
(12) United States Patent
Das

USOO8677189B2

US 8,677,189 B2
Mar. 18, 2014

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

RECOVERING FROM STACK CORRUPTION
FAULTS IN EMBEDDED SOFTWARE
SYSTEMS

Inventor: Dipankar Das, Pune (IN)

Assignee: GM Global Technology Operations
LLC, Detroit, MI (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 239 days.

Appl. No.: 13/297,822

Filed: Nov. 16, 2011

Prior Publication Data

US 2013/O124917 A1 May 16, 2013

Int. C.
G06F II/00 (2006.01)
U.S. C.
USPC .. 714/38.1: 714/15
Field of Classification Search
USPC 714/15, 16, 6.12, 38.1
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,668.999 A * 9/1997 Gosling 717/126
5,751,985 A * 5/1998 Shen et al. 712.218
7,272,748 B1* 9/2007 Conover et al. T14/20
7,380,245 B1* 5/2008 Lovette 718, 100

2002.0035676 A1* 3, 2002 Weeks T11 170
2002/0099932 A1* 7/2002 Muro, Jr. ... T12/228
2008.0034169 A1* 2, 2008 Trasket al. 711,154
2008/0201604 A1* 8, 2008 Mall et al. T14?6
2008/0270831 A1* 10, 2008 Niwa 714/15

* cited by examiner
Primary Examiner —Yolanda L Wilson
(74) Attorney, Agent, or Firm — John A. Miller; Miller IP
Group, PLC
(57) ABSTRACT
A method and system for recovering from stack-overflow or
stack-underflow faults without restarting software or hard
ware. At every task Switch operation in an application pro
gram, a portion of the memory stack is copied to a backup
location, so that portion of the stack can be restored if it is
Subsequently corrupted by a stack-overflow or stack-under
flow fault during the execution of the next task. State variable
data is similarly copied to a backup location, so that it can be
used to restore or estimate the output of the next task if that
task experiences a fault. Techniques are disclosed for select
ing which state variable data and which portion of the
memory stack to copy to backup, and for detecting a stack
overflow or stack-underflow fault and restoring state variable
and memory data in the event of Such a fault.

20 Claims, 4 Drawing Sheets

US 8,677,189 B2 Sheet 1 of 4 Mar. 18, 2014 U.S. Patent

FIGURE 1

US 8,677,189 B2 U.S. Patent Mar. 18, 2014 Sheet 2 of 4

U.S. Patent Mar. 18, 2014 Sheet 3 of 4 US 8,677,189 B2

FIGURE 3

US 8,677,189 B2 Sheet 4 of 4 Mar. 18, 2014 U.S. Patent

120

FIGURE 4

US 8,677, 189 B2
1.

RECOVERING FROM STACK CORRUPTION
FAULTS IN EMBEDDED SOFTWARE

SYSTEMS

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates generally to software fault recovery

and, more particularly, to a method for recovering from a
stack-overflow and stack-underflow fault in a software sys
tem which restores corrupted memory regions, terminates the
faulty or corrupted task, and estimates the output and next
state of the faulty or corrupted task.

2. Discussion of the Related Art
Modern vehicles feature automatic systems which control

many aspects of the vehicles performance. These systems
use Software which is becoming increasingly Sophisticated
and complex, with Some vehicles containing systems which
include tens of millions of lines of code. Given the complexity
of the software, the short time for an automotive manufacturer
to bring a vehicle to market, and the wide range of conditions
in which a vehicle can be operated, there are bound to be
occasional faults experienced by the Software.
A common type of fault is the Stack-overflow or stack

underflow (collectively, “stack-overflow/underflow” or
“stack corruption') fault. In a stack-overflow/underflow fault,
a program attempts to write data to a portion of a memory
stack outside the prescribed range—either above the origin of
the stack (underflow) or beyond the maximum extent of the
stack (overflow). Stack-overflow/underflow faults usually
result in a corruption of some system data and/or some por
tion of stack memory. Although detection techniques for
stack-overflow/underflow faults are well known, recovery
techniques have been unsatisfactory. In typical software sys
tems, the response to a stack-overflow/underflow fault is to
either restart all software programs or restart the processor
hardware itself. Because many embedded automotive sys
tems run in real time, they cannot afford to be inoperative for
the relatively long time it takes for a hardware or software
reStart.

