i

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification J :
GO6F 12/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 95/02217

19 January 1995 (19.01.95)

(21) International Application Number: PCT/US94/07536

(22) International Filing Date: 1 July 1994 (01.07.94)

(30) Priority Data:

08/088,825 8 July 1993 (08.07.93) us

(71) Applicant: PARK CITY GROUP, INC. [US/US]; 333 Main
Street, Park City, UT 84060 (US).

(72) Inventor: SMITH, Curtis, A.; 1265 West 7240 South, West
Jordan, UT 84084 (US).

(74) Agents: ENAYATIL, Elizabeth, F. et al.; Fenwick & West, Suite
500, Two Palo Alto Square, Palo Alto, CA 94306 (US).

0
O
2

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH
CZ, DE, DK, ES, H, GB, GE, HU, JP, KE, KG, KP,
KZ, LK, LU, LV, MD, MG, MN, MW, NL, NO
PL, PT, RO, RU, SD, SE, SL SK, TJ, TT, UA, UZ, VN,
European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

KR,

Padit
-

-

Published
With international search report.

(54) Title: AGENT-BASED MULTITHREADING APPLICATION PROGRAMMING INTERFACE

(57) Abstract

An application programming interface (115) facilitates
development of portable, multithreaded application programs.
An application (107) is a collection of instances of agent
classes (104). Agent classes (104) are organized in class
hierarchies because new subclass agents may be derived from
existing base class agents. Each agent class has its own
message dispatching function; this allows the application
programmer to alter the message passing framework provided
by the application programming interface. Each agent instance
within the program is independent because it is a sub-process
aware only of its own data and context. Multithreading is
provided by the application programming interface (115) which
contains a master dispatcher process (108) non-preemptively
allocating time to individual agents. Therefore, an application’s

.| multithreading capability is independent of the platform’s

operating system. In addition, a thread of execution may be
split when the currently activated agent activates the master
dispatcher (108). The application programming interface (115)
mediates between the system resources and the application,
and maps the user interface of the application to the platform’s
chosen user interface. Therefore, the application and its user
interface are portable.

Compuler 10

Memory 110
Operating System Process 109
Agency Application 07

13

108
Master Dispaicher

Agency Applicstion
Programming Intertace

108 101

104
Hard Disk

applications under the PCT.
AT Austria

AU Australia

BB Barbados

BE Belgiun

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CcG Congo

CH Switzerland

CI Cbte d'Ivoire
CcM Cameroon

CN China

cs Czechoslovakia
CZ Czech Republic
DE Germany

DK Denmark

ES Spain

F1 Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

ol

- WO 95/02217 PCT/US94/07536

5

10

15

20

25

30

1
AGENT-BASED MULTITHREADING APPLICATION PROGRAMMING
INTERFACE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of application programming interfaces, and, more
particularly to a system and method of writing portable multithreaded application
programs by creating and combining independent agents.

2 Description of the Related Art

An application programming interface provides a method for programmers to write
application programs that run on a particular hardware system. Typically an application
programming interface is customized to run on a particular hardware platform. An
application programming interface provides system calls to perform certain hardware
dependent functions such as getting keyboard input or writing to disk. An application
programming interface also provides calls for an application to interface to the platform's
user interface, for example, a call to open a window. Therefore, the application
programmer can use the calls provided by the application programming interface for
performing hardware dependent and user interface functions. This saves the application
programmer the time involved in writing hardware dependent and user interface functions;
the application programmer need only write the code specific to the application, and may
rely on the calls provided by the application programming interface to perform system
related functions.

An application program written for a specific application programming interface
cannot be ported to another platform with a different application programming interface
without replacing all of the system calls for the original application programming
interface. ‘It takes a programmer additional time to rewrite these sections of the application
program. After the system calls are replaced, the application program is recompiled. It
will then run on the platform with the different application programming interface.
However, after the changes are made, the application program will then have the user

interface look and feel of the programming interface on the new system. The same

10

15

20

25

WO 95/02217 PCT/US94/07536

G

2
application program looks different on two different systems because the systems have

different user interfaces.

Furthermore, most application programming interfaces do not provide
multithreading. Multithreading allows an application program to contain more than one

stream of execution; each stream of execution is a thread. Typically, each thread performs
a different function within the application program; for example one thread fills a buffer,
and another thread reads from the buffer. The application programmer must then rely on

the multithreading provided by the operating system on the platform. Some operating
systems may not provide any multithreading at all.

In addition, application programming interfaces provide a scheme for sending
messages among components of an application program. For example, when a character is
entered at the keyboard, a message may be sent to a window telling the window to display
the character. Typically an application programmer cannot modify the message passing
framework provided by the application programming interface. As a result, the code for
message passing m‘ust be modified when an application program is ported to a platform
with a different application programming interface. It takes the programmer additional
time to replace the message passing code.

An application programming interface may or may not be written in an object-
oriented language. If the application programming interface is written in an object-
oriented language, then the application programmer may define classes and class
hierarchies as specified in the object-oriented programming language. Each class may

have some functions associated with the data in the class. In a class hierarchy, classes are

organized in chains from the general to the more specific. A more specific subclass is

- derived from a more general base class. For example, if a dialog box were a type of

window, then the dialog box subclass would be derived from the more general window
base class.

Application programming interfaces written in object-oriented programming
languages have the advantage of allowing the more specific class to maintain its own data

and context and relying on the base class to maintain the general data and context.

10

15

20

25

WO 95/02217 PCT/US94/07536

3 '
Therefore, a programmer can reuse code which saves time and can write a more

consistently organized program because there is less duplicate code. Each class is
independent of other classes, even a subclass is independent of its base class(es), because
the class does not need to know about the other classes' data.

Application programming interfaces that are written in object-oriented languages
have the disadvantage of generating larger programs that require more memory to run. In

addition, the application programmer must have a compiler for the object-oriented

language to compile the application program. Furthermore, the application programmer

must know the object-oriented language and be familiar with object-oriented

programming.

SUMMARY OF THE INVENTION

In accordance with the present invention, there is provided a system and method of
creating application programs using an application programming interface. The
application programs are multithreaded, portable to other existing application
programming interfaces, and composed of independent agents. Although the application
program is not written in an object-oriented programming language, the agents may be
organized into class hierarchies, similar to object-oriented class structﬁres.

The present invention includes an application programming interface wherein
application programs include a collection of agents. An agent is an instance of a particular
agent class. Agent classes are defined by the application programmer. Because new
subclass agents may be derived from existing base class agents, the agency application
programming interface provides class hierarchies.

Each agent has three distinct components: a message queue, message dispatcher,

and message processor. An instance of an agent subclass can have a different message

dispatcher and message processor than an instance of its base class. Because each agent
instance has its own message dispatcher and message processor, each agent is aware of its
own data and context. The application programming interface is an "agency" which

mediates between the collection of agents that form the application and the platform's

10

15

20

25

WO 95/02217 PCT/US94/07536

4
shared system resources. The agency communicates with an individual agent through its

message queue. The agent processes the messages on its queue using its message
dispatcher and its message processor.

In addition, each agent is a separate sub-process within an application program
created by using the agency application programming interface. The agency application
programming interface contains a master dispatcher which maintains a list of agents. The
master dispatcher selects an agent to activate and activates the selected agent by calling its
message dispatcher. When the selected agent is through performing its agency application
function it designates itself as inactive. After the agent has designated itself inactive, the
master dispatcher resumes running and then selects the next agent to activate.

The current thread of execution may be split when the currently active agent
activates the master dispatcher by calling the master dispatcher. The current thread is then
suspended until it is reactivated by the master dispatcher. The master dispatcher
reactivates the suspended thread when it is notified that it should reactivate the thread that
was suspended prior to its being called.

