three formulations were given to each of the 18 volunteers, in a random order, at three visits to the study centre (hereinafter "Visits 1, 2 and 3"). Visits 1 and 2 were followed by a wash-out period of at least 2 days.

[0088] At a pre-study visit, the subjects underwent a full clinical examination to assess medical history, undertake a physical examination, with routine screens for haematology, clinical chemistry, drugs and alcohol. This pre-study visit was conducted no more than 14 days prior to Visit 1.

[0089] Blood samples for determination of the concentration of zolpidem in plasma were collected on 14 occasions on each study day. Samples were collected immediately before administration and at 5, 10, 15, 30, 45, 60, 90, 120, 180, 240, 300, 360, 480 and 600 minute intervals thereafter. Tolerability and safety parameters were followed during the study day. Subject-rated sedation scores by visual analogue scales were assessed during each study day.

[0090] A safety follow-up visit, which included a physical examination, with routine screens for haematology and clinical chemistry was performed no more than 10 days after Visit 3.

[0091] Any of the following was regarded as a criterion for exclusion from the study:

1. the subject was overweight (i.e. with a body mass index of greater than 30);
2. the subject was a smoker;
3. if the subject had drank alcohol within the previous 24 hours;
4. if the subject showed any evidence of drug abuse;
5. if the subject had used a prescription medication within the previous 14 days;
6. if, in the investigator's judgement, the subject exhibited clinically significant abnormalities at the screening examination or in the laboratory test results; and
7. if the subject was female and was either pregnant, breast feeding or was of childbearing potential and was not using adequate birth control.

[0092] Subjects were free to discontinue their participation in the study at any time. A subject could be withdrawn from the study at any time at the discretion of the investigator. Subjects were to be discontinued from the study in event of, for example:

1. unacceptable adverse events;
2. non-compliance with the study protocol; or
3. failure to attend study visits.

55 However, all subjects completed the study in accordance with the protocol and none of the subjects were replaced.

[0093] Each subject received three single doses of each of the three formulations. The study nurse made sure that

the formulations were administered correctly, with the sublingual tablets administered deeply under the tongue with the subject remaining in a supine position for at least ten minutes. The oral tablet was swallowed.

[0094] Confirmed eligible subjects were assigned a subject number in a strictly consecutive order. Each subject number was randomised to one of six possible treatment sequences (3 x 2 x 1) according to a computer generated randomisation list provided by the study statistician. Three subjects were thus assigned to each treatment sequence.

[0095] In order to allow time for 10 hours of blood plasma sampling, administration of the study drug formulation took place at approximately 0800 hours on the morning of each visit.

[0096] The subjects fasted overnight before each visit. Upon arrival at the clinic, the subjects had a standard breakfast, after which study drug was administered. Standard meals were served during the study day, with lunch at 1200 hours and dinner at 1700 hours. Subjects had their meals after taking blood samples at 240 minutes and 480 minutes, and never directly before blood sampling.

[0097] Blood samples (7mL) were collected in heparinised Vacutainer® tubes. The samples were kept on ice and then centrifuged for 10 minutes at 2000 x g. The plasma was transferred into labelled plastic tubes and stored at -20°C prior to analysis. The frozen plasma samples were transported to Quintiles, Uppsala, Sweden, where the zolpidem concentration in the samples was measured.

[0098] Pharmacokinetic variables were derived from the zolpidem plasma concentration time curve. The primary pharmacokinetic variable was AUC_{0-t}, i.e. the area under the zolpidem plasma concentration time curve from 0 minutes to 600 minutes after administration of study drug.

[0099] To further evaluate the pharmacokinetic profile of the sublingual zolpidem formulations, the following secondary pharmacokinetic variables were derived from the plasma concentration time curve:

- (a) the area under the curve from 0 minutes extrapolated to infinity (AUC_{0-∞});
- (b) maximum plasma concentration (C_{max});
- (c) time for maximum plasma concentration (t_{max});
- (d) half-life of the active substance (t_{1/2});
- (e) first measurable plasma concentration (C_{first}); and
- (f) time to first measurable plasma concentration (t_{first}).

[0100] The primary efficacy variable was subject-rated sedation as measured on a VAS. The VAS consisted of a 100 mm non-graded scale between the extremes "completely awake" and "practically asleep". The subjects were to fill in the sedation scales immediately before administration of study drug and at 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510, 540, 570 and 600 minutes afterwards. If the subject fell asleep, the study nurse made a note of this in the case report form.

[0101] Safety variables included adverse events reported and laboratory assessments.

[0102] The recording of adverse events was made on each study visit and on the post-study visit. Patients were also free to report adverse events between visits. Adverse events were to be registered by the reporting of spontaneously mentioned symptoms and by open questioning. The investigator and the medical/laboratory staff were also instructed to record any adverse event that they observed during the investigation.

[0103] Plasma concentrations of zolpidem were determined by using HPLC with fluorescence detection. This analytical procedure is capable of measuring concentrations of zolpidem in human plasma within the range 1.0 to 400 ng/mL. Zolpidem and an internal standard Trazodone were purified from human heparin plasma by solid phase extraction using Bond Elute C₁₈ cartridges, rinsed with water and eluted with methanol. The eluate was injected onto a reversed phase C₁₈ LC column (150 x 4.6 mm, 5μm) with a mobile phase composed of acetonitrile:50 mM potassium phosphate buffer at pH 6.0 (4:6, v/v) and determined by fluorescence detection (excitation at 254 nm and emission at 400 nm).

