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Process for an enzymatic oxygenation by direct electrochemical regeneration of the
FAD-dependant monooxygenase

Background

Selective oxyfunctionalization of unreactive hydrocarbons still represents one of the
most challenging frontiers of synthetic organic chemistry. Especially the delicate bal-
ance of reactant-activation and selectivity of the reaction has to be dealt with. ‘Classi-
cal’ chemical oxygen donors such as peroxides, hypochlorites, iodosobenzenes, or
dioxiranes ™ lack the selectivity which is required for oxyfunctionalizations of more
complex subsirates.

Furthermore, most catalytic chemical approaches are not very far developed yet, so
that turnover numbers and frequencies as well as the stereodiscrimination of the cata-
lysts tend to be low. ¥ Nature on the other hand has developed a versatile toolbox of
catalysts meeting exactly the aforementioned criteria:

Monooxygenases catalyze highly diversified oxygenation reactions generally in a very
regio- and stereoselective manner at catalyst performances reaching several hundred
turnovers per minute. ¥ The reactive oxygenating species is generated in situ from
molecular oxygen at the monooxygenase’s active site thereby minimizing undesired
side reactions. Thus, monooxygenases are promising catalysts to be used in synthetic
organic chemistry. B8 |n return however, monooxygenases are cofactor-dependent
enzymes, which have o be supplied with reducing equivalents for O, activation. Gen-
erally those reducing equivalents are derived from the costly and instable nicotinamide
cofactors (NAD(P)H). ¥ Furthermore, monooxygenases often are composed of com-
plex multienzyme systems accomplishing the electron transfer from NAD(P)H to the
terminal oxygenase. Due to the sophisticated molecular architecture and the NAD(P)H
dependency, preparative applications of monooxygenases - with few exceptions - * ™
6 have been largely confined to whole-cell .approaches using metabolically active mi-
croorganisms, [ 8171

Given the complexities of mimicking the native monooxygenase cycle, direct introduc-
tion of reducing power into the oxygenation cycle offers the possibility of drastic simpli-
fication biocatalytic oxyfunctionalization reactions. Electrochemical reduction is one
approach of choice since the reducing power applied can be controlled and the cath-
ode serves as reagent-free source of electrons. In this respect, the class of heme-
dependent monooxygenases so far has been the favored subject of research. Electrical
communication between the monooxygenase’s heme-iron center and the cathode was
established either by direct contact, ?* 2" and via artificial ® or biological redox relays
(23281 mediating the electron transfer.
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In contrast to the varied research activities on P450 monooxygenases, similar ap-
proaches for the class of flavin-dependent monooxygenases have not been reported
yet, which is astonishing insofar, as this enzyme class catalyzes synthetically interest-
ing oxyfunctionalization reactions such as hydroxylations, ['* 2% 21 Baeyer-Villiger
oxidations, 2 and epoxidations. !

Styrene monooxygenase (StyAB) from Pseudomonas sp. VLB120 catalyzes the spe-
cific (S)-epoxidation of a broad range of styrene derivatives. ®" % The enzyme is com-
posed of a FAD-dependent monooxygenase component (StyA) that catalyzes the ep-
oxidation reaction and a NADH-dependent reductase component (StyB) delivering the
reducing equivalents from NADH to StyA via FADH,.

Previously, we have shown that StyB is not directly involved in the epoxidation reaction
since it can be replaced by chemical reductants without impairment of the stereo-
chemical course or the rate of the reaction. ®4 There, in situ regeneration of FADH,
was achieved using the organometallic complex [Cp*Rh(bpy)(H.0)]** as transfer hy-
drogenation catalyst together with formate as stochiometric source of reducing equiva-
lents. '

Description of the invention

The following invention relates to a process for an enzymatic oxygenation of an educt E
to a product P catalyzed by an FAD-dependant monooxygenase, characterized in that
the FAD-dependant monooxygenase is regenerated by direct electrochemical reduc-
tion.

The chemical nature of the educt E can be varied in a broad range as long as an
monooxygenase, especially an FAD-dependant monooxygenase is able to accept the
educt E as a substrate for oxygenation. Preferred as educt E are compounds substi-
tuted styrenes and styrene derivatives, especially preferred are the subtrates men-
tioned in table 1. '

As monooxygenase according to the invention are preferred the styrene monoooxy-
genase (Sty AB ) from Pseudomonas sp. ®" *3 Other preferred enzymes are listed in
Fig. 9.

Initial experiments on the electroenzymatic epoxidation were performed with frans-B-
methyl styrene as substrate. Electrolyses were performed potentiostatically applying a
cathode potential of -550 mV vs. Ag/AgCls.t. No product formation was detectable
when either StyA or FAD was omitted from the reaction medium. On the other hand,
electrolyses in the presence of all reaction components yielded the formation of a hy-
drolysable, more polar product, which was confirmed to be practically enantiopure
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(18,25)-1-phenylipropylene oxide. ® Similarly, a broad variety of diversely substituted
vinylaromatic compounds could be transformed to the more than 98% optically pure
corresponding (S) epoxides (Table 1) .

