
(12) United States Patent
Thaik et al.

US007949854B1

(10) Patent No.: US 7,949,854 B1
(45) Date of Patent: *May 24, 2011

(54) TRACE UNIT WITH A TRACE BUILDER

(75) Inventors: Richard Win Thaik, San Jose, CA (US);
John Gregory Favor, Scotts Valley, CA
(US); Joseph Byron Rowlands, Santa
Clara, CA (US); Leonard Eric Shar,
Menlo Park, CA (US)

(73) Assignee: Oracle America, Inc., Redwood City,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 292 days.
This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 11/880,861

(22) Filed: Jul. 23, 2007

Related U.S. Application Data
(63) Continuation-in-part of application No. 1 1/535,971,

filed on Sep. 27, 2006, now Pat. No. 7,546,420, and a
continuation-in-part of application No. 1 1/535,972,
filed on Sep. 27, 2006, now Pat. No. 7,676,634, and a
continuation-in-part of application No. 1 1/535,977.
filed on Sep. 27, 2006, now Pat. No. 7,606.975, and a
continuation-in-part of application No. 1 1/553,453,
filed on Oct. 26, 2006, now Pat. No. 7,587,585, and a
continuation-in-part of application No. 1 1/553,455,
filed on Oct. 26, 2006, now Pat. No. 7,568,088, and a
continuation-in-part of application No. 1 1/553,458,
filed on Oct. 26, 2006, now Pat. No. 7,568,089, and a
continuation-in-part of application No. 1 1/591,024,
filed on Oct. 31, 2006, now Pat. No. 7,747,822.

(60) Provisional application No. 60/721,385, filed on Sep.
28, 2005, provisional application No. 60/730,550,
filed on Oct. 26, 2005, provisional application No.
60/730,810, filed on Oct. 27, 2005, provisional
application No. 60/731,962, filed on Oct. 31, 2005,
provisional application No. 60/731,785, filed on Oct.
31, 2005, provisional application No. 60/732,438,

2 Na

Trace Cache

BBTrace

BBTrace 2

BBTrace EN

St

At east TWO Traces

Multi-block
Builder

MBTrace iM+

filed on Nov. 1, 2005, provisional application No.
60/832,848, filed on Jul. 23, 2006, provisional
application No. 60/832,822, filed on Jul. 23, 2006,
provisional application No. 60/862,609, filed on Oct.
24, 2006, provisional application No. 60/866,205,
filed on Nov. 16, 2006, provisional application No.
60/866,203, filed on Nov. 16, 2006.

(51) Int. Cl.
G06F 9/30 (2006.01)

(52) U.S. Cl. ... 712/208
(58) Field of Classification Search 712/208

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

4,912,707 A 3/1990 Kogge et al.
(Continued)

OTHER PUBLICATIONS

Patel, S. Lumetta, S., “rePlay: A Hardware Framework for Dynamic
Optimization, IEEE Transactions on Computers', vol. 50, No. 6, Jun.
2001 (19 pages).

(Continued)
Primary Examiner — Jacob Petranek
(74) Attorney, Agent, or Firm — Osha Liang LLP
(57) ABSTRACT
An instruction processing unit includes a trace builder circuit
operable to (i) receive at least a portion of a first type of
sequence of operations and to generate, based thereon, a
second type of sequence of operations, where the portion
includes at most one control transfer instruction that, when
present, ends the portion, (ii) receive sets of at least two
sequences of operations and to generate, based thereon, a
plurality of third type of sequences of operations, where a
sequence of operations of the third type includes one or more
interior control transfer instructions and is generated from the
sequence of operations of the second type and another
sequence of operations of the third type, and (iii) retrieve the
sequence of operations of the second type and the another
sequence of operations of the third type from a cache circuit.

8 Claims, 23 Drawing Sheets

11

MEs race

MBTrace 2
15

MBTrace M

US 7,949,854 B1
Page 2

5,369,757
5,381,533
5,428,786
5.432,918
5,491,793
5,568,380
5,632,023
5,644,742
5,649,136
5,673,408
5,793.947
5,838,943
5,860, 104
5,913,925
5,944,841
5,960,198
6,014,742
6,018,786
6,031,992
6,052,769
6,055,630
6,073,213
6,076,144
6,115,809
6,170,038
6,170,040
6,185,660
6,185,675
6,189,141
6,205,545
6,216,206
6,339,822
6,351,844
6,389,446
6,442,674
6,449,714
6,493,837
6,538,997
6,557,095
6,604,060
6,609,189
6,671,766
6,675,376
6,694,427
6,694.457
6,738,926
6,779,087
6,785,890
6,799,263
6,826, 182
6,857,060
6,874,138
6,889,318
6,895,460
6,950,924
6,968.476
6,981,104
6,988, 190
7,003,629
7,010,648
7,062,631
7,085,955
7,133,969
7,136,992
7,139,902
7,188,368
7,213,126
7,269,706
7,360,024
7,366,875
7,415,598
7,487.341
7,496,735
7,516,366
7,536,591
7,546,420
7,568,089
7,571,304

U.S. PATENT DOCUMENTS

11, 1994
1, 1995
6, 1995
7, 1995
2, 1996

10, 1996
5, 1997
7, 1997
7, 1997
9, 1997
8, 1998

11, 1998
1, 1999
6, 1999
8, 1999
9, 1999
1, 2000
1, 2000
2, 2000
4, 2000
4, 2000
6, 2000
6, 2000
9, 2000
1, 2001
1, 2001
2, 2001
2, 2001
2, 2001
3, 2001
4, 2001
1, 2002
2, 2002
5, 2002
8, 2002
9, 2002

12, 2002
3, 2003
4, 2003
8, 2003
8, 2003

12, 2003
1, 2004
2, 2004
2, 2004
5, 2004
8, 2004
8, 2004
9, 2004

11, 2004
2, 2005
3, 2005
5/2005
5/2005
9, 2005
11/2005
12, 2005

1, 2006
2, 2006
3, 2006
6, 2006
8, 2006

11, 2006
11, 2006
11, 2006
3, 2007
5/2007
9, 2007
4, 2008
4, 2008
8, 2008
2, 2009
2, 2009
4, 2009
5/2009
6, 2009
T/2009
8, 2009

Spiro et al.
Peleg et al.
Sites
Stamm
Somasundaram et al.
Brodnax et al.
White et al.
Shen et al.
Shen et al.
Shebanow et al.
Sakamoto
Ramagopal et al.
Witt et al.
Kahle et al.
Christie
Roediger et al.
Kricket al.
Kricket al.
Cmelik et al.
Huffet al.
DSa et al.
Peled et al. 711/125
Peled et al.
Mattson, Jr. et al.
Kricket al.
Lee et al.
Mulla et al.
Kranich et al. T12 238
Benitez et al.
Shah et al.
Peled et al.
Miller
Bala
Torii
Lee et al.
Sinharoy
Pang et al.
Wang et al.
Henstrom
Ryan et al.
KuSZmaul et al.
Vandenbergh et al.
Ronen et al.
Mericas et al.
McKee
Mathiske et al.
Saulsbury et al.
Kalafatis et al.
Morris et al.
Parthasarathy
Elias et al.
Ziegler et al.
Wichman
Desoli et al.
Miller et al.
Barowski et al.
Prabhu
Park
Alsup
Kadambi et al.
Klaiber et al.
Prabhu
Alsup et al.
Maiyuran et al.
Lee
Swimmer et al.
Smaus et al. 711/217
Agarwal et al.
Hironaka et al.
Rasche et al. 712/205
Dos Remedios
Wang et al.
Yourst et al.
Lev et al.
Varadarajan et al.
Sharet al.
Favor et al.
Chaudhry et al.

7,577,690 B2 8/2009 Chandrasekaran et al.
7,594,111 B2 9/2009 Kiriansky et al.
7,600,221 B1 10/2009 Rangachari
7,606.975 B1 10/2009 Sharet al.

2001/00323.07 A1
2002, 0013938 A1
2002fOO95553 A1

10/2001 Rohlman et al.
1/2002 Duesterwald et al.
7/2002 Mendelson et al.

2002/0144101 A1 10/2002 Wang et al.
2002/0147890 A1 10/2002 Saulsbury et al.
2003,0005271 A1 1/2003 HSu et al.
2003, OOO9620 A1 1/2003 Solomon et al.
2003/0O84375 A1 5/2003 Moore et al.
2004, OO15627 A1 1/2004 DeSoli et al.
2004/OO34757 A1 2/2004 Gochman et al.
2004/0083352 A1* 4/2004 Lee 712/237
2004/0107336 A1 6/2004 Douglas et al.
2004/O154011 A1 8/2004 Wang et al.
2004/O193857 A1 9, 2004 Miller et al.
2004/0230.778 A1 11, 2004 Chou et al.
2005/0012079 A1 1/2005 Roberts et al.
2005/OO9711.0 A1 5/2005 Nishanov et al.
2005, 0108719 A1 5/2005 Need et al.
2005, 0120179 A1 6/2005 Akkary et al.
2005/O125632 A1 6/2005 Alsup et al.
2005/0289.324 A1 12/2005 Miller et al.
2005/0289529 A1 12/2005 Almog et al.
2006.0053245 A1 3/2006 Solomon et al.
2006.0053347 A1 3/2006 van Ingen et al.
2006/008O190 A1 4/2006 Furukawa et al.
2006/0179346 A1 8/2006 Bishop et al.
2006, O184771 A1 8/2006 Floyd et al.
2007/0038844 A1 2/2007 Valentine et al.
2007. O157 007 A1 7/2007 Jourdan et al.
2008.0034350 A1 2/2008 Conti
2009/0222596 A1 9/2009 Flynn et al.
2010.0031000 A1 2/2010 Flynn et al.

OTHER PUBLICATIONS

Tanenbaum, A.S., "Structured Computer Organization”. Prentice
Hall, 4th Edition, 1998 (21 pages).
Almog, Y. et al., Specialized Dynamic Optimizations for High-Per
formance Energy-Efficient Microarchitecture, Proceedings of the
International Symposium on Code Generation and Optimization,
2004 (12 pages).
Chaparro, P. et al., Distributing the Fronted for Temperature Reduc
tion, Proceedings of the 11th Symposium on High-Performance
Computer Architecture, Feb. 12-16, 2005 (10 pages).
Colwell, R. P. et al., A VLIW Architecture for a Trace Scheduling
Compiler, 1987, pp. 180-192 (13 pages).
Fisher, J. A., Trace Scheduling: A Technique for Global Microcode
Compaction, IEEE Transactions on Computers, vol. C-30, No. 7, Jul.
1981, pp. 478-490 (13 pages).
Friendly, D. et al. Putting the Fill Unit to Work: Dynamic Optimiza
tions for Trace Cache Microprocessors, Proceedings of the 31st
Annual ACM/IEEE International Symposium on Microarchitecture,
Nov. 30-Dec. 2, 1998, pp. 173-181 (9 pages).
Grunwald, D. and Ghiasi, S., Microarchitectural Denial of Service:
Insuring Microarchitectural Fairness, Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture, Nov.
18-22, 2002 (10 pages).
Hinton, G. et al., The Microarchitecture of the Pentium 4 Processor,
Intel Technology Journal Q1, 2001 (12 pages).
IBM Technical Disclosure Bulletin, Grouping of Instructions, v. 38.
n. 8, Aug. 1, 1995, pp. 531-534 (4 pages).
Katevenis, E. G., Reduced Instruction Set Computer Architectures
for VLSI, Berkley, California 1983, pp. 67-68 and 190 (7 pages).
Rotenberg, E., Bennett, S., and Smith, J. E., Trace Cache: a Low
Latency Approach to High Bandwidth Instruction Fetching. In Pro
ceedings of the 29th Annual International Symposium on
Microarchitecture, Dec. 2-4, 1996, Paris, France (11 pages).
Slechta, B. et al. Dynamic Optimization of Micro-Operations, Pro
ceedings of The 9th International Symposium on High-Performance
Computer Architecture, Feb. 8-12, 2003 (12 pages).
Smith, J. E. and Pleszkun, A.R., Implementation of Precise Interrupts
in Pipelined Processors, Proc. Computer Architecture, 1985 (15
pages).

US 7,949,854 B1
Page 3

Tremblay, M., High-Performance Fault-Tolerant VLSI Systems
Using Micro Rollback, Los Angeles, California, Sep. 1991, pp.
72-74, 81, 89-90, 102-104 and 246 (14 pages).
Vijaykumar, T. N., et al., Speculative Versioning Cache, IEEE Trans
action on Parallel and Distributed Systems, vol. 12, No. 12, Dec.
2001, pp. 1305-1317 (13 pages).
Eric Rotenberg, James E. Smith, Control Independence in Trace
Processors, Proceedings of the 32nd Annual ACM/IEEE Interna
tional Symposium on Microarchitecture, p. 4-15, Nov. 16-18, 1999,
Haifa, Israel.
Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, Jim Smith,
Trace Processors, Proceedings of the 30th Annual ACM/IEEE Inter
national Symposium on Microarchitecture, p. 138-148, Dec. 1-3,
1997. Research Triangle Park, North Carolina, United States.
Quinn Jacobson, Eric Rotenberg, James E. Smith, Path-Based Next
Trace Prediction, Proceedings of the 30th Annual ACM/IEEE Inter
national Symposium on Microarchitecture, p. 14-23, Dec. 1-3, 1997.
Research Triangle Park, North Carolina, United States.
Patel S. J. et al., Improving Trace Cache Effectiveness with Branch
Promotion and Trace Packing, IEEE, 1998, pp. 262-271.
Tanenbaum, A. S., Structured Computer Organization, Second Edi
tion, Prentice Hall, Inc. 1984, pp. 10-12.
U.S. Notice of Allowance for U.S. Appl. No. 11/923,638, mailed on
May 12, 2010 (28 pages).
U.S. Notice of Allowance for U.S. Appl. No. 12/030,857, mailed on
Apr. 23, 2010 (16 pages).
US Office Action issued in U.S. Appl. No. 12/030,858, mailed Sep. 1,
2010, 13 pages.
US Office Action issued in U.S. Appl. No. 12/030,862, mailed Sep.
17, 2010, 18 pages.
US Office Action issued in U.S. Appl. No. 12/030,859, mailed Sep.
17, 2010, 18 pages.
US Office Action issued in U.S. Appl. No. 12/030,855, mailed Jul. 28,
2010, 28 pages.
US Office Action issued in U.S. Appl. No. 12/030,846, mailed Sep. 3,
2010, 16 pages.
US Office Action issued in U.S. Appl. No. 12/030,851, mailed Sep. 1,
2010, 15 pages.
Office Action in U.S. Appl. No. 1 1/535,971 mailed Oct. 8, 2008 (11
pages).
Notice of Allowance in U.S. Appl. No. 1 1/535,971 mailed Mar. 11,
2009 (4 pages).
Office Action in U.S. Appl. No. 1 1/535,972 mailed Mar. 4, 2009 (13
pages).
Office Action in U.S. Appl. No. 1 1/535,972 mailed Aug. 18, 2009 (8
pages).
Notice of Allowance in U.S. Appl. No. 1 1/535,972 mailed Oct. 9,
2009 (4 pages).
Notice of Allowance in U.S. Appl. No. 1 1/535,972 mailed Dec. 7.
2009 (4 pages).
Office Action in U.S. Appl. No. 1 1/535,977 mailed Mar. 10, 2009 (15
pages).
Notice of Allowance in U.S. Appl. No. 1 1/535,977 mailed Aug. 5,
2009 (4 pages).
Office Action in U.S. Appl. No. 1 1/553,453 mailed Sep. 25, 2008 (13
pages).
Office Action in U.S. Appl. No. 1 1/553,453 mailed Feb. 25, 2009 (4
pages).
Notice of Allowance in U.S. Appl. No. 1 1/553,453 mailed Apr. 22.
2009 (7 pages).
Office Action in U.S. Appl. No. 1 1/553,455 mailed Sep. 30, 2008 (13
pages).
Office Action in U.S. Appl. No. 1 1/553,455 mailed Feb. 25, 2009 (4
pages).
Notice of Allowance in U.S. Appl. No. 1 1/553,455 mailed May 12,
2009 (5 pages).
Notice of Allowance in U.S. Appl. No. 1 1/553,455 mailed Jun. 2,
2009 (3 pages).
Office Action in U.S. Appl. No. 1 1/553,458 mailed Sep. 25, 2008 (19
pages).
Office Action in U.S. Appl. No. 1 1/553,458 mailed Feb. 25, 2009 (4
pages).