[0104] The study was performed in accordance with Good Clinical Practise (GCP) and Good Laboratory Practise (GLP). In order to ensure the use of standard terminology, and the collection of accurate, consistent, complete and reliable data, the study was preceded by a training session for the investigator and study nurses.

[0105] The study was regularly monitored by external monitors appointed by the study sponsor. Complete source data verification of all parameters was performed and the case report forms were thereafter collected from the study site. Data was checked for accuracy by proof-reading, entered into a database, validated and analysed by the sponsor. All corrections and additions were signed and dated by the investigator.

[0106] Log AUC and log dose adjusted AUC were analysed using the SAS statistical program PROC GLM (SAS Institute Inc., Cary, NC, USA) with subject, treatment and period as class variables. Differences between treatments were given as 90% confidence intervals. Equivalence, and dose proportionality, respectively, were considered proven if the 90% confidence interval for the difference between treatments/doses did not exceed ±20% (or the ratio was within 0.80 and 1.25).

[0107] The quality of the determination of zolpidem concentration was satisfactory and within the quality control (QC) acceptance criteria of ±15%. The lower limit of quantification was 1.00 ng/ml for zolpidem in human plasma. The mean

accuracy of the assay as determined from the analysis of QC samples was within $\pm 10.0\%$.

Results

5 [0108] Pharmacokinetic data for all subjects are given as mean values in Table 1.

Table 1

Non-compartmental pharmacokinetic parameters (mean and SD) of zolpidem following sublingual and oral administration (n=18).			
PK Parameter	5 mg sublingual	10 mg sublingual	Stilnoct®
AUC _{0-t} (min•ng/ml)	14913.8 (SD 6714.2)	30855.5 (SD 14446.7)	26879.1 (SD 14605.3)
AUC _{0-∞} (min•ng/ml)	16064.3 (SD 7770.4)	33466.2 (SD 16682.5)	30093.7 (SD 18976.9)
C _{first} (ng/ml)	5.2 (SD 2.8)	8.7 (SD 5.8)	10.8 (SD 11.5)
t _{first} (min)	6.4 (SD 2.3)	6.4 (SD 2.3)	47.5 (SD 34.6)
C _{max} (ng/ml)	50.0 (SD 20.8)	98.8 (SD 32.7)	90.6 (SD 35.1)
t _{max} (min)	92.5 (SD 42.8)	122.5 (SD 58.3)	176.7 (SD 79.6)
t _{1/2} (h)	2.57 (SD 0.79)	2.56 (SD 0.82)	2.58 (SD 1.04)

30 [0109] These results demonstrate bioequivalence between the 10 mg sublingual tablet and Stilnoct® (10 mg) for AUC_{0-t}. Dose proportionality between sublingual zolpidem 5 mg and 10 mg tablets for dose adjusted AUC_{0-t} was established.

35 [0110] Most surprisingly, the time to the first measurable plasma concentration (t_{first}) and the time to the maximum plasma concentration (t_{max}) are significantly shorter for the 10 mg sublingual tablet, as compared to Stilnoct® (p<0.0001 and 0.0165, respectively). See also Figure 1 in this regard. The difference in the slope of the absorption curves i.e. absorption rate, is not statistically significant (p=0.478). Mean absorption rates are given in Table 2.

Table 2

Absorption rate (slope of absorption phase of concentration-time curve) by treatment, mean (SD) (n=18).		
5 mg sublingual	10 mg sublingual	Stilnoct® (10 mg)
0.0344 (0.0108)	0.0359 (0.0135)	0.0315 (0.0206)

40 [0111] The elimination half-life (t_{1/2}) of zolpidem was similar for the two sublingual tablets (2.57 and 2.56 hours, respectively), indicating that the elimination kinetics are linear. There was also no statistically significant difference in t_{1/2} between the two sublingual tablets and Stilnoct® (2.58 hours). Elimination rates are given in Table 3.

Table 3

Elimination rate (slope of elimination phase of concentration-time curve) by treatment, mean (SD) (n=18).		
5 mg sublingual	10 mg sublingual	Stilnoct® (10 mg)
-0.0050 (0.0014)	-0.0052 (0.0021)	-0.0052 (0.0019)

[0112] Subject-rated sedation VAS scores were assessed and compared between treatments. No significant differences in efficacy between treatments was found. However, after adjustment for period baseline VAS values (change from baseline) there was a statistically significant difference in mean VAS change from baseline between the sublingual 10 mg tablet and Stilnoct® in favour of the former ($p=0.0062$).

[0113] The number of subjects asleep was observed during ten hours following administration of the study drug. With the sublingual 10 mg tablet, more subjects were asleep at 90 minutes than for Stilnoct®.

[0114] To further assess and compare sleep after the different study drug administrations, the following values were calculated:

10 (a) first time of sleep (i.e. sleep latency; mean per treatment);
 (b) total number of sleep episodes (i.e. the total number of 30 minute episodes any subject was asleep per treatment; there were 377 episodes altogether); and
 (c) total sleeping time (mean per treatment).

15

Table 4

Additional sleep variables (n=18)				
	Sleep variable	5 mg sublingual	10 mg sublingual	Stilnoct® 10 mg
20	First time of sleep (mean min)	100.6 (39.6)	85.0 (31.3)	95.6 (38.3)
25	Total number of sleep episodes (n/377 and %)	81/377 (21.5%)	101/377 (26.8%)	101/377 (26.8%)
	Total sleep time (mean min)	135.0 (70.7)	168.3 (74.3)	168.3 (98.8)

30 [0115] For the sublingual 10 mg tablet and Stilnoct®, the total sleeping time as well as the number of sleeping episodes were similar, indicating that subjects slept equally long and deeply after administration of the two study drugs. The first time of sleep, however, occurred earlier for the sublingual 10 mg tablet, indicating that the onset of hypnotic effect is earlier for sublingual zolpidem compared to the oral administration (see Table 4).

[0116] In terms of safety, there were no unexpected or serious adverse events for any of the study medications.

35 *Conclusions*

[0117] This study shows that sublingual zolpidem (10 mg) tablets are bioequivalent to a peroral zolpidem formulation (Stilnoct®; 10 mg), with regard to AUC_{0-t} , $AUC_{0-\infty}$ and C_{max} . The pharmacokinetic analysis further shows that the extent of absorption and bioavailability of zolpidem was linear throughout the studied dose interval. In addition, the initial absorption rate of sublingual zolpidem is unaffected by the dose, which indicates that the same time to onset of effect can be expected for both doses.

[0118] There were no statistically significant differences between doses for dose adjusted AUC and C_{max} , and dose proportionality of sublingual zolpidem 5 mg and 10 mg was established. The linear increase of the AUC with increased dose provides strong evidence for a similar extent of absorption of zolpidem after sublingual administration of the studied doses in these subjects.

[0119] Dose proportionality of sublingual zolpidem (5 mg and 10 mg tablets) was established, with t_{first} and t_{max} being significantly shorter for sublingual zolpidem. This demonstrated that an earlier absorption into the blood stream is achieved compared to oral administration. There is no statistically significant difference in the rate of absorption for sublingual zolpidem and Stilnoct® 10 mg, assessed from the slope of the absorption phase of the plasma time-concentration curves.

[0120] The lower inter- and intra-individual variability in the pharmacokinetic parameters of sublingual zolpidem *versus* oral zolpidem in healthy volunteers, suggest that the *in vivo* performance of the sublingual tablet is better.

[0121] There was a greater number of subjects falling asleep earlier after administration with sublingual 10 mg tablets, compared to the other study treatments. The mean total sleeping time, as well as the number of sleeping episodes was similar after treatment with sublingual 10 mg tablets and Stilnoct®.

[0122] These results indicate that formulations according to the present invention may be capable of providing, in a consistent fashion, sleep on demand in insomnia patients.

Claims

1. A sublingual tablet formulation, which is suitable for administration of a short acting hypnotic drug across the oral mucosa, which comprises:

5 (a) microparticles of the short acting hypnotic drug; and
 (b) particles of a mucoadhesion promoting agent,

10 which particles of components (a) and (b) are each presented, at least in part, upon the surfaces of larger carrier particles, and wherein the dose of drug per tablet is in the range of about 5 mg to about 12 mg.

2. A formulation as claimed in Claim 1, wherein the drug is zolpidem or a pharmaceutically acceptable salt thereof.

15 3. A formulation as claimed in Claim 2 wherein the salt is zolpidem hemitartrate.

4. A formulation as claimed in any one Claims 1 to 3, wherein the microparticles have a weight based mean diameter of between about 1 and about 10 μm .

20 5. A formulation as claimed in any one of Claims 1 to 4, wherein the amount of drug is in the range of about 5% to about 15% by weight.

6. A formulation as claimed in any one of Claims 1 to 5, wherein the mucoadhesion promoting agent is sodium carboxymethylcellulose.

25 7. A formulation as claimed in Claim 6, wherein the sodium carboxymethylcellulose is internally crosslinked sodium carboxymethylcellulose (croscarmellose sodium).

8. A formulation as claimed in any one of Claims 1 to 7, wherein the amount of mucoadhesion promoting agent that is present is in the range of about 3.5% to about 6.5% by weight.

30 9. A formulation as claimed in any one of Claims 1 to 8 which further comprises a binder or disintegrating agent.

10. A formulation as claimed in Claim 9, wherein the binder is microcrystalline cellulose.

35 11. A formulation as claimed in Claim 10, wherein the microcrystalline cellulose is silicified microcrystalline cellulose.

12. A formulation as claimed in any one of Claims 1 to 11, wherein the amount of binder/disintegrating agent is in the range of about 2.0% to about 3.0% by weight.

40 13. A formulation as claimed in any one of Claims 1 to 12, wherein the size of the carrier particles is in the range of about 150 to about 400 μm .

14. A formulation as claimed in any one of Claims 1 to 13, wherein the carrier particles comprise mannitol.

45 15. A formulation as claimed in Claim 14, wherein the mannitol is spray-dried mannitol.

16. A formulation as claimed in any one of Claims 1 to 15, wherein the carrier particles are present in an amount of between about 70% and about 85% by weight.

50 17. A formulation as claimed in any one of Claims 1 to 16, wherein the relative sizes and amounts of the particles of active ingredient and the carrier particles that are employed are sufficient to ensure that the carrier particles may be at least about 90% covered by the active ingredient.

18. A formulation as claimed in Claim 17, wherein the coverage of the carrier particles by the active ingredient is between about 130% and about 180%.

55 19. A formulation as claimed in any one of Claims 1 to 18, which further comprises a lubricant.

20. A formulation as claimed in Claim 19, wherein the lubricant is magnesium stearate.

21. A formulation as claimed in any one of Claims 1 to 20 wherein the tablet weight is about 80 mg and the tablet diameter is about 6 mm.

5 22. A process for the preparation of a formulation as claimed in any one of Claims 1 to 21, which comprises dry mixing the ingredients together to produce a mixture, followed by directly compressing or compacting the resultant mixture into tablet form.

10 23. A process as claimed in Claim 22 wherein:

- (i) the drug is first mixed with the carrier particles;
- (ii) the mucoadhesion promoting agent, and any other optional additives or ingredients (such as a binder or a disintegrating agent), are then added to the mixture with continued mixing;
- 15 (iii) a lubricant is then added to the mixture with continued mixing; and
- (iv) compaction is then carried out in a single punch press.

24. A formulation obtainable by a process according to Claim 22 or Claim 23.

20 25. Use of formulation as defined in any one of Claims 1 to 21 or 24 for the manufacture of a medicament for the treatment of insomnia.

26. A use as claimed in Claim 25 wherein the insomnia is transient insomnia.

25 27. A use of formulation as defined in any one of Claims 1 to 21 or 24 for the manufacture of a medicament for a method of providing sleep on demand, which method comprises administration of such a formulation to a patient in need of such sleep.

30 28. A use of formulation as defined in any one of Claims 1 to 21 or 24 for the manufacture of a medicament for a method of reducing the level of inter- and/or intra-patient variability in sleep induction and/or maintenance in one or more patients receiving a short acting hypnotic drug, which method comprises administration of such a formulation to said one or more patients.

35 29. A formulation as defined in any one of Claims 1 to 21 or 24 for use in the treatment of insomnia.

30. A formulation for use as claimed in Claim 29 wherein the insomnia is transient insomnia.

40 31. A formulation for use as defined in any one of Claims 1 to 21 or 24 for the manufacture of a medicament for a method of providing sleep on demand, which method comprises administration of such a formulation to a patient in need of such sleep.

45 32. A formulation for use as defined in any one of Claims 1 to 21 or 24 for the manufacture of a medicament for a method of reducing the level of inter- and/or intra-patient variability in sleep induction and/or maintenance in one or more patients receiving a short acting hypnotic drug, which method comprises administration of such a formulation to said one or more patients.

Patentansprüche

50 1. Sublingualtablettenformulierung, die geeignet ist zum Verabreichen eines rasch wirkenden Schlafmittels über die Mundschleimhaut, Folgendes umfassend:

- (a) Mikropartikel des rasch wirkenden Schlafmittels; und
- (b) Partikel eines Mucoadhäsion fördernden Mittels,

55 wobei die Partikel der Komponenten (a) und (b) jeweils wenigstens zum Teil auf den Oberflächen größerer Trägerpartikel vorliegen und wobei die Dosis des Arzneimittels pro Tablette im Bereich von etwa 5 mg bis etwa 12 mg liegt.

2. Formulierung nach Anspruch 1, wobei das Arzneimittel Zolpidem oder ein pharmazeutisch unbedenkliches Salz davon ist.
3. Formulierung nach Anspruch 2, wobei das Salz Zolpidem-Halbartrat ist.
- 5 4. Formulierung nach einem der Ansprüche 1 bis 3, wobei die Mikropartikel einen gewichtsbasierten mittleren Durchmesser zwischen etwa 1 und etwa 10 μm aufweisen.
- 10 5. Formulierung nach einem der Ansprüche 1 bis 4, wobei die Menge des Arzneimittels in dem Bereich von etwa 5 Gew.-% bis etwa 15 Gew.-% liegt.
6. Formulierung nach einem der Ansprüche 1 bis 5, wobei das Mucoadhäsion fördernde Mittel Natriumcarboxymethylcellulose ist.
- 15 7. Formulierung nach Anspruch 6, wobei die Natriumcarboxymethylcellulose intern vernetzte Natriumcarboxymethylcellulose (Crocarmellose-Natrium) ist.
8. Formulierung nach einem der Ansprüche 1 bis 7, wobei die Menge des Mucoadhäsion fördernden Mittels in dem Bereich von etwa 3,5 Gew.-% bis etwa 6,5 Gew.-% liegt.
- 20 9. Formulierung nach einem der Ansprüche 1 bis 8, ferner ein Binde- oder Sprengmittel umfassend.
10. Formulierung nach Anspruch 9, wobei das Bindemittel mikrokristalline Cellulose ist.
- 25 11. Formulierung nach Anspruch 10, wobei die mikrokristalline Cellulose silifizierte mikrokristalline Cellulose ist.
12. Formulierung nach einem der Ansprüche 1 bis 11, wobei die Menge des Binde-/Sprengmittels in dem Bereich von etwa 2,0 Gew.-% bis etwa 3,0 Gew.-% liegt.
- 30 13. Formulierung nach einem der Ansprüche 1 bis 12, wobei die Größe der Trägerpartikel in dem Bereich von etwa 150 bis etwa 400 μm liegt.
14. Formulierung nach einem der Ansprüche 1 bis 13, wobei die Trägerpartikel Mannitol umfassen.
- 35 15. Formulierung nach Anspruch 14, wobei das Mannitol sprühgetrocknetes Mannitol ist.
16. Formulierung nach einem der Ansprüche 1 bis 15, wobei die Trägerpartikel in einer Menge von zwischen etwa 70 Gew.-% und etwa 85 Gew.-% vorliegen.
- 40 17. Formulierung nach einem der Ansprüche 1 bis 16, wobei die relativen Größen und Mengen der eingesetzten Wirkstoffpartikel und der Trägerpartikel ausreichen, um sicherzustellen, dass die Trägerpartikel zu wenigstens 90 % von dem Wirkstoff abgedeckt sein können.
18. Formulierung nach Anspruch 17, wobei die Abdeckung der Trägerpartikel durch den Wirkstoff zwischen etwa 130 % und etwa 180 % liegt.
- 45 19. Formulierung nach einem der Ansprüche 1 bis 18, ferner ein Gleitmittel umfassend.
20. Formulierung nach Anspruch 19, wobei das Gleitmittel Magnesiumstearat ist.
- 50 21. Formulierung nach einem der Ansprüche 1 bis 20, wobei das Tablettengewicht etwa 80 mg beträgt und der Tablettendurchmesser etwa 6 mm beträgt.
22. Vorgang zum Herstellen einer Formulierung nach einem der Ansprüche 1 bis 21, umfassend das trockene Vermischen der Inhaltsstoffe, um ein Gemisch auszubilden, gefolgt von direktem Komprimieren oder Verdichten des sich ergebenden Gemischs in Tablettenform.
23. Vorgang nach Anspruch 22, wobei:

(i) das Arzneimittel zunächst mit den Trägerpartikeln vermischt wird;
(ii) das Mucoadhäsion fördernde Mittel und jegliche weiteren optionalen Zusatzstoffe (wie etwa ein Bindemittel oder ein Sprengmittel) dann unter kontinuierlichem Mischen dem Gemisch hinzugefügt werden;
(iii) ein Gleitmittel dann unter kontinuierlichem Mischen dem Gemisch hinzugefügt wird; und
5 (iv) eine Verdichtung dann in einer Exzenterpresse ausgeführt wird.

24. Formulierung, erhältlich über einen Vorgang nach Anspruch 22 oder 23.

25. Gebrauch einer Formulierung nach einem der Ansprüche 1 bis 21 oder 24 zum Herstellen eines Medikaments zum Behandeln von Schlaflosigkeit.

10 26. Gebrauch nach Anspruch 25, wobei die Schlaflosigkeit vorübergehende Schlaflosigkeit ist.

27. Gebrauch einer Formulierung nach einem der Ansprüche 1 bis 21 oder 24 zum Herstellen eines Medikaments für ein Verfahren zum Bereitstellen von Schlaf bei Bedarf, wobei das Verfahren das Verabreichen einer solchen Formulierung an einen Patienten, der solchen Schlaf benötigt, umfasst.

15 28. Gebrauch einer Formulierung nach einem der Ansprüche 1 bis 21 oder 24 zum Herstellen eines Medikaments für ein Verfahren zum Verringern des Ausmaßes an Variabilität, zwischen Patienten und/oder in einem Patienten, von Schlafinduktion und/oder Durchschlafen bei einem oder mehreren Patienten, die ein rasch wirkendes Schlafmittel erhalten, wobei das Verfahren das Verabreichen einer solchen Formulierung an den einen oder die mehreren Patienten umfasst.

20 29. Formulierung nach einem der Ansprüche 1 bis 21 oder 24 für den Gebrauch beim Behandeln von Schlaflosigkeit.

25 30. Formulierung für den Gebrauch nach Anspruch 29, wobei die Schlaflosigkeit vorübergehende Schlaflosigkeit ist.

31. Formulierung für den Gebrauch nach einem der Ansprüche 1 bis 21 oder 24 zum Herstellen eines Medikaments für ein Verfahren zum Bereitstellen von Schlaf bei Bedarf, wobei das Verfahren das Verabreichen einer solchen Formulierung an einen Patienten, der solchen Schlaf benötigt, umfasst.

30 32. Formulierung für den Gebrauch nach einem der Ansprüche 1 bis 21 oder 24 zum Herstellen eines Medikaments für ein Verfahren zum Verringern des Ausmaßes an Variabilität, zwischen Patienten und/oder in einem Patienten, von Schlafinduktion und/oder Durchschlafen bei einem oder mehreren Patienten, die ein rasch wirkendes Schlafmittel erhalten, wobei das Verfahren das Verabreichen einer solchen Formulierung an den einen oder die mehreren Patienten umfasst.

35

Revendications

40 1. Formulation en comprimé sublingual appropriée pour l'administration d'un médicament hypnotique à courte durée d'action au travers de la muqueuse buccale, qui comprend :

45 (a) des microparticules du médicament hypnotique à courte durée d'action ; et
(b) des particules d'un agent favorisant la mucoadhésion,

lesdites particules des composants (a) et (b) étant chacune présentées, au moins en partie, sur les surfaces de particules vectrices de plus grande taille et la dose, par comprimé, du médicament allant d'environ 5 mg à environ 50 12 mg.

50 2. Formulation selon la revendication 1, où le médicament est le zolpidem ou un sel pharmaceutiquement acceptable de celui-ci.

55 3. Formulation selon la revendication 2, où le sel est l'hémitartrate de zolpidem.

4. Formulation selon l'une quelconque des revendications 1 à 3, où les microparticules ont un diamètre moyen en fonction du poids entre environ 1 et environ 10 µm.

5. Formulation selon l'une quelconque des revendications 1 à 4, où la quantité de médicament va d'environ 5 % à environ 15 % en poids.

5 6. Formulation selon l'une quelconque des revendications 1 à 5, où l'agent favorisant la mucoadhésion est la carboxyméthylcellulose sodique.

7. Formulation selon la revendication 6, où la carboxyméthylcellulose sodique est une carboxyméthylcellulose sodique intérieurement réticulée (croscarmellose sodique).

10 8. Formulation selon l'une quelconque des revendications 1 à 7, où la quantité d'agent favorisant la mucoadhésion qui est présent va d'environ 3,5 % à environ 6,5 % en poids.

9. Formulation selon l'une quelconque des revendications 1 à 8 qui comprend en outre un liant ou un agent désintégrant.

15 10. Formulation selon la revendication 9, où le liant est la cellulose microcristalline.

11. Formulation selon la revendication 10, où la cellulose microcristalline est une cellulose microcristalline silicifiée.

12. Formulation selon l'une quelconque des revendications 1 à 11, où la quantité de liant/agent désintégrant va 20 d'environ 2,0 % à environ 3,0 % en poids.

13. Formulation selon l'une quelconque des revendications 1 à 12, où la taille des particules vectrices va d'environ 150 à environ 400 µm.

25 14. Formulation selon l'une quelconque des revendications 1 à 13, où les particules vectrices comprennent du mannitol.

15. Formulation selon la revendication 14, où le mannitol est un mannitol pulvérisé à sec.

16. Formulation selon l'une quelconque des revendications 1 à 15, où les particules vectrices sont présentes en une 30 quantité entre environ 70 % et environ 85 % en poids.

17. Formulation selon l'une quelconque des revendications 1 à 16, où les tailles et quantités relatives des particules de substance active et des particules vectrices qui sont utilisées sont suffisantes pour que les particules vectrices soient assurément revêtues à au moins environ 90 % par la substance active.

35 18. Formulation selon la revendication 17, où le revêtement des particules vectrices par la substance active va d'environ 130 % à environ 180 %.

19. Formulation selon l'une quelconque des revendications 1 à 18 qui comprend en outre un lubrifiant.

40 20. Formulation selon la revendication 19, où le lubrifiant est le stéarate de magnésium.

21. Formulation selon l'une quelconque des revendications 1 à 20, où le poids du comprimé est d'environ 80 mg et où le diamètre du comprimé est d'environ 6 mm.

45 22. Procédé de préparation d'une formulation selon l'une quelconque des revendications 1 à 21, qui comprend le mélange à sec des ingrédients pour produire un mélange suivi directement par une compression ou un compactage du mélange obtenu en une forme en comprimé.

50 23. Procédé selon la revendication 22 où :

- (i) le médicament est tout d'abord mélangé aux particules vectrices ;
- (ii) l'agent favorisant la mucoadhésion et tout autre additif ou ingrédient facultatif (comme un liant ou un agent désintégrant) sont ensuite ajoutés au mélange tout en continuant à mélanger ;
- 55 (iii) un lubrifiant est ensuite ajouté au mélange tout en continuant à mélanger ; et
- (iv) un compactage est ensuite effectué dans une presse à comprimés mono-poinçon.

24. Formulation qui peut être obtenue par un procédé selon la revendication 22 ou la revendication 23.

25. Utilisation d'une formulation telle que définie à l'une quelconque des revendications 1 à 21 ou 24 dans la fabrication d'un médicament pour le traitement de l'insomnie.

5 26. Utilisation selon la revendication 25, où l'insomnie est une insomnie transitoire.

27. Utilisation d'une formulation telle que définie à l'une quelconque des revendications 1 à 21 ou 24 dans la fabrication d'un médicament destiné à être employé dans une méthode permettant de fournir un sommeil sur demande, ladite méthode comprenant l'administration d'une telle formulation à un patient qui a besoin d'un tel sommeil.

10 28. Utilisation d'une formulation telle que définie à l'une quelconque des revendications 1 à 21 ou 24 dans la fabrication d'un médicament destiné à être employé dans une méthode permettant de réduire le degré de la variabilité inter- et/ou intra-patients de l'induction et/ou du maintien du sommeil chez un ou plusieurs patients recevant un médicament hypnotique à courte durée d'action, ladite méthode comprenant l'administration d'une telle formulation auxdits un ou plusieurs patients.