There is a need for a stack-overflowfunderflow fault recov
ery technique which does not require a hardware or Software
restart, yet which is efficient enough in terms of memory and
processor usage to be viable in the highly resource-con
strained automotive environment.

SUMMARY OF THE INVENTION

In accordance with the teachings of the present invention,
a method and system are disclosed for recovering from stack
overflow/underflow faults without restarting software or
hardware. At every task Switch operation in an application
program, a portion of the memory Stack is copied to a backup
location, so that portion of the stack can be restored if it is
Subsequently corrupted by a stack-overflow or stack-under
flow fault during the execution of the next task. State variable
data is similarly copied to a backup location, so that it can be
used to restore or estimate the output of the next task if that
task experiences a fault. Techniques are disclosed for select
ing which state variable data and which portion of the
memory stack to copy to backup, and for detecting a stack
overflow/underflow fault and restoring state variable and
memory data in the event of Such a fault.

Additional features of the present invention will become
apparent from the following description and appended
claims, taken in conjunction with the accompanying draw
1ngS.

10

15

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system capable of recovering
from a stack corruption without restarting software or hard
Ware;

FIG. 2 is a diagram of a memory stack, showing the parts of
the stack used for three tasks in an execution cycle;

FIG. 2A is a diagram of the memory stack from FIG. 2,
illustrating fault-free behavior at a task switch;

FIG. 2B is a diagram of the memory stack from FIG. 2,
illustrating recovery from a stack-overflow fault at a task
switch;

FIG. 3 is a flow chart diagram of a method for recovering
from a stack-overflow/underflow fault without restarting soft
ware or hardware; and

FIG. 4 is a flow chart diagram of a method for recovering
from a stack-overflowfunderflow fault in which the amount of
overflow exceeds the amount of restorable memory data.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

The following discussion of the embodiments of the inven
tion directed to recovering from stack-overflow/underflow
faults in embedded software systems is merely exemplary in
nature, and is in no way intended to limit the invention or its
applications or uses. In particular, much of the following
discussion revolves around automotive real-time control sys
tems, but the disclosed methods and systems are equally
applicable to any other type of software system which could
benefit from stack corruption recovery.

In software systems, a stack overflow or underflow occurs
when a program writes to a memory address on the programs
call stack outside of the intended data structure, which is
usually a fixed length buffer. Stack overflows happen when
too much data (from frames of functions, interrupts or traps)
is pushed onto the stack. Stack underflows happen when there
is an overflow of a local buffer. Stack overflows and under
flows can be caused by Software bugs, or by malicious attacks
by hackers. In either case, stack overflows and underflows
almost always result in corruption of adjacent data on the
stack, and if not detected, will often cause the program to
crash or operate incorrectly. Thus, there is a strong incentive
to detect and address stack corruptions before they cause
further problems.

It is a common Software design technique to check for stack
overflows and underflows during program execution. One
method for detecting stack overflows is through the use of
stack canaries. Stack canaries, so named because they operate
as a canary in a coal mine to provide an early indication of a
problem, are used to detect a stack corruption before further
faulty code execution can occur. This method works by plac
ing a known data value, which is randomly chosen at program
start, in memory just before the stack return pointer. By defi
nition, a stack overflowfunderflow means data has been writ
ten outside of the prescribed address range. So if a stack
corruption occurs, the canary value will be overwritten. The
canary value is checked to make Sure it has not changed
before a routine uses the return pointer on the stack. If the
canary has a value other than what is expected, then a stack
underflow has likely occurred. A similar technique can be
used to detect stack overflows. Stack canaries can be checked
at function-call returns, as described above, or at other less
frequent occurrences, such as task Switches.
When a stack overflow or underflow is detected, by check

ing canary values or by other means, most programs typically
report the overflow/underflow condition, then terminate all

US 8,677, 189 B2
3

application programs and/or restart the processor. However,
many embedded automotive Software systems operate in real
time, and cannot afford to be inoperative for the period of time
it takes to perform a restart of Software programs or the
processor. Such systems would benefit from a methodology
which can detect and recover from most stack overflows and
underflows without having to restart the programs or the
processor.