Notice of Allowance in U.S. Appl. No. 1 1/553,458 mailed May 11,
2009 (5 pages).
Office Action in U.S. Appl. No. 1 1/591,024 Mailed Feb. 24, 2009 (8
pages).
Office Action in U.S. Appl. No. 1 1/591,024 mailed Jul. 10, 2009 (8
pages).
Advisory Action in U.S. Appl. No. 1 1/591,024 mailed Oct. 6, 2009 (1
page).
Notice of Allowance in U.S. Appl. No. 1 1/591,024 mailed Feb. 25.
2010 (12 pages).
Office Action in U.S. Appl. No. 1 1/781,937 mailed Mar. 15, 2010 (41
pages).
Office Action in U.S. Appl. No. 1 1/923,638 mailed Dec. 3, 2009 (18
pages).
Notice of Allowance in U.S. Appl. No. 1 1/923,640 mailed Mar. 3,
2010 (8 pages).
Notice of Allowance in U.S. Appl. No. 1 1/923,640 mailed Jul. 20,
2010 (4 pages).
Notice of Allowance in U.S. Appl. No. 11/923,640 mailed Oct. 18,
2010 (4 pages).
Notice of Allowance in U.S. Appl. No. 1 1/941,900 mailed Aug. 6,
2010 (16 pages).
Office Action in U.S. Appl. No. 1 1/941,908 mailed Sep. 1, 2010 (17
pages).
Office Action in U.S. Appl. No. 12/030,852 Issued Jun. 11, 2010 (13
pages).
Office Action in U.S. Appl. No. 12/030,852 issued Jun. 11, 2010 (13
pages).
Notice of Allowance in U.S. Appl. No. 12/030,852 mailed Sep. 28,
2010 (9 pages).
Office Action in U.S. Appl. No. 12/030,865 mailed Oct. 19, 2010 (11
pages).
Office Action in U.S. Appl. No. 1 1/880,864 issued Oct. 4, 2010 (12
pages).
Office Action in U.S. Appl. No. 1 1/880,882 mailed Nov. 26, 2010 (20
pages).
Notice of Allowance in U.S. Appl. No. 1 1/880,862 mailed Dec. 3,
2010 (6 pages).
Notice of Allowance in U.S. Appl. No. 1 1/782,140 mailed Nov. 15,
2010 (4 pages).
Notice of Allowance in U.S. Appl. No. 1 1/880,863 mailed Dec. 10,
2010 (10 pages).
Office Action in U.S. Appl. No. 1 1/880,864 mailed Apr. 12, 2010 (3
pages).
Office Action in U.S. Appl. No. 1 1/880,864 mailed Jun. 21, 2010 (12
pages).
Advisory Action in U.S. Appl. No. 1 1/880,864 mailed Dec. 3, 2010 (3
pages).
Office Action in U.S. Appl. No. 1 1/880,875 mailed Dec. 10, 2009 (7
pages).
Office Action in U.S. Appl. No. 1 1/880,875 mailed Mar. 8, 2010 (6
pages).
Office Action in U.S. Appl. No. 1 1/880,875 mailed Sep. 3, 2010 (7
pages).
Office Action in U.S. Appl. No. 1 1/880,875 mailed Nov. 26, 2010 (3
pages).
Office Action in U.S. Appl. No. 12/030,855, mailed Nov. 24, 2010,
(29 pages).
Office Action in U.S. Appl. No. 1 1/782,163 mailed Dec. 20, 2010 (8
pages).
Notice of Allowance in U.S. Appl. No. 12/030,852 mailed Dec. 1,
2010 (9 pages).
Notice of Allowance in U.S. Appl. No. 1 1/880,859 mailed Dec. 23,
2010 (4 pages).
Notice of Allowance in U.S. Appl. No. 11/782,140 mailed on Feb. 1.
2011 (4 pages).
Office Action in U.S. Appl. No. 12/030,846 mailed Feb. 18, 2011 (8
pages).
Office Action in U.S. Appl. No. 12/030,851 mailed Feb. 18, 2011 (6
pages).

US 7,949,854 B1
Page 4

Office Action in U.S. Appl. No. 12/030,865 mailed Feb. 24, 2011 (15 Notice of Allowance in U.S. Appl. No. 1 1/880,859 mailed on Mar, 4.
pages). 2011 (5 pages).
Office Action in U.S. Appl. No. 12/030,862 mailed Mar. 7, 2011 (6 Notice of Allowance in U.S. Appl. No. 1 1/880,863, mailed on Mar.
pages). 21, 2011 (6 pages).
Office Action in U.S. Appl. No. 12/030,859 mailed Mar. 21, 2011 (6
pages). * cited by examiner

U.S. Patent May 24, 2011 Sheet 1 of 23 US 7,949,854 B1

BB Instruction Seq. #1
- instr, a
- instr. b

- Control Transfer

5

..' Decoder Op Sequence #N
Decoder Op Sequence #2

Decoder Op Sequence i? 2

To
Execution Bier 7
Circuit

.' BBTrace Op Sequence #M
BB Trace Op Sequence #2 2

BBTrace Op Sequence #1 8

BB 9
Cache

FIG. 1

U.S. Patent May 24, 2011 Sheet 2 of 23 US 7,949,854 B1

21 N. 11
Trace Cache

BB Trace 1 MB race i?

BBTrace H2 MBTrace H2 13
BBTrace #2

BB Trace iN

15

NC1

At east TWO Traces

Multi-blockN
Builder

MBTrace #M+1

FIG. 2

US 7,949,854 B1 Sheet 3 of 23 May 24, 2011 U.S. Patent

U.S. Patent May 24, 2011 Sheet 4 of 23 US 7,949,854 B1

51

indirect Branch Predictor Circuit
-57

TargetAddress Prediction
Storage Location

Sequencer
Selection Circuit 1 O1

NextAddress

FIG. 3a

Basic Block Cache

FIG. 3b
Multi-block Cache

U.S. Patent May 24, 2011 Sheet 5 of 23 US 7,949,854 B1

18 22 24

Basic Block MicroCOde Multi-block

1 O3 31 33 35

28 Ops Fetcher

14 Execution
Unit

FIG. 4

26 18 22 24

300 3O2 3O4 3O6

3O 32

29

FIG. 5

U.S. Patent May 24, 2011 Sheet 6 of 23 US 7,949,854 B1

- 12
wn man - - - us - su - - - - w w - - - - r - - - -am was rar - - - - -m - -

16 20

instruction Basic Biock
Cache Builder

4O2 4O4
2 28

Ops Fetcher

Execution
Unit

14

FIG. 6

- 12
-

16 2O

instruction Basic Block
Cache Builder

500

Decode

14 Execution
Unit

FIG. 7

U.S. Patent May 24, 2011 Sheet 7 of 23 US 7,949,854 B1

Multi-Block
Builder

29

Execution
Unit

FIG. 9

US 7,949,854 B1 Sheet 8 of 23 May 24, 2011 U.S. Patent

0

8

19 —”

0 L (DH

909

ÁJOISIH JO10|pºld ?QUBJ?

908 Z08 008

U.S. Patent May 24, 2011 Sheet 9 of 23 US 7,949,854 B1

(E)-
1 O2

Look Up CurrentTrace in BB& MB Cache
invalidate MB
Cache Entry

1 O6

Both Miss

Sequencing
Ahead

MBaCe
Verified Invalidate

BB Trace
Cache
Entry

Build New BB
Trace from
Decoder

Enter
Promotion info.
in Seq. Buffer Enter

Promotion info.
in Seq. Buffer 116

Enter BB Trace
in Seq. Buffer

Enter MB race
in Seq, Buffer

Determine Which Trace is Next

(O 134
FIG. 10a

Enter New BB
Trace in Seq,

Buffer

Activate
Bypass
Path

U.S. Patent May 24, 2011 Sheet 10 of 23 US 7,949,854 B1

144

- Add Trace to Seq. Buffer
- Sequence to Next Trace

Don't Promote
w w w w w w w w w w w w w w wa was aw was ans wax aw was a us a were x row vs or r s wed re. A rare area area tra -

Promote

Current Trace
Promotable

- Add Trace to Sequencing Buffer
- Mark Trace as Promoted
- Mark race as First Promoted
- Sequence to Next Trace

15O

- Add Trace to Seq. Buffer
- Mark Trace as Promoted
- Sequence to Next Trace

148 ls
Current race
Promotable

152

- Add Trace to Sequencing Buffer
- Mark Trace as Promoted
- Sequence to Next Trace

FIG. 10b

U.S. Patent May 24, 2011 Sheet 11 of 23 US 7,949,854 B1

162 164

Trace iB
- Bias Value 17
- Op Sequence B

Multi-block Builder

New Multi-block Trace
- Bias Value - 5
- Op Sequence Representing
Sequences A, B and C

166

Trace iC
- Bias Value: 5
- Op Sequence C

Promotion Threshold - 17

18O

174 176 178
172 - Bias Value = 7

- Op Sequence A

184

182

FIG. 10C 186 Ya

188 190 192

Trace Y Trace iX 2O2 204 race i7.
- Bias Value = 17 - Bias Value = 17 - Bias - "Non-speculative"
- Op Sequence X - Op Sequence Y - Op Sequence Z 198

34

Multi-block Builder

Promotion Threshold 17

2O6

New Multi-block Trace
- Bias Walue - 17
- Op Sequence Representing
Sequences X and Y

21 O

FIG. 10d.

U.S. Patent May 24, 2011 Sheet 12 of 23 US 7,949,854 B1

Sequencer:
222

Add Address of Next Trace
to Sequence Buffer

wk 8 a.k k &low &ow wow wow w w who w8 w8 w8. w8 w xw w w w w wew w kw w w xxx w w w w who w w wax - was

Sequence Buffer: 32 223 1
Hold Address of Next Trace Until

Execution Unit is Ready for More Ops
wk Aw wow ww w w w w w w w y we ww.

Ops Fetcher:
224

Read Address of Next Trace to be
Fetched from Sequencing Buffer

226 23O

- Fetch Ops of Next Trace
- Send to Execution Unit

ls the
Next Trace
Marked as
Promoted

- Fetch Ops of Next Trace
- Send to MB Builder
- Send to Execution Circuit

FIG. 1 Oe

U.S. Patent May 24, 2011 Sheet 13 of 23 US 7,949,854 B1

me frage
9902 Translation Buffer

16 990.6

Cache Basic Bock 120
9908- Builder

18
991O Basic Block 22

Cache
9901

9909 991 1

”N sequence

Address i? Address i? Biti 1

Address i2 Address #2 Biti2

3OOO

Address iN Address iN Bit N

FIG. 10g

U.S. Patent May 24, 2011 Sheet 14 of 23 US 7,949,854 B1

Basic Block
Cache

29

10 N.
95 Table

Walker
- 12

risti 99.23 P
93 age

TB Translation Buffer
9926

9922

992O 22

U.S. Patent May 24, 2011 Sheet 15 Of 23 US 7,949,854 B1

123

Search PTB for Entry that
Matches Address Written

127

- Invalidate the Matching PTB Entry
- Scrub BBC for Traces with a Pointer to the Matching PTB Entry
- Scrub MBC for Traces with a Pointer to the Matching PTB Entry
- Invalidate All Such Traces

133

FIG. 10i

Basic Block Cache or
Multi-Block Cache

Auxiliary info
Component

1 O1 O 1 OO1

w x . NY w w is a w as w w w w w w as as

1 O14 Execution History 1 O2O
Info Component

vs w w w w w w x w w w sp w w w w w w w w W .

Coherency Info
Component

48 k W. & A & 8 8 a 38 w w 88 w- 808

1 O16
1 O22

1 O24

FIG. 11

U.S. Patent May 24, 2011 Sheet 16 of 23 US 7,949,854 B1

Auxiliary Info Component:
1 O31 1O32

Cache Tag Waid Bt

Trace Verification info 1 O33
1034

1 OO1

Sequencing Info:
1 O35 1 O36 1037

Sequencing Action Address #1 Address #2

1 OO2

1 OO3

Ops Component:

Op Tripleti 1
1039 O4O 1O41 1 O42

Op #1A Opii1B Op #1C Overhead Bytes

1O38 1 OO4

Op Tripletii.2
O39 1 O4O 1 O41 1 O42

Opii.2A Opi;2B Opi2C Overhead Bytes ii.2

1O5O

Op TripletiiN

FIG. 12

U.S. Patent May 24, 2011 Sheet 17 Of 23 US 7,949,854 B1

1100

Auxiliary info Component:
11 1 O 1 112

Cache Tag Walid Bit

1 1 O2 Trace Verification info 1 114

interna Branch Directions 1 116

Internal Cal Return info 1 118

Sequencing info:

Sequencing Action Addressi Address i2

1 104

1 106

Ops Component:

Op Triplet #1

1 108 Op H1A Op #1B Op#1C Overhead Bytes

Op Triplet #N

FIG. 13

U.S. Patent May 24, 2011 Sheet 18 of 23 US 7,949,854 B1

Microcode Cache Entry

Auxillary info Component

Valid Bit 1208 12O2

Cache Tag 12O6

Fault Handling info 1'
Sequencing info:

1214 1216 1218

Sequencing Action Address #1 Address #2

Ops Component:
Op Tripleti.1 1204

Op #1A Op #1B Op #1C Overhead Bytes

O

Op Triplet #N

FIG. 14

91 "OI-1

US 7,949,854 B1

JOSS0001&

U.S. Patent

US 7,949,854 B1 Sheet 21 of 23 May 24, 2011 U.S. Patent

US 7,949,854 B1 Sheet 22 of 23 May 24, 2011 U.S. Patent

ZZ G?

US 7,949,854 B1 Sheet 23 of 23 May 24, 2011 U.S. Patent

61 "OIH

W - - - - - - - - - - - - - -

N

A

* • • • • • • • • • • • •

990 !

US 7,949,854 B1
1.

TRACE UNIT WITHATRACE BUILDER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority document
U.S. Provisional Application No. 60/721,385, filed on Sep.
28, 2005, entitled “Efficient Trace Cache Management Dur
ing Self-Modifying Code Processing.” by Leonard Sharet al.,
and further claims the benefit of priority document U.S. Pro
visional Application No. 60/730.550, filed on Oct. 26, 2005,
entitled “Checkpointing Status Flags for Atomic Traces.” by
John Gregory Favor et al., and further claims the benefit of
priority document U.S. Provisional Application No. 60/730,
810, filed on Oct. 27, 2005, entitled “Allocation and Deallo
cation of Shadow Registers used by Atomic Traces.” by John
Gregory Favor et al., and further claims the benefit of priority
document U.S. Provisional Application No. 60/731,962, filed
on Oct. 31, 2005, entitled “Determining the Highest Priority
Abort Trigger in an Atomic Trace.” by John Gregory Favor et
al., and further claims the benefit of priority document U.S.
Provisional Application No. 60/731,785, filed on Oct. 31,
2005, entitled “Maintaining Memory Coherency within a
Trace Cache.” by Richard W. Thaik, and further claims the
benefit of priority document U.S. Provisional Application
No. 60/732,438, filed Nov. 1, 2005, entitled “Zero-Cycle
Execution of Clear Operation and Automatic Register Free.”
by John Gregory Favor et al., and further claims the benefit of
priority document U.S. Provisional Application No. 60/832,
848, filed on Jul. 23, 2006, entitled “Microprocessor with
Caches for Instructions, Basic Blocks, and Traces.” by Don
Alpert et al., and further claims the benefit of priority docu
ment U.S. Provisional Application No. 60/832,822, filed on
Jul. 23, 2006, entitled “Microprocessor with Coherent
Caches for Basic Blocks and Traces.” by Don Alpert et al., and
further claims the benefit of priority document U.S. Provi
sional Application No. 60/862,609, filed Oct. 24, 2006,
entitled “Exception Handling for Atomic Traces.” by Chris
topher P. Nelson, and further claims the benefit of priority
document U.S. Provisional Application No. 60/866,205, filed
Nov. 16, 2006, entitled “Processor with Optimized Operation
Sequences for Basic Block and Multi-Block Trace Caches.”
by John Gregory Favor, and further claims the benefit of
priority document U.S. Provisional Application No. 60/866,
203, filed Nov. 16, 2006, entitled “Processor with Basic Block
and Multi-Block Trace Caches.” by Matt Ashcraft et al. John
Gregory Favor is also known as John Favor or as Greg Favor.
Each of the above named priority documents is hereby incor
porated by reference.

This application is a continuation-in-part of U.S. patent
application Ser. No. 1 1/535,971, filed Sep. 27, 2006 now U.S.
Pat. No. 7,546,420, entitled “Efficient Trace Cache Manage
ment During Self-Modifying Code Processing.” by Leonard
Eric Shar et al., and is a continuation-in-part of U.S. patent
application Ser. No. 1 1/535,972, filed Sep. 27, 2006 now U.S.
Pat. No. 7,676,634, entitled “Selective Trace Cache Invalida
tion for Self-Modifying Code Via Memory Aging.” by
Leonard Eric Shar et al., is a continuation-in-part of U.S.
patent application Ser. No. 1 1/535,977, filed Sep. 27, 2006
now U.S. Pat. No. 7,606,975, entitled “Trace Cache for Effi
cient Self-Modifying Code Processing.” by Leonard Eric
Shar, is a continuation-in-part of U.S. patent application Ser.
No. 1 1/553,453, filed Oct. 26, 2006 now U.S. Pat. No. 7,587,
585, entitled “Checkpointing Status Flags for Atomic
Traces.” by Greg Favor et al., and is a continuation-in-part of
U.S. patent application Ser. No. 1 1/553,455, filed Oct. 26,
2006 now U.S. Pat. No. 7,568,088, entitled “Checkpointing

10

15

25

30

35

40

45

50

55

60

65

2
Flags On-Demand for Atomic Traces.” by John Gregory et al.,
and is a continuation-in-part of U.S. patent application Ser.
No. 1 1/553,458, filed Oct. 26, 2006 now U.S. Pat. No. 7,747,
822, entitled “Flag Restoration from Checkpoints for Aborts
of Atomic Traces.” by John Gregory Favor et al., and is a
continuation-in-part of U.S. patent application Ser. No.
1 1/591,024, filed Oct. 31, 2006 now U.S. Pat. No. 7,747,822,
entitled “Maintaining Memory Coherency within a Trace
Cache.” by John Gregory Favor. John Gregory Favor is also
known as John Favoran Greg Favor. Each of the above named
applications for which this application is a continuation in
part is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

Processors have evolved throughout recent decades by
becoming Smaller in size, more Sophisticated in design and
exhibiting faster performance. Such an evolution has resulted
for various reasons, one of which is portability of systems
incorporating processors. Portability introduces demands on
processors such as Smaller size, reduced power and efficient
performance.

While processors have experienced tremendous advance
ments, the code or Software program used to program them
essentially uses the same code as that of its origin. The origi
nal PC-based code is referred to as the "x86’ instruction code.
Thus, the x86 instruction code remains the code largely used
for programming even in the most advanced processors.

Applications of processors are, for example, in personal
computers (PCs), workstations, networking equipment and
portable devices. Examples of portable devices include lap
tops, which are portable PCs, and hand-held devices.
More advanced processors use a sequencer to sequence

operations, which are translated from sequences of x86
instructions, to improve throughput and increase perfor
mance. However, current sequencing techniques leave room
for improvement, as the performance improvement realized
thereby does not meet the demands imposed on future pro
CSSOS.

Moreover, power consumption is of vital importance to
systems using processors, particularly to portable systems,
such as laptops or hand-held electronic devices. While power
consumption has been reduced in recent processor designs,
nevertheless, a need for further reduction in power consump
tion remains.
Due to the wide use of code based on the x86 instruction

set, particularly by Software programmers who have become
well accustomed to this code and are not likely to readily
adapt to another code, backward compatibility of code is key
in the architecture of a new processor. That is, the user of a
newly-designed processor must enjoy the ability to use the
same code utilized in a previous processor design without
experiencing any problems.

In light of the foregoing, there is a need for a processor
having a trace unit (or front end) for efficiently and in an
improved manner sequencing traces, to be executed by an
execution unit (or back end), while improving power con
Sumption and maintaining code backward compatibility.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present speci
fication, the present invention discloses a method and corre
sponding structures for an improved trace unit.

US 7,949,854 B1
3

Briefly, an embodiment of the present invention includes
an instruction processing unit having a sequence builder cir
cuit operable to receive at least a portion of a first type of
sequence of operations and to generate, based thereon, a
second type of sequence of operations, where the at least a
portion of the sequence of operations of the first type repre
sents a first portion of a sequence of instructions, where the
first portion of the sequence of instructions includes at most
one control transfer instruction that, when present, ends the
first portion of the sequence of instructions, and where the
sequence of operations of the second type also represents the
first portion of the sequence of instructions, where the
sequence builder circuit is further operable to receive a set of
at least two sequences of operations and to generate, based
thereon, a third type of sequence of operations, where the
sequence of operations of the third type represents a second
portion of the sequence of instructions that includes Zero or
more control transfer instructions that are interior to the sec
ond portion of the sequence of instructions, and where the
received set of at least two sequences of operations includes
any combination of Zero or more of the portions of the
sequences of operations of the first type, Zero or more
sequences of operations of the second type, and Zero or more
sequences of operations of the third type.

These and other objects and advantages of the present
invention will no doubt become apparent to those skilled in
the art after having read the following detailed description of
the preferred embodiments illustrated in the several figures of
the drawing.

IN THE DRAWINGS

FIG. 1 shows a trace unit including basic block sequences
of instructions, a decoder circuit, decoder sequences of opera
tions, a basic block builder circuit, and basic block sequences
of operations, in accordance with an embodiment of the
present invention.

FIG.2 shows a trace unit to includea trace cache circuit and
a multi-block builder circuit, in accordance with an embodi
ment of the present invention.

FIG. 3 shows a processor core including a trace unit
coupled to an execution unit and to a table walker (TW), in
accordance with an embodiment of the present invention.

FIG.3(a) shows further details of the interaction between
the sequencer circuit 29, the branch predictor circuit 30 and
one of the cache circuits, in accordance with an embodiment
of the present invention.

FIG.3(b) shows an example of a basic block trace ABC,
where ABC represents operations, in the basic block cache
circuit 22.

FIG. 4 shows the overall flow of the four types of traces to
the execution unit 14, in accordance with an embodiment of
the present invention.

FIG. 5 shows sequencing information used by the
sequencer circuit 29 in determining the next trace to be
executed by the executed unit 14, in accordance with an
embodiment of the present invention.

FIGS. 6-9 show different trace and instruction flows for
different functions performed by the trace unit 12, in accor
dance with an embodiment of the present invention.

FIG. 10 shows further details of the branch predictor cir
cuit, in accordance with an embodiment of the present inven
tion.

FIG. 10(a) shows, in flow chart form, the steps 100 per
formed, by the sequencer circuit 29, when sequencing opera
tions for a current trace.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 10(b) shows a flow chart of the steps 140 performed

by the sequencer circuit 29 in promoting traces.
FIGS. 10(c) and (d) show examples of building multi-block

trace.

FIG. 10(e) shows a flow chart of the steps 220 performed
by the sequencer circuit 29 and the operation fetcher circuit
28 for adding or entering a trace to the sequence buffer 32 and
fetching operations to be sent to the execution unit 14.

FIG. 10(f) shows a flow of information through various
structures of the trace unit 12 in decoding instructions and
building basic block traces.

FIG. 10(g) shows the address or pointer correspondence
between the basic block cache circuit 22 and the PTB 91.

FIG. 10(h) shows a flow of steps performed by various
structures of the trace unit 12 in verifying the address trans
lations that were used to build a trace when that trace is
sequenced for execution.

FIG. 10(i) shows a flow chart of steps 121 performed, by
the sequencer circuit 29, during an SMC Snooping event.

FIG. 11 shows exemplary contents of either of the basic
block cache circuit or the multi block cache circuit, in accor
dance with an embodiment of the present invention.

FIG. 12 shows a basic block cache entry, in accordance
with an embodiment of the present invention.

FIG. 13 shows a multi-block cache entry, in accordance
with an embodiment of the present invention.

FIG. 14 shows a microcode cache entry, inaccordance with
an embodiment of the present invention.

FIG. 15 shows a processor having multiple processor
cores, in accordance with an embodiment of the present
invention.

FIG. 16 shows a processor sharing a trace unit among
execution units, in accordance with another embodiment of
the present invention.

FIG.17 shows a processor having a trace unit that is shared,
only in part, with multiple execution units, inaccordance with
yet another embodiment of the present invention.

FIG. 18 shows a trace sub-unit core and another trace
Sub-unit core that are collectively a part of the same trace unit
and a shared trace Sub-unit, in accordance with an embodi
ment of the present invention.

FIG. 19 shows an example of sequence of instructions 1700
decoded into a decoder trace 1702 from which a basic block
trace 1704 is built.

Appendix A describes how to determine the highest prior
ity abort trigger in an atomic trace.

Appendix B describes exception and abortion handling of
atomic traces in an execution unit.

Appendix C describes some of the wide variety of ways of
optimizing basic block and multi-block traces by the trace
unit.

Appendix D describes a processor with optimized opera
tion sequences for basic block and multi-block trace caches.

Appendix E describes a processor with basic block and
multi-block trace caches.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

In the following description of the embodiments, reference
is made to the accompanying drawings that form a part
hereof, and in which is shown by way of illustration of the
specific embodiments in which the invention may be prac
ticed. It is to be understood that other embodiments may be
utilized because structural changes may be made without
departing from the scope of the present invention.

US 7,949,854 B1
5

Referring now to FIG. 1, a trace unit is shown to include
basic block sequences of instructions 1, a decoder circuit 5.
decoder sequences of operations 6, a basic block builder
circuit 7 and basic block sequences of operations 8, in accor
dance with an embodiment of the present invention. A “trace 5
unit', as used herein, is synonymously referred to as an
“instruction processing circuit' or a “front end. A “sequence
of operations', as used herein, is synonymously referred to as
a “trace'.
The basic block sequences of instructions 1 is shown to

include N number of basic block sequence of instructions
2-4, with ‘N’ being an integer value. Each of the basic block
sequence of instructions, of the basic block sequences of
instructions 1, ends with, at most, one control transfer. In fact,
detection of a control transfer ends a sequence of operations 15
or a portion thereof. A sequence of operation that is based on
a sequence of instruction having at most a control transfer is
a basic block. A basic block sequence of instructions alterna
tively ends due to capacity constraints, as discussed in further
detail below.
The decoder circuit 5 receives the sequence of instructions

2-4 of the basic block sequences of instructions 1. Upon
receiving the sequence of instructions 2, the decoder circuit 5
decodes the received sequence of instructions into a decoder
sequence of operations (or decoder trace), which includes a
sequencing action. The decoder trace is either provided to an
execution unit (not shown in FIG. 1) or provided to the basic
block builder 7 or both. If the decoder trace is provided to the
execution unit, other than the decoding operation performed
by the decoder circuit 5, no further optimization of the opera
tions is performed. An example of the result of the decode
operation performed on a sequence of instructions is provided
by the trace 1702 in FIG. 19. If the decoder trace is provided
to the basic block builder circuit 7, further optimization of the
operations, which are now included, at least in part, in a
sequence of operations (or decoder trace), is performed.
The basic block builder circuit 7 builds a basic block trace

(or basic block sequence of operations), which is one of the
basic block traces of the M number of basic block traces 8,
based on the decoder trace received from the decoder circuit
5. M is an integer value that may be the same as the value N.
in which case the number of basic block sequence of instruc
tions is the same as the number of basic block sequence of
operations. Alternatively, M and N are different in value
where the number of basic block sequence of instructions is 45
different than the number of basic block sequence of opera
tions.

While the built basic block trace includes operations from
the decoder trace, various other information is included in the
basic block trace, which is advantageously used to effectuate 50
faster sequencing of operations resulting in higher trace unit
performance. Furthermore, operations within a basic block
trace are advantageously grouped to further increase perfor
aCC.

In some cases, a basic block trace. Such as one of the basic 55
block sequence of operations 8 only include operations of one
instruction, in which case the trace is referred to as a single
instruction trace.

FIG. 2 shows a trace unit 21 to include a trace cache circuit
11 and a multi-block builder circuit 19, inaccordance with an 60
embodiment of the present invention. The trace cache circuit
11 is shown to cache N number of basic block traces 13 and
'M' number of multi-block traces 15, where N and Mare
each integer values. In one embodiment of the present inven
tion, the basic block traces 13 are the basic block traces 8 of 65
FIG.1. However, there is no correlation between the NandM
used in FIG. 1 and the N and Mused in FIG. 2. That is, while

10

25

30

35

40

6
the same notation is used, they may or may not be the same
value and are accordingly independent of each other.
At least two traces 17that are any combination of the basic

block traces 13 and/or the multi-block traces 15 are used to
build a multi-block trace by the multi-block builder circuit 19.
The built multi-block trace is cached in the trace cache circuit
11.
While the built multi-block trace includes operations from

one or more basic blocktraces and/or one or more multi-block
traces or a combination thereof, various other information is
included in the multi-block trace, which is advantageously
used to effectuate faster sequencing of operations and there
fore achieve higher trace unit performance. Furthermore,
operations within a multi-block trace are advantageously
grouped to further increase performance.

Referring now to FIG. 3, a processor core 10 is shown to
include a trace unit 12 coupled to an execution unit 14 and to
a table walker (TW)95, in accordance with an embodiment of
the present invention. “Processor as used herein is synony
mous referred to as “microprocessor. “Execution unit', as
used herein is synonymously referred to as “back end.
The execution unit 14 generally executes a sequence of

operations (also known as “sequence of code’) provided
thereto, by the trace unit 12. The trace unit 12 generally builds
sequences of operations for use by the execution unit. In so
doing, the trace unit 12 operates to reduce the workload of the
execution unit 14 by optimizing the sequence of operations in
a basic block and/or multi-block trace. The trace unit 12 also
attempts to sequence traces ahead of the execution unit 14 So
that the execution unit 14 does not need to wait for operations
to execute thereby increasing instruction execution through
put.

In accordance with an embodiment of the present inven
tion, the trace unit 12 is shown to include an instruction cache
circuit 16, a decoder circuit 18, a basic block builder circuit
20, a basic block cache circuit 22, a microcode cache circuit
24, a multi-block cache circuit 26, an operations fetcher cir
cuit 28, a sequencer circuit 29, a branch predictor circuit 30,
a sequence buffer circuit 32, a multi-block builder circuit 34,
a page translation buffer (PTB) (also known as “page trans
lation cache (PTC)) 91 and an instruction translation look
aside buffer (ITLB) 93. The ITLE 93 of the trace unit 12 is
shown coupled to the table walker 95.

In an alternative embodiment, the basic block cache circuit
22 and the multi-block cache circuit 26 collectively comprise
the trace cache circuit 11 of FIG. 2.
The basic block builder circuit 20 and the multi-block

builder circuit 34 are collectively referred to as a trace builder
circuit 36. While the trace builder circuit 36 is a single circuit
in one embodiment of the present invention, in an alternative
embodiment, the trace builder circuit 36 is physically more
than one circuit. For example, the basic block builder circuit
20 of the trace builder circuit 36 is a physically-separate
circuit than the multi-block builder circuit 34 of the trace
builder circuit 36.

While in the embodiment of FIG. 3, the basic block and
multi-block cache circuits 22 and 26 are shown to be physi
cally separate circuits, alternatively, they may physically be
the same circuit, as shown in FIG. 2.

In FIG.3, the instruction cache circuit 16 is shown coupled
to the decoder circuit 18 and, through the decoder circuit 18,
receives requests from the sequencer circuit 29. The decoder
circuit 18 is shown coupled to the basic block builder circuit
20 and to the operations fetcher circuit 28. The basic block
builder 20 is shown coupled to the basic block cache circuit
22. The basic block cache circuit 22 is shown coupled to the
multi-block builder circuit 34, the operations fetcher circuit

US 7,949,854 B1
7

28 and to the sequencer circuit 29. The PTB 91 is shown
coupled to the sequencer circuit 29 and is further shown to
provide information to the basic block cache circuit 22 and
the multi-block cache circuit 26. The PTB91 is further shown
coupled to the ITLEB 93, which is shown coupled to the table
walker 95 and the decoder circuit 18.

The multi-block builder circuit 34 is shown coupled to the
operations fetcher circuit 28 for receiving traces used to build
a multi-block trace. Optionally, the multi-block builder cir
cuit 34 is coupled to the basic block cache circuit 22 and the
multi-block cache circuit 26 for receiving traces used to build
a multi-block trace.
The operations fetcher circuit 28 is shown coupled to the

sequencer circuit 29, the microcode cache circuit 24, the basic
block cache circuit 22, the multi-block cache circuit 26, the
sequence buffer circuit 32 and the decoder circuit 18. The
sequencer circuit 29 is shown coupled to the branch predictor
circuit 30, the multi-block cache circuit 26, the microcode
cache circuit 24 and the basic block cache circuit 22. The
operations fetcher circuit 28 is shown coupled to the execu
tion unit 14.

The instruction cache circuit 16 is a cache, which is a
known form of memory, and is generally used to store instruc
tions for optimization by the trace unit 12 before execution
thereof by the execution unit 14. The instruction cache circuit
16 provides the stored sequence of instructions to the decoder
circuit 18. Instructions, as are referred to herein, are any
Reduced Instruction Set Computer (RISC)- or Complex
Instruction Set Computer (CISC)-based instruction code,
such as but not limited to the x86 instruction code.
The decoder circuit 18 receives the sequence of instruc

tions from the instruction cache circuit 16 and decodes the
received sequence of instructions into a sequence of opera
tions.

In one embodiment of the present invention, the decoder
circuit 18 is operable to detect a decode time instruction mode
that is one of a plurality of instruction modes, and based, in
part, on the decode time instruction mode, the decoder circuit
18 decodes the sequence of instructions into a decoder trace.
A decoder trace is based on the sequence of instructions

from the instruction cache circuit 16. During decoding, the
instruction mode is detected and embedded into the decoder
trace. An instruction mode includes information Such as the
number of parallel bits used in the architecture of the proces
sor core, such as 16 parallel bits vs. 32 parallel data bits vs. 64
parallel bits, which are referred to as 16-bit mode, 32-bit
mode, or 64-bit mode, respectively. Alternatively, any other
parallel number of bits may be used by the processor core.

Information, in an instruction mode, other than the number
of parallel bits used by a processor core, include default data
size, default stack size, relative addressing modes, whether a
data segment is good or bad and whether or not data is used
and any other information relevant to the decoding of instruc
tions.

Optimization generally causes operations within the
sequence of operations to be re-ordered and serves to reduce
the workload of the execution unit 14. Basic block traces,
which are at least, in part, based on the sequence of instruc
tions generated by the instruction cache circuit 16, are further
optimized. Multi-block traces, which are based on basic
block traces or multi-block traces or any combination thereof
are still further optimized. One reason for further optimiza
tion of a multi-block trace relative to a basic block trace is its
size. Multi-block traces are typically longer sequences of
operations than basic block traces and in this respect, there are
more ways of re-arranging operations to cause further opti
mization thereof.

10

15

25

30

35

40

45

50

55

60

65

8
Optimization of basic block and multi-block traces is simi

lar. An alternative embodiment may use dissimilar optimiza
tion, such as complementary optimization. Exemplary opti
mization techniques used by the embodiment of FIG. 3
include elimination or removal of certain operations, which
essentially serves to reduce the execution unit 14’s workload,
removal of dependencies between operations, which also
essentially serves to reduce the execution unit 14’s workload;
and more efficient grouping or packing of operations, which
essentially benefits the efficiency of the trace unit 12, by
causing more compact or denser traces to be built.
An example of elimination of certain operations includes

removing dead code or code that does not offer any value if
executed. In one embodiment of the present invention, group
ing of operations is done by the use of operation “triplet’, as
will be discussed with reference to subsequent figures.

In an exemplary embodiment, all traces are executed
atomically, i.e. completely executed or completely aborted.
When a trace is aborted, none of the operations within the
trace have any effect on the architectural state. In other words,
trace execution is atomic in that the trace's effects are either
committed in their entirety to the architectural state, or pre
vented in their entirety from having any impact on the archi
tectural state.

If a trace is aborted, the architectural state of the various
components of the trace unit 12 and the execution unit 14 are
returned to their states as they were prior to the start of the
trace. Architectural state is commonly understood as the part
of the processor core which holds the state of a process. Such
as the state of control registers or general purpose registers.
The multi-block builder circuit 34 receives basic block and

multi-block traces for building a multi-block trace. In one
embodiment of the present invention, the multi-block builder
circuit 34 is coupled to the operations fetcher circuit 28 for
receiving the basic block and multi-block traces. Alterna
tively, the multi-block builder circuit 26 receives basic block
and multi-block traces from the basic block cache circuit 22
and the multi-block cache circuit 26, respectively.

