There is disclosed herein an artist's tool conditioning structure comprising an open receptacle having a bottom wall and an upstanding side wall. Tool conditioning means is carried by the side walls; the tool conditioning means including a slot therein for receiving the working end of an associated artist’s tool. The tool conditioning means is formed of a semi-rigid material whereby opposed inward pressure on the tool conditioning means in the direction of the slot causes constriction of the slot and the application of compressive force on the end of the associated artist's tool in the slot, whereby longitudinal movement of the end of the associated artist’s tool through the constricted slot results in the squeezing out and removal of waste materials on the working end of the associated artist's tool.

19 Claims, 17 Drawing Figures
ARTIST'S TOOL & CONDITIONING STRUCTURE

This invention relates generally to an artist's tool conditioning structure and is a continuation-in-part of applicant's co-pending application Ser. No. 866,471 filed Oct. 15, 1969, for ARTIST PALETTE AND CARRYING CASE.

It is a primary object of the invention to provide an artist's tool conditioning structure that includes means for facilitating the cleaning of the working ends of the artist's tools, such as paint brushes or palette knives, without resorting to the normal messy hand-wiping of such tools.

A further object of the invention is to provide an artist's tool conditioning structure which includes means for permitting the soaking of the paint brushes or other tools soiled with the paint pigment and includes structure for working the associated ends of such tools to loosen and remove the paint from the ends thereof.

Yet another object of the invention is to provide structure which allows the artist to clean his tools without disturbing other tools which may be disposed within the tool conditioning structure, suitable means being provided for allowing the artist to scrape, strip, and/or wipe the excess or residue material from the ends of the tools.

Further features of the invention pertain to the particular arrangement of the elements of the artist's tool conditioning structure, whereby the above outlined and additional advantages thereof are attained.

The invention, both as to its organization and method of operation, together with further objects and advantages thereof, will best be understood with reference to the following specification taken in connection with the accompanying drawings in which:

FIG. 1 is a perspective view of a first embodiment of the artist's tool conditioning structure of the present invention;

FIG. 2 is a perspective view of the tool conditioning means forming part of the tool conditioning structure depicted in FIG. 1;

FIG. 3 is a plan view of the artist's tool conditioning structure illustrated in FIG. 1;

FIG. 4 is a plan view of the tool conditioning means depicted in FIG. 2;

FIG. 5 is an elevational view of a modified embodiment of the tool conditioning means forming part of the present invention;

FIG. 6 is a sectional view of the artist's tool conditioning means taken along the line 6—6 in FIG. 3 and further depicting the relative positioning of certain of the parts when the tool conditioning structure is used by the artist;

FIG. 7 is a partial sectional view of the artist's tool conditioning structure, taken in the direction of the arrows along the line 7—7 in FIG. 6;

FIG. 8 is an end view of the artist's tool conditioning structure similar to that depicted in FIG. 7 with portions thereof broken away and illustrating the artist's tool conditioning structure in one operable position thereof;

FIG. 9 is a plan view of a modified embodiment of the tool conditioning means forming part of the present invention as depicted in FIG. 5;

FIG. 10 is a partial sectional view of the circled area of the second embodiment of tool conditioning means depicted in FIG. 9;

FIG. 11 is a plan view of a second embodiment of artist's tool conditioning structure forming part of the present invention;

FIG. 12 is a sectional view of the artist's tool conditioning structure taken in the direction of the arrows along the line 12—12 in FIG. 11;

FIGS. 13A and 13B are sectional views taken in the direction of the arrows along the line 13—13 and illustrate the tool conditioning structure in two operable positions thereof;

FIG. 14 is a side view of the structure illustrated in FIG. 11 and shows an associated brush disposed therein;

FIG. 15 is an end view of the artist's tool conditioning structure illustrated in FIG. 11 when mounted on an associated case; and

FIG. 16 is a partial sectional view similar to FIG. 12, further illustrating operation of the tool conditioning structure when used to clean the bristles of an associated paint brush.

With reference now to FIGS. 1 through 6, the artist's tool conditioning structure is seen to comprise a generally rectangular open receptacle designated as 100 formed including a bottom wall 101, a continuous upstanding side wall including opposed side walls 102 and 103, a front end wall 104 and a rear end wall 105.

The receptacle 100 further includes a dividing wall 106 which, in the embodiment illustrated, is formed by upwardly extending portions 106A and 106B of the bottom wall 101, the portions 106A and 106B being joined at a juncture 106C (FIG. 6). The dividing wall 106 further includes a notch 107 centrally disposed therein, the notch being substantially in the shape of a truncated "V" (see FIG. 7). The dividing wall 106 separates the receptacle into two compartments of sumps, which, for convenience, will be designated simply as the forward compartment and the rear compartment, as determined by the front or rear walls 104 and 105.

Completing the description of the receptacle 100, there is disposed along the bottom wall 101 a series of parallel ribs or ridges 109 disposed substantially parallel to both the rear wall 105 and the dividing wall 106 and extending substantially over the length of the bottom wall 101 in the rear compartment of the receptacle. The purpose of the ridges 109 will be explained hereinafter.

The operative portion of the tool conditioning structure comprises the tool conditioning means 110, best depicted in FIGS. 2, 4 and 5. The tool conditioning means 110 includes an upstanding wall portion 111 and a laterally extending wall portion 112. The upstanding wall portion 111 includes side portions 113 which curve around and terminate adjacent the forward edge of the laterally extending wall portion 112. The tool conditioning means further includes an arched top wall portion 114 integrally formed with and normal to the side portions 113 and the upstanding wall portion 111, the extremities of the top wall portion 114 including downwardly extending tabs 115 thereon.

The tool conditioning means 110 is adapted to be removable carried by the receptacle 100. Accordingly, in the embodiment illustrated, each side wall 102 and 103 includes upper wing portions 102A and 103A which are cantilevered outwardly from the longitudinal center of the receptacle 100. Each of the upper side wall portions 102A and 103A is provided with a longitudinally extending opening 116 therein. The openings 116 are disposed above the juncture 106C of the dividing wall 106. The openings 116 are adapted to receive the extended portions of the top wall 114, with the tabs 115 extending downwardly on the outer sides of the upper side wall portions 102A and 103A, whereby external pressure may be applied to the tabs 115.

The tool conditioning means further includes a generally V-shaped slot 117 disposed in the upstanding wall portion 111. The slot 117 extends from the upper edge of the wall portion 111 downwardly and terminates just above the laterally extending wall portion 112. In the embodiment depicted in FIGS. 3 and 4, the forward edges of the slot 117 are beveled as at 118, thereby to provide knife-like edges thereon for reasons hereinafter explained. Finally, the forward edge of the laterally extending wall portion 112 is beveled as at 119 to provide a knife-like edge thereon.

As best seen in FIGS. 4, 7 and 8, the laterally extending wall portion 112 is generally V-shaped about a hinge line 112A, whereby when the tool conditioning means 110 is properly disposed within the receptacle 100 the bottom surface of the laterally extending portion 112 is adapted to nest within the V-shaped notch 107 in the dividing wall 106 for cooperation therewith in a manner to be explained.

The method of using the tool conditioning structure will now be described in greater detail. In operation, the receptacle 100 would normally be provided with a paint thinner such as water in the forward and rear compartments thereof. In this
instance, the rear compartment provides means for soaking the brush bristles or other tools which have been used by the artist and which are impregnated or soiled with paint pigment. This soaking action normally prevents the drying and hardening of the pigment in the brushes or tools and thereby maintains the workability of the bristles for easier cleanup of same. The rear compartment, being the larger of the two compartments, allows the brushes or other tools to soak and rest on their sides, with the handles of the brushes being allowed to lie on the rear wall 105. This eliminates the standing of the brushes on their bristles as is often done when the artist uses conventional containers.

As one operation in the cleaning of a brush, the artist may wish to loosen materials near the ferrule of the brush. This may be accomplished by stroking the bristles of the brush back and forth across the raised ridges or ribs 109 disposed on the bottom wall 101 of the receptacle 100. This action also permits the artist to thoroughly clean the brushes with soap or other cleaning solutions after he has completed his work with the tools. Also, during the painting process the artist may wish to scrape away the loose material from the brushes of the brush. To accomplish this, the brushes 140 are positioned as depicted by the phantom lines in FIG. 6 with the bristles thereof engaging the beveled or knife-like edge 119 of the laterally extending wall portion 112 of the tool conditioning means 110. The bristles then may be scraped by pulling the brush up along the beveled knife-like edge 119, the brush being rotated in order that each side of the bristles may be scraped. The bristles can also be dipped in the thinner in the forward compartment to aid in the removal of pigment.