FIG. 1 is a block diagram of a system 10 capable of recov
ering from a stack-overflow/underflow without restarting
Software or hardware. Block 12 is an application program
which is running on a processor 32, along with all other
elements of the system 10. The processor 32 can be a micro
controller for an embedded control system application, or a
more general purpose microprocessor or electronic control
unit. Whenevera task completes in the application program at
the block 12, control is transferred to block 14, where system
state data and memory data are captured and stored in data
store 16. The data store 16 stores a checkpoint of certain state
variables, and stores a backup copy of certain portions of
system memory in both the direction of stack overflow and
stack underflow for a task’s stack—as will be discussed in
detail below. The state data capture at the block 14 can be
invoked not only between execution of two tasks, but also
between a task and an interrupt service routine, or between an
interrupt service routine and a task.

At diamond 18, a stack-overflow or stack-underflow con
dition is checked for, either by checking canary values or by
another suitable method. If no stack overflow or underflow is
detected at the diamond 18, control returns to the program at
the block 12 and the program continues running. If a stack
overflow or underflow is detected at the diamond 18, then at
block 20 the faulty task and the corrupted memory region are
identified. The faulty task is known to be the task which was
executing prior to control was transferred to the block 14. The
corrupted memory region is dependent on the task which
caused the stack overflow or underflow, as the corrupted
region is the one adjoining the stack which overflows in the
direction of stackgrowth, or underflows past the stack origin,
as will be shown in a later figure. Once the corrupted memory
region is identified at the block 20, it can be restored at block
22 by overwriting it with a fixed-size block of memory which
was copied to a safe location in the data store 16 prior to
invocation of the faulty task. Block 24 is the repaired software
system containing the restored block of memory.

If, during restoration of the corrupted memory region at the
block 22, it is determined that important call stack data is
overwritten for the task which caused stack corruption, then
at block 26 the faulty task is terminated and its output and next
state are restored or estimated. The next application output
and State can be estimated from the application state prior to
invocation of the faulty task, which is available from the data
store 16. Block 28 contains the restored or estimated output
and next state for the repaired step. Operations inside box 30
are performed at each task Switch in the application program
at the block 12, and will be discussed in more detail below.
The system 10 can also be used to detect and recover from

stack overflows or underflows at function calls, instead of at
task switches. In this case, the control would be transferred to
the block 14 upon a function call. The remainder of the system
10 would be unchanged from the description above; a state
data backup would be captured in the data store 16 before
function execution, a stack-overflowfunderflow condition
would be checked for at the diamond 18 after function execu
tion, and recovery from the stack-overflow/underflow condi
tion would be carried out at the blocks 20-28.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 2 is a diagram of a memory space 36 showing the

elements used for three tasks in an execution cycle of a pro
gram. Stack segment 40 contains stack data for a Task 0, and
consists of an occupied Task 0 stack 42, an unoccupied Task
0 stack 44, and a Task 0 canary 46. As illustrated here, the
stack segment 40 is a fixed-size space writing “from the
bottom up', the stack data currently being Stored in occupied
Task 0 stack 42 consumes some of this space, the Task 0
canary 46 consumes a small amount of space at the top of the
segment 40, and the remainder of the space in the stack
segment 40 is the unoccupied Task 0 stack 44. The structure of
the stack segment 40 is replicated for a Task 1 stack segment
50, which consists of an occupied Task 1 stack 52, an unoc
cupied Task 1 stack 54, and a Task 1 canary 56. The structure
is further replicated for a Task 2 stack segment 60, which
consists of an occupied Task 2 stack 62, an unoccupied Task
2 stack 64, and a Task 2 canary 66. The memory space 36 also
includes an operating system (O/S) stack segment 70, con
sisting of an O/S stack 72 and an O/S canary 74.
Backup memory space 80 is a random access storage area

used to store backup copies of memory from higher in the
space 36, and also to store state variable checkpoint data. The
backup memory space 80 represents the storage location for
the data store 16 shown in FIG.1. The operation of the backup
memory space 80 will be explained further in the discussion
of FIGS. 2A and 2B below. Note that the backup memory
space 80 could also be placed at the top of the space 36 in
global memory space 90.
The global memory space 90 is used by the application

program at the block 12 to store critical variables, such as
state variables, which may need to be accessed by any task in
the execution cycle. The operation of the global memory
space 90, as it relates to the stack-overflow/underflow recov
ery method disclosed herein, will also be explained further in
the discussion of FIGS. 2A and 2B below.