In one embodiment of the present invention, the sequencer
circuit 29 operates to select a next sequence of operations
from among the decoder sequence of operations (or traces),
the basic block sequence of operations (or traces), and the
multi-block sequence of operations (or traces). In an alterna
tive embodiment of the present invention, the sequencer cir
cuit 29 sequences the next microcode trace, to be executed by
the execution unit 14, by addressing the next microcode trace
in the microcode cache 24. Upon identifying the next micro
code trace, the microcode cache circuit 24 provides the next
microcode trace to be executed to the execution unit 14 for
execution thereof.

In operation, the sequencer circuit 29 determines the order
in which traces are sent to the execution unit 14 and which
traces to promote, which traces to combine, and fetches
operations from any of the sources: the decoder circuit 18, the
basic block cache circuit 22, the multi-block cache circuit 26:
or the microcode cache circuit 33, to send to the execution
unit 14. At the same time the sequencer circuit 29 is sending
the fetched operations to the execution unit 14, it also sends
the fetched operations to the one or both of the builder circuits
20 and 34.

In the case of a capacity constraint occurrence, where the
size of a trace is larger than a predetermined value that is
typically determined based on the size of a cache entry in
either of the basic block or multi-block cache circuits, a
decoder trace is sent to the execution unit 14. This is one
example of a bypass mode.

US 7,949,854 B1
9

A microcode trace is used when, for example, a sequence
of instructions is either complex or rare. The execution of rare
instructions need not be efficient. Certain complex instruc
tions, such as "string manipulation need to be optimized,and
are done so manually into microcode traces. During manual
optimization, the objective is to try to make the operations
compact or create traces that include the least number of
operations possible.
An example of a microcode trace is based on segmentation

changing code known to be used by x86 code programmers.
In the case of segmentation changing code, microcode traces,
rather than decoder, basic block or multi-block traces are used
and no additional optimization thereof is performed.
A microcode trace is generally not desirable from a perfor

mance standpoint because a single instruction can correspond
to multiple traces, which degrades performance efficiency.
Accordingly, microcode traces are advantageously optimized
to execute as fast as possible so as to mitigate performance
hits associated therewith.
A microcode trace is represented by a sequencing action.

That is, the decoder circuit 18 determines that a sequencing
action is microcode and terminates a current basic block
trace. Upon termination of the current basic block trace, by
the decoder circuit 18, a sequencing action results in a call
to a microcode trace identified at a particular address in the
microcode cache circuit 24. The microcode trace is retrieved,
from the microcode cache circuit 24, by the operations fetcher
circuit 28 and is provided, by the operations fetcher circuit 28,
to the execution unit 14 for execution thereof.

Thereafter, either the sequencer circuit 29 sequences the
next basic block trace, another trace, or additional microcode
traces are sequenced and executed. A microcode trace
includes a control transfer and sequencing action.
The sequencer circuit 29 performs various critical func

tions. Among which, identifying the next trace to be executed
by the execution unit 14, and in doing so the trace unit 12
decouples the sequencing time from the execution time. The
sequencing time refers to the number of clock cycles used for
sequencing a next trace. A typical sequencing time is once
every four clock cycles although in other embodiments other
sequencing times are employed. A “cycle', as used herein,
refers to a clock cycle.

In one method and embodiment of the present invention,
the sequencer circuit 29 sequences ahead of the execution unit
14 and instructs the branch predictor circuit 30 to predict all
predictions associated with a sequencing action. The next
address resulting from a sequencing action is predicted by the
branch predictor circuit 30. A predicted result is also known
as a “projected result”.

For example, a sequencing action that might result in three
possible target addresses will have three possible target
addresses associated with it. The different target addresses are
generated by the branch predictor circuit 30 and stored in a
target address predictions storage location 57 as shown in
FIG.3(a). The foregoing results in higher power consumption
and higher performance by the trace unit 12.

Referring now to FIG.3(a), further details of the interac
tion between the sequencer circuit 29, the branch predictor
circuit 30 and one of the cache circuits is shown relative to
determining a target address, in accordance with an embodi
ment of the present invention. In FIG. 3(a), the basic block
cache circuit 22 is shown coupled to the sequencer circuit 29,
which is shown coupled to the branch predictor circuit 30.
The branch predictor circuit 30 is shown to include an indirect
branch predictor circuit 51 for storing alternate target
addresses in the target address prediction storage location 57.
Within basic block cache circuit 22 is a collection of trace

10

15

25

30

35

40

45

50

55

60

65

10
cache entries, an example of which is trace A53. While the
basic block cache circuit 22 is shown to include traces, such as
the trace A53, in FIG. 3(a), the multi-block or microcode
cache circuits are similarly employed for determining a target
address.

Trace A53 is shown to include a target address (TA) 55,
which is an address, or address pointer, of a next predicted
target address. The sequencer circuit 29 is shown to include a
selection circuit 101 for selecting between two target address,
one of which is the TA in the trace A53 and the other of which
is provided by the indirect branch predictor circuit 51.

Storage location 57 has stored therein a number of possible
target addresses 59 that are each a predicted result of an
indirect branch operation by the branch predictor circuit 30.
For example, the result(s) predicted for an indirect branch
instruction are stored in the indirect branch predictor circuit
51. The TA55 is one of a number of possible target addresses,
each of which is stored in the storage location 57, and is one
of the addresses 59. The trace A53 is built with a primary TA,
which is shown included as a part of the trace A53, and if this
prediction is determined to be wrong, i.e. mis-prediction,
another possible or alternate target address is retrieved from
the addresses 59, by the sequencer circuit, 29. As instructed
by the indirect branch predictor circuit 51, the retrieved
address is then used as the next address when the trace is
sequenced.

In operation, the TA of the trace A53 is provided as input
to the selection circuit 101. The selection circuit 101 further is
provided with a target address from the addresses 59 by the
indirect branch predictor circuit 51. The indirect branch pre
dictor circuit 51 also provides control signal(s) to the selec
tion circuit 101, which determines which address to select
between the TA of the trace A53 and the target address from
the indirect branch predictor circuit 51.

In an alternative embodiment, multiple traces are built,
each with a different target address, and stored in a corre
sponding cache circuit. One of the multiple traces is ulti
mately executed by the execution unit 14 and the rest are
either invalidated or maintained depending on design
choices.

FIG.3(b) shows an example of a basic block trace ABC,
where ABC represents operations, in the basic block cache
circuit 22. The trace ABC includes a TA that points to trace
DEF and a sequential address (SA) that points to trace GH.
Trace ABC is stored in the basic block cache circuit 22 from
which multiple multi-block traces 'ABCDEF and ABCGH
are built and stored in the multi-block cache circuit 26.
The built multi-block trace ABCDEF represents a

sequence of operations that represents a sequence of instruc
tions. The sequence of operations, represented by the trace
ABCDEF, is independent of the operations ABC and DEF, it
is rather, based on the sequence of instructions from which
ABC and DEF are built. This similarly applied to multi-block
trace ABCGH. That is, the sequence of operations, repre
sented by the trace ABCDGH, is independent of the opera
tions ABC and GH, it is rather, based on the sequence of
instructions from which ABC and GH are built.

Each of the traces ABCDEF and ABCGH is referred to as
an alternate trace and obviously includes a different pre
dicted address. Additional multi-block traces may be built if
there are further branches that can be taken after each set of
operations DEF or GH. The multi-block traces ABCDEF
and ABCGH are both associated with a single basic block
trace, i.e. trace ABC. The built and unused traces are invali
dated, or not, depending on the design choices employed,
Such as the rules for invalidation of traces. The foregoing
example of more than one trace with a predicted result obvi

US 7,949,854 B1
11

ously requires a higher capacity cache circuit, as all built
traces or at least a Subset thereof, are stored in a cache circuit.
Referring back to FIG.3, the sequencer circuit 29 also decides
whether or not to promote a trace, to validate a trace, and
whether or not a trace is obsolete. Validation of a trace
includes ensuring proper instruction mode of the trace. That
is, during decoding of instructions by the decoder circuit 18,
the instruction mode that is used to decode the instructions is
noted and embedded in the trace being built. In one embodi
ment of the present invention, the instruction mode used to
decode the instructions of a trace is in the trace verification
information part of the trace. During trace validation, the
current instruction mode of the processor core is verified
against the actual instruction mode that was used during
building of the trace being verified. If this verification proves
to be unsuccessful, i.e. the current instruction mode of the
processor core is not found to match the actual instruction
mode that was used during building of the trace, the trace is
invalidated. If not, the trace is identified as a valid trace, at
least as to its instruction mode. There are other reasons for
invalidation a trace; one such reason is if one or more instruc
tions, which form the basis of a trace, are modified. Other
reasons will be noted herein in the context in which they arise.

Verification of a trace refers to a trace being validated or
trace validation.

Invalidation of a trace results in preventing (also known as
“blocking') the trace from being executed by the execution
unit 14.

Alternatively, the instruction mode is reflected by a flag
that is part of the trace and stored in a cache circuit.

The sequencer circuit 29 also activates the decoder circuit
18 and possibly the basic block builder circuit 20, to build a
basic block trace in the event a trace is determined to not exist
in the basic block cache circuit nor in the multi-block cache
circuit, and is further discussed relative to Subsequent figures.
In the event a trace is determined to not exist, bypass mode is
recognized in one embodiment of the present invention. The
sequencer circuit 29 also serves to update information in the
branch prediction circuit 30, which, at times, requires cleanup
when the branch prediction circuit 30 has inaccurately pre
dicted.
Due to the inclusion of a variety of information within a

trace, the sequencer circuit 29 can advantageously afford to
operate at a slower rate, which promotes power savings. Addi
tionally, the branch predictor circuit 30 is advantageously
afforded more Sophistication thereby improving branch pre
diction accuracy and sequencing. Moreover, use of multi
block traces as often as is typically done lowers the demands
on the sequencer circuit 29. It has been shown that during
operation of the processor core 10, approximately 85% of
instructions are from traces in the multi-block cache circuit
26.
The goal of the trace unit 12 is generally to keep the

execution unit 14 busy to the extent where the latter is used
substantially optimally. One of many of the ways in which
this is accomplished is by providing decoder traces to the
execution unit 14 when the operations fetcher circuit 28 is not
providing traces to the execution unit 14. More specifically, a
decoder trace is “bypassed to the operations fetcher circuit
28 if the latter has no other traces to send to the execution unit
14 and the next trace should be from the decoder circuit 18.

In operation, the sequencer circuit 29, using the branch
predictor circuit 30, is configured to generate a prediction for
the result of a particular control transfer instruction, and to
select, based on the predicted result, a next sequence of the
operations to be provided to the execution unit 14. The
sequencer circuit 29, then, operates to provide an indication

10

15

25

30

35

40

45

50

55

60

65

12
of the next sequence of operations to the instruction cache
circuit 16, the basic block cache circuit 22, and the multi
block cache circuit 26.
The instruction cache 16, the decoder circuit 18, and the

basic block cache circuit 22 are also configurable such that the
instruction cache 16 provides Zero or more program instruc
tions to the decoder circuit 18. An example of Zero program
instructions is the case of error handling, in which case no
program instructions are provided to the decoder circuit 18.
The sequencer circuit 29 determines the next sequence of

operations to be executed by first checking for the latter in the
basic block and multi-block cache circuits 22 and 26. If the
next trace is not found in either of the basic block and multi
block cache circuits 22 and 26, the sequencer circuit 29
resorts to the instruction cache 16 for instructions, which are
decoded by the decoder circuit 18, i.e. as a decoder trace, as
the next trace to be executed.

In an alternative embodiment of the present invention, the
basic block cache circuit 22, the multi-block cache circuit 26
and the instruction cache circuit 16 are accessed substantially
simultaneously. In this embodiment, while performance
improves, power consumption is increases.
When a trace in a cache circuit is found, this is referred to

herein as a hit and when a trace is not found in a cache
circuit, this is referred to as a miss.
As previously noted, there are generally four types of

traces (or sequences of operations) that are generated by the
trace unit 12. One such type is a decoder trace (or decoder
sequence of operations), generated by the decoder circuit 18.
Another such type is a basic block trace (or a basic block
sequence of operations) generated by the basic block builder
circuit 20. A third type of trace is a multi-block trace (or
multi-block sequence of operations) generated by the multi
block builder circuit 34.Yet a fourth and optional type of trace
is a microcode trace (or microcode sequence of operations).
A memory controller, located externally to the processor

core 10, receives instructions stored in its memory and pro
vides information, such as microcode instructions. Alterna
tively, the memory controller and its memory may be
included in the same semiconductor device that houses the
trace unit 12.

In one embodiment of the present invention, basic block,
multi-block, and microcode traces are cached. In an alterna
tive embodiment thereof, in addition to basic block, multi
block and microcode traces being cached, decoder traces are
also cached. An average multi-block trace includes four and a
halfbasic block traces and a typical basic block trace includes
five x86 instructions, in the case where x86 instructions are
used. It is understood that the foregoing are merely exemplary
trace sizes and other sizes thereof are contemplated.
The basic block builder circuit 20 is operable to receive at

least a portion of the decoder trace that is generated by the
decoder circuit 18, and to generate, based thereon, a basic
block trace, and to provide the built basic block trace to the
basic block cache circuit 22. At least a portion of the decoder
trace represents a portion of the sequence of instructions
received by the decoder circuit 18, where the received portion
of the sequence of instructions includes, at most, one control
transfer instruction that, when present, ends the portion of the
sequence of instructions. A control transfer instruction is an
instruction that directs the flow of instructions in a sequential
or non-sequential order.

Examples of control transfer instructions include, but are
not limited to, a JUMP instruction, or a BRANCH instruc
tion. In this manner, the first encountered control transfer, in
the received portion of sequence of instructions, is used to
denote the end of the basic block unless capacity constraints

US 7,949,854 B1
13

are used to do so. Upon detection of the end of a basic block,
the decoder circuit 18 provides the basic block to the basic
block builder 20 for building a basic block trace.

In one embodiment of the present invention, the basic
block builder circuit 20 builds a basic block trace through one
or more unconditional control transfer instructions. In so
doing however, it is preferable to apply certain restrictions to
the basic block trace. Such as restricting the resultant trace to
have a sequential next trace address that is effectively man
aged by the trace unit 12 and to restrict the resultant trace to
span a manageable number of PTB pointers, which are dis
cussed in further detail below.
A basic block trace is at least a portion of the sequence of

operations received from the decoder circuit 18, which is
based on a basic block, which ends by the control transfer
instruction. Alternatively, the basic block trace ends due to a
capacity constraint.

After the building of a basic block trace, the basic block
builder circuit 20 provides the built basic block trace to the
basic block cache circuit 22 for caching thereof. The built
trace is executed by the execution unit 14. In the embodiment
where multiple multi-block traces are built, each based on a
unique prediction, a number of alternate traces associated
with the same sequence of instructions, may be maintained.
To accomplish the foregoing, however, the multi-block cache
circuit 26 is required to be large enough, in capacity, to
accommodate additional traces.
One of the ways in which traces are optimized is by elimi

nating “NOP” or “no operation' operations, which are readily
generated by the decoder circuit 18 when decoding instruc
tions. The basic block builder circuit 20 and the multi-block
builder circuit 34 automatically remove as many NOPs as
possible. Removal of unnecessary NOPs results in efficient
use of the basic block cache circuit 22 and the multi-block
cache circuit 26.

Multi-block traces are invalidated for various reasons. One
of which is when a multi-block trace includes one or more
mis-predicted interior branches (or mis-prediction). An
example of a mis-predicted branch is the result of a jump or
non-sequential instruction, such as conditional control trans
fer, where the result is a target address erroneously predicted
to be the result of the control transfer. In such a case, the
multi-block trace is invalidated.
The basic block builder circuit 20 is coupled to the basic

block cache circuit 22 and provides basic block traces, after
having built them, to the basic block cache circuit 22 for
caching thereof. The basic block builder circuit 20 receives
decoder traces and uses them to build a basic block.

Similarly, the multi-block builder circuit 34 is coupled to
the multi-block cache circuit 26, and provides multi-block
traces, after having built them, to the multi-block cache cir
cuit 26 for caching thereof. The multi-block builder circuit 34
uses basic block traces from the basic block cache circuit 22,
or multi-block traces from the multi-block cache circuit 26, or
a combination thereof, to build a multi-block trace.

To build a multi-block trace from a basic block trace, the
latter would have to be promoted. Promoting a basic block
trace occurs when the number of times a branch instruction
has been consistently noted to have branched to the same
target address, as reflected by bias, is equal to or exceeds a
promotion threshold (or predetermined value). Promotion
occurs when it is more efficient for a trace to be combined
with other traces for execution. A trace is promoted if its bias
is the same or higher than the promotion threshold and if its
final control transfer is predictable. The test for comparing a
trace's bias to the promotion threshold may alternatively,
result in promotion of the trace if the trace's bias is higher

10

15

25

30

35

40

45

50

55

60

65

14
than the promotion threshold or the trace's bias is less than the
promotion threshold or the trace's bias is less than or equal to
the promotion threshold. Promotion threshold is a dynami
cally alterable value, yet, in an alternative embodiment, it
may be fixed.

Promotion of a basic blocktrace and a multi-block trace are
substantially the same. Multi-block trace optimization, how
ever, tends to be more effective than basic block trace opti
mization because larger chunks of operations are combined in
a multi-block trace, therefore, leaving more opportunity for
optimization in the form of internal rearrangement of the
operations.