Table 1: Electroenzymatic epoxidation of substituted styrene derivates.

Substrate Product Rate [U g™'] [a] ee-value [%]

.0 28.1 985

[ j/ X ©/\|
] E o) 14.6 99.5
©/\/ ‘/\o/ 35.5 >99.9

NO) 58.9 99.2

27.7 [b] 98.1

[a] general conditions: 10 mL potassium phosphate buffer (50 mM, pH 7.5), T=30°C,
c(StyA) = 2.13 pM, c(FAD)= 300 uM, c(catalase)= 480 U mL™", c(trans-B-methy! styre-
ne) = 2 mM cathode: 14 cm?.

[b] T = 25°C, activity determined after 15 min.

However, while the stereodiscrimination of the electroenzymatic oxygenation reactions
met the values obtained with whole-cells ®" *3 as well as cell-free reactions 3439 the
epoxidation rate was comparably poor. In initial-rate studies, specific StyA-activities up
to 2.1 U mg" had been determined. ¥ Thus, the rates depicted in Table 1 constitute
only a fraction (less than 2%) of the catalytic potential of StyA. With the goal of deter-
mining the rate-limiting factors of the presented electroenzymatic epoxidation reaction,
we further investigated the influence of varying reaction parameters on the rate of the
electroenzymatic epoxidation reaction.
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As shown in Fig. 10, the rate of the electroenzymatic epoxidation reaction correlated
with the biocatalyst concentration applied. Specific StyA activities of 35.5 + 2.1 U g
were observed independent from the biocatalyst concentration. This specific activity
was temperature-dependent as increasing of the reaction temperature from e.g. 25°C
to 37°C resulted in a 2.5-fold increase of epoxidation activity under otherwise identical
conditions. ®¥ Thus, at a first glance, StyA appeared to be rate-limiting in the electro-
enzymatic reaction. However, the poor catalytic performance of StyA compared to
maximal values suggested yet other factors severely limiting the rate of the electroen-
zymatic epoxidation reaction.

Lowering the cathode potential from -550 to -650 mV vs. Ag/AgClss did not significantly
influence the reaction course P suggesting that the electron transfer from the cathode
to FAD was not rate-limiting for the regeneration of FADH,. As heterogeneous reaction,
however, the regeneration of FADH, may be limited by mass transport to the cathode
surface. In fact, we observed that increasing FAD-concentrations up to at least 500 pM
resulted in increasing epoxidation rates. *® These results are contrary to previous find-
ings where a defined optimal FAD concentration between 10 and 20 uM was observed
using homogeneous regeneration of FADH,. ®* * There, autocatalytic oxidation of
FADH, P accounted for the decrease of epoxidation rate at FAD concentrations higher
than 20 pM. In the present case, this effect may be overruled by the increased FADH,
generation rate due to the increased availability of FAD at the cathode surface. Pro-
vided the latter assumption was correct and cathodic FADH, regeneration is subject to
diffusion limitation, also the cathode surface should affect the regeneration rate. There-
fore, the influence of ratio of cathode surface to reaction volume was investigated. As
shown in 11, the specific StyA activity (here depicted as turnover frequency [catalytic
cycles per minute]) correlated directly with the ratio of cathode areas and reaction voi-
ume.

Altogether, these observations suggested that StyA activity in the electroenzymatic
epoxidation reaction is limited by the availability of FADH, for the epoxidation reactions.
Since reduced flavins are not stable in the presence of molecular oxygen, ®” we inves-
tigated the influence of aeration on the rate of the electroenzymatic epoxidation reac-
tion (Figure 12).

Interestingly, we found that increasing aeration rates drastically accelerated the epox-
ide formation rate. Without active intake of air a specific StyA acfivity was in the range
of 30 U g™ was determined reaction (Figure 12). Furthermore, only approximately 50
uM of epoxide were overall formed, suggesting that more than 80% of the dissolved
oxygen is consumed by reactions other than the enzymatic epoxidation. High aeration
rates on the other hand increased the specific StyA activity up to 215 U g™ correspond-
ing to approximately 10% of the maximal StyA activity. This is interesting since studies
on the direct reductive regeneration of P450 monooxygenases identified oxidative un-
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coupling of the electrochemical regeneration reaction from the enzymatic oxygenation
reaction to be overall limiting. % 2* % For example, Vilker and coworkers found a dras-
tic increase in P450..,-driven hydroxylation of camphor if the electrolysis buffer was Ar-
purged prior applying the cathode potential and in situ-regeneration of O, at the anode.
This apparent discrepancy may be explained considering the mechanism of FADH,
oxidation " as outlined in Scheme 1.

20,

k1 ¥>
FADH, