Office de la Proprieté Canadian CA 2491114 C 2014/08/12

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 491 1 14
gln gfganisge ; m age”gy of ; 12) BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) G
(22) Date de depot/Filing Date: 2004/12/23 (51) Cl.Int./Int.Cl. GO6F 21/56 (2013.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2005/07/30 GO6F 7700 (2006.01), HO4L 12/16(2006.01)
- . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2014/08/12 SEINFELD MARC E.. US:
(30) Priorité/Priority: 2004/01/30 (US10/769,1006) SHELDON, MICHAEL G., US;

COSTEA, MIHAI, US;
ODINS-LUCAS, ZEKE B., US

(73) Proprietaire/Owner:
MICROSOFT CORPORATION, US

(74) Agent: SMART & BIGGAR

(54) Titre : DETECTION DE FICHIERS SANS CODE
(54) Title: DETECTION OF CODE-FREE FILES

800 —< 818 848
822 Remote
Computing
842 1 Device
ﬁ -~ 858 Remote
T | Application
Programs

806 —
—X

System Memory

‘ = : Operating
j 8000 Network System 826
- Video Adapter Adapter
i Application |
Data Media = A -
interfaces

it
- 804 Other Program
Operating 828 816 ‘
System
Application g2g

Modules 830

Programs Proaes“smg
Program 830 e hree—————
Modules 840
Program 832
Data J m]ﬁD .EE
oocooa [

/O Interfaces

(57) Abrégée/Abstract:

Detection of code-free files Is described. According to one implementation, an input file is parsed to recognize a file format.
Contents of the Input file are checked according to the recognized file format, If available, in an effort to determine whether
executable code might exist within the input file. A status Is then sent in response to the checking.

B
.
'
e
ok [[f
BTN .
N "'c‘-‘-.u:-:{\: e L~
Bo
.
.

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02491114 2004-12-23

ABSTRACT

[0046] Detection of code-free files is described. According to one implementation,
an input file is parsed to recognize a file format. Contents of the input file are checked
according to the recognized file format, if available, in an effort to determine whether

executable code might exist within the input file. A status is then sent in response to the

checking.

WWIIW*V““" nee A s omes s . e .t IR O VX" TN FTRUFTIITY N TTEr T Sy yst N SRR P L SO ERL B b T

A3 ot Mh, L AN AR PO B R 4o Y Pt P D e b

CA 02491114 2004-12-23

DETECTION OF CODE-FREE FILES

TECHNICAL FIELD

[0001] This disclosure relates to detection of executable code-free computer files.

BACKGROUND

[0002] Complex computer file formats—which allow for extensibility and
enhanced functionality—are becoming increasingly popular. Unfortunately, they also
provide a vehicle within which authors of malicious viral software may hide malevolent
executable code. To combat this situation, an “arms race” exists, wherein anti-viral (AV)
software makers isolate copies of each new virus and obtain a “signature” for the new
virus, so that it may be subsequently recognized.

[0003] Accordingly, anti-viral (AV) software is configured to scan input files
looking for signatures of each known virus. Where no known signature is found, an input
file 1s assumed to be clear of viral infection.

[0004] Unfortunately, it 1s frequently the case that a new virus will pass through the
AV software because the AV software has not yet been updated to include the new virus.
While the AV software makers tend to respond quickly, in many cases damage is done
betore they are able to respond with an upgrade, and before the consumer installs the

upgrade. Accordingly, a need still exists for techniques that are better able to prevent a

new software virus from infecting a computer system.

SUMMARY

[0005] Detection of code-free files is described. According to one implementation,

an mput file 1s parsed to recognize a file format. Contents of the input file are checked

10

15

20

25

30

CA 02491114 2009-12-21

51018-198

according to the recognized file format, if available, in an effort to determine
whether executable code might exist within the input file. A status is then sent in

response to the checking.

According to one aspect of the present invention, there is provided a
processor-readable medium comprising processor-executable instructions for:
parsing an input file to recognize a file format of the input file, wherein the parsing
repeatedly parses once with each of a plurality of component parsers contained
within a compound parser, wherein each of the plurality of component parsers is
configured for recognition of a specific file format by which an input file is
configured, wherein the compound parser is extensible, and wherein extending
the compound parser comprises adding an additional component parser
configured to recognize an additional file format and executable code if present in
a file of the additional file format; checking contents of the input file, according to
the recognized file format, to determine whether executable code exists within the
input file, and wherein the checking comprises detecting executable code because
its location within the input file is Inconsistent with the recognized file format;
continuing to parse the input file until a component parser recognizes the file
format of the input file or until all available component parsers within the
compound parser have parsed the input file; and sending a status in response to
results of said checking, wherein sending a status comprises further instructions
for: sending a file-has-no-code status when the file format of the input file was
recognized and no executable code was found; sending a file-has-code status
when executable code was found; and sending a don’t-know status when the file
format of the input file was not recognized; wherein adding an additional
component parser comprises instructions for: identifying a new file format, wherein
ability to recognize the new file format is functionality to be extended to the
compound parser; configuring a new component parser according to the new file
format, wherein the new component parser is configured to recognize files of the
new format and also to recognize executable code In files of the new format by
locating executable code that is inconsistent with the new file format; and
extending functionality of the compound parser by adding the new component

parser to the compound parser.