The present invention provides an application programming interface for creating
multithreaded application programs. Since the master dispatcher allocates time among the
application program's agents, the agency application programming interface provides non-
preemptive multithreading. Furthermore, the agency application programming interface
provides a means for splitting the currently activated thread and suspending it until it is
reactivated. A multithreaded application program that uses the agency programming
interface's multithreading capability does not have to be written to conform to the
multitasking provided by the platform's operating system. Therefore, an agency
application program can be ported to a new platform without having to rewrite code so that
the application program conforms to the new platform's multitasking capabilities.

Because the agency interface mediates between the platform's shared system

resources and an application program's agents, programs created using the agency

-application programming interface can be ported to a platform with a different

programming interface without the need to replace system dependent code. This saves the

10

15

20

25

WO 95/02217 PCT/US94/07536

5
programmer the time necessary to rewrite code. For example, an agency application

program written to run on a platform with Windows™ could be recompiled to run a
platform with OS/2™ without the need to rewrite portions of the code. In addition, the
look and feel of the agency application program's user interface can be ported to the new
platform. The user interface of the ported version of the agency application program does
not have to be modified to comport with the user interface on the new platform. For
example, the version of an agency application program that runs on Windows™ could
have the same user interface look and feel and the version of the same agency application
program that runs on OS/2™.

Furthermore, since each agent has its own message dispatcher, an application
programmer may alter the message passing framework provided by the agency
programming interface. This allows an agency application program running on one
platform to communicate with an agency application program running on a different
platform with a different application programming interface. For example, an agency
application program running on a platform with Windows™ could communicate with an
agency application program running on a platform with OS/2™ without a conversion of
the messages that are passed.

The present invention also provides classes and class hierarchies in an application
programrﬁing interface written in a non-object-oriented language. Because a subclass
agent class can be derived from a base agent class, the agency interface provides a method
for creating independent classes of agents which may be hierarchically related to each
other. By using the agency application programming interface, application programmers
have the benefits of these features without having to learn an object-oriented programming
language and without being familiar with object-oriented programming. In addition, a
compiler for the object-oriented language is not required and smaller programs which
require less memory to run are generated. Therefore, this programming interface is ideal
for application programmers who want to write application programs with class
hierarchies in a non-object-oriented programming language, to run on a system with less

memory than is necessary to run object-oriented programs.

10

15

20

25

WO 95/02217 PCT/US94/07536

6
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of apparatus for practicing the present inventidn.

Figure 2 is a block diagram of the preferred method of defining an agent according
to the present invention. |

Figure 3 is a flow chart showing operation of an agency application program
according to the present invention.

Figure 4 is a flow chart showing operation of the master dispatcher according to the
present invention.

Figure 5 is a flow chart showing sample operation of an agent's message dispatcher
according to the present invention.

Figure 6 is a flow chart showing sample operation of an agent's message processor
according to the present invention.

Figure 7A is a flow chart showing the creation of an agent class resource according
to the present invention.

Figure 7B shows agent class resource structure.

Figure 8 is a flow chart showing sample operation of an agent's constructor
function according to the present invention.

Figure 9 is a flow chart showing agent creation in an agency application program
according to the present invention.

Figure 10 is a flow chart showing agent destruction in an agency application

program according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to Figure 1, there is shown a functional block diagram of apparatus
100 for practicing the current invention. In the preferred embodiment, the central
processing unit (CPU) 101 performs the steps of the method, although any type of
processor or multiple processors may be used. The agency application 107 resides in
memory 110 while the agency application 107 is running. The agency application 107

may reside on hard disk 104 or any other storage device when the agency application 107

10

15

20

25

WO 95/02217 PCT/US94/07536

.
is not running. In the preferred embodiment, an agency application 107 runs as an

operating system process 109.

Referring now to Figure 1, the agency application 107 is linked with the agency
application programming interface (API) 115 and therefore, the agency API 115 is part of
the agency application 107. The master dispatcher 108 is part of the agency API 115.