Other examples of optimization include removal of certain
flags used in X86 instructions. This is perhaps best understood
by way of an example. Arithmetic operations (such as addi
tion), logical operations, and the like, produce flags, for
example, carry flags, overflow flags, Zero flags, and other
types of flags. These flags are used as input to a next opera
tion, which may be another arithmetic operation or are used as
input to control transfer instructions, such as branch and
conditional branch. The part of the result of such operations
that appears in the form of a flag is not always needed because
the flag of a next operation essentially overrides a previous
flag. For operations where the flags are not used, such flags
are advantageously removed by the builder circuit 36 even
though the instruction code might include the use of Such
flags, which essentially removes unnecessary dependencies
among instructions.
A multi-block trace is a trace that is built from one or more

basic block traces or one or more multi-block traces or a
combination thereof. A basic block trace is promoted into a
multi-block trace for various reasons, one of which is the
number of times a basic block trace has been executed. A
multi-block trace represents the first portion of the sequence
of instructions, as does a basic block trace however, a multi
block trace is further optimized and allowed to continue past
a control transfer instruction. That is, a multi-block trace
combines at least two traces by continuing past control trans
fer instructions. Thus, the trace unit 12 optimizes across a
control transfer instruction whereas known prior art methods
of optimization, Such as Software compilers, are generally
incapable of optimizing across conditional control transfer
instructions because they are ignorant as to which way the
branch instruction will go.
The sequencer circuit 29 is responsive to decoder traces,

basic block traces, multi-block traces and microcode traces.
The sequencer circuit 29 is accordingly coupled to the
decoder circuit 18, for receiving decoder traces, to the basic
block cache circuit 22, for receiving basic block traces, to the
multi-block cache circuit 26, for receiving multi-block traces,
and to the microcode cache circuit 24, for receiving micro
code traces. The sequencer circuit 29, with collaboration
from the branch predictor circuit 30, generates and provides
the source and location of traces to the sequence buffer circuit
32. The sequence buffer circuit 32 stores the source and
location of traces generated by the sequencer circuit 29, and
ultimately provides the generated source and location to the
operations fetcher circuit 28. The operations fetcher circuit
28, after receiving the source and location of the trace from
the sequence buffer circuit 32, uses this information to select
a source for the next sequence of operations (or trace). More
specifically, the information is used by the operations fetcher
circuit to identify which of the four types of traces is to be
provided to the execution unit 14.
The hardware described above, including any logic or tran

sistor circuit, may be generated automatically by computer
based on a description of the hardware expressed in the syntax

US 7,949,854 B1
15

and the semantics of a hardware description language, as
known by those skilled in the art. Applicable hardware
description languages include those provided at the layout,
circuit netlist, register transfer, and Schematic capture levels.
Examples of hardware description languages include GDSII
and OASIS (layout level), various SPICE languages and IBIS
(circuit netlist level), Verilog and VHDL (register transfer
level) and Virtuoso custom design language and Design
Architecture-IC custom design language (schematic capture
level). The hardware description may also be used, for
example, in various behavior, logic and circuit modeling and
simulation purposes.

FIG. 4 shows the overall flow of the four types of traces to
the execution unit 14, in accordance with an embodiment of
the present invention. As shown in FIG. 4, the operations
fetcher circuit 28 is operable to receive the four types of
traces, i.e. decoder trace 103, basic block trace 31, multi
block trace 35 and microcode trace 33, from various sources.
The microcode cache circuit 24 is shown to receive a micro
code trace 47 from the externally-located memory controller.
The microcode trace 47 is cached in the microcode cache
circuit 24 and when it is accessed, it is provided as microcode
trace 33. The decoder trace 103 is shown provided, by the
decoder circuit 18, to the operations fetcher circuit 28. The
basic block trace 31 is shown provided, by the basic block
cache circuit 22, to the operations fetcher circuit 28. The
multi-block trace 35 is shown provided, by the multi-block
cache 26, to the operations fetcher circuit 28. The microcode
trace is shown provided, by the microcode cache circuit 24, to
the operations fetcher circuit 28. The operations fetcher cir
cuit 28, as directed by the sequencer circuit 29, selects one of
the four traces and provides the selected trace as the next trace
to be executed by the execution unit 14.

Typically, the decoder circuit 18 decodes one instruction
per clock cycle, although in certain cases, an instruction
requires more than one clock cycle to be decoded.
The decoder circuit 18 receives a sequence of instructions

from the instruction cache circuit 16 and decodes the same
into a sequence of operations (or trace). In one embodiment of
the present invention, the decoder circuit 18 is generally basic
block boundary-aware. That is, it identifies the end of a basic
block, in the sequence of instructions being decoded, by
detecting a control transfer therein, which advantageously
reduces the workload performed by the basic block builder
circuit 20.

Alternatively, the decoder circuit 18 is unaware of basic
block boundaries and merely decodes instructions into opera
tions. The end of a basic block is typically identified by the
first control transfer encountered in the sequence of instruc
tions, however, in some cases, no control transfer ends the
basic block, and rather, the basic block boundary is defined by
a predetermined capacity constraint. Capacity constraint
refers to a predetermined or capacity threshold number of
operations that are allowed to be included in a trace, which is
a design choice. The capacity threshold is determined based
on typical basic block trace length (size) and cache efficiency.

In an embodiment of the present invention, where the
decoder circuit 18 is unaware of basic block boundaries, a
pre-scanning circuit (not shown) that only knows how to
determine a basic block, is employed. Yet alternatively, the
output of the decoder circuit 18 is coupled to a circuit (not
shown) operative to partition the sequence of decoded
instructions into basic blocks.
The decoder trace, after having been generated by the

decoder circuit 18, is provided to the sequencer circuit 29 for
determining the Source of the next sequence of operations, as
needed by the operations fetcher circuit 28. The sequencer

10

15

25

30

35

40

45

50

55

60

65

16
circuit 29 determines the source of the next sequence of
operations in collaboration with the branch predictor circuit
30, which will be further discussed relative to a subsequent
figure.

During the building of a multi-block trace, the sequencer
circuit 29 provides promotion information, or bias, to the
multi-block builder 34. In an exemplary embodiment of the
present invention, bias is represented in the form of a flag.

FIG. 5 shows sequencing information used by the
sequencer circuit 29 in determining the next trace to be
executed by the executed unit 14, in accordance with an
embodiment of the present invention. The decoder circuit 18
is shown to provide decoder trace sequencing information
300 to the sequencer circuit 29. The basic block cache circuit
22 is shown to provide basic block trace sequencing informa
tion 302 to the sequencer circuit 29. The multi-block cache
circuit 26 is shown to provide multi-block trace sequencing
information 306 to the sequencer circuit 29 and the micro
code cache circuit 24 is shown to provide microcode trace
sequencing information 304 to the sequencer circuit 29.
The sequencing information 300-306 are each included in

their respective trace and cached in their respective cache
circuits, if appropriate. For example, the sequencing informa
tion 302 is cached in the basic block cache circuit 22 and the
sequencing information 306 is cached in the multi-block
cache circuit 26 and the sequencing information 304 is
cached in the microcode cache circuit 24. However, the
sequencing information 300 is not cached. Further details
regarding the sequencing information is presented relative to
Subsequent figures.

FIGS. 6-9 show different trace and instruction flows for
different functions performed by the trace unit 12, in accor
dance with an embodiment of the present invention. In FIG. 6,
a basic block is built when a sequence of instructions 400 is
provided to the decoder circuit 18 by the instruction cache 16.
The decoder circuit 18 decodes the sequence of instructions
400 into a sequence of operations 402. The sequence of
instructions 400 ends with a control transfer instruction. The
control transfer instruction that ends the sequence of instruc
tions 400 is either the last instruction of the sequence of
instructions 400 or is an indicator of the end of the sequence
of instructions 400 in which case it is not included in the
sequence of instructions 400 as an instruction. If the trace
builder 29 is sequencing ahead and the basic block builder 20
is busy building traces, there is a wait period for the next trace.

Alternatively, the sequence of instructions 400 ends due to
a predetermined capacity constraint. A basic block trace may
be limited in size, i.e. a certain number of operations, due to
the size of the cache circuit being used. The width of an entry
of a cache circuit is a factor used in defining the capacity
constraint. The number of operation triplets is the “width' of
the entry of a cache circuit. Operation triplets, as will be
further discussed later, result from dividing a sequence of
operations into triplet so that they may be efficiently
executed, substantially in parallel, by the execution unit 14.

Referring still to FIG. 6, the basic block builder 20 builds
the trace 404 which is stored in the basic block cache circuit
22.

FIG. 7 shows the flow of traces 502 and instructions 500
during bypass mode and building a basic block trace. Bypass
mode occurs when a trace to be executed is not hit or found
in any of the cache circuits and the next trace to be executed
is then the decoder trace with little to no optimization. In
bypass mode, even when the basic block builder 20 is busy,
there is advantageously no waiting period for the next trace,
unlike in non-bypass, FIG. 6, where there is a waiting period.

US 7,949,854 B1
17

In FIG. 7, the decoder circuit 18 is shown to provide a
decoder trace 502 to the basic block builder 20 as well as to
the operations fetcher circuit 28. The operations fetcher cir
cuit 28 then provides the decoder trace 502 to the execution
unit 14 for execution thereof. The decoder circuit 18 also
provides the decoder trace 502 to the basic block builder 20 so
that the latter can start to work on building a basic block trace
based on, at least a portion, of the decoder trace 502 if the
basic block builder 20 is not busy. The portion of the sequence
of operations is that portion of the sequence of operations that
is based on the sequence of instructions whose end is deter
mined essentially by a control transfer or capacity constraint,
defines a basic block boundary. By building and caching a
basic block trace, the next time the same basic block trace is
used, it is substantially immediately available to the execution
unit 14, thereby increasing the performance of the trace unit
12.

Alternatively, when in bypass mode, a basic block trace is
not built and the decoder circuit 18 does not provide the
decoder trace 502 to the basic block builder 20, which results
in operations being provided to the execution unit 14 Sooner
thereby decreasing latency.

FIG. 8 shows the flow of traces during building a multi
block trace. In the case where the multi-block trace being built
includes at least one basic block trace, basic block trace 522,
which includes sequencing and promotion information
related thereto, is retrieved from the basic block cache circuit
22 by the sequencer circuit 29. In the case where the multi
block trace being built includes more than one basic block
trace, multiple basic block traces, which include related
sequencing and promotion information, are retrieved from
the basic block cache 22. In the case where the multi-block
trace being built includes at least one previously-built multi
block trace 524, which include sequencing and promotion
information related thereto, is retrieved, by the sequencer
circuit 29, from the multi-block cache circuit 26.

Next, the sequencer circuit 29 provides the traces that are
potential candidates making up a multi-block trace to be built,
including their corresponding trace address(es) and promo
tion information 526, to the sequence buffer circuit 32 for
storage therein. The sequence buffer circuit 32 provides trace
address 529 to the operations fetcher circuit 28. The trace
address 529 identifies the location of a corresponding trace
within its respective cache circuit.

The stored traces 528 are transferred from the sequencing
buffer 32 and the operations fetcher circuit 28 to the multi
block builder circuit 34. Upon building of the multi-block
trace 530, using the stored traces 528, the built multi-block
trace is provided to the multi-block cache 26 for caching
thereof. Within the cached multi-blocktrace, there is included
instruction mode and other trace-related information dis
cussed in further detail relative to the contents of the cache
circuits. Once stored in the cache circuit 26, the built multi
block trace is fetched upon a hit of the cache circuit 26, i.e.
finding of the multi-block trace that is believed to be
sequenced, retrieved by the operations fetcher circuit 28, and
provided as the next sequence of operations to be executed
532, to the execution by the execution unit 14.
A multi-block trace is generally a combination of at least

two traces, which are basic block traces, multi-block traces or
a combination thereof. An exemplary multi-block trace
includes operation(s) that represent at least one interior con
trol transfer, a final control transfer or both or neither. The
interior control transfers are generally assertions based on
predicted results. The final control transfer ends a multi-block
trace. In the case where a basic block trace that is included in
a multi-block trace is found to be invalid, the entire build is

10

15

25

30

35

40

45

50

55

60

65

18
aborted. An example of this is when the instruction mode that
was used to build a basic block trace that is included in a
multi-block trace is found to be different than the instruction
mode used to build the rest of the multi-block trace in which
case the basic block and the multi-block builds are aborted at
sequencing time.

In one embodiment of the present invention, to find the next
trace to be executed, the sequencer circuit 29 first tries to
search the multi-block cache 26 and if there is no hit, it then
tries the basic block cache circuit 22 and if there is no hit, the
decoder trace is provided to the execution unit 14. Upon a
hit of a multi-block trace within the multi-block cache cir
cuit 26, the multi-block trace is fetched and provided to the
execution unit 14. Similarly, upon a hit of a basic block trace
within the basic block cache circuit 22, the basic block trace
is fetched and provided to the execution unit 14.

Alternatively, in addition to building multi-block traces
from basic block and/or multi-block traces, the multi-block
builder circuit 34 can also build a multi-block trace from the
decoder traces (retrieved through the operations fetcher cir
cuit 28, which retrieves the decoder traces from the decoder
circuit 18).
The operations of a trace, as stored in a cache circuit, are

stored as “triplet’, or sets of three operations with each opera
tion of the set beting processed by an independent unit within
a SuperScalar execution unit 14. Execution unit 14 is generally
replicated multiple times in a SuperScalar execution unit so
that all execution units therein operate in parallel and inde
pendent of one another to increase execution speed. In the
case where triplets are employed each of the operations is
executed or operated on by one of the multiple execution units
and there are three execution units, each for executing an
operation. Alternatively, a different number of operations
comprises the “oplets' or number of operations and the num
ber of “oplets” is based on the number of execution units in
the superscalar execution unit (or the width thereof).

FIG.9 shows the flow of traces from the execution unit 14
to the trace unit 12. Feedback from the execution unit 14 is
used by the trace unit 12 to update information regarding
traces, such as aborting, invalidating or committing a trace.

In FIG. 9, the execution unit 14 is shown to provide trace
commit information 602 to the sequencer circuit 29. The trace
commit information 602 is an indicator of Successful execu
tions of the operations within the trace by the execution unit
14, in which case, the sequencer circuit 29 updates the bias,
which keeps track of the number of times the trace has been
executed. Upon receiving the trace commit information 602,
the sequencer circuit 29 performs certain functions. Such as
freeing checkpoints.

Promotion threshold is programmably alterable to adjust
the sequencing of trace to the environment in which the pro
cessor core 10 is being used. For example, in the case where
the environment is one where too many mis-predictions
occur, the promotion threshold is increased to more selec
tively build traces. An example of a mis-prediction is when
the interior control transfer indicates a branch that is errone
ously taken. In the case where not enough traces are built, as
reflected in the lack of efficient utilization of the cache cir
cuits, promotion threshold is decreased allowing for more
traces to be sequenced. This might occur after power-up of the
processor core 10. A basic block trace is promoted to a multi
block trace when its bias meets or exceeds a threshold (or
predetermined) value, as reflected by its bias.
The execution unit 14 additionally provides trace abort

information 604 to the sequencer circuit 29. The trace abort
information 604 is used to invalidate a trace or stop the trace
from being built. Upon the invalidation of a trace, the

US 7,949,854 B1
19

sequencer circuit 29 provides information regarding invali
dation of the trace to the basic block cache circuit 22 and the
multi-block cache circuit 26, and performs cleanup.

For example, in the case where a trace is being aborted or
invalidated, the execution history information 606, in the
multi-block cache circuit 26 and the basic block cache circuit
22 is accordingly updated. The execution history information
606 is stored in the execution history information component
1002 of the cache circuit, as will be later shown. In the case
where a basic block is invalidated, the sequencer circuit 29
transmits an invalidate trace command 608 to the basic block
cache and multi-block cache circuits 22 and 26.

In one embodiment of the present invention, aborting a
trace does not cause invalidation of a trace in the correspond
ing cache circuit. For example, aborting a multi-block trace
does not result in aborting basic block traces from which the
aborted multi-block trace was built. The basic block traces or
any of them however, will be aborted due to a problem with
one or more operations therein. When a final branch mis
prediction is detected, the trace which includes the mis-pre
diction is committed, the next trace that was mis-predicted is
aborted and the next trace down the correct pathis sequenced.
When an interior branch mi-prediction is detected, the multi
block trace including the mis-prediction is aborted and it is
invalidated in the multi-block cache circuit 26. A trace having
the same starting address as that of the multi-block trace with
the mis-prediction is re-sequenced. When a problem with an
operation in either a basic block or a multi-block trace is
detected, the trace is aborted and re-sequenced and invali
dated in its corresponding cache circuit.

In yet another embodiment of the present invention, where
a multi-block trace is being invalidated, a basic block trace
that is included in the multi-block trace may or may not be
invalidated in the basic block cache circuit 22.
The sequencer circuit 29 provides an indirect branch target

address 610, which is used the first time an indirect branch
instruction is encountered, to report the target address (or
pointer) used during execution. The target address or target
address pointer of a trace is stored in a target address (TA)
field, as sequencing information, of an auxiliary information
component that is associated with the trace, in a correspond
ing cache circuit. This is done the first time an indirect branch
is detected and executed. If later executions on the indirect
branch are also mis-predicted, the correct alternate target
addresses are stored in the circuit 57 of FIG.3(a).
A multi-block trace must be built using the same instruc

tion mode as that which was used during decoding of instruc
tions included in the multi-block trace being built. Therefore,
any basic block traces that are included in the multi-block
necessary have been built using the same instruction mode,
otherwise, the multi-block build is aborted.

Referring to FIG. 10, further details of the branch predictor
circuit 30 are shown to include a branch predictor history
circuit 800, a conditional branch predictor circuit 802, an
indirect branch predictor circuit 804, and a call return stack
predictor circuit 806, in accordance with an embodiment of
the present invention. In one embodiment of the present
invention, the indirect branch predictor circuit 804 is the same
as the indirect branch predictor circuit 51.
The branch predictor history circuit 800 generally main

tains the outcome of the last N number of branches, N being
an integer value. This information is then used by the condi
tional branch predictor circuit 802 and the indirect branch
predictor circuit 804.
The conditional branch predictor circuit 802 generally pre

dicts the possible target addresses resulting from a condi
tional branch operation, which are stored as alternate target

10

15

25

30

35

40

45

50

55

60

65

20
addresses in the locations 57 (of FIG. 3(a)). As previously
noted with respect to FIG. 3(a), the sequencer circuit 29,
during sequencing, the sequencer circuit 29 causes use of the
target address selected by the branch predictor circuit 30.