o

10

15

20

25

30

CA 02491114 2009-12-21

51018-198

According to another aspect of the present invention, there is
provided a method of detecting code-free files, comprising: identifying a new file
format, wherein ability to recognize the new file format is functionality to be
extended to a compound parser; configuring a new component parser according
to the new file format, wherein the new component parser is configured to
recognize files of the new format and also to recognize executable code in files of
the new format by locating executable code that is inconsistent with the new file
format; and extending functionality of the compound parser by adding the new
component parser to the compound parser; wherein the compound parser, having
extended functionality, is configured to operate to parse an input file by: parsing
the input file with the compound parser, wherein the compound parser is
configured to include a plurality of component parsers, wherein each component
parser is configured to recognize a specific data file tormat; analyzing contents of
the input file according to the recognized specific file format, where available, to
determine if the input file contains executable code; and sending a status in
response to results of said analyzing, wherein sénding the status comprises:
sending a file-has-no-code status when the file format of the input file was
recognized and no executable code was found; sending a file-has-code status
when executable code was found; and sending a don't-know status when a file

format of the input file was not recognized.

According to still another aspect of the present invention, there is
provided an apparatus for detecting code-free files, comprising: a compound
parser configured to repeatedly parse an input file, wherein each component
parser within the compound parser Is configured to recognize executable code
within a specific file format selected from among a group of data file formats:; and
a controller to examine success of each of the component parsers to recognize
the specific file format for which it was configured to recognize and to find
executable code within the input file, wherein the controller is configured to send a
status In response to results of said checking, wherein sending a status
comprises: sending a file-has-no-code status when the file format of the input file

was recognized and no executable code was found; sending a file-has-code

2a

CA 02491114 2009-12-21

51018-198

status when executable code was found; and sending a don’t-know status when

the file format of the input file was not recognized.

2b

CA 02491114 2009-12-21

51018-198

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] The same reference numerals are used throughout the drawings to reference

like components and features.

[0007] Fig. 1 1s a flow diagram that describes an exemplary implementation by
which code-free files may be detected, including a method eﬁlployed for use 1n
recognizing file formats and detecting executable code.

[0008] Fig. 2 1llustrates an exemplary environment, wherein a code detection
module is configured to provide information on executable code contained within a file to
an email program.

- {0009] Fig. 3 1llustrates a second exemplary environment, wherein a code detection
module 1s configured to provide information on executable code contained w.ithin a file to
an mstant messaging program.

[0010] F1g. 4 illustrates a third exemplary environment, wherein a code detection
module 1s configured to provide information on executable code contained within a file to
an Internet browsing program.

[0011] F1g. 5 1llustrates exemplary detail of structure contained within the code
detection module of Figs. 2—4, including an extensible parser module.

[0012] Fig. 6 1s a flow diagram that describes an exemplary method by which the
extensible parser module seen in Fig. 5 1s extended.

[0013] Fig. 7 1s a tlow diagram that describes an exemplary method to detect code

free files.

2C

CA 02491114 2004-12-23

[0014] Fig. 8 is an exemplary computer system wherein a code detection module

may be implemented.

DETAILED DESCRIPTION
Overview

[0015] The following discussion is directed to techniques for detecting code-free
files. Detection of code-free files i1s advantageous, in that such files pose a greatly
reduced security risk for users of email, instant messaging, Internet browsing and other
applications. Where a file is known to be code-free, the user enjoys a higher likelihood

that malicious “virus” software 1s not present.

General Process

[0016] Fig. 1 shows the general process of detecting code-free files. At block 102,
an input file is parsed to enable recognition of a file format by which the input file is
configured. File formats are conventions by which data may be organized for use and
storage; a number of such file formats are well-known, and are associated with file name
extensions, wherein a limited and non-exhaustive list includes: jpeg, pdf, doc (Word®),
vsd (Visio®), etc. At block 104, contents of the input file are checked according to the
recognized file format, if available, to find executable code within the input file. At block
106, a status 1s sent according to results of the checking for executable code. Note that
herein the term “code” or “executable code” is to be interpreted broadly and without
limitation to examples cited, which include: processor executable instructions, scripts and
other high-level languages, extensibility mechanisms and any other logic, device or
mechanism which could be designed, corrupted or in any other way implemented to

formulate a virus, worm or any other form of malicious, unauthorized, unwanted or

CA 02491114 2004-12-23

unintended malware. In some implementations, the status (e.g. reflecting a file-has-code
status, a file-has-no-code status or a don’t-know-if-file-has-code status) may be sent to
email, instant messaging, Internet browsing and other applications wherein the security

from virus-infected software 1s advantageous.