Next, the bristles of the brush are disposed within the slot 117 of the tool conditioning means 110. The tabs 115 of the tool conditioning means 110 are then depressed by the artist, thereby to cause constriction of the slot about the bristles of the brush (see FIG. 8). When the slot is constricted and a compressive force applied to the brush bristles, the brush is moved longitudinally as depicted by the arrow in FIG. 6, thereby removing the pigment within the bristles. This action replaces the hand squeezing and wiping which is the conventional method of cleaning the brush.

As depicted in FIG. 6, the tool conditioning means is mounted in a canted position relative to the bottom wall 101 of the receptacle. In this instance the slot 117 is disposed approximately 80° from the bottom wall 101. The canting of the tool conditioning means is accomplished by positioning the openings 116 in the upper side wall portions at the appropriate angle relative to the bottom wall 101 of the receptacle. Angles between 50° to 80° relative to the base or bottom wall 101 are satisfactory, with 80° being preferred.

By causing the slot 117 of tool conditioning means to be tilted or canted at this angle, two desirable functions are accomplished: First, it allows the run-off material stripped from the brush to fall forwardly along the latterly extending wall portion 112 and into the forward compartment which serves as a residue sump. This allows the thinner solution in the larger or rear compartment to remain clean for longer periods of time. Second, the canting allows the movement of the brush at an inclined angle which is more natural to the user and also allows clearance of any other brushes or tools which might be soaking in the rear compartment.

The generally V-shaped arrangement of the laterally extending wall portion 112 serves to stiffen the device in this area and also aids in the hinging action about the hinge axis 122A when the slot 117 is restricted by virtue of the opposed pressure on the tabs 115. This angle also tends to funnel run-off pigment and residue solution into the forward compartment from which material is removed from the brush bristles.

As previously mentioned, the dividing wall 106 is provided with the V-shaped notch 107 which is adapted to cooperate with the lower surface of the tool conditioning means 110. In operation, when external pressure is applied to the tabs 115, the slot 117 tends to close by virtue of the hinge action along the hinge line 122A. Simultaneously, the tool conditioning means tends to move downwardly into the notch 107 in the dividing wall 106 (see FIG. 8). The downward motion of the tool conditioning means 110 tends to oppose the laterally upward and inclined motion of the bristles as they are withdrawn through the slot 117, which action thereby further contributes to the stripping action.

The notch 107 in the dividing wall 106 serves to retain and stabilize the tool conditioning means 110 by preventing non-symmetrical side motion as the top wall portion 114 rotates inwardly through the longitudinal openings 116 provided in the side walls portions 102A and 103A of the receptacle 100.

The dividing wall 106, as is apparent, separates the forward and rear compartments and also tends to support the tool conditioning means 110 in the appropriate location relative to the side walls of the receptacle. The arched top wall portion 114 is positioned at right angles to both the upstanding wall portion 111 and upstanding side wall portions 113 of the tool conditioning means 110 and this arrangement provides a rigidifying effect to the slot 117 when the stripping action is required.

It will be apparent from the foregoing that the tool conditioning means 110 must be made of a semi-rigid material to allow the hinging of the entire device. The necessary to provide an adequate support to the bottom wall of the slot. It has been found that an impervious type of flexible plastic such as polypropylene or polyvinylchloride would be satisfactory for both the receptacle 100 and the tool conditioning means 110. In the embodiment illustrated the included angle of the notch 107 is on the order of about 35°, but angles as low as 20° were used in the bristles category.