In alternative embodiment of the present invention, mul
tiple possible traces are generated for each possible target
address and sequenced. Obviously only one of the possible
traces is ultimately executed by the execution unit 14. There
are variations on this theme in that the sequencer circuit 29
optionally chooses to only keep one of the possible traces
hoping that that is the trace that is ultimately executed, i.e. the
prediction is correct. Obviously, this degrades performance
because predictions are not always correct, in which case, the
sequencer circuit 29 has to then go back to sequencing
another trace with another prediction.

In a high performance environment, the sequencer circuit
29 advantageously causes the branch prediction circuit 30 to
predict all possible prediction outcomes and thereafter caches
the same but ultimately only one of these possible predictions
is provided to the execution unit 14. A high performance
environment requires greater power consumption.

In the case where the environment is not one of high per
formance and power savings is more vital, the sequencer
circuit 29 causes the branch predictor circuit 30 to produce
only one or less than the number of possible predictions. In
this scenario, power consumption advantages are realized.
Examples of some of the above-noted scenarios will be
shown and discussed shortly.

Referring still to FIG. 10, an example of a conditional
branch is shown by an exploded view of the branch predictor
history circuit 800. When a trace 808, having a conditional
branch instruction incorporated therein, is encountered, in
one embodiment of the present invention, the conditional
branch predictor circuit 802, in a high power, high perfor
mance environment, is caused to select between two possible
addresses, which are each included in a trace, i.e. one is to
trace 812 and other is to trace 810. The trace 812 is the next
address to be sequenced if the branchis not taken and the trace
810 is the next address to be sequenced if the branch is taken.
When the branch is not taken, the next address to be
sequenced is essentially the sequential address (or SA).
Sequencing actions are actions taken to sequence the next
trace and conditional branch, however, there are other types
of sequencing actions that are frequently used to alter instruc
tion or trace flow, which will be enumerated and discussed
relative to cache circuits.

In the alternative embodiment where the two possible
traces are built, one of the two built traces 810 and 812 is
executed and the other that remains unexecuted is invalidated.
In an alternative embodiment of the present invention, where
the size of the cache circuit is less important, both traces may
be kept.
The indirect branch predictor circuit 804 predicts multiple

target addresses based on the possible outcomes of an indirect
branch instruction. An example of an indirect branch is shown
by an exploded view of the indirect branch predictor circuit
804. When a trace 814, having a indirect branch instruction
incorporated therein is encountered, in one embodiment of
the present invention, the indirect branch predictor circuit
804, in a high power, high performance environment, is
caused to 816, another is in the trace 818, yet another is in the
trace 820.

Each of the traces 816-820 includes a possible target
address that depends on the outcome of the indirect branch.
Because at the time of building a trace, information regarding
which target address is executed is yet unavailable to the
sequencer circuit 29, all traces 816-820 are built and stored in

US 7,949,854 B1
21

a respective cache for possible use by the execution unit 14.
The execution unit 14 communicates back to the sequencer
circuit 29 information regarding which target address is
executed and then the sequencer circuit 29 generates the
indirect branch target address for initial execution 610 to the
basic block cache 22 and the sequencer circuit 29 then pro
ceeds to invalidate the trace(s) with mis-predicted target
addresses to make available cache space.

In one embodiment of the present invention, when one of
the traces 816, 818 or 820 is executed, the remaining unex
ecuted traces are invalidated. In an alternative embodiment
where the size of the cache is less important, all traces may be
kept.

In FIG. 10, the call return stack predictor circuit 806 oper
ates substantially similarly to the indirect branch predictor
circuit 804 in that the call or return are always taken and there
is no-branch-not-taken possibility as in the case of the con
ditional branch predictor circuit 802. However, target
addresses of a call and return could be many different
addresses. When a call or a return instruction is encountered,
the call or branch is considered taken. There is no conditional
call. Calls are indirect or relative. If the call is relative, it is
going to the same address every time.
An indirect call can have multiple target addresses, Sub

stantially like an indirect branch instruction. When an indirect
call is encountered, the indirect branch predictor circuit 804 is
used because it is basically an indirect branch. Returns gen
erally yield high prediction accuracies because from what
location the return came from is generally known, thus, lend
ing to a more accurate prediction of where to go back to when
returning. No conditional returns are possible in x86 instruc
tions.

In a high power, high performance environment, all three
predictor circuits 802-806 operate in parallel. Thus, when the
sequencer circuit 29 is sequencing a particular trace, it
requests that all three predictor circuits 802-806 provide what
each has predicted to be the next target address, i.e. the pre
dicted target address. When the sequencer circuit 29 is
sequencing the particular trace, it is unaware of what the next
sequencing action is, or where it is coming from and therefore
asks all three predictor circuits. As an example, the sequencer
circuit 29 asks the indirect branch predictor circuit that
assuming the sequencing action to be an indirect branch, what
would the target address(es) be and at the same time, it asks
the conditional branch predictor 802 that assuming the
sequencing action to be a conditional branch, to predict if the
branch is taken or not.

The sequencer circuit 29 also requests of the call return
stack predictor circuit 806 that assuming the sequencing
action to be a return, what would be the return address (or
target return address). All three prediction circuits 802-806
respond to the sequencer circuit 29 with their respective
responses. The sequencer circuit 29 then determines the
actual sequencing action and chooses the appropriate
response accordingly. This effectively increases the speed of
processing of the sequencing action because if there is a wait
time associated with determining exactly what type of control
transfer is used upon which the sequencing action is based,
then the prediction is delayed.

10

15

25

30

35

40

45

50

55

60

65

22
An example of the foregoing, high performance approach

to prediction is presented in Table 1.

TABLE 1

Time Unit

1 2 3

Sequencer X X X
Conditional Branch Predictor X X X
Indirect Branch Predictor X X X
Call Return Stack X X X

Table 1 shows a three-time unit sequencing with the pre
dictor circuits 802-806 all predicting in parallel (or simulta
neously). In a power saving (or low power, low performance)
mode, less than all three prediction circuits 802-806 predict.

TABLE 2

Time Unit

1 2 3

Sequencer X X
Conditional Branch Predictor X
Indirect Branch Predictor
Call Return Stack

An example thereof is provided in Table 2 where the con
ditional branch predictor circuit 802 is the only prediction
circuit predicting because the sequenced trace was deter
mined to have a conditional branch sequencing type. Any of
the other prediction circuits can be predicting in place of the
prediction circuit 802 although conditional branches are the
most common type of control transfer experienced. The
sequencing action embedded in a trace generally is determi
native of which prediction circuit is activated. Alternatively,
any combination of the prediction circuits may be predicting
thereby yielding different power consumption rates.

FIG. 10(a) shows, in flow chart form, the steps 100 per
formed, by the sequencer circuit 29, when sequencing a cur
rent trace. A current trace is a trace that is being currently
sequenced.
At step 105, the sequencing operation of the current trace

starts. Next, at step 102, the operation, within the current
trace, that represents the first instruction of the sequence of
instructions corresponding to the current trace is used as the
trace address to find a matching address in the basic block or
multi-block cache circuits 22 and 26. A trace address is the
address of the first instruction appearing in the trace. This is
done to essentially locate the current trace in either of the
basic block or multi-block cache circuits.
At 104, a determination is made as to whether or not the

current trace is found in either of the basic block or multi
block cache circuits. If the current trace is determined to have
been located in the multi-block cache circuit 26, the process
continues to 108 where trace verification is performed and the
found trace is verified, or not. Trace verification is discussed
in further detail with respect to subsequence figures. If the
trace is not successfully verified, the trace found in the multi
block cache circuit 26 is invalidated at step 114.
On the other hand, if the found trace is successfully veri

fied, the process continues to step 130 where a flag is entered
into the sequence buffer 32 indicating whether or not the
current trace's final branch is predictable enough to promote
the foundtrace into a new multi-block trace. Next, at step 132,
the found multi-block trace is entered in the sequencing

US 7,949,854 B1
23

buffer32. Next, step 122 is performed where a determination
is made as to which trace is the next trace to be sequenced
based on the sequencing information included within the
current trace and the result(s) produced by the branch predic
tor circuit 30. 5

If at 104, the current trace is found in the basic block cache
circuit 22 but not the multi-block cache circuit, the process
continues to 110 where the found basic block trace is verified
and if unsuccessfully verified, the process continues to the
step 112 where the found basic block trace is invalidated in 10
the basic block cache circuit 22. If the found basic block trace
is successfully validated at step 110, the process continues to
step 120.
At step 120, the sequencing buffer 32 is flagged with

whether or not the final branch of the current trace, as evi- 15
denced by a representation of the final control transfer
instruction, is predictable enough to promote the current
trace. That is, a promotion flag indicative of the promotion
status of the current trace is stored in the sequencing buffer
32. Next, at step 116, the basic block trace is entered into the 20
sequencing buffer 32 and the process continues to and per
forms step 122.

After steps 114 and 112, the process returns to step 102
where the current trace is attempted to be found in the basic
block or multi-block cache circuits again. 25

In the event no hit is detected of the cache circuits 22 and
26, i.e. the current trace is not found in either of the cache
circuits, the process continues to step 106 from 104 where a
decoder trace is formed by activating the decoder circuit 18,
which decodes instructions starting from the current trace's 30
starting address until a capacity constraint or a representation
of a control transfer instruction is detected, either of which
denotes the end of the decoder trace. After the step 106, at
118, a determination is made as to whether or not the sequenc
ing operation is far enough ahead of the execution unit 14 to 35
keep the latter busy and if the determination proves to be false,
step 128 is performed. If the determination at 118 proves to be
true, step 124 is performed.

At step 128, the bypass mode (or path) is activated followed
by performance of the step 122. 40

If at 118, it is determined that the sequencing operation is
far enough ahead of the execution unit 14 to keep the latter
busy, step 106 is performed followed by the step 124. At step
106, a decoder trace is formed by activating the decoder
circuit 18, which decodes instructions starting from the cur- 45
rent trace's starting address until a capacity constraint or a
representation of a control transfer instruction is detected,
either of which denotes the end of the decoder trace. After the
step 106, at step 124, the sequencer circuit 29 instructs the
basic block builder circuit 20 to build a new basic block trace. 50
Next, at step 126, the newly-built basic block trace is entered
into the sequencing buffer 32. Next, step 122 is performed.

After step 122, the sequencing of the current trace is com
plete and at step 134, the sequencer circuit 29 advances to
sequencing of the next trace. 55

FIG. 10(b) shows a flow chart of the steps 140 performed
by the sequencer circuit 29 in promoting traces. The steps 140
include steps 142-152, of which steps 142 and 148 corre
sponds to steps 130 or 120 of FIG.10(a). Steps 146 and 152.of
FIG. 10(b) corresponds to steps 132 or 116 of FIG. 10(a). 60

In FIG. 10(b), at step 142, a determination is made as to
whether or not the current trace is promotable based on its
bias. That is, if the bias of the current trace is equal to or
greater than a promotion threshold, the process continues to
step 146 and if not, the process continues to step 144 where 65
the current trace is added to the sequencing buffer 32 (or the
step 116 in FIG. 10 (a) is executed) and the next trace is

24
sequenced. Alternatively, the determination of the compari
son of the bias to the promotion threshold may be made if the
bias is less than the promotion threshold or less than or equal
to the promotion threshold or greater than the promotion
threshold.

If at 142, it is determined that the current address is pro
motable, promotion of the current trace occurs as follows.
First, at step 146, the current trace is added to the sequencing
buffer 32 and marked as promoted and further marked as the
first trace of a potential multi-block trace built therefrom and
the next trace is sequenced.

Next, at step 148, a determination is made as to whether or
not a newly-arrived trace, which is now the current trace is
promotable. The trace is added or entered into the sequence
buffer 32 and marked as promoted, at step 152 if the trace is
determined to be promoted, and if not, the trace is added to the
sequence buffer 32, marked as promoted and the next trace is
sequenced at step 150. At step 150, the current trace may not
be marked as promotable under certain conditions, such as the
trace being non-speculatively executed, in which case it is not
marked as promoted in step 150. At step 152, the current trace
is added to the sequence buffer 32 and marked as promoted
and the next trace is sequenced.

It should be noted that while bias is one of the factors used
to determine promotability, other factors may be employed,
Such as the trace being non-speculative, too many interior
control transfer instructions and others.

FIGS. 10(c) and (d) show examples of building multi-block
trace. In FIG. 10(c), the example 160 shows a trace A 162, a
trace B 164 and a trace C166 that are combined to build the
multi-block trace. The trace 162 is shown to include operation
sequence A 168, the trace 164 is shown to include operation
sequence B 170 and the trace 166 is shown to include the
operation sequence C172.
The trace 162 is further shown to include a bias 174, the

trace 164 is further shown to include a bias 176, and the trace
166 is further shown to include a bias 178. The bias of traces
162 and 164 are each the value 17 and the bias of trace 166 is
the value 5. The promotion threshold value is set to 17, thus,
as the traces 162 and 164 have biases with values equal to the
promotion threshold, i.e. 17, these traces are promoted but the
trace 166, having a bias with a value less than 17 is not
promoted; yet the latter is included in the built multi-block
trace because the previously-promoted trace is used to deter
mine the inclusion of the next trace in the built trace. The
traces 162, 164 and 166 are thus retrieved by the multi-block
builder circuit 20 (or the multi-block builder circuit 34) from
the output of the operations fetcher circuit 28 and the former
builds the new multi-block trace 180. Any of the traces 162,
164 or 166 may be a basic block trace or a multi-block trace.
The trace 180 is shown to include an operation sequence ABC
182 that represents the sequences A, B and C of traces 162,
164 and 166, respectively, and a bias 184 with a value of 5,
which prevents it from being promoted yet.

While the multi-blocktrace180 is shown to have a bias 184
in FIG. 10(c), in Some cases an initial bias is assigned to the
bias 184, which may be a fixed (or static value) or a config
urable alterable value.

Dynamic analysis refers to analyzing promotability and
updating bias accordingly. Static analysis refers to fixing bias.

Referring now to FIG. 10(d), another example 186 of
building a multi-block trace 206 is presented. In the example
186, trace X 188, trace Y 190 and trace Z 192 are potential
candidates for building the trace 206 and the promotion
threshold is set to 17, as in the example of FIG. 10(c). The

US 7,949,854 B1
25

trace 188 is shown to have a bias 200, which is set to 17 and
the trace 190 is shown to include a bias 202, which is shown
Set to 17.

But the bias 204, of the trace 192, is a “non-speculative'
flag indicating that the trace 192 is not to be promoted. The
trace 188 is shown to include operation sequence X 194, the
trace 190 is shown to include operation sequence Y 196, and
the trace 192 is shown to include operation sequence Z 198.

The traces 188 and 190 are combined by the multi-block
builder 34 to build the trace 206, which includes the operation
sequence representing the sequences X and Y only, and not
including the sequence Z of the trace 192 because the latter is
not promotable and it has the certain condition referred to
relative to the step 150 of FIG.10(b). The bias 210 of the trace
206 is shown to be set to 17, nevertheless, it is not promoted
and may or may not be promoted in the future, but it is stored
in its corresponding cache circuit.

FIG. 10(e) shows a flow chart of the steps 220 performed
by the sequencer circuit 29 and the operation fetcher circuit
28 for adding or entering a trace to the sequence buffer 32 and
fetching operations to be sent to the execution unit 14.

In FIG. 10(e), the step 222 is performed, by the sequencer
circuit 29, adding a trace to the sequence buffer 32. This step
is the same as either of the steps 132 or 116 of FIG. 10(a).
Next, the address of the added trace is held in the sequence
buffer 32 until the execution unit 14 is ready for more opera
tions. Next, the step 224 is performed by the operations
fetcher circuit 28. Steps 224, 226, 228 and 230 are performed
by the operations fetcher circuit 28. At step 224, the sequence
buffer32 is read for the address of the next trace to fetch. Next
at 226, a determination is made as to whether or not the trace
is marked as promoted and if so, the process continues to step
228 and if not, the process continues to step 230. At step 228,
operations are fetched, by the operations fetcher circuit 28,
and sent to the multi-block builder circuit 34 and to the
execution unit 14 and the process then continues to the step
224.

If at 226, it is determined that the trace is not marked as
being promoted, the process continues to step 230 where the
operations fetcher circuit 28 fetches operations and sends the
fetched operations to the execution unit 14 after which the
process continues to step 224.

FIG. 10(f) shows a flow of information through various
structures of the trace unit 12 in decoding instructions and
building basic block traces. The sequencer circuit 29 provides
a virtual address (VA) 9901 to the decoder circuit 18. The VA
9901 specifies the next instruction to be decoded into a
decoder trace, which is also optionally built into a basic block
trace.

Then the decoder circuit 18 provides request 9902 to the
instruction translation look aside buffer (ITLE)93. The ITLB
93 serves to translate VAs provided by the decoder circuit 18
to both the physical address (PA) that corresponds to the VA
9901 and, a pointer to the entry within table 260 within page
translation buffer (PTB)91 that contains this PA/VA pair. The
ITLEB 93 responds to the request 9902 by providing response
9905, which includes both the PA and the PTB pointer, to the
PTB 91.

Sometimes, the ITLEB 93 may or may not include the PA
and PTB pointer information for response 9905, in which
case the ITLE 93 may need to send request 9903 to the table
walker 95. Request 9903 contains the VA from the decoder
circuit 18. The TW 95 receives VAs, generated by the ITLE
93, and translates them to PAs. Response 9904 from the TW
95 to the ITLB 93 includes the corresponding PA.

Accordingly, the VA9901 is provided to the ITLE93 by the
decoder circuit 18, the ITLEB93 translates the VA to a PA to be

10

15

25

30

35

40

45

50

55

60

65

26
used by the PTB91 and the decoder circuit 18. The generated
PA is provided to the PTB 91 by the ITLE 93 and used to
index a PTB table to obtain a corresponding VA. The PA
generated by the ITLEB 93 is provided as a pointer/index to the
basic block builder circuit 20.

Similarly in some embodiments of the present invention
and/or under operating conditions, the ITLEB 93 may need to
send request 9905 to the PTB91. The VA in request 9903 and
the corresponding PA in response 9904 (PA/VA pair) are
included in request 9905. The PTB 91 includes a table, i.e.
PTB table, for maintaining mapping of the PAs, which are for
addressing instructions in the instruction cache circuit 16, to
the VAS, which are used for sequencing and addressing both
basic block traces and multi-block traces. The response 9906
from the PTB91 includes a pointer to the specific entry within
PTB table. The PTB table is held in the PTB 91 and is shown
in FIG. 10(g). If the PTB table does not contain an entry for
this PA/VA pair, then the PTB 91 creates such an entry.

After receiving the response 9907 from the ITLE 93, the
decoder circuit 18 retrieves instructions from the instruction
cache circuit 16 by providing the physical address (PA) to the
latter. The PA provided by the decoder circuit 18 is used to
identify an instruction in the instruction cache circuit 16. The
instruction is then provided to the decoder circuit 18 for
decoding thereof, thereby generating a decoder trace.
Some instruction sets, for example, the well known x86

instruction set, include instructions of variable length. Par
ticularly in Such instruction sets, a single instruction may span
the boundary between two adjacent pages of virtual memory/
physical memory. Accordingly, in some embodiments of the
present invention, the responses described above to a single
VA may include either one or two PA/VA pairs and either one
or two PTB pointers.

In some cases, trace verification is “distributed'. That is,
the verification process is performed by different subunits or
components of the trace unit 12. For example, the PTB91 and
ITLEB 93 are used in verifying validity of the page transla
tions. The sequencer circuit 29 is used in verifying that the
processor core's instruction mode is the same. In other cases,
trace verification is “ondemand'. That is, the verified bit 3002
of the PTB 91 and the checked bit 3000 in a trace being
verified are employed. These bits allow performing the veri
fication process when indicated or “on demand” instead of
every time a trace is sequenced.
The PTB pointer or pointers that the ITLB 93 provides to

the decoder circuit 18 becomes part of the decoder trace. As
shown in FIG. 10(g), these PTB pointer(s) also become part
of any basic block traces or multi-block traces that are built
from that decoder trace. These PTB pointer(s) are used to
locate a trace in the basic block cache circuit 22 (or the
multi-block cache circuit 34, as the case may be) in case of
self modifying code (SMC) events, as described herein with
respect to FIG. 10(i).

FIG. 10(g) shows the correspondences between the PTB
address or pointer within the basic block cache circuit 22 and
the PA within the PTB 91. Each trace within the basic block
cache circuit 22 includes one or more PTB pointers and a
“checked' bit 3000. Each PTB pointer potentially corre
sponds to a PA within the PTB table 260 of the PTB 91. The
PTB pointer and its correspondence to a PA results in invali
dating the corresponding trace due to the presence of SMC or
cross modifying code. The PTB91, in FIG.10(g), is shown to
include PA/VA pairs as well as a “verified” bit 3002 corre
sponding to each PA/VA pair.

In the embodiment of FIG. 10(g), two PTB pointers are
included in each trace of the basic block cache circuit 22 and
each point to or index a unique PA in the table 260. Where

US 7,949,854 B1
27

there is an SMC event and a match between the PTB pointer
of a trace within the basic block cache circuit 22 and a PA in
the table 260 is found, the corresponding trace need be and is
invalidated in the basic block cache circuit 22, and its corre
sponding entry in the table 260 is similarly invalidated. The
multi-block cache circuit 26 is similarly scrubbed.

In some embodiments of the present invention, multi-block
traces held in the multi-block cache circuit 26 may contain up
to four PTB pointers. Even if no single instruction spans a
memory page boundary, the sequence of instructions that are
represented either by a basic block trace or by a multi-block
trace may span one or more page boundaries, particularly if
these traces include representations of control transfers that
are interior to the sequence of instructions.
The verified bit 3002 of the table 260 of the PTB 91 is used

in the following manner. An entry in the table 260 is allocated
and its verified bit 3002 is set. Any time there is a change to the
page translations, the verified bit 3002 of all of the entries of
the table 260 are cleared. When the sequencer circuit 29
sequences a trace and needs to verify an entry in the PTB 91
(or the table 260 thereof), if the entry being verified is
detected as being clear, the sequencer circuit 29 resorts to the
ITLEB 93 to verify the virtual to physical mapping (VA/PA)
and if this verification is successful, the verified bit 3002 in
the PTB 91 is set—and as long as this bit remains set, there is
no need to invoke the ITLE 93 to verify this entry in the PTB
91 in the future. If the verification is unsuccessful, the trace is
no longer accurate and will be invalidated.

It should be noted that, in one embodiment of the present
invention, the PTB 91 and particularly the table 260 thereof,
is advantageously used for both SMC and trace verification.
For SMC or cross modifying code, the table 260 need only
hold PAS, as VAs are not needed, whereas, for trace verifica
tion, both PAS and VAs are held in the table 260. Alternatively,
two tables may be employed, one for holding PAs and another
for holding PA/VA pairs although this would require addi
tional memory capacity.

FIG. 10(h) shows a flow of information through various
structures of the trace unit 12. The purpose of this information
flow is to verify the address translations that were used to
build a trace. This information flow occurs each time a trace
is sequenced to be executed next.

Decoder traces are not cached in some embodiments of the
present invention. On the other hand, the processes of build
ing basic block traces and multi-block traces, and then cach
ing Such traces for later execution enables Substantial perfor
mance improvements. However, during the time interval
between when a trace is decoded and built and the time that
the trace is executed the memory controller may have altered
the mappings between VAS and PAS. Traces are generally
addressed, specified, and sequenced according to VAS, but the
instructions that are represented in a trace are generally
accessed by PAS. A particular cached trace, or a particular
trace that is in flight to be executed, is invalid if the VA to PA
mappings that were used when the trace was built to access
the instructions that are represented by the trace have
changed.
When the sequencer circuit 29 selects a trace as the next

one to be executed, it sends request 9920 to the basic block
cache circuit 22. Request 9920 includes the VA of the first
instruction represented by that trace. The basic block cache
circuit 22 replies with response 9921, which indicates either
a cache miss, that is, that the basic block cache circuit 22 does
not contain a trace with that starting address, or a cache hit,
that is, that the basic block cache circuit 22 has a trace with
that starting address. In the case of a cache hit, response 9921
also includes all of the PTB pointers that represent the PA/VA

10

15

25

30

35

40

45

50

55

60

65

28
pairs that were used to build that trace and further includes the
checked bit 3000. If the checked bit 3000 is not set, then the
sequencer circuit 29 sends request 9922 to the PTB 91.
Request 9922 includes all of the PTB pointers that are held in
that particular trace as cached. The PTB 91 responds to the
request 9922 by providing response 9927, which indicates
either that none of the page translations used in building that
particular trace have changed, or that one or more of those
translations have changed and the trace must be invalidated.

However, the PTB 91 may or may not hold the information
confirming all PA/VA. In some embodiments of the invention
and/or under operating conditions, the PTB 91 may need to
send request 9923 to the ITLE 93. Request 9923 contains all
PA/VA that the PTB is unable to confirm are still valid.
Response 9926 from the ITLB 93 includes this validity infor
mation.

Similarly in some embodiments of the invention and/or
under operating conditions, the ITLEB 93 may need to send
request 9924 to the TW95. Request 9924 contains all PA/VA
pairs that the ITLE 93 is unable to verify. The TW95 responds
to the request 9924 by providing response 9925, which indi
cates either that none of the page translations used in building
that particular trace have changed, or that one or more of those
translations have changed and the trace must be invalidated.
A similar trace verification process applies when the

sequencer circuit 29 sequences for execution of a next multi
block trace held in the multi-block cache circuit 26. In some
embodiments of the present invention, multi-block traces can
contain up to 4 PTB pointers, whereas basic block traces held
in the basic block cache 22 can only contain up to 2 PTB
pointers. This difference is advantageous because multi
block traces tend to represent more instructions than basic
block traces. Further, multi-block traces often contain repre
sentations of control transfers that may cross the boundaries
of the PA/VA memory pages.
The use of the verified bit 3002 in the table 260 eliminates

the need for request 9923 and the use of the checked bit 3000
in the basic block cache circuit 22 eliminates the need for
response 9927.

FIG. 10(i) shows a flow chart of steps 121 performed, by
the sequencer circuit 29, during a Snooping event, which may
or may not result in scrubbing. A Snooping event refers to
checking for any self-modifying or cross-modifying code,
which results from instructions used to modify other instruc
tions. In FIG.10(i), the lookup step 123 is performed when a
Snooping event occurs and the PA is used to find a match
thereof in the table 260 of the PTB 91. If, at 125, a match is
detected, the presence of SMC or cross modifying code is
noted and the process continues to step 129. If no match is
found at 125, the Snooping event is terminated at step 127.
SMC or cross modifying code, are instructions that modify
other instructions of the code. Checking for SMC is done
during a Snooping event to the cache circuits.
At step 129, the entry in the table 260 of the PTB 91 that

corresponds to the found PA is invalidated. Next, an index or
pointer, i.e. PTB pointer, corresponding to the found PA is
used to “scrub” the basic block cache circuit 22 at step 129
and to “scrub” the multi-block cache circuit 26 and the pro
cess ends at 133. "Scrubbing of the cache circuits refers to
the process of scanning the cache circuits to compare the PTB
pointerprovided by step 123 with the PTB pointer included in
each trace within the cache circuits. If a match is detected, the
corresponding trace is invalidated. Furthermore, all copies of
the corresponding trace, as they may exist in other structures
of the trace unit 12, are also invalidated by the sequencer
circuit 29.

US 7,949,854 B1
29

Referring now to FIG. 11, exemplary contents of either of
the basic block cache circuit 22 or the multi block cache
circuit 26 is shown, in accordance with an embodiment of the
present invention. Basic block cache circuit 22 or multi block
cache circuit 26 are each configured to store four components.
Exemplary contents of the basic block cache circuit 22 or
multi block cache circuit 26 include: auxiliary info compo
nent 1001, execution history info component 1002, coher
ency info component 1003, and the operations component
1004.

In an embodiment of the present invention, each of the
components 1001-1004 is located on a separate volatile
memory device, such as a static random access memory
(SRAM). Physical separation of the four components 1001
1004 minimizes the amount of cross-talk and interference in
the cache circuits 22 or 26 and allows simultaneous access of
any or all of the components 1001-1004. With each compo
nent being in a separate Volatile memory, the component has
dedicated input and output paths, which are independent of
the other components’ respective paths. These paths provide
read/write access to various other circuits of the processor
core 10, and by separating each component, it is easier to
control which component may have read/write ability at any
given time. Separation also allows for four different exter
nally-located circuits accessing the components, to each
access a component in parallel, without interfering with read
ing or writing into other components.

Alternatively, the components 1001-1004 are all a part of
the same volatile memory, in which case the latter is prefer
ably a multi-ported memory device allowing simultaneous
access of the different components 1001-1004. Yet alterna
tively, any number of volatile memory devices is use to store
the components 1001-1004.

Input path 1010 is used by the sequencer circuit 29, to write
to the auxiliary information component 1001, when the
sequencer circuit 29 needs to invalidate a trace. Input path
1012 is used by the sequencer circuit 29, to write to auxiliary
information component 1001, when the sequencer circuit 29
updates the indirect branch trace addresses. Inputpath 1014 is
used by the sequencer circuit 29, to write to execution history
information component 1002, when the sequencer circuit 29
updates the bias of a trace. Input path 1016 is further used by
the basic block builder circuit 20, or the multi block builder
circuit 34, when a trace has been build and needs to be stored
within the basic block cache circuit 22 or the multi block
cache circuit 26.
The basic block builder circuit 20 optionally initializes the

execution history information component 1002. For example,
bias is set by the basic block builder circuit 20 during initial
ization.

Bias, as previously discussed, is a count of the number of
times a branch has been consistently taken the same way and
is variably alterable. During initialization, an initial promo
tion threshold is set to a value that is generally higher than that
which might be set later during normal operation. This is
because the first time a trace is built and stored in the cache
circuit, a higher promotion threshold results in sequencing
more traces and later, as traces are sequenced, the promotion
threshold is potentially lowered to reduce the number of
mis-predictions. Bias is generally stored in the execution
history information component 1002 of the cache circuit.

Promotion threshold is set in accordance with the condi
tions of the environment in which the processor core 10
operates, as previously discussed. Under normal operations,
based on currently-observed characteristics of the processor
core 10, the promotion threshold is set. Another factor used to
set bias is heuristics, such as rate of false predictions (or

10

15

25

30

35

40

45

50

55

60

65

30
mis-predictions) of interior control transfers. Interior control
transfers are essentially assertion upon which operations are
built, or assertion operations. An assertion operation is used
by the sequencer circuit 29 and the branch predictor circuit 30
to indicate the direction the prediction should have gone. The
execution unit 14 verifies the accuracy of the prediction. More
specifically, the branch predictor circuit 30 makes a predic
tion, the assertion operation indicates the direction of the
prediction and the execution unit 14 checks the accuracy of
the prediction to determine that the trace correctly committed,
or not, and if not, the trace is invalidated.

Output path 1020 is used by the trace unit 12, to access
auxiliary information component 1001, execution history
information component 1002, and coherency information
component 1003, when a trace is sequenced. Output path
1022 is used by the PTB91, which snoops (listens to) the path
during a selfmodifying code (SMC) Snoop event. Output path
1024 is used by the ops fetcher circuit 28 when a trace is to be
fetched from a corresponding cache circuit.

Referring now to FIG. 12, a basic block cache entry 1030 is
shown as further exemplary details of the contents of the basic
block cache circuit 22, in accordance with an embodiment of
the present invention. Auxiliary information component 1001
is used to store a wide variety of information and flags stan
dard to cache, regarding the sequences of operations stored
within. Cache tag 1031 references addresses of the trace
entry, to assist in locating information. Valid bit 1032 is used
to indicate that a trace within the cache has become invalid.
Rather than modify the entire contents of the cache at the
trace's address, the corresponding valid bit value is instead
modified to indicate that a trace is no longer valid. Trace
verification info 1033 identifies what instruction mode was
applied at decode time—i.e. 16-, 32-, or 64-bit. Sequencing
information 1034 is shown to include sequencing action
1035, a target address (TA) 1036 and a sequential address
(SA) 1037. The TA 1036 and SA 1037 are each either an
address or a pointer to an address (or sequencing pointer) or
an offset of an address pointer. In the case where SA/TA area
pointers, they either point to an address or are an offset used
to calculate an address.
The SA is the source of the next sequential address of the

trace, i.e. the address to which the sequencing action is taking
the flow of operations if a branch is not taken, and the TA is the
target address of the trace, i.e. the address to which the
sequencing action is taking the flow of operations if the
branch is taken.

Sequencing action 1035 is generated by the decoder circuit
18 during decode time and is based on the control transfer (or
control transfer instruction) within the sequence of instruc
tions being decoded by the decoder circuit 18. A sequence
action is associated with every sequence of operations. In one
embodiment of the present invention, the sequencing action
1035 can take on the following types: Sequential; Uncondi
tional branch; Conditional branch; Indirect branch; Call rela
tive; Call indirect: Return; or Microcode call.

Operations component 1004 includes sequences of opera
tions in the form of operation triplets. Operation triplets (or
triplets) are used to partition a sequence of operations based
on the number of execution units used by the processor core
10 because multiple execution units result in substantially
parallel processing of the triplets. When using triplets, there
are three execution units, one for each 'oplet. Partitioning the
sequence of operations into triplet results in efficient execu
tion of the operations. In an embodiment of the present inven
tion, the execution unit 14 is three execution units, thus, a
sequence of operations is partitioned into corresponding

US 7,949,854 B1
31

groups of three. Where a different number of execution units
is employed, the number of 'oplets varies accordingly.
The sequences of operations within the operations compo

nent 1004 are provided to the execution unit 14 for execution
thereof. Accordingly, in one embodiment of the present
invention, a trace, as used herein, which includes information
other than operations, is not, in its entirety, provided to the
execution unit 14.

In FIG. 12, an operation triplet 1038 is shown as the cached
sequence of operations, which is a part of the operations
component 1040 of the cache entry 1030 of FIG. 12. The
triplet 1038 is shown to include operations 1039-1041 and
overhead bytes 1042 that are associated with the operations
1039-1041. Generally, operations of a triplet are grouped in a
manner as to take advantage of their grouping during execu
tion time. An example of this is where each triplet of a
sequence of operations includes operations to be executed by
an execution unit, in parallel, while executing another triplet
of the sequence of operations using another execution unit.

Overhead bytes 1042 include additional information and
flags, encoded in an optimized form, regarding the corre
sponding triplet, such as the operations 1039-1041. An
example of such information is “immediates' of the x86
instruction set, a way of storing constants for nearby opera
tions. Thus, the overhead bytes 1042 provide access to vari
ous information used collectively by the triplets, thereby
increasing efficiency during execution time. In FIG. 12, N (N
being an integer number) number of triplets are shown
cached, with the Nth triplet 1050 being the last cached triplet.
Coherency/SMC info component 1003 is used for trace

verification to guard against SMC or cross modifying code in
the manner described relative to previous figures and assists
in identifying the location of various copies of a trace within
the trace unit 12, Such as in all cache circuits, when any copies
of that trace have been modified through an SMC event. The
coherency/SMC info component 1003 is used to invalidate all
Such copies.