An agency application 107 consists of one or more agents 114. Referring now to
Figure 2, each agent 114 in the agency application 107 contains three main parts: a
message queue 111, a message dispatcher 112, and a message processor 113. In addition,
the agent 114 contains various pointers and data structures. The master dispatcher 108 is
part of the agency API 115, and maintains a list of the agents in the agency application
107.

The message processor 113 is used by the agent 114 to communicate with the
agency API 115 and tb communicate with other agents 114. An agent communicates by
making calls to the agency API 115.

The agency API 115 supports multithreading because the master dispatcher 108
allocates time among the agents 114 within the agency épplication 107. Each agent 114 is
a sub-process within the agency application process. The master dispatcher 108 activates
an agent 114 by calling the agent's message dispatcher 112. The message p;occssor 113is
the means by which the agent 114 performs its application function. When the activated
agent 114 has completed performing its agency application function, it designates itself as
inactive. When an agent 114 designates itself inactive, the master dispatcher 108 resumes
and selects another agent 114 to activate. The agency API 115 provides non-preemptive
multithreading by allocating its time slice among the agents 114 in the agency application
107. This is how the agency API 115 provides multithreading that is independent of the
hardware platform's multithreading capabilities.

An agent 114 also contains a message queue pointer 201 that points to its message
queue 111. The message queue 111 consists of a list of messages 208. An agent 114 also
pontains amessage processor function pointer 203 that points to its message processor 113

and a message dispatcher function pointer 207 that points to its message dispatcher 112.

10

15

20

25

WO 95/02217 PCT/US94/07536

8
The agent 114 contains agent data 209. If the agent class is derived from another agent

base class then the agent 114 may contain additional subclass data 210. For example, if a
button agent class is derived from a window class agent, the button agent contains window
data and button subclass data.

By defining new agent classes, an application programmer may create a custom
user interface for the agency application 107. Because the agency application user
interface is created from agents 114, the user interface can be ported to a platform with a
different type of user interface. Consequently, an agency application 107 running on
Windows™ can have the same user interface look as the version of that agency application
107 running on XWindows. The agency application's user interface does not have to be
modified to comport with the platform's user interface. So, the versions of the same
agency application 107 for different platforms can have the same user interface.

Referring now to the flow chart 6f Figure 3, there is shown a preferred method of
running an agency application 107. In the preferred embodiment, the steps shown in
Figure 3 are performed by the CPU 101. First, the CPU 101 enters the agency
application's 107 main function 302. The CPU 101 then opens the agency 303. In this
step 303, any platform specific operations that must be completed so that the agency
application 107 can run are performed. For example, system resources are allocated and
structures ﬁecessary for the agency API 115 to manage agents 114 are initialized. The
CPU 101 then creates agents 114 that are part of the agency application 304; starts the
master dispatcher 305; and then closes the agency 306. In this step 306, system resources
are deallocated and any platform specific operations that were performed in order for the
agency application 107 to run are reversed. Finally the CPU 101 returns from the
application 307.

Referring now to the flow chart of Figure 4, there is shown a preferred method of
API multithreading. In the preferred embodiment, the steps shown in Figure 4 are
performed by the CPU 101. First the CPU 101 saves the agency application context 402.
The agency application context includes which agent 114 is currently activated, which

agent 114 currently receives keyboard 105 input and which agent 114 currently receives

10

15

20

25

WO 95/02217 PCT/US94/07536

o .
mouse input. The CPU 101 then checks if the agency active flag is true 403. If the agency

active flag is not true, the CPU 101 restores the agency application context 404 and returns

406.

If the agency active flag is true, the master dispatcher 108 selects an agent 114 to

 activate 405 and then calls the selected agent's message dispatcher 407. The selected agent

114 is activated and runs until it has completed its agency application function. When the
selected agent designates itself as inactive, the master dispatcher 108 resumes and
distributes system events to the appropriate agents' message queues 408. This is how the
agency API 115 mediates between the agency application 107 and system resources. The
agency application 107 is portable because it does not make direct system calls. However,
an agent's 114 rﬁessage dispatcher 112 may directly access system resources. This makes
the agency API 115 flexible.