A second and preferred embodiment of tool conditioning means cooperating with the receptacle 100 is best depicted in FIGS. 5, 9 and 10 and is designated generally as 120. This embodiment includes an upstanding wall portion 121, a laterally extending wall portion 122 and upstanding side wall portions 123. In this embodiment the top wall portion 124 extends forwardly of the upstanding wall portion 122, thereby providing an overhang substantially parallel to the laterally extending wall portion 122. The upstanding wall portion 121 further includes a generally V-shaped slot 127 therein. A peripheral lip 128 is provided on the upstanding wall 121, the lip 128 being contiguous with the slot 127. The lip is formed such that the opposed inner surfaces are at about a 90° included angle. Unlike the first embodiment, there is no beveled edge provided on the slot 127; instead a radiused corner is provided (FIG. 10). A beveled edge 129 is provided on the forward terminal edge of the laterally extending wall portion 122. The second embodiment also is provided with tabs 125 whereby the tool conditioning means may be removably disposed within the receptacle 100.

The scraping operation of the brush bristles or other tool against the forward edge 129 of the second embodiment 120 is the same as heretofore described for the first embodiment. Similarly, the squeezing action of the slot 127 on the bristles or end of another tool is accomplished by the opposed inward pressure on the tabs 125 which extend through the upper side wall portions of the receptacle 100.

In this second embodiment, however, if the brush is to be used for a different blend of color and it is desired to have the bristles virtually clear of the original color, then, after scraping and stripping the excess material from the brush, the bristles may be swished through the thinner in the rear compartment and possibly further stroked upon the upstanding ridges 109. The bristles would then again be placed in the slot 127 and pulled through the slot and the passage provided by the peripheral lip portion 128. This then wipes excess liquid from the bristles. The wiping action also flattens and straightens the bristles to a desired brushing condition and shape. As seen in FIG. 5, the peripheral lip 128 includes a portion 128' that extends upwardly from the upper wall portion 124, thereby providing a vertically disposed passage capable of providing a similar wiping action at a different angle.

In this embodiment the leading edge radius, as shown in FIG. 10, together with the included angle between the inner surfaces of the peripheral lip 128 combine to allow the brush
bristles to pull through the slot 127 and the passage provided by the lip in a more smooth and positive manner than with a straight side or with the beveled edges 118 of the first embodiment shown in FIGS. 4 and 5. The peripheral lip 128 provides a surface more typical of finger wiping and the semi-flexible lip tends to conform to the bristles and reduces the normal tendency of the bristles to fan out when pressure is applied. Thus, the brush bristles would be flattened and straightened by the action of pulling them through the passage formed by the slot 127 and the peripheral lip 128. A second embodiment of the artist's tool conditioning structure is illustrated in FIGS. 11 through 16 of the drawing and is of the type disclosed in applicant's parent application, Ser. No. 866,471. The second embodiment of tool conditioning structure includes the generally rectangular receptacle 200, including a bottom wall 201, side walls 202 and 203, a front end wall 204 and a rear end wall 205. A dividing wall 206 is disposed in the receptacle 200 and extends between the side walls 202 and 203 thereof; thereby dividing the receptacle into two open compartments. In the embodiment illustrated the dividing wall 206 is disposed toward the front wall 204. The dividing wall 206 has a vertically extending slot 217 formed therein. The slot 217 operates to receive the working end of an associated artist's tool such as the bristle end of a paint brush or the flat of a palette knife. The sides of the slot 217 are beveled at 218 to provide knife-like edges in the slot; the top edge of the dividing wall 206 also is beveled at 219. The sharp edges so formed aid in cleaning the associated tool in the manner hereinafter described.

The receptacle 200 preferably is made of plastic or other semi-rigid material so that the walls and bottom thereof are slightly flexible when pressure is applied thereto. In using the tool conditioning structure 200, it will be understood that inward pressure on the side walls 202 and 203 at the junctures thereof with the dividing wall 206 causes constriction of the slot 217 with resultant application of compressive force on the end of the associated tool disposed in the slot. When the working end of the tool is moved longitudinally through the constricted slot 217 the beveled knife-like edges 218 thereof operate to scrape off and squeeze out waste or excess materials on the working end thereof. This allows the artist to strip and scrape excess paint from a brush without hand-wiping of the brush.

In the preferred embodiment illustrated, the slot 217 extends the full height of the dividing wall 206. This makes it easier to apply pressure along the full length of the slot as the bottom wall 201 then acts as a hinge. To facilitate application of pressure on the side walls 202 and 203, a pair of oppositely disposed finger tabs 215 are integrally formed with the side walls 202 and 203 at the areas adjacent to the junctures of the dividing wall 206 with the side walls 202 and 203.