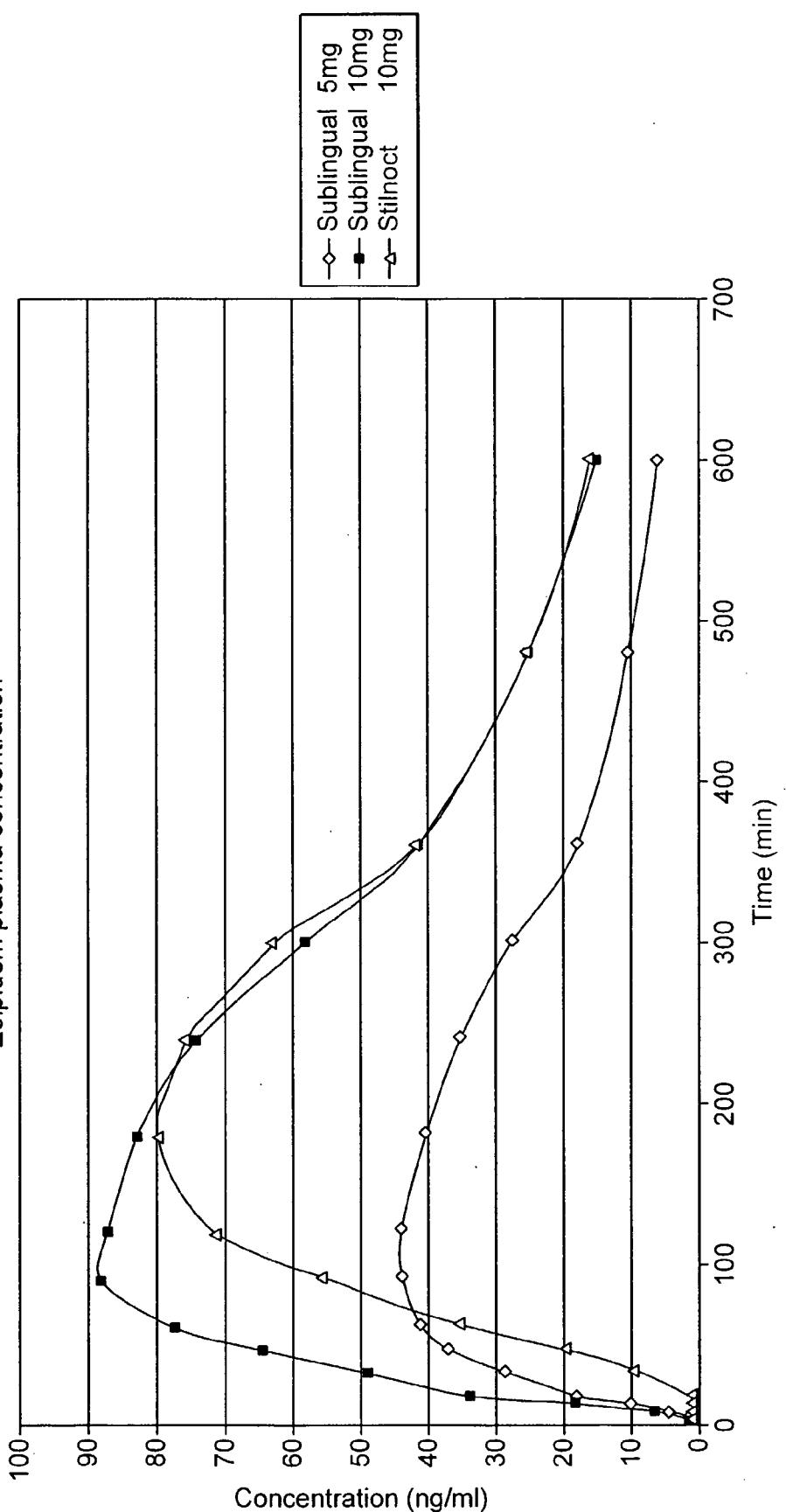
15 29. Formulation telle que définie à l'une quelconque des revendications 1 à 21 ou 24 pour une utilisation dans le traitement de l'insomnie.

30. Formulation pour une utilisation selon la revendication 29, où l'insomnie est une insomnie transitoire.

20 31. Formulation pour une utilisation telle que définie à l'une quelconque des revendications 1 à 21 ou 24 dans la fabrication d'un médicament destiné à être employé dans une méthode permettant de fournir un sommeil sur demande, ladite méthode comprenant l'administration d'une telle formulation à un patient qui a besoin d'un tel sommeil.

25 32. Formulation pour une utilisation telle que définie à l'une quelconque des revendications 1 à 21 ou 24 dans la fabrication d'un médicament destiné à être employé dans une méthode permettant de réduire le degré de la variabilité inter- et/ou intra-patients de l'induction et/ou du maintien du sommeil chez un ou plusieurs patients recevant un médicament hypnotique à courte durée d'action, ladite méthode comprenant l'administration d'une telle formulation auxdits un ou plusieurs patients.

35


40

45

50

55

FIG. 1
Zolpidem plasma concentration

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6514531 B1 [0011]
- EP 1260216 A1 [0011]
- US 6638535 B2 [0012] [0015]
- WO 0033835 A [0012]
- WO 0016750 A [0013]
- WO 03059349 A [0014]

Non-patent literature cited in the description

- *British National Formulary*, vol. 48, 174-175 [0007]
- **HOLM et al.** *Drugs*, 2000, vol. 59, 865 [0009]
- **DARCOURT et al.** *J. Pharmacol.*, 1999, vol. 13, 81 [0009]
- **TERZANO et al.** *Drug Safety*, 2003, vol. 26, 261 [0009]
- **SALVÀ ; COSTA.** *Clin. Pharmacokinet.*, 1995, vol. 29, 142 [0009]
- **DROVER et al.** *Clin. Ther.*, 2000, vol. 22, 1443 [0009]
- Guidance for Industry; Labelling Guidance for Zolpidem Tablets. US Department of Health and Human Service, 1997 [0009]
- Pharmaceutical Dosage Forms: Tablets. Marcel Dekker, 1989, vol. 1, 354-356 [0061]

SZTNH-100045335

EP 1 807 156

Új gyógyászati készítmények általános kezelésére

Szabadsalmi igénypontok

1. Szublingvális tabletta készítmény gyorsan ható altatószernek a szájnyálkahártyán keresztül történő beadására, amely készítmény

(a) a gyorsan ható altatószer mikrorézszeeskéit; és

(b) a mukoadhéziót elősegítő szer részecskéit

tartalmazza, ahol az (a) és (b) alkotórészek részecskéi legalább részben nagyobb vivőanyagrészecskék felületén helyezkednek el, és ahol tablettainként a gyógyszer dózisa a körülbelül 5 mg és a körülbelül 12 mg közötti tartományban van.

2. Az 1. igénypont szerinti készítmény, ahol a gyógyszer zolpidem vagy gyógyászatilag elfogadható sója.

3. A 2. igénypont szerinti készítmény, ahol a a só zolpidem-hemitartarat.

4. Az 1.-3. igénypont bármelyike szerinti készítmény, ahol a mikrorézszelek súly alapú közepes átmérője körülbelül 1 μm és körülbelül 10 μm közötti.

5. Az 1.-4. igénypont bármelyike szerinti készítmény, ahol a gyógyszer mennyisége a körülbelül 5 súly % és a körülbelül 15 súly % közötti tartományban van.