A thread of execution can be split when the currently activated agent 114 activates
the master dispatcher 108 by calling the master dispatcher 108. The current agent's thread
is then suspended until the master dispatcher 108 reactivates the thread. The master
dispatcher 108 resumes running and selects an agent to activate. The master dispatcher
108 may select the agent 114 whose thread was previously suspended. The master
dispatcher 108 is notified, by a call to the agency API 115 that sets the agency active flag
to false, that it should stop the selection and activation of agents, and reactivate the thread
that was suspended prior to the call to the master dispatcher 108. When the master
dispatcher 108 determines that the agency active flag is false 403, it restores the agency
application context 404 and returns 406. The suspended agent thread is thereby
reactivated.

Referring now to Figure 5, there is shown a flow chart of an example of the
operation of an agent's message dispatcher 112. In the preferred embodiment, the steps
shown in Figure 2 are performed by the CPU 101. The CPiJ 101 checks if the agent 114 is
running 502. If the agent 114 is not running it returns 503 and the agent 114 is designated
as inactive. The CPU 101 then checks if the agent 114 is yielding its time 504; if the agent
114 is yielding its time, the CPU 101 returns 503. The CPU 101 then checks if a message

10

15

20

25

WO 95/02217 PCT/US94/07536

10
exists in the message queue 505. If there are no messages 208 in the message queue 111,

the CPU 101 returns 503.

If there is a message 208 in the message queue 111, the message 208 is dispatched
506 to the agent"s message processor 113. The CPU 101 then releases the memory for the
message 507 and may perform optional additional work 508 before checking if the agent
114 is running 502 again. An agent's message dispatcher 112 may do what an application
programmer chooses for it to do. Therefore, the agency API 115 is flexible. The only
requirement is that at some point the agent's 114 message dispatcher 112 designates itself
inactive so that the master dispatcher 108 can resume. |

The agent's message dispatcher may be written differently than the example
message dispatcher 112. For example an agent's message dispatcher 112 could be written
so that the agent 114 has three message queues or so that the agent 114 takes messages 208
from another agent's message queue 113. An agent may collect information from other
sources besides its own message queue 113, This allows the application programmer to
alter the message passing framework provided by the agency API 115. Therefore, an
agency application 115 running on one platform can communicate with an agency
application 115 running on a different platform with a different operating system without
converting the message passing code.

Referring now to Figure 6, there is shown a flow chart of an example of the
operation of an agent's message processor 113. In the preferred embodiment, the steps
shown in Figure 6 are performed by the CPU 101. First the CPU 101 checks if the
message 208 applies to the agent class 602. If the message 208 does not apply to the agent
class, the CPU 101 relays the message to the base class 605 by calling the base class
message processor 113 and then returns 606.

If the message 208 applies, the message processor 113 processes the portion of the
message 208 that applies to the agent's specific class data 603. The CPU 101 then checks
if the agent's base class needs the message 604. If not, the message processor 113 returns
606. If the base class needs the message 208, the message 208 is relayed to the base class

605 by calling the base class message processor 113. This is how each agent 114 subclass

10

15

20

25

WO 95/02217 : PCT/US94/07536

11
remains independent of its base class(es). The agent's 114 message processor only has to

update its specific subclass data 210; it then calls the base class message processor 113 to
update the general base class data. The CPU 101 then returns 606.

Referring now to Figure 7A, there is shown a flow chart for an agent's resource
constructor function . Figure 7B shows the agent class resource 706, which provides the
programmer with the ability to modify the definition of an agent 114 without changing the
agency application code. The agency class resource 706 contains information 707, 708,
709, 710 necessary to create an agent instance. In the preferred embodiment, the steps
shown in Figure 7 are performed by the CPU 101. Agents 114 are created 304 after the
agency is opened 303. Agents also can be created before the master dispatcher is started
305 and can be created by an agent's message processor 113.