To further facilitate cleaning of the brush or other tool, the bottom wall 201 of the receptacle is provided with a plurality of upstanding ridges 218 which are disposed parallel to and between the dividing wall 206 and the end wall 205. By running the bristle end of the brush across the ridges 208, the ridges 208 operate to spread apart the bristles and loosen and expose the pigment within the bristles, thereby further facilitating cleaning of the brush. This is particularly useful in removing paint near the ferrule of the brush.

Finally, the rear wall 205 of the receptacle 200 is provided with a plurality of serrations 209 which are adapted to receive the handle end of the paint brush or other tool while the working end thereof is disposed within the receptacle, as illustrated at 235 in FIG. 14. Because the serrations 209 are V-shaped, they can accommodate handles of various diameters. The serrations 209 prevent the handle end of the brush or other tool from rolling and sliding off of the receptacle 200 when the receptacle 200 is used to retain the brushes in a moist condition with a thinner carried therewithin.

The tool conditioning structure 200 is particularly adapted for use with an appropriate carrying case, such as the type described in applicant's parent application Ser. No. 866,471.

In this connection, the side wall 203 of the receptacle 200 is provided with a pair of mounting clips 230, each of which includes a U-shaped portion 231 adapted to overlie an upstanding lip of the associated case, such as illustrated in the phantom lines in FIG. 15. When it is desired to use the receptacle 200 for paint thinning, it may be clipped to the lip of the case as illustrated. It will be understood that the open extent of the U-shaped portion 231 would normally be designed somewhat less than the thickness of the lip of the associated case whereby the receptacle 200 would be firmly mounted on the case but would be easily detachable therefrom.

The artist's tool conditioning structures depicted herein are thus very versatile and aid the artist in various ways. The receptacles may be used for soaking brushes by depositing appropriate thinning agents therewithin. They are particularly adapted for removing excess paint from the bristle end of the brush by the application of pressure to the appropriate points resulting in constriction of the slots in the respective structures. Such constriction permits ready cleaning of the brushes without messy hand-wiping. In addition, for thorough brush cleaning, the receptacles' relatively small size permits the artist to take them and move them to a source of running water and there run the bristle end of the brushes across the ridges 109 or 209. The dividing walls function to prevent excessive intermixing of the residue material in the forward compartment from the thinning agent disposed in the rear compartment. Finally, the sharp beveled edges assure maximum removal of the paint from the bristles.

In the embodiments depicted, the receptacle 100 is larger than the receptacle 200, approximate dimensions for the receptacle 100 being as follows: The length from the front end wall 104 to the rear end wall 105 is about 12 inches; the width of the bottom wall 101 is about 3 inches; the depth of the bottom wall 101 from the height of the side wall portions 102 and 103 is about 3 inches; the juncture 106C of the dividing wall 106 is disposed about 2 inches above the bottom wall 101; the openings 116 are about ¾ × 3/8 inch and the center point of each is disposed about 1 1/16 inches above the juncture 106C. In the tool conditioning means, the slot 117 is approximately 1/8 inch high; the laterally extending wall 112 is approximately 1/8 inch wide and, as previously noted, the included angle of the slot 117 is approximately 15°. In the embodiment depicted in FIGS. 5, 9 and 10, the peripheral lip 128 extends rearwardly approximately one fourth inch from the upstanding side wall 121 and the wall 121 is approximately 0.080 inch thick.

In the embodiment depicted in FIGS. 11 through 16, the longitudinal extent from the front end wall 204 to the rear end wall 205 is about 9 inches; the bottom wall 201 is about 2¾ inches wide and the depth of the receptacle 200 is about 1⅜ inches. The slot 217 is about 1¾ inches deep and the dividing wall 206 is about 1¼ inches high. As previously noted, this second embodiment depicted in FIGS. 11 to 16 is adapted to be used in conjunction with the carrying case disclosed in applicant's parent application Ser. No. 866,471.

Various modifications can be made in the arrangements and configuration of the slots 117, 127 and 217. Thus, for example, in the slot 127, the transition from the slot defined by the peripheral lip 128 could have a more radial configuration with a less distinct change from the relative vertical angle of the slot 127 to the relative horizontal angle between the inner surfaces of the line 128. Also, such transition could be less than 90°.

A parallel slot as shown in FIG. 9 is an effective device in itself. Either the "V" slot or the parallel slot could be provided with a slight bow at the middle, whereby the ends would tend to close against the bristles somewhat tighter than the center of the slot, thereby reducing any tendency of the bristles to fan out beyond the ends thereof when pressure is applied.

While there has been described what is presently thought to be the preferred embodiments of the invention, it will be understood that various modifications may be made therein, and it is intended to cover in the appended claims all such modifications as fall within the true spirit and scope of the invention.
What is claimed is:

1. An artist's tool conditioning structure comprising an open receptacle having a bottom wall and an upstanding side wall, said tool conditioning means carried by said side wall, said tool conditioning means comprising a lower dividing wall formed between said side wall and said bottom wall and a generally upstanding wall portion removably carried by said side wall, said removable wall portion extending from said lower dividing wall substantially to the upper edge of said side wall, said upstanding wall portion having a substantially V-shaped slot therein extending downwardly from the upper edge thereof for receiving the working end of an associated artist's tool, said tool conditioning means being formed of a semi-rigid material whereby opposed inward pressure on said tool conditioning means in the direction of said slot causes constriction of said slot and the application of compressive force on the end of the associated artist's tool in said slot, whereby upon longitudinal movement of the end of the associated artist's tool through said constricted slot said tool conditioning means operates to squeeze out waste materials on the working end of the associated artist's tool.

2. An artist's tool conditioning structure comprising an open receptacle having a bottom wall and an upstanding side wall, said tool conditioning means carried by said side wall, said tool conditioning means comprising a generally upstanding first wall portion and a second wall portion disposed substantially normal to said upstanding wall portion, a substantially V-shaped slot disposed in said first wall portion for receiving the working end of an associated artist's tool, said second wall portion being positioned below the lower end of said slot for receiving excess materials removed from the end of the associated artist's tool after the associated tool has been pulled through said slot, said tool conditioning means being formed of a semi-rigid material whereby opposed inward pressure on said tool conditioning means in the direction of said slot causes constriction of said slot and the application of compressive force on the end of the associated artist's tool in said slot, whereby upon longitudinal movement of the end of the associated artist's tool through said constricted slot said tool conditioning means operates to squeeze out waste materials on the working end of the associated artist's tool.

3. An artist's tool conditioning structure comprising an open receptacle having a bottom wall and an upstanding side wall, a dividing wall integral with said bottom wall and said side wall and dividing said open receptacle into at least two open compartments, the upper edge of said dividing wall being disposed below the upper edge of said side wall, tool conditioning means carried by said side wall and disposed above said dividing wall, said tool conditioning means including a substantially vertically extending slot therein for receiving the working end of an associated artist's tool, said tool conditioning means being formed of a semi-rigid material whereby opposed inward pressure on said tool conditioning means in the direction of said slot causes constriction of said slot and the application of compressive force on the end of the associated artist's tool in said slot, whereby upon longitudinal movement of the end of the associated artist's tool through said constricted slot said tool conditioning means operates to squeeze out waste materials on the working end of the associated artist's tool.

4. The artist's tool conditioning structure set forth in claim 3, wherein said tool conditioning means is removably carried by said side wall.

5. The artist's tool conditioning structure set forth in claim 3, wherein said tool conditioning means includes a pair of oppositely disposed tabs extending through openings provided in said side wall, said tabs serving to facilitate the application of inward pressure on said tool conditioning means whereby to constrict said slot.

6. The artist's tool conditioning structure set forth in claim 3, wherein said tool conditioning means has a peripheral lip portion contiguous with said slot and extending substantially normal to said slot, thereby providing an elongated passage through which the end of the associated artist's tool is longitudinally moved.

7. The artist's tool conditioning structure set forth in claim 6, wherein the surfaces forming said peripheral lip portion are disposed at about a 45° angle relative to said slot.