Exemplary Environment
[0017] Figs. 2—4 illustrate exemplary environments 200—400 within which a

system to detect code-free files may be operated. In particular, Figs. 2—4 1illustrate
environments 200—400 within which an email client application 202, an instant
messaging application 302 or Internet browsing program 402, respectively, are configured
to receive information which may include one or more attached files 204. Note that the
applications 202, 302, 402 are representative of a wide variety of hardware or software
devices which could be configured to receive information from a code detection module
206. Additional representative devices include a firewall (hardware and/or software), a
host intrusion detector (for use in a server, client, workstation, etc.), a host vulnerability
assessor (for use in a server, client, workstation, etc.), a software backup management
program, a CD and/or DVD burning program, a P2P (peer to peer) file-sharing program,
or a variety of other applications. A code detection module 206 1s configured to analyze
the attached file 204 to determine if executable code is present. Depending upon the
analysis, output of the code detection module 206 provides the application 202, 302, 402
with one of three possible inputs: a file-has-code status 208, a file-has-no-code status 210
or a don’t-know (if the file has code) status 212. In the first case, the file-has-code status
208 reflects very probable recognition of a file format of the input file and discovery of
executable code within the input file. Due to the dangers inherent with having executable

code within a file, the application 202, 302, 402 etc. may use knowledge of this status to

CA 02491114 2004-12-23

perform in a manner consistent with these dangers. In the second case, the file-has-no-
code status 210 reflects certain recognition of a file format of the input file and discovery
of no executable code within the input file. Where the application 202, 302, 402 is
assured that the file 204 is code-free, the user does not have to be troubled by dialog
boxes or other aspects of a user interface requesting the user to decide if the file is to be
trusted. In the third case, the don’t-know (if the file has executable code) status 212
reflects failure to recognize a file format of the input file, and the resultant uncertainty of

whether executable code exists within the input file.

Exemplary System
[0018] Fig. 5 shows exemplary detail of the code detection module 206 seen in

Figs. 2—4. The exemplary code detection module 206 may be configured in software,
firmware or hardware, such as by an ASIC (application specific integrated circuit). An
extensible parser module 502 may be formulated as a table configured to include a
plurality of component parser modules 506(1)>—506(N). The extensible parser module
may be extended, such as by an exemplary method 600 seen in Fig. 6. Extensibility is
desirable, since it is frequently the case that new file formats become known, or that
interest in known file formats is increased. Accordingly, the extensible parser module
502 may be expanded to include an additional component parser S06(N+1) configured to
recognize an additional file format and also configured to check for executable code
within the new file format. Fig. 6 shows an exemplary process 600 by which the
extensible parser module 502 of the code detection module 206 may be extended. At
block 602, a file format is identified for addition to the extensible parser module 502. For
example, it may be desired that the extensible parser module 502 be extended for use with

jpeg files. At block 604, a new component parser is configured according to the new file

CA 02491114 2004-12-23

format (e.g. jpeg), wherein the new component parser is configured to recognize files of
the new format and recognize executable code within such files. At block 606,
functionality of the extensible parser module 502 i1s extended by addition of the new
component parser S06(N+1) to an extensible table within the extensible parser 502.

[0019) Referring again to Fig. 5, the extensible parser module 502 1s configured to
contain a plurality of component parser modules 506(1)—506(N), wherein only two
component parser modules are shown for reasons of illustrative simplicity. Each of the
component parser modules 506(1)—506(N) is configured to recognize a file of a
particular file format, and when the particular file format 1s recognized, 1s additionally
configured to recognize executable code contained within the file. For example, parser
module 506(1) may be configured to recognize a file format (e.g. a format by which data
is organized for storage) of a Word® document. Parser module 506(1) may also be
configured, upon recognition of the file format, to recognize executable code within an
input file having a Word® file format. In this case, recognition of the file format assists
in the recognition of the executable code.

[0020] Each of the component parser modules 506 includes a format investigation
module 508, which is configured to parse the input file 204 and determine if the input file
matches the file format for which the parser was configured to 1dentity. The component
parser modules also include a code section detector 510, which is configured to detect
executable code within the input file particularly where that file is found to be of the file
format associated with the component parser module.