Creating or loading an agent class resource 706 is part of the process of creating an
agent instance. First the agent's structure and data are defined through the creation or
definition of an agent class resource 706. If an agent class resource 706 exists, it is loaded
into memory 110. To create an agent class resource 706, the CPU 101 calls the class

resource constructor function. Each class resource constructor function follows these basis

steps. First, the CPU 101 checks if resource memory 110 is provided 702. If memory 110

is not provided, the CPU 101 returns 705. If memory 110 is provided, the CPU 101 calls
the agent's base class resource constructor function 703 and then assigns the agent's
specific class data to the resource 704. The CPU 101 then returns 705. Once the agent
class resource 706 has been created or loaded, it is used to create one or more agent
instances.

Referring now to Figure 8, there is shown a flow chart for an agent's constructor
function. In the preferred embodiment, the steps shown in Figure 8 are performed by the
CPU 101. First the CPU 101 calls the agent's base class constructor 802. Every agent has
at least one base class because the agent class is a base class of all agents. The CPU 101
then transfers specific class resource data to the agent structure 803. For example, if a

button agent class is a subclass of a window agent class, the window agent's constructor is

10

15

20

25

WO 95/02217 PCT/US94/07536

12
called and then the button agent's resource data is transferred into the button agent's

subclass data 211.

Next, the CPU 101 assigns the agent its class' message processor 804 and returns
805. Every agent class has a constructor function of this form. Each agent class remains
independent because each agent 114 only transfers specific class data and relies on the
base class constructor function to transfer the general class data.

Referring now to Figure 9, there is shown a flow chart for the placement of an
agent 114 in its context. This is the next step in the creation of an agent instance. The
agent's context is its position relative to other agents 114 in the agency application 107.
An agent has parents, siblings, and children, which are set to define its position within the
agency application 107. For example, if there are currently four window agents 114 open
and displayed in the agency application 107, then the windows may overlap each other on
the screen 106. Each level of overlap is a layer on the screen 106. The parent, children,
and sibling pointers indicate which agents are in the layer behind, in the layer in front of,
and in the same layer as the window agent 114.

In the preferred embodiment, the steps shown in Figure 9 are performed by the
CPU 101. First the CPU 101 calls the agent constructor function 902. The CPU 101 then
assigns a message dispatcher 112 to the agent 903. Next the CPU 101 assigns the agent to
its parent 904, attaches the agent to is appropriate agency lists 905, and sends a construct
message for immediate response 905 to the agent 114. In response to a construct message,
an agent 114, if necessary, allocates and initializes any class specific instance data or
storage space. The CPU 101 then returns the agent 907. After each agent 114 is created
and initialized 304 the agency master dispatcher is started 305 and the agency application
107 runs until the master dispatcher 108 returns.

Referring now to Figure 10, there is shown a flow chart for the destruction of an
agent instance. All agents 114 are destroyed before the agency application 107 has
completed execution; however agents 114 can be destroyed at any time during the
execution of the agency application 107. In the preferred embodiment, the steps shown in

Figure 10 are performed by the CPU 101.

WO 95/02217 ‘ PCT/US94/07536

13
The CPU 101 first sends a destruct message for immediate response 1002 to the

agent 114. The CPU 101 then destroys children agents 1003; releases allocated system
resources 1004 including pending messages 208; removes the agent from the agency lists
1005 including the multithreading list maintained by the master dispatcher 108; and finally

releases memory 110 for the agent instance 1006 before returning 1007.