Execution history component 1002 includes information
regarding promotion of the basic block or multi-block traces,
within the operations component 1004. The information in
the execution history component is updated each time the
sequencer sequences a trace, and predicts what sequence of
operations should follow. Each time that a branch is predicted
to go in the same direction as it did prior, the bias is incre
mented. For a basic block trace in basic block cache circuit
22, this will eventually result in the multi block builder circuit
34 combining the basic block with the basic block that has
consistently followed it, after a promotion threshold is
reached. For a multi block trace located within a multi block
cache circuit 26, consistent and identical branching results in
a new multi block trace being built—the prior-existing multi
block trace is combined with either a multi block or basic
block trace that has consistently led, or followed, for the
threshold number of times.
A basic block trace comprises the trace verification infor

mation 1033, the sequencing information 1034, the execution
history information component 1002, the coherency/SMC
information component 1003 and the sequence of operations
1038 or an N number of sequence of operations.
The trace verification information 1033 is used to verify a

trace. The basic block and multi-block cache circuits each
store optimized operations based on the decoding of x86
instructions. The current state of the processor core 10 affects
how the x86 instructions are decoded. For this reason, the
operations in each cache circuit have an implicit set of
assumptions. These assumptions must be verified whenever

10

15

25

30

35

40

45

50

55

60

65

32
the trace unit 12 requires use of a trace from either of the cache
circuits. This is the process referred to as “trace verification'.

FIG. 13 shows a multi-block cache entry 1100, in accor
dance with an embodiment of the present invention. The entry
1100 is shown to include an auxiliary information component
1102, an execution history information component 1104, a
coherency/SMC information component 1106 and an opera
tions component 1108. The components 1104-1108 are simi
lar to the components 1002, 1003 and 1004, respectively.
The component 1102 is shown to include a cache tag 1110,

a valid bit 1112, trace verification information 1114, internal
branch directions 1116, internal call/return information 1118
and sequencing information 1120. The cache tag 1110, valid
bit 1112, trace verification information 1114 and the sequenc
ing information 1120 are similar to the cache tag 1031, the
valid bit 1032, the trace verification information 1033 and the
sequencing information 1034, respectively. The internal
branch directions 1116 and the internal call/return informa
tion 1118 are collectively based on the control transfers
within the instructions used to build the multi-block trace.
There is typically more than one control transfer represented
in a multi-block trace, a control transfer that does not cause
the multi-block trace to end is referred to as an “interior
control transfer” and a control transfer that causes the control
transfer to end is referred to as a “final control transfer”. The
final control transfer is represented in the sequencing action.
A multi-block trace comprises the trace verification infor

mation 1112, the internal branch directions 1116, the internal
call/return information 1118, the sequencing information
1120, the execution history information component 1104, the
coherency/SMC information component 1106 and the
sequence of operations or a sub-set thereof of the component
1108.

FIG. 14 shows a microcode cache entry 1200, in accor
dance with an embodiment of the present invention. The entry
1200 is a part of the microcode cache circuit 24, shown in
prior figures. The entry 1200 is shown to include an auxiliary
information component 1202 and an operations component
1204. The auxiliary information component 1202 is shown to
include a cache tag 1206, a valid bit 1208, a fault handling
information 1210 and a sequencing information 1212.
The auxiliary information component 1202 is similar to

that of the basic block and multi-block cache circuits except
for the fault handling information 1210, which is used when
an exception is detected during execution of an operation and
the operation is aborted and execution is re-directed to the
microcode fault handler, as dictated by the fault handler 1210.
The address of the fault handler is either the address of a
default fault handler or the address of an alternate fault han
dler.
The operations component 1204 is similar to that of the

basic block and multi-block cache circuits.
While the trace unit 12 of FIG. 3 is shown to be coupled to

one execution unit, such as the execution unit 14, various
structures thereof or the entire trace unit 12 may be shared
among more than one execution unit. Alternatively, more than
one processor core may be employed in a processor. Such
various configurations are now shown and discussed relative
to FIGS. 15-18. It should be noted however, that other similar
configurations, while not shown or discussed, are anticipated.

Sharing a trace unit advantageously reduces circuitry or
real estate, and therefore reduces costs; but may however,
adversely affect performance, as the trace unit is busier and
might have to interleave various functions, such as sequenc
1ng.

FIG. 15 shows a processor 1300 having multiple processor
cores, in accordance with an embodiment of the present

US 7,949,854 B1
33

invention. In FIG. 15, the processor 1300 is shown to include
an N number of processor cores (processor cores 1 to N).
Processor core 1302, also shown labeled as processor core #1,
is shown to include a trace unit 1312 in communication with
an execution unit 1314 for transferring sequences of opera
tions therebetween. Processor core 1304, also shown labeled
as processor core iiN. is shown to include a trace unit 1318 in
communication with an execution unit 1320 for transferring
sequences of operations therebetween. While only two of the
N processor cores are shown in FIG. 15, additional interme
diary processor cores may be employed.
The processor cores 1302 and 1304 are shown coupled to

the memory controller and cache circuit 1306, which is the
memory controller referred to in prior discussions. The
memory controller and cache circuit 1306 is shown coupled
to a microprocessor system controller 1310, which controls
system operations of the processor 1300. The microprocessor
system controller 1310 is also coupled to the processor cores
1302 and 1304. An input/output controller 1308 is shown
coupled to the microprocessor system controller 1310 for
interfacing therewith to provide input to and output from the
processor 1300. In the embodiment of FIG. 15, each of the
execution units of a processor core communicate with a dedi
cated trace unit.

FIG. 16 shows a processor 1400 sharing a trace unit 1406
among execution units 1404, 1408, in accordance with
another embodiment of the present invention. In FIG. 16, the
processor 1400 is shown to include a core pair complex 1402
coupled to the memory controller and cache circuit 1306 and
the microprocessor controller 1310, which is shown, coupled
to the input/output controller 1308. The core pair complex
1402 is shown to include an execution unit 1404 and an
execution unit 1408 that share a common trace unit 1406. The
trace unit 1406 provides operations 1410 to execution unit
1404 and operations 1412 to execution unit 1408. The pro
cessor embodiment of FIG.16 is configured to share the trace
unit 1406, in its entirety, between the execution units 1404
and 1408. Alternatively, portions of the trace unit may be
shared by the execution units. It is understood that while only
two execution units are shown in FIG. 16, any number of
execution units may share the trace unit 1406.

FIG. 17 shows a processor 1448 having a trace unit that is
shared, only in part, with multiple execution units, in accor
dance with yet another embodiment of the present invention.
In FIG. 17, a core pair complex (or trace unit) 1449 is shown
to include a trace sub-unit core 1450 and a trace sub-unit core
1454, which share a common trace sub-unit 1452. The trace
sub-unit core 1450, the trace sub-unit core 1454, and the
common trace sub-unit 1452 collectively comprise a trace
unit. The trace sub-unit core 1450 is shown to provide opera
tions to the execution unit 1404 and the trace sub-unit core
1454 is shown to provide operations to the execution unit
1408. An example of the common trace sub-unit 1452 is one
that includes an instruction cache circuit, a decoder circuit, a
basic block builder circuit and a microcode cache. Another
example of a common trace sub-unit 1452 includes a basic
block builder, a basic block cache circuit, a decoder circuit, a
multi-block builder or a multi-block cache circuit, a micro
code cache circuit, or any combination thereof. The circuitry
not shared. Such as instruction cache circuits would need to be
duplicated and in this manner a part of the trace Sub-unit cores
1450 and 1454.

It is understood that while only two execution units are
shown in FIG. 17, any number of execution units may share
the trace unit 1449.
An example of sharing parts of a trace unit among multiple

execution units is shown in greater detail in FIG. 18. FIG. 18

5

10

15

25

30

35

40

45

50

55

60

65

34
shows a trace sub-unit core 1502 and a trace sub-unit core
1504 that are collectively a part of the same trace unit and a
common trace sub-unit 1500, in accordance with an embodi
ment of the present invention. In FIG. 18, the common (or
shared) trace sub-unit 1500 is shown to include a shared
instruction cache circuit 1562, a shared decoder circuit 1560,
a shared basic block builder circuit 1506, a shared microcode
cache circuit 1508 and a shared multi-block builder 1510, all
of which are shown shared by two execution units, i.e. execu
tion unit #1 and execution unit #2.
The trace sub-unit core 1502 is shown to include a multi

block cache circuit 1570, a basic block cache circuit 1512, a
sequencer and branch predictor circuit 1516, a sequencing
buffer 1520, and an operations fetcher circuit 1524.
The cache circuit 1512 is shown to provide basic block

traces 1576 to the sequencer and branch predictor circuit
1516. The multi-block cache 1570 is shown to provide multi
block traces 1534 to the sequencer and branch predictor cir
cuit 1516. The sequencer and branch predictor circuit 1516
receives microcode traces 1528 from the shared (or common)
microcode cache circuit 1508, as does the operations fetcher
circuit 1524. The sequencer and branch predictor circuit 1516
receives decoder traces 1532 from the shared decoder circuit
1560. The sequencer and branch predictor circuit 1516, after
sequencing of a trace, provides the trace address 1542 to the
sequencing buffer 1520, which then provides the trace
address 1544 to the operations fetcher circuit 1524. The
operations fetcher circuit 1524 provides operations to the
shared multi-block builder circuit 1510, which in the embodi
ment of FIG. 18 has the task of building multi-block traces for
two execution units. Newly built multi-block traces generated
by the multi-block builder 1510 are provided to correspond
ing multi-block cache circuits 1570 and 1572.
The trace sub-unit core 1504 is shown to include a multi

block cache circuit 1572, a basic block cache circuit 1514, a
sequencer and branch predictor circuit 1518, a sequencing
buffer 1522, and an operations fetcher circuit 1526.
The cache circuit 1514 is shown to provide basic block

traces 1538 to the sequencer and branch predictor circuit
1518. The multi-block cache circuit 1572 is shown to provide
multi-block traces 1536 to the sequencer and branch predictor
circuit 1518. The sequencer and branch predictor circuit 1518
receives microcode traces 1530 from the shared (or common)
microcode cache circuit 1508, as does the operations fetcher
circuit 1526. The sequencer and branch predictor circuit 1518
receives decoder traces 1533 from the shared decoder circuit
1560. The sequencer and branch predictor circuit 1518, after
sequencing of a trace, provides the trace address 1540 to the
sequencing buffer 1522, which then provides the trace
address 1546 to the operations fetcher circuit 1526. The
operations fetcher circuit 1526 provides operations to the
shared multi-block builder circuit 1510.
The decoder circuit 1560 decodes sequences of instruc

tions for both execution units and the instruction cache circuit
1562 is used to cache instructions for both execution units. In
FIG. 18, the basic block builder circuit 1506 and the multi
block builder circuit 1510 are shown to be shared by multiple
execution units. It is understood that many combinations of
sharing various functions and/or circuits by multiple execu
tion units is readily achieved using the teachings of the vari
ous embodiments of the present invention.
The sequencing and branch predictor 1516 and the

sequencing and branch predictor circuit 1526 are each a com
bination of the sequencer circuit 29 and the branch predictor
circuit 30.

US 7,949,854 B1
35

In alternative embodiments, the multi-block cache circuit
or basic block cache circuit are shared by multiple execution
units.

FIG. 19 shows an example of sequence of instructions
1700, or x86 instruction code, decoded into a decoder trace
1702 from which a basic block trace 1704 is built. As shown,
the basic block trace 1704 is optimized and includes fewer
operations than the decoder trace 1702. More specifically, in
the example of FIG. 19, the number of operations to be
executed is reduced from 12 to 9.

Each triplet includes three operations in the trace 1702 and
the trace 1704. For example, the triplet 1038 includes the
operations 1039, 1040 and 1041. The triplet 1038 is the
decoded operations for the instruction “push ebp” in the
instructions 1700. Each operation of a triplet is denoted by a
letter, such as A, B or C. In one embodiment of the present
invention, a single instruction is translated up to a multiple
number of operation triplets, such as four operation triplets.
Any instruction requiring more than four operation triplets is
considered a microcode type of instruction. An exemplary
basic block trace includes up to 8 triplets and an exemplary
multi-block trace includes up to 16 triplets.

In an alternative embodiment, a software basic block,
readily known to those in the industry, becomes multiple
basic block traces that are situated adjacent to each other.
A number of key performance, power, and circuit area

advantages of the trace unit 12 according to the present inven
tion arise from the trace unit building and caching basic block
traces, multi-block traces, or both. During the process of
building traces, the sequence of operations of the trace is
optionally and advantageously optimized.

Appendix A describes how to determine the highest prior
ity abort trigger in an atomic trace.

Appendix B describes exception and abortion handling of
atomic traces in an execution unit.
A wide variety of such optimizations may be employed in

various embodiments of the present invention. Some of these
are described in Appendix C. Other optimizations, having to
do with the renaming of physical registers by the execution
unit 14, are described in this appendix. In particular, the fact
that registers renaming occurs at execution time enables the
basic block builder circuit and the multi-block builder circuit
to optimize the sequence of operations of a trace in certain
ways. These optimizations are described in Appendix C.

Appendix D describes a processor with optimized opera
tion sequences for basic block and multi-block trace caches.

Appendix E describes a processor with basic block and
multi-block trace caches.

Although the present invention has been described in terms
of specific embodiments, it is anticipated that alterations and
modifications thereofwill no doubt become apparent to those
skilled in the art. It is therefore intended that the following
claims be interpreted as covering all Such alterations and
modification as fall within the true spirit and scope of the
invention.
What is claimed is:
1. An instruction processing circuit for a processor, where

the instruction processing circuit is adapted to provide one or
more sequences of operations, based on one or more
sequences of instructions, to an execution circuit of the pro
cessor, where the instruction processing circuit comprises a
trace builder circuit operable to:

receive at least a portion of a sequence of operations of a
first type and to generate, based thereon and for optimiz
ing operations thereof using a first optimization tech
nique, a sequence of operations of a second type for
storing in a cache circuit, wherein the at least a portion of

10

15

25

30

35

40

45

50

55

60

65

36
the sequence of operations of the first type represents a
portion of a sequence of instructions, wherein the por
tion of the sequence of instructions includes at most one
control transfer instruction that, when present, ends the
portion of the sequence of instructions;

receive, from the cache circuit, sets of at least two
sequences of operations and to generate, based thereon
and for optimizing operations thereof using a second
optimization technique, a plurality of sequences of
operations of a third type, wherein a sequence of opera
tions of the third type comprises one or more interior
control transfer instructions and is generated from the
sequence of operations of the second type and another
sequence of operations of the third type, wherein the
another sequence of operations of the third type is gen
erated by the trace builder circuit for storing in the cache
circuit; and

retrieve the sequence of operations of the second type and
the another sequence of operations of the third type from
the cache circuit for generating the sequence of opera
tions of the third type,

wherein the first optimization technique and the second
optimization technique comprise reordering of opera
tions, removal of operations, removal of dependencies
between operations, and grouping of operations.

2. The instruction processing circuit, as recited in claim 1,
further including a decoder circuit operable to receive the
sequence of instructions and to decode the sequence of
instructions into the sequence of operations of the first type.

3. The instruction processing circuit, as recited in claim 2,
further comprising:

a sequencer circuit operable to select a next sequence of
operations from among the sequence of operations of the
first type, the sequence of operations of the second type,
and the sequence of operations of the third type; and

an operations fetch circuit adapted to provide to an execu
tion circuit a current sequence of operations and there
after provide to the execution circuit a next sequence of
operations,

wherein the operations fetch circuit is further adapted to
switch a source of the operations fetch circuit between
the sequence of operations of the first type, the sequence
of operations of the second type, and the sequence of
operations of the third type.

4. The instruction processing circuit, as recited in claim 3,
further comprising a cache circuit operable to store the
sequence of operations of the second type and further oper
able to store the sequence of operations of the third type.

5. An instruction processing circuit for a processor, where
the instruction processing circuit is adapted to provide one or
more sequences of operations, based on one or more
sequences of instructions, to an execution circuit of the pro
cessor, where the instruction processing circuit comprises:
means for building a basic block sequence of operations

that represents a basic block portion of a sequence of
instructions, wherein the basic block portion of the
sequence of instructions includes at most one control
transfer that, when present, ends the basic block portion
of the sequence of instructions, wherein the basic block
building means includes means for receiving at least a
portion of a decoder sequence of operations and for
generating, based thereon and for optimizing operations
thereof using a first optimization technique, the basic
block sequence of operations for storing in a cache cir
cuit, and wherein the at least a portion of the decoder
sequence of operations represents the basic block por
tion of the sequence of instructions; and

US 7,949,854 B1
37

means for building a multi-block sequence of operations
that represents a multi-block portion of the sequence of
instructions, wherein the multi-block portion of the
sequence of instructions includes one or more basic
block portions of the sequence of instructions, wherein 5
the multi-block portion of the sequence of instructions
includes one or more control transfers that are interior to
the multi-block sequence of instructions, wherein the
multi-block building means includes means for receiv
ing, from the cache circuit, a set of at least two sequences
of operations and for generating, based thereon and for
optimizing operations thereofusing a second optimiza
tion technique, the multi-block sequence of operations,
and wherein the received set of at least two sequences of
operations comprises the basic block sequence of opera- 15
tions and another multi-block sequence of operations
generated by the multi-block building means for storing
in the cache circuit, wherein the multi-block building
means further includes means for retrieving, from the
cache circuit, the basic block sequence of operations and
the another multi-block sequence of operations for gen
erating the multi-block sequence of operations,

wherein the first optimization technique and the second
optimization technique comprise reordering of opera

10

38
tions, removal of operations, removal of dependencies
between operations, and grouping of operations.

6. The instruction processing circuit, as recited in claim 5.
further comprising means for receiving the sequence of
instructions and for decoding the sequence of instructions
into the decoder sequence of operations.

7. The instruction processing circuit, as recited in claim 6.
further comprising a caching means for storing the basic
block sequence of operations and for storing the multi-block
sequence of operations.

8. The instruction processing circuit, as recited in claim 5.
further including means for sequencing sequences of opera
tions from among the decoder sequence of operations, the
basic block sequence of operations, and the multi-block
sequence of operations; and an operations fetch means for
providing to an execution circuit a current sequence of opera
tions and thereafter providing to the execution circuit a next
sequence of operations, wherein the operations fetch means is
further adapted to switch a source of the operations fetch
means between the decoder sequence of operations, the basic
block sequence of operations, and the multi-block sequence
of operations.