FIG. 2A is a diagram of the memory space 36 illustrating
fault-free behavior at task switch between Task 2 and Task 0.
FIG. 2A illustrates the preemptive measures taken to provide
protection against a stack overflow fault. Similar measures,
not shown for the sake of clarity, can be taken (capturing
memory from below a task’s stack) to protect against stack
underflow faults. Because Task 0 is the next task to be
executed, it is desirable to make a backup copy of a portion of
memory above the Task 0 stack segment 40, so that recovery
will be possible in case Task 0 causes a stack overflow when
it executes. Thus, before execution of Task 0, a segment 58
comprising M bytes of memory from the occupied Task 1
stack 52 is copied to backup memory segment 84 in the
backup memory space 80. In one embodiment, the size M of
the segments 58 and 84 is determined in advance of program
execution, and remains fixed for all memory backup and
restore operations. In another embodiment, the size M is
established at an initial value and may grow if necessary
during program execution, as will be discussed further below.
Before execution of Task 0, it is also desirable to create a
checkpoint copy of Task 0 state variables, in case they are
needed for recovery later. Thus, Task 0 state variable data
segments 92 and 94, representing state variables previously
calculated by Task 0, are copied to Task 0 state storage loca
tion 82 in the backup memory space 80.
The backup memory space 80 is designed with a single

backup memory segment 84, which is used to store a portion
of memory from just above (for overflow) whatever task is
about to commence. A second backup memory segment (not
shown) would be used to store a portion of memory from just
below (for underflow) whatever task is about to commence.
However, the backup memory space 80 includes multiple

US 8,677, 189 B2
5

state variable storage locations, one for each task, Such as the
Task 0 state storage location 82. In this example, the contents
of the Task 0 state storage location 82 and the backup memory
segment 84 can be used for recovery later, if the execution of
Task 0 is subsequently found to cause a stack overflow. Before
execution of Task 0 is commenced, a check is performed to
determine if the last task which was executed, Task 2, caused
a stack overflow. The Task 2 canary 66 is checked and deter
mined to have the expected value, meaning no stack overflow
occurred, so control can be returned to the application pro
gram at the block 12 for execution of Task 0.

FIG. 2B is a diagram of the memory space 36 illustrating
recovery from a stack-overflow fault at a task switch between
Task 2 and Task 0. Again, the same concept could be used for
stack-underflow fault recovery, but only overflow is illus
trated in FIG. 2B for clarity. In this case, when the Task 2
canary 66 is checked, it is determined to have been overwrit
ten, meaning that a stack overflow occurred during the execu
tion of Task 2. In traditional software systems, the stack
overflow would cause a system crash or necessitate a system
restart which, as discussed previously, would cause unaccept
able downtime for real-time systems. However, using the
recovery methodology disclosed herein, it is possible to avoid
system crash or restart.

In FIG. 2B, because the Task 2 canary 66 is determined to
be corrupt, execution of Task 0 does not commence. Instead,
data from the backup memory space 80 must be copied back
to appropriate locations in the memory space 36. One element
of the recovery from the stack overflow is to re-populate state
variable data from the previous checkpoint. Since execution
of Task 2 is known to have been faulty, state variable data
from a Task 2 state storage location 86 is copiedback to a Task
2 state variable data segment 96 in the global memory space
90.

Also, the contents of the backup memory segment 84 must
be copied back to the appropriate location in the memory
space 36. Prior to the faulty execution of Task 2, the backup
memory segment 84 would have been populated with M bytes
of memory from the stack location immediately above the
Task 2 stack segment 60, which is the O/S stack 72. Therefore,
because part of the O/S stack 72 may have been overwritten in
the stack overflow during Task 2 execution, the backup
memory segment 84 must be copied back to segment 76 in the
O/S stack 72. With state variable data and memory restored
from the backup memory space 80, it is then possible to
continue with the execution of Task 0.

FIG. 3 is a flow chart diagram 100 of a method for recov
ering from a stack overflow without restarting software or
hardware, using the memory and state variable backup copy
techniques described above. Discussion of FIG.3 as it relates
to stack underflow detection and recovery follows below.
Discussion of the flow chart diagram 100 includes references
to elements of the memory space 36 of FIGS. 2, 2A and 2B.
At box 102, an application program is ready to Switch from a
taskT, to a task T. As discussed previously, the box 102 could
also represent a switch from an interrupt service routine (ISR)
to a task, or a switch from a task to an ISR. At box 104, state
variable data for the task T are stored in a segment of the
backup memory space 80 which is designated for task T. State
data. Also at the box 104, M bytes of memory from above the
stack of the task T are copied to a segment of the backup
memory space 80 which is designated for memory copy, Such
as the backup memory segment 84.