WO 95/02217 PCT/US94/07536

‘What is claimed is: 14

1. A system for implementing an agent-based application programming interface
on a computer, comprising:
-2 processor;
5 an input device coupled to the processor, for accepting input;
an output device coupled to the processor, for providing output;
memory means coupled to the processor, for storing data and program instructions;
and
an operating system coupled to the processor, containing a plurality of processes

10 for execution by the processor;

wherein:
the operating system includes an agency application process for controlling agent
operation; and
the agency application process includes:
15 a plurality of agents, each agent for, rcsponsivc to the agent being active,
performing an agency application function; and
a master dispatcher coupled to each of the agents, for, responsive to all
agents being inactive, selecting an agent and activating the selected

agent.

20 2. The system of claim 1, wherein each agent, responsive to completing the agency

application function, designates itself as inactive.

3. The system of claim 1, wherein each agent comprises a message dispatcher for

receiving a signal from the master dispatcher activating the agent.

4. The system of claim 3, wherein each agent further comprises:
25 a message queue coupled to the message dispatcher, for receiving at least one
message, storing the received message, and, responsive to the agent being

active, passing the received message to the message dispatcher; and

WO 95/02217 PCT/US94/07536

15
a message processor coupled to the message dispatcher, for performing steps

specified in the received message;

and wherein the message dispatcher transfers the received message from the

message queue to the message processor.

5 5. The system of claim 1, wherein:
the agency application process further includes an agent list coupled to the master
dispatcher; and

the master dispatcher selects an agent from the agent list.

6. The system of claim 1, further comprising means, coupled to the agency
10 application process, for defining a plurzility of agent classes, and wherein:
the memory means stores the defined agent classes; and

each agent is an instance of one of the defined agent classes.

7. The system of claim 6, wherein the plurality of agent classes includes:

at least one base class; and

15 at least one subclass derived from the base class.

8. A computer-implemented process for controlling agent operation in an agent-
based application programming interface having a plurality of agents, comprising the steps
of:

(a) responsive to all agents being inactive, performing the substeps of:

20 (a.1) selecting an agent; and
(a.2) activating the selected agent;
(b) responsive to an agent being active, the agent performing an agency application ,

function.

9. The computer-implemented process of claim 8, further comprising the step of,
25 upon completion of the agency application function, the agent designating itself as

inactive.

WO 95/02217 PCT/US94/07536

16
10. The computer-implemented process of claim 8, further comprising the steps,

performed by an agent, of:
(c) receiving at least one message specifying a plurality of steps;
(d) storing the received message; and

5 @) responsive to the agent being active, performing the specified steps.

11. The computer-implemented process of claim 8, further comprising the steps of,
prior to step (a):
defining a plurality of agent classes;
storing the defined agent classes; and
10 instantiating a plurality of agents, wherein each agent is an instance of one of the

defined agent classes.

12. The computer-implemented process of claim 11, wherein the defining step
comprises the substeps of:
defining at least one base class; and

15 defining at least one subclass derived from the base class.

WO 95/02217 PCT/US94/07536

1/10

Computer 100

Memory 110

Operating System Process 109
Agency Application 107

114

Agent n-2

115

108
Master Dispatcher

Agency Application
Programming Interface
[
A 4
108 101 106
Keyboard =P ! Screen
; CcrPU
116 hmme——enrrs—— I 102
Mouse 2 Printer
103 104
Network Hard Disk

FIGURE 1

WO 95/02217 PCT/US94/07536

2/10
Message Queue m
208
l————-b Message ‘———j
208 208
Message Message
L e
Message
r Y
201 113
Message Queue Pointer Message Processor
203 204
Message Processor Function > Subclass
Pointer Message
112 Processor
207 (button)
Message Dispatcher g Message D’;%ﬁ“ Function ‘
205
Subclass
- 209
Message
Agent Data P ‘
210 » (window)
Subclass Data (window) *
21 208
Subclass Data (button) Subclass
Message
212 Processor
14
User Data (optional) (agent)

FIGURE 2

WO 95/02217

3/10

302
Enter application’s main
function

Instantiate/create agents
to run in agency

l

308
Start master dispatcher

l

06
Close agency

307

Return from
application

FIGURE 3

PCT/US94/07536

WO 95/02217 PCT/US94/07536

4/10
402
Save agency application
corntext

403

404
Restore agency
application context

Is agency active
flag true?