[0021] Each component parser module 506 may also be configured to include three
outputs, which indicate that the input file 204 has code 512, the input file has no code 514
and that it 1sn’t known if the input file had code 516. In the implementation of Fig. 3,

when the format investigation module 508 fails to detect a format associated with the

CA 02491114 2004-12-23

input file 204, the component parser returns a don’t-know status 516. When the file
format was recognized, the output of the code detector 510 is used to determine if the
input file has code 512 (i.e. code detector 510 found code) or the input file has no code
514 outputs 1s appropriate (i.e. code detector 510 did not find code).

[0022] The extensible parser module 502 also contains a controller or dispatch
process 504, which 1s typically configured to: serve the input file to all available
component parsers 506(1)—506(N); process the outputs of all of the component parsers;
and send an overall response (i.e. code/no-code/don’t-know) to an appropriate
application. The controller 504 is configured to include a compound code section
detector 518, which is configured to receive input from each component parser 506(1)—
506(N) and to determine if any of the component parsers found code. Where code was
detected by one of the component parsers 506(1)—506(N), output of the code detection
module 206 will be the file-has-code status 208. A compound format investigation
module 520 is configured to determine whether any of the component parsers 506(1)—
506(N) recognized a format of the input file 204. Such an investigation is typically
appropriate where none of the component parsers 506(1)—506(N) detected executable
code. Where a file format was detected by one of the component parsers 506(1)—
506(N), output of the code detection module 206 will be the file-has-no-code status 210.
Where a file format was not identified, don’t-know (if the file has code) output of the

code detection module 206 will be the don’t-know status 212.

Exemplary Method
[0023} An exemplary method 700 for implementing aspects of the detection of

code-free files will now be described with primary reference to the flow diagram of Fig.

7. The method applies generally to the operation of exemplary components discussed

- UM v G0 OV I s Ay b 2 b MM UMD SATIE AR ARSI c L L b e L e Suier b ke e A et

CA 02491114 2004-12-23

above with respect to Figs. 2—4, and particularly Fig. 5. The elements of the described
method may be performed by any appropriate means including, for example, hardware
logic blocks on an ASIC or by the execution of processor-readable instructions defined on
a processor-readable medium.

[0024] A "processor-readable medium,” as used herein, can be any means that can
contain, store, communicate, propagate, or transport instructions for use by, or execution
by, a processor. A processor-readable medium can be, without limitation, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device,
or propagation medium. More specific examples of a processor-readable medium
include, among others, an electrical connection having one or more wires, a portable
computer diskette, a random access memory (RAM), a read-only memory (ROM), an
erasable programmable-read-only memory (EPROM or Flash memory), an optical fiber, a
rewritable compact disc (CD-RW), and a portable compact disc read-only memory
(CDROM).

[0025] Fig. 7 shows an exemplary method 700 for detecting executable code within
files. At block 702, an input file is parsed to enable recognition of a file format by which
the input file 1s configured. The parser may be configured in a compound manner, such
as the compound or extensible parser 502 of Fig. 5, wherein the compound parser
includes a plurality of component parsers 506(1)—506(N), each configured to recognize a
specific file format.

[0026] At block 704, a determination is made if a file format has been recognized.
[t a file format has been recognized (following the Yes branch of block 704 to block
706), then at block 706 contents of the input file are checked according to the recognized
file format to find executable code within the input file. Note that where the parser 502 is

extensible and/or compound, the file format may match a file format for which one of the

CA 02491114 2004-12-23

component parsers 506(1)—506(N) 1s configured to recognize. Accordingly, the
controller 504 (Fig. 5) will evaluate information from each component parser 506(1)—
506(N), when determining if a file format is recognized.

[0027) At block 708, a determination is made if executable code was found. If
executable code was found (following the Yes branch of block 708 to block 712), then at
block 712, a file-has-code status is sent, i.e. a file-has-code status is sent when the file
format of the input file was recognized and executable code was found. The recognition
may be made by any of the component parsers S06(1)—506(N). As seen by review of the
structure of the exemplary code detection module 206 seen in Fig. 5, where the file format
1S recognized, a component parser is able to detect executable code, if present. Such code
1s inconsistent with file format, or is located according to the convention of the file
format, and is therefore easily spotted. Accordingly, where one of the component parsers
recognizes executable code, the controller responds by providing a file-has-code signal or
message as appropriate.

[0028] At block 708, if a determination is made that indicates that no executable
code was found (following the No branch of block 708 to block 710), then at block 710 a
file-has-no-code status is sent when the file format of the input file was recognized and
no executable code was found. Referring particularly to Fig. 5, it can be seen that if none
of the component parsers recognized executable code within the input file, and the file
format has been recognized by at least one of the component parsers, then the file-has-no-
code status is registered. Note that a finding that the input file has been found to have no
executable code is typically advantageous, since the absence of executable code assures
the absence of malicious executable code, such as a virus.

[0029] Returning to block 704, if a file format has not been recognized (following
the No branch of block 704 to block 714), then at block 714 a don’t-know (if the input

' UL W S Cr AT R e mlmmmxv/ﬂ?"“r*’lw LELRELERE 1ol ' LSRRI

CA 02491114 2004-12-23

file has executable code) status 212 is sent when the file format 1s unknown. As seen by
reference to block 212 of Fig. 5, where each of the component parsers was unable to
determine the format of the file, the controller 504 1s configured to 1ssue a don’t-know
status to the appropriate receiver, such as an email application 202 (Fig. 2), an instant
messaging application 302 (Fig. 3), an Internet browsing program 402 (Fig. 4) etc.

[0030] At block 716, in some applications, the component parsers 506(1)—506(N)
may continue to parse the input file 204 even after one of the component parsers
recognizes the format of the input file. This provides added security, in that, under rare
circumstances, more that one component parser may make a valid recognition of a file
format (i.e., a file could in rare instances be consistent with two different file formats).
Thus in the rare circumstances wherein a second component parser recognizes the format
of the input file, if either of the component parsers recognizes executable code, the
controller 504 can be configured to report that the input file-has-code. Alternatively, the
compound parser can be configured to discontinue parsing when one of the component
parsers recognizes the format of the input file. This tends to reduce time spent on the
parsing operation.

[0031] As seen above, the file-has-no-code, file-has-code or don’t-know status may
be sent to email, instant messaging, Internet browsing and other applications wherein
security from virus-infected software 1s advantageous. Figs. 2-—4 illustrate exemplary
uses for the code detection module 206. However, other uses for the code detection

module are possible, such as in file storage applications wherein it 1s desired to store only

executable code free files, etc.
[0032] While one or more methods have been disclosed by means of flow diagrams
and text associated with the blocks of the flow diagrams, it 1s to be understood that the

blocks do not necessarily have to be performed in the order in which they were presented,

10

" WD Y RO] g o AR ¢ Pt i e ey enamt s 4 4t et m o chrmn el s gem s syt el v v o andy e WY WA S A 1 [P T SRS PR SR | TSR U CRRp v ST CANE § JO S D S S P P T D e o . '

CA 02491114 2004-12-23

and that an alternative order may result in similar advantages. Furthermore, the methods

are not exclusive and can be performed alone or in combination with one another.

Exemplary Computer

[0033] Fig. 8 1s an exemplary computer system wherein the exemplary code
detection module and methods of operation of Figs. 1—7 may be implemented. Although
one specific configuration is shown, the code detection module may be implemented in
other computing configurations. The computing environment 800 includes a general-
purpose computing system in the form of a computer 802. The components of computer
802 can include, but are not limited to, one or more processors or processing units 804, a
system memory 806, and a system bus 808 that couples various system components
including the processor 804 to the system memory 806.

[0034] The system bus 808 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of a variety of bus architectures. An
example of a system bus 808 would be a Peripheral Component Interconnects (PCI) bus,
also known as a Mezzanine bus.

[0035] Computer 802 typically includes a variety of computer readable media.
Such media can be any available media that is accessible by computer 802 and includes
both volatile and non-volatile media, removable and non-removable media. The system
memory 806 includes computer readable media in the form of volatile memory, such as
random access memory (RAM) 810, and/or non-volatile memory, such as read only
memory (ROM) 812. A basic input/output system (BIOS) 814, containing the basic
routines that help to transfer information between elements within computer 802, such as

during start-up, is stored in ROM 812. RAM 810 typically contains data and/or program

11

CA 02491114 2004-12-23

modules that are immediately accessible to and/or presently operated on by the processing
unit 804.

[0036] Computer 802 can also include other removable/non-removable,
volatile/non-volatile computer storage media. By way of example, Fig. 8 illustrates a
hard disk drive 816 for reading from and writing to a non-removable, non-volatile
magnetic media (not shown), a magnetic disk drive 818 for reading from and writing to a
removable, non-volatile magnetic disk 820 (e.g., a “tloppy disk™), and an optical disk
drive 822 for reading from and/or writing to a removable, non-volatile optical disk 824
such as a CD-ROM, DVD-ROM, or other optical media. The hard disk drive 816,
magnetic disk drive 818, and optical disk drive 822 are each connected to the system bus
808 by one or more data media interfaces 825. Alternatively, the hard disk drive 816,
magnetic disk drive 818, and optical disk drive 822 can be connected to the system bus
808 by a SCSI interface (not shown).

[0037] The disk drives and their associated computer-readable media provide non-
volatile storage of computer readable instructions, data structures, program modules, and
other data for computer 802. Although the example illustrates a hard disk 816, a
removable magnetic disk 820, and a removable optical disk 824, it 1s to be appreciated
that other types of computer readable media which can store data that is accessible by a
computer, such as magnetic cassettes or other magnetic storage devices, flash memory
cards, CD-ROM, digital versatile disks (DVD) or other optical storage, random access
memories (RAM), read only memories (ROM), electrically erasable programmable read-

only memory (EEPROM), and the like, can also be utilized to implement the exemplary

computing system and environment.

[0038] Any number of program modules can be stored on the hard disk 816,
magnetic disk 820, optical disk 824, ROM 812, and/or RAM 810, including by way of

12

S AN WA - e et g S AR SV 3 s vl ey iy A SR T e AT D Wi o et - - . = - [N . DR S e WOAWRS T o = = caamafs S AW MR e t AT =R . Ny N wrerwi. T - Teba v

CA 02491114 2004-12-23

example, an operating system 826, one or more application programs 828, other program
modules 830, and program data 832. Note that the code detection module 206 may be
configured as an application program 828, a program module 830 or as a module located
in another convenient location. Additionally, the input file 204 may be included among
the data 832 or may be included in another convenient location. Each of such operating
system 826, one or more application programs 828, other program modules 830, and
program data 832 (or some combination thereof) may include an embodiment of a
caching scheme for user network access information.

[0039] Computer 802 can include a variety of computer/processor readable media
identified as communication media. Communication media typically embodies computer
readable instructions, data structures, program modules, or other data in a modulated data
signal such as a carrier wave or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a signal that has one or more of
its characteristics set or changed in such a manner as to encode information in the signal.
By way of example, and not limitation, communication media includes wired media such
as a wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared, and other wireless media. Combinations of any of the above are also included
within the scope of computer readable media.

[0040] A user can enter commands and information into computer system 802 via
input devices such as a keyboard 834 and a pointing device 836 (e.g., a “mouse”). Other
input devices 838 (not shown specifically) may include a microphone, joystick, game pad,
satellite dish, serial port, scanner, and/or the like. These and other input devices are
connected to the processing unit 804 via input/output interfaces 840 that are coupled to
the system bus 808, but may be connected by other interface and bus structures, such as a

parallel port, game port, or a universal serial bus (USB).

13

CA 02491114 2004-12-23

[0041] A monitor 842 or other type of display device can also be connected to the
system bus 808 via an interface, such as a video adapter 844. In addition to the monitor
842, other output peripheral devices can include components such as speakers (not
shown) and a printer 846 which can be connected to computer 802 via the input/output
interfaces 840.

[0042] Computer 802 can operate in a networked environment using logical
connections to one or more remote computers, such as a remote computing device 848.
By way of example, the remote computing device 848 can be a personal computer,
portable computer, a server, a router, a network computer, a peer device or other common
network node, and the like. The remote computing device 848 is illustrated as a portable
computer that can include many or all of the elements and features described herein
relative to computer system 802.

[0043] Logical connections between computer 802 and the remote computer 848
are depicted as a local area network (LAN) 850 and a general wide area network (WAN)
852. Such networking environments are commonplace in offices, enterprise-wide
computer networks, intranets, and the Internet. When implemented in a LAN networking
environment, the computer 802 is connected to a local network 850 via a network
interface or adapter 854. When implemented in a WAN networking environment, the
computer 802 typically includes a modem 856 or other means for establishing
communications over the wide network 852. The modem 856, which can be internal or
external to computer 802, can be connected to the system bus 808 via the input/output
interfaces 840 or other appropriate mechanisms. It is to be appreciated that the illustrated
network connections are exemplary and that other means of establishing communication

link(s) between the computers 802 and 848 can be employed.

14

CA 02491114 2004-12-23

[0044] In a networked environment, such as that illustrated with computing
environment 800, program modules depicted relative to the computer 802, or portions
thereof, may be stored in a remote memory storage device. By way of example, remote
application programs 858 reside on a memory device of remote computer 848. For
purposes of illustration, application programs and other executable program components,
such as the operating system, are illustrated herein as discrete blocks, although it is
recognized that such programs and components reside at various times in different storage
components of the computer system 802, and are executed by the data processor(s) of the
computer.

Conclusion

[0045]) Although the invention has been described in language specific to structural
features and/or methodological acts, it is to be understood that the invention defined in
the appended claims is not necessarily limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as exemplary forms of implementing

the claimed invention.

15

gt iy an e AL A K B A e R el e e e et T mmde ey eV R A Y A D S SOOI (4 AT/ B v n Sad e bl

10

15

20

29

CA 02491114 2009-12-21

51018-198

CLAIMS;

1. A processor-readable medium comprising processor-executable

instructions for:

parsing an input file to recognize a file format of the input file,
wherein the parsing repeatedly parses once with each of a plurality of component
parsers contained within a compound parser, wherein each of the plurality of
component parsers Is configured for recognition of a specific file format by which
an input file 1s configured, wherein the compound parser is extensible, and
wherein extending the compound parser comprises adding an additional
component parser configured to recognize an additional file format and executable

code If present in a file of the additional file format;

checking contents of the input file, according to the recognized file
format, to determine whether executable code exists within the input file, and

wherein the checking comprises detecting executable code because its location

within the input file Is inconsistent with the recognized file format;

continuing to parse the input file until a component parser
recognizes the file format of the input file or until all available component parsers

within the compound parser have parsed the input file; and

sending a status In response to results of said checking, wherein

sending a status comprises further instructions for:

sending a file-has-no-code status when the file format of the input

file was recognized and no executable code was found;

sending a file-has-code status when executable code was found;

and

sending a don't-know status when the file format of the input file was

not recognized;

16

10

15

20

29

CA 02491114 2009-12-21

51018-198

wherein adding an additional component parser comprises

instructions for:

identifying a new file format, wherein ability to recognize the new file

format is functionality to be extended to the compound parser;

configuring a new component parser according to the new file
format, wherein the new component parser is configured to recognize files of the
new format and also to recognize executable code in files of the new format by

locating executable code that is inconsistent with the new file format; and

extending functionality of the compound parser by adding the new

component parser to the compound parser.

2. The processor-readable medium as recited in claim 1, wherein
sending the status comprises further instructions for sending the status to an email

program.

3. The processor-readable medium as recited in claim 1, wherein
sending the status comprises further instructions for sending the status to an

instant messaging program.

4. The processor-readable medium as recited in claim 1, wherein
sending the status comprises further instructions for sending the status to an

internet browsing program.

5. The processor-readable medium as recited in claim 1, additionally
comprising further instructions for continuing to parse the input file with all
remaining component parsers after at least one component parser recognizes the

file format of the input file.

6. A method of detecting code-free files, comprising:

identifying a new file format, wherein ability to recognize the new file

format is functionality to be extended to a compound parser;

177

10

15

20

25

CA 02491114 2009-12-21

51018-198

configuring a new component parser according to the new file
format, wherein the new component parser Is configured to recognize files of the

new format and also to recognize executable code In files of the new format by

locating executable code that is inconsistent with the new file format; and

extending functionality of the compound parser by adding the new

component parser to the compound parser;

wherein the compound parser, having extended functionality, is

configured to operate to parse an input file by:

parsing the input file with the compound parser, wherein the
compound parser is configured to include a plurality of component parsers,
wherein each component parser is configured to recognize a specific data file

format;

analyzing contents of the input file according to the recognized
specific file format, where available, to determine if the input file contains

executable code; and

sending a status in response to results of said analyzing, wherein

sending the status comprises:

sending a file-has-no-code status when the file format of the input

file was recognized and no executable code was found;

sending a file-has-code status when executable code was found;

and

sending a don’t-know status when a file format of the input file was

not recognized.

7. The method as recited Iin claim 6, additionally comprising sending

the status to an email program.

8. The method as recited in claim 6, additionally comprising sending

the status to an instant messaging program.
18

10

15

20

29

CA 02491114 2009-12-21

51018-198

9. The method as recited in claim 6, additionally comprising sending

the status to an internet browsing program.

10. The method as recited In claim 6, wherein parsing the input file
comprises parsing the input file with each of the plurality of component parsers

within the compound parser.
11. An apparatus for detecting code-free files, comprising:

a compound parser configured to repeatedly parse an input file,
wherein each component parser within the compound parser is configured to
recognize executable code within a specific file format selected from among a

group of data file formats; and

a controller to examine success of each of the component parsers to

recognize the specific file format for which it was configured to recognize and to
find executable code within the input file, wherein the controller is configured to
send a status in response to results of said checking, wherein sending a status

COMmprises:

sending a file-has-no-code status when the file format of the input

file was recognized and no executable code was found;

sending a file-has-code status when executable code was found:;

and

sending a don't-know status when the file format of the input file was

not recognized.

12. The apparatus as recited in claim 11, wherein the apparatus for
detecting code-free files is additionally configured to send the status to an email

program.

13. The apparatus as recited in claim 11, wherein the apparatus for
detecting code-free files is additionally configured to send the status to an instant

messaging program.

19

CA 02491114 2009-12-21

51018-198

14. The apparatus as recited in claim 11, wherein the apparatus for

detecting code-free files is additionally configured to send the status to an internet

browsing program.

15. The apparatus as recited in claim 11, additionally configured to send

5 the status to:
a firewall:

a host intrusion detector; or

a host vulnerability assessor.

16. The apparatus as recited in claim 11, additionally configured to send

10 the status to a program selected from a group of programs, comprising:

a backup program;

a CD/DVD burning program; and

a P2P file-sharing program.

17. The apparatus as recited in claim 11, wherein each of the

15 component parsers is configured to recognize one of a plurality of data file

formats.

18. The apparatus as recited in claim 11, wherein the compound parser

is configured to allow extension by addition of a new component parser to the
compound parser, wherein the new component parser recognizes a further file

20 format and recognizes executable code within the further file format.

SMART & BIGGAR
OTTAWA, CANADA

PATENT AGENTS

20

CA 02491114 2004-12-23

102
PARSE AN INPUT FILE TO RECOGNIZE
A FILE FORMAT

104
CHECK CONTENTS OF THE INPUT
FILE, ACCORDING TO THE

RECOGNIZED FILE FORMAT IF
AVAILABLE, TO DETERMINE |F
EXECUTABLE CODE EXISTS

106
SEND A STATUS IN RESPONSE TO THE
CHECKING

202 E-MAIL CLIENT

Ve 200

06 CoDpE DETECTION

MODULE

208 210 212

CA 02491114 2004-12-23

302 INSTANT MESSAGING CLIENT

300
N\

FIg. 3

206 CobE DETECTION
MODULE

208 210 212

402 INTERNET BROWSER

(06 CobE DETECTION

MODULE

208 210 212

CA 02491114 2004-12-23

— /— 206

..

508 FORMAT INVESTIGATION MODULE 508 FORMAT INVESTIGATION MODULE

Y N Y N

510 CODE SECTION 510 CODE SECTION
DETECTOR DETECTOR

Y N Y N

516 Don't-
Know (if
file has

code)

516 Don't-
Know (if

212 014

File-Has-

214 610
File-Has- File-Has-
Code No-Code

File-Has-
Code

file has
code)

No-Code

504

518 COMPOUND CODE SECTION DETECTOR

Y N

920 COMPOUND FORMAT
INVESTIGATION MODULE

Y N

212 Don't-

<08 Know (if

210
File-Has-
No-Code

File-Has-

Code file has

code)

T 8 SR 1T TR T RS LA P R TRA JI E R A ERCACA B4 1 S St S et 1S i s .o Ce .o . . C e e el e e e VTR ¢ A -

600
N\

CA 02491114 2004-12-23

602
IDENTIFY A NEW FILE FORMAT FOR

ADDITION TO AN EXTENSIBLE PARSER
MODULE

604

CONFIGURE A NEW COMPONENT
PARSER ACCORDING TO THE NEW
FILE FORMAT, WHEREIN THE NEW
COMPONENT PARSER RECOGNIZES
FILES OF THE NEW FORMAT AND
RECOGNIZES EXECUTABLE CODE IN

SUCH FILES

606
EXTEND FUNCTIONALITY OF THE
EXTENSIBLE PARSER MODULE BY
ADDING THE NEW COMPONENT
PARSER TO THE EXTENSIBLE PARSER

CA 02491114 2004-12-23

702
PARSE AN INPUT FILE TO RECOGNIZE
A FILE FORMAT USING A COMPOUND
PARSER CONFIGURED TO INCLUDE A
PLURALITY OF COMPONENT PARSERS

700
N

704
FILE FORMAT
ECOGNIZED?

706
CHECK CONTENTS OF THE INPUT
FILE, ACCORDING TO A FILE FORMAT
RECOGNIZED BY ONE OF THE
COMPONENT PARSERS, TO FIND
EXECUTABLE CODE

708
EXECUTABLE CODE
DETECTED?

710
SEND A FiLE-HAS-
NO-CODE STATUS IF

712
SEND A FILE-HAS-
CODE STATUS IF

714
SEND A DON'T-
KNOW STATUS

FORMAT FORMAT
RECOGNIZED AND RECOGNIZED AND W*I}%“IL;:E I';'LE
NO EXECUTABLE EXECUTABLE CODE UNKNOWN
CODE WAS FOUND WAS FOUND

/16
CONTINUE TO PARSE THE INPUT FILE
. USING ALL COMPONENT PARSERS OF
|g _ 7 THE COMPOUND PARSER

CA 02491114 2004-12-23

Computing
Device

Remote
Application
Programs

Operating
System 826

875 Adapter

System B
Data Media e ee
Interfaces

Operating gog 1€ N
816 AN

Application g2g .
Processing | g1 RAM

Program g3yt {+t+ | —_—
Modules
840 BIOS
Program 832 814
Data [“ﬂummgg 812 ROM
| ooooa [

lllllllll

838

Printer Mouse Keyboard Other Device(s)

846 836 834 Flg y 8

Monitor

848

Remote
Computing
852 Device

LI N BANHAKAMNIFIFAS

Remote
Application
Programs

825
Data Media
interfaces

System
Programs |
Modules

Data

Video Adapter

Network
Adapter

804

Processing

840

System Bus :

Unit

PPN U NN AN BN S . S —

Other Program
Modules 830

Program

Py B e ar Yewr Yaad veslb venlh =il

834

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