At decision diamond 106, it is determined whether there
was a stack overflow for the task T. If there was no stack
overflow for the task T, then the process continues to box
108, where the task T. commences. If there was a stack

5

10

15

25

30

35

40

45

50

55

60

65

6
overflow for the task T, then the process continues from the
decision diamond 106 to box 110, where state data for the task
T, are recovered. State data for the task T, can be recovered by
directly copying from designated locations in the backup
memory space 80 to the proper locations in the global
memory space 90, as discussed previously. It is also possible
to estimate a refined value of the state data for the task T, by
applying an estimation algorithm E, to the state data for the
task T, which is stored in the backup memory space 80.
Estimation algorithms are discussed further below. Option
ally, task T, parameter data can be stored at the box 110 to aid
in fault diagnosis after the fact, where the task T, parameter
data includes the value of i (indicating which task experi
enced a fault), the values of all inputs to the task T, and the
state variable data for the task T.

Finally, before leaving the box 110, the task T, is termi
nated. At this point, after a stack overflow of the taskT, the
task T, has been terminated and State data for the task T, has
been restored. It is then necessary to restore memory data
from the backup memory space 80 to whatever portion of the
memory space 36 may have been corrupted by the stack
overflow. At decision diamond 112, it is determined whether
the stack overflow from the task T, exceeds M bytes. This is
done by checking whether the last word of the backup
memory segment 84 is the same as that in the location to
which it is to be restored. If the stack overflow from the task
T, does not exceed M bytes, then at box 114 the backup
memory segment 84 can be copied to the location to which it
is to be restored, and then the task T. can be started at the box
108.

If, at the decision diamond 112, it is determined that the
stack overflow from the task T, exceeds M bytes, then at box
116 an attempt is made to recover from the non-restorable
stack overflow. If the attempt is successful, then the process
continues to the box 108, where the task T is started. If the
attempt to recover from the non-restorable stack overflow is
not successful at the box 116, then the process halts at termi
nus 118 and the application program has to be restarted.
Details of the recovery from the non-restorable stack over
flow process are shown in FIG. 4 and discussed below.

Inputs required for the method shown in the flow chart
diagram 100 include a list of tasks, a set of next-state estima
tion algorithms, and a mapping of the backup memory space
80. For a number of taskskin the application program, the list
of tasks To, T. T} must be provided in order of
descending stack start address. Next-state estimation algo
rithms (E. E. E-) must be provided for each of the k
tasks, where the algorithms are created in advance by a pro
grammer of the application program and estimate the output
of each of the tasks based on known data, Such as state
variable values from a previous cycle of execution. The other
required input, the mapping of the backup memory space 80.
must include the memory stack location of the backup
memory segment 84 and the state storage locations for each of
the k tasks.
The method of the flow chart diagram 100 in FIG. 3 can be

used to detect and recover from stack underflow faults in
additional to stack overflows. This can be done in one of two
ways. Either a second complete set of steps can be performed
for underflows (immediately after successful completion of
the overflow check, for example), or the underflow checks can
be incorporated directly into the method of the flow chart
diagram 100 (by checking for either an overflow or an under
flow at the decision diamond 106, and proceeding accord
ingly with recovery if either is detected).
The method of the flow chart diagram 100 can also be used

to detect and recover from stack overflowsfunderflows at

US 8,677, 189 B2
7

function-call returns, instead of at task Switches. In this case,
the box 102 would represent a function-call return instead of
a task switch. The remainder of the method of the flow chart
diagram 100 would be unchanged from the description above:
a state data backup would be captured at the box 104, a
stack-overflowfunderflow condition would be checked for at
the decision diamond 106, and recovery from a stack-over
flowfunderflow condition would be carried out at the box 110
and below. Buffer overflow check violations can also trigger
the aforesaid operations.

FIG. 4 is a flow chart diagram 120 of a method for recov
ering from a stack overflow or underflow in which the amount
of overflow or underflow exceeds the amount of restorable
memory data. The flow chart diagram 120 which will be
discussed first in the context of an overflow fault illustrates
what happens inside the box 116 which was introduced in the
discussion of FIG. 3. As discussed above, at the box 116, an
attempt is made to recover from a fault where the stack
overflow from the taskT, exceeds Mbytes. In such a situation,
the decision diamond 112 leads to the box 116. At decision
diamond 122, it is determined whether the stack of the task T,
overflowed beyond the Stack segment of the last task, T.
This can be determined by checking the canary value for the
last task, T.If the stack of the taskT, overflowed beyond the
stack segment of the last task, T, this is a non-recoverable
situation, and the process halts at the terminus 118, where the
application program is restarted.