405 406
Select an agent to
activate

l

407
Call selected agent’s
message dispatcher
function

l

408
Distribute system events
to appropriate agents’
message queues

FIGURE 4

WO 95/02217 ‘ PCT/US94/07536

5/10

Is agent yielding
its time?

508
Optional work is
allowed here if desired
Dispatch message to
) agent’s message processor
507
Release memory for the
message

FIGURE §

WO 95/02217 PCT/US94/07536

6/10

Does message
apply to this agent
class?

FIGURE 6

WO 95/02217 PCT/US94/07536

7/10

Is resource
707
Agent resource data
708
Call base class resource resource data
constructor function
7 709
Second derived class
l resource data
704 710
Assign specific class data
to resource
\
206

FIGURE 7A FIGURE 7B

WO 95/02217 PCT/US94/07536

8/10

801
Start

Call base class

Transfer specific class
resource data to agent
+ structure

Assign the ciass message
processor to the agent

FIGURE 8

WO 95/02217 ’ PCT/US94/07536

9/10

902

Call agent constructor
function

v

903
Assign the message
dispatcher to the agent

v

904
Assign agent to its parent

v

905
Attach agent to
appropriate agency lists

Send construct message
for immediate response

FIGURE 9

WO 95/02217 : PCT/US94/07536

10/10

1002
Send destruct message for
immediate response

l

1003
Destroy children agents

1004
Release allocated system

1006
Remove agent from
agency lists

1008
Release memory for
instance of agent

FIGURE 10

INTERNATIONAL SEARCH REPORT Inernatonal application No.
) ‘ PCT/US94/07536

A. CLASSIFICATION OF SUBJECT MATTER
IPC(5) :GOGF 12/00
US CL : 395/700
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 395/700, 650

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

{EEE CD-ROM
APS (search terms: abject oriented, user interface, application program, dispatcher, base class, queue

C. ' DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X Zinc Interface Library, "Programmer’s Guide", Version 3.0,| 1-12
Zinc Software Inc., 1990-1992, pages 3,6,7,15-
17,20,21,25,54,93,

210,211,224-234,259.

AE US, A, 5,327,529 (FULTS ET AL) 05 July 1994, entire| 1-12
document.

AP US, A, 5,265,206 (SHACKELFORD ET AL) 23 November 1-12
1993, entire document.

A US, A, 5,095,522 (FUJITA ET AL) 10 March 1992, entire| 1-12
~ document.

D Further documents are listed in the continuation of Box C D See patent family annex.

. Special categorics of cited documents: T “d‘mﬂlﬂe‘%h“ﬂ:l&ﬂ“anuz
ot is conflict spplication 10 usdersend
‘A* document ing the sats of the art which is not considered
hbepln:?i-" lﬂﬂll. - principle or theory underlying the inveation .
o earlier document published oa or after the imternational filing date X mmmm“m:
‘L :znuwmmmmd:zmiyw-)amg: when the document is takea alons
208 10 etablish thy Pblicat ot cltstion of
special reason (ae specified) 'Y dmﬁmwbummh
(- considered t0 imvolve s invemtive siep when the document i
0 mm»-mamm.m«m combined with one or more other sech documents, such combimstion
being obvious 10 & pereon skilled in the art
i 2 document publishod the international datebutlater thae -5 i
dos wb prior to filing a document member of the same patent family
Date of the actual eomplamn of the international mrch Date of mailing of the international search report
07 SEPTEMBER 1994 2%700CT 1994
Name and mailing address of the ISA/US ' Authorized officer g 4
g:xmm:mmr of Patents and Trademarks)
Washingion, D.C. 20231 THOMAS M. HECKLER
Facsimile No. N.A. Telephone No. (703) 305-9666

Form PCT/ISA/210 (second sheet)(July 1992)w

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