6. Az 1.-5. igénypont bármelyike szerinti készítmény, ahol a mukoadhéziót elősegítő szer nátrium-karboxi-metil-cellulóz.

7. A 6. igénypont szerinti készítmény, ahol a nátrium-karboxi-metil-cellulóz belső keresztkötésű nátrium-karboxi-metil-cellulóz (kroszkarmellóz-nátrium).

8. Az 1.-7. igénypont bármelyike szerinti készítmény, ahol a mukoadhéziót elősegítő szer mennyisége a körülbelül 3,5 súly % és a körülbelül 6,5 súly % közötti tartományban van.

9. Az 1.-8. igénypont bármelyike szerinti készítmény, amely kötőanyagot vagy szétesést elősegítő szert is tartalmaz.

10. A 9. igénypont szerinti készítmény, ahol a kötőanyag mikrokristályos cellulóz.

11. A 10. igénypont szerinti készítmény, ahol a mikrokristályos cellulóz szilicium-dioxidot tartalmazó mikrokristályos cellulóz.

12. Az 1.-11. igénypont bármelyike szerinti készítmény, ahol a kötőanyag/szétesést elősegítő szer-mennyisége a körülbelül 2,0 súly % és a körülbelül 3,0 súly % közötti tartományban van.

13. Az 1.-12. igénypont bármelyike szerinti készítmény, ahol a vivőanyag-részecskék mérete a körülbelül 150 μm és a körülbelül 400 μm közötti tartományban van.

14. Az 1.-13. igénypont bármelyike szerinti készítmény, ahol a vivőanyag-részecskék mannitot tartalmaznak.

15. A 14. igénypont szerinti készítmény, ahol a mannit porlasztva szárított mannit.

16. Az 1.-15. igénypont bármelyike szerinti készítmény, ahol a vivőanyag-részecskék körülbelül 70 súly % és körülbelül 85 súly % közötti mennyiségen vannak jelen.

17. Az 1.-16. igénypont bármelyike szerinti készítmény, ahol az alkalmazott hatóanyag-részecskék és vivőanyag-részecskék viszonylagos mérete és mennyisége elegendő ahhoz, hogy a vivőanyag-részecskéket legalább 90 %-ban beborítsa a hatóanyag.

18. A 17. igénypont szerinti készítmény, ahol a vivőanyag-részecskéknek a hatóanyag-részecskék általi beborítottsága körülbelül 130 % és körülbelül 180 % közötti.

19. Az 1.-18. igénypont bármelyike szerinti készítmény, amely csúsztatószeret is tartalmaz.

20. A 19. igénypont szerinti készítmény, ahol a csúsztatószer magnézium-sztearát.

21. Az 1.-20. igénypont bármelyike szerinti készítmény, ahol a tabletta súlya körülbelül 80 mg és a tabletta átmérője körülbelül 6 mm.

22. Eljárás az 1.-21. igénypont bármelyike szerinti készítmény előállítására, amelynél keverék készítése céljából az alkotórészeket szárazon összekeverjük, majd a kapott keveréket közvetlenül sajtoljuk vagy tömörítjük tablettavé.

23. A 22. igénypont szerinti eljárás, ahol

- (i) a gyógyszert először összekeverjük a vivőanyag-részecskékkel;
- (ii) a keverékhez folyamatos keverés közben hozzáadjuk a mukoadhéziót elősegítő szert és az adott esetben alkalmazott adalékanyagokat vagy alkotórészeket (így kötőanyagot vagy szétesést elősegítő szert);
- (iii) a keverékhez folyamatos keverés közben hozzáadunk csúsztatószert; és
- (iv) a tömörítést excenteres présben elvégezzük.

24. Készítmény, amely a 22. vagy 23. igénypont szerinti eljárással készíthető.

25. Az 1.-21. vagy 24. igénypont bármelyike szerinti készítmény felhasználása álmatlanság kezelésére szolgáló orvosság előállítására.

26. A 25. igénypont szerinti felhasználás, ahol az álmatlanság átmeneti álmatlanság.

27. Az 1.-21. vagy 24. igénypont bármelyike szerinti készítmény felhasználása orvosság előállítására szükség esetén elérőrendő alvást biztosító eljáráshoz, ahol az eljárásnál a készítményt beadjuk az ilyen alvást igénylő páciensnek.

28. Az 1.-21. vagy 24. igénypont bármelyike szerinti készítmény felhasználása gyors hatású altatószerrel kezelt egy vagy több páciensnél az alvás kiváltása és/vagy az alvás során a páciensek között és/vagy egy páciensnél fellépő eltérések csökkentésére szolgáló eljárást biztosító gyógyszer előállítására, amely eljárásnál a készítményt egy vagy több páciensnek beadjuk.

29. Az 1.-21. vagy 24. igénypont bármelyike szerinti készítmény álmatlanság kezelésénél történő felhasználásra.

30. Készítmény a 29. igénypont szerinti felhasználásra, ahol az álmatlanság átmeneti álmatlanság.

31. Készítmény felhasználásra az 1.-21. vagy 24. igénypont bármelyike szerint orvosság előállítására szükség esetén elérőrendő alvást biztosító eljáráshoz, ahol az eljárásnál a készítményt beadjuk az ilyen alvást igénylő páciensnek.

32. Készítmény felhasználásra az 1.-21. vagy 24. igénypont bármelyike szerint gyors hatású altatószerrel kezelt egy vagy több páciensnél az alvás kiváltása és/vagy az alvás során a páciensek között és/vagy egy páciensnél fellépő eltérések csökkentésére szolgáló eljárást biztosító gyógyszer előállítására, amely eljárásnál a készítményt egy vagy több páciensnek beadjuk.