If the stack of the task T, did not overflow beyond the stack
segment of the last task, T, then the process continues to
box 124 where a counterp is given a value of 1. At box 126,
the next state of task T, is estimated using estimation algo
rithm E, applied to state data for the taskT, which is stored
in the backup memory space 80. Then the task T, is termi
nated, and the counter p is incremented by 1. At decision
diamond 128, it is determined whether the stack of the task T,
overflowed beyond the stack segment of the task, T. If not,
then recovery is complete, and the process continues to the
box 108, where the taskT is started, as discussed previously.

If, at the decision diamond 128, it is determined that the
stack of the task T, overflowed beyond the stack segment of
the task, T., then the process loops back to the box 126,
where the state of the next higher task number is estimated
using its estimation algorithm, that task is terminated, and the
counter is again incremented. The loop between the box 126
and the decision diamond 128 continues until the extent of the
stack overflow has been determined, and next states have been
estimated for all tasks which had stack data overwritten by the
stack overflow. Then the process drops through to the box
108, where the task T, which was scheduled for execution
next, is commenced.

It was mentioned previously that the size M of the backup
memory segment 84 may be allowed to grow during program
execution. This can be accomplished in flow chart diagram
120 as follows. Each time the process of the flow chart dia
gram 120 is executed, the value of M can be increased to the
amount of memory that would have been needed to recover
from the stack overflow (or underflow) which was just
encountered. That is, the number of tasks which had their
stack overflowed, as measured by the counterp, can be used
to determine the future value of M.

In a manner similar to that discussed previously, the
method of the flow chart diagram 120 can be applied to
underflow faults as well as overflow faults. When applied to
stack underflow faults, a determination is made whether the
underflow amount from the task T, exceeds Mbytes, and if so,
by how much. This determination is made by recursively
checking a canary value for the stack belonging to previous

10

15

25

30

35

40

45

50

55

60

65

8
tasks until the extent of the underflow is identified. If the
underflow extends beyond the stack origin of the first task T.
then this is an unrecoverable situation and the application
program would be restarted.

Prototype implementations have shown that the disclosed
methods make stack-overflow/underflow fault recovery pos
sible, while resource consumption overhead is minimal.
Recovering from stack-overflow/underflow faults without
restarting hardware or software can be very beneficial to
embedded automotive systems, or any other system which
cannot tolerate downtime interruptions.
The foregoing discussion discloses and describes merely

exemplary embodiments of the present invention. One skilled
in the art will readily recognize from Such discussion and
from the accompanying drawings and claims that various
changes, modifications and variations can be made therein
without departing from the spirit and scope of the invention as
defined in the following claims.
What is claimed is:
1. A method for recovering from stack-overflow or stack

underflow faults in a Software application running on a pro
cessor, said method comprising:

configuring a physical memory space to include a stack
memory and a backup memory location;

copying a portion of the stack memory and a set of State
variables to the backup memory location upon a task
Switch in an application program;

determining whether a stack-overflow or stack-underflow
fault occurred during execution of a previous task;

restoring a saved set of state variables for the previous task
if the stack-overflow or stack-underflow fault occurred
during execution of the previous task:

terminating the previous task if the stack-overflow or stack
underflow fault occurred during execution of the previ
ous task;

restoring a saved portion of the stack memory if the stack
overflow or stack-underflow fault occurred during
execution of the previous task; and

commencing a next task.
2. The method of claim 1 wherein copying a portion of the

stack memory to the backup memory location includes copy
ing a stack memory segment above a stack canary for the next
task and a stack memory segment below a stack canary for the
next task to the backup memory location.

3. The method of claim 1 wherein copying a set of state
variables to the backup memory location includes copying
state variables for the next task to the backup memory loca
tion.

4. The method of claim 1 wherein determining whether a
stack-overflow or stack-underflow fault occurred during
execution of a previous task includes checking a canary value
for the previous task.