8. The artist's tool conditioning structure set forth in claim 3, wherein said tool conditioning means comprises an upstanding first wall portion and a second wall portion extending laterally of said first wall portion, said slot being disposed in said first wall portion and said second wall portion being disposed below the lower edge of said slot, said second wall portion serving to receive excess materials removed from the associated end of the artist's tool and to direct the excess materials into one of said open compartments.

9. The artist's tool conditioning structure set forth in claim 3, wherein said slot in said tool conditioning means is oriented such that said slot is canted at an angle of between about 5° to 80° relative to said bottom wall, thereby to facilitate longitudinal movement of the associated artist's tool through said slot and relative to said open receptacle.

10. The artist's tool conditioning structure set forth in claim 3, wherein said tool conditioning means is oriented such that said slot is canted at an angle of about 45° to 70° relative to said bottom wall, thereby to facilitate longitudinal movement of the associated artist's tool through said slot and relative to said open receptacle.

11. The artist's tool conditioning structure set forth in claim 3, wherein said slot is substantially V-shaped.

12. The artist's tool conditioning structure set forth in claim 11, wherein the included angle of said V-shaped slot is about 15°.

13. The artist's tool conditioning structure set forth in claim 3, wherein the upper edge of said dividing wall has a substantially V-shaped notch therein, the lower surface of said tool conditioning means being disposed in said notch for cooperation therewith.

14. The artist's tool conditioning structure set forth in claim 3, wherein said dividing wall is formed by two upstanding and integrally connected portions of said bottom wall, thereby dividing said receptacle into two separate and independent compartments which are hinged at the juncture of said upstanding portions of said bottom wall.

15. An artist's tool conditioning structure comprising an open receptacle having a bottom wall and an upstanding side wall, a dividing wall integral with said bottom wall and said side wall and dividing said open receptacle into at least two open compartments, the upper edge of said dividing wall being disposed below the upper edge of said side wall, tool conditioning means carried by said side wall and disposed above said dividing wall, said tool conditioning means comprising an upstanding first wall portion and a second wall portion extending laterally of said first wall portion, said slot being disposed in said first wall portion, the lower edge of said slot terminating above said second wall portion, said tool conditioning means being formed of a semi-rigid material whereby opposed inward pressure on said tool conditioning means in the direction of said slot causes constriction of said slot and the application of compressive force on the end of the associated artist's tool in said slot, whereby upon longitudinal movement of the end of the associated artist's tool through said constricted slot said tool conditioning means operates to squeeze out waste materials on the working end of the associated artist's tool.

16. The artist's tool conditioning structure set forth in claim 15, wherein said first wall portion of said tool conditioning means has a peripheral lip portion contiguous with said slot and extending substantially normal to said slot and providing an elongated passage through which the end of the associated artist's tool may be longitudinally moved, thereby to facilitate the wiping of excess materials from the end of such tool.

17. The artist's tool conditioning structure set forth in claim 15, wherein said slot in said tool conditioning means is
oriented such that it is canted at an angle of between about 50° to 80° relative to said bottom wall, thereby to facilitate longitudinal movement of the associated artist's tool through said slot and relative to said open receptacle.

18. The artist's tool conditioning structure set forth in claim 15, wherein said upstanding wall portion of said tool conditioning means has a peripheral lip portion contiguous with said slot and extending substantially normal to said slot to provide an elongated passage through which the end of the associated artist's tool may be longitudinally moved, the outer terminal edge of said second wall portion being beveled to provide a knife-like edge thereon for scraping the end of the associated artist's tool, and said tool conditioning means is oriented such that said slot is canted at an angle of about 80° relative to said bottom wall, thereby to facilitate longitudinal movement of the associated artist's tool through said slot and said peripheral lip and relative to said open receptacle and also to facilitate scraping of the end of the associated artist's tool against the beveled edge of said second wall portion.

19. The artist's tool conditioning structure set forth in claim 14, wherein said tool conditioning means is removably carried by said side wall, said tool conditioning means including a pair of oppositely disposed tabs extending through openings in said side wall to facilitate the application of inward pressure on said tool conditioning means whereby to constrict said slot, and the upper edge of said dividing wall has a substantially V-shaped notch therein adapted to receive said tool conditioning means, the lower surface of said tool conditioning means being disposed in said notch for cooperation therewith.

• • • • •