5. The method of claim 1 wherein restoring a saved set of
state variables for the previous task includes estimating a
refined value of the saved set of variables using an estimation
algorithm for the previous task.

6. The method of claim 1 wherein restoring a saved portion
of stack memory includes determining whether an amount of
stack overflow or stack underflow from the execution of the
previous task exceeds a size of the saved portion of stack
memory.

7. The method of claim 6 wherein restoring a saved portion
of stack memory includes recursively estimating output and
states of tasks with lower memory addresses in the stack
memory, if the amount of stack overflow from the execution
of the previous task exceeds the size of the saved portion of
stack memory.

US 8,677, 189 B2
9

8. The method of claim 7 wherein, if the amount of stack
overflow from the execution of the previous task exceeds the
size of the saved portion of stack memory, the size of the
saved portion of stack memory is increased for future execu
tion of the software application.

9. The method of claim 6 wherein restoring a saved portion
of Stack memory includes recursively estimating output and
States of tasks with higher memory addresses in the stack
memory, if the amount of stack underflow from the execution
of the previous task exceeds the size of the saved portion of
stack memory.

10. The method of claim 1 further comprising storing
parameter data for the previous task if the stack-overflow or
stack-underflow fault occurred during execution of the pre
vious task.

11. The method of claim 10 wherein the parameter data
includes an identification number for the previous task, input
data for the previous task, and state variables for the previous
task.

12. A method for recovering from stack-overflow or stack
underflow faults in a software application running on a micro
controller in a vehicle, said method comprising:

copying a portion of stack memory and a set of state vari
ables for a next task to a backup memory location upon
a task Switch in an application program, where the stack
memory and the backup memory location are part of a
physical memory space;

determining whether a stack-overflow or stack-underflow
fault occurred during execution of a previous task:

storing parameter data for the previous task if the stack
overflow or stack-underflow fault occurred during
execution of the previous task, where the parameter data
includes an identification number for the previous task,
input data for the previous task, and state variables for
the previous task;

restoring a saved set of state variables for the previous task
if the stack-overflow or stack-underflow fault occurred
during execution of the previous task:

terminating the previous task if the stack-overflow or stack
underflow fault occurred during execution of the previ
ous task;

restoring a saved portion of stack memory if the stack
overflow or stack-underflow fault occurred during
execution of the previous task; and

commencing a next task.
13. The method of claim 12 wherein determining whether

a stack-overflow or stack-underflow fault occurred during
execution of a previous task includes checking a canary value
for the previous task.

14. The method of claim 12 wherein restoring a saved set of
State variables for the previous task includes estimating a

5

10

15

25

30

35

40

45

50

10
refined value of the saved set of variables using an estimation
algorithm for the previous task.

15. A stack-overflow or stack-underflow fault recovery
System, said system comprising:

an application program for executing a plurality of tasks:
a task-switch checkpoint module which, upon a task switch

in the application program, makes backup copies of state
data and memory data;

a data backup module for storing the backup copies of state
data and memory data;

a fault detection module for detecting a stack overflow or
stack underflow condition;

a data corruption identification module for identifying cor
rupted state data and a corrupted memory region if the
stack overflow or stack underflow condition is detected
by the fault detection module:

a memory restoration module for repairing the corrupted
memory region using the backup copy of memory data
from the data backup module if the stack overflow or
stack underflow condition is detected by the fault detec
tion module;

a state data restoration module for repairing the corrupted
state data using the backup copy of state data from the
databackup module if the stack overflow or stack under
flow condition is detected by the fault detection module:
and

a processor configured to run the application program, the
task-switch checkpoint module, the data backup mod
ule, the fault detection module, the data corruption iden
tification module, the memory restoration module, and
the state data restoration module.

16. The system of claim 15 wherein the task-switch check
point module makes the backup copies of state data and
memory data for a next task when a previous task has com
pleted fault-free execution.

17. The system of claim 15 wherein the fault detection
module uses one or more canary values to detect the stack
overflow or stack underflow condition.

18. The system of claim 15 wherein the data backup mod
ule stores the backup copies of state data and memory data in
a memory stack location which cannot be overwritten during
the stack overflow or stack underflow condition.

19. The system of claim 15 wherein the state data restora
tion module uses an estimation algorithm to estimate new
values for the corrupted state data using the backup copy of
state data as input.

20. The system of claim 15 wherein the stack-overflow or
stack-underflow fault recovery system is part of a control
system in an automobile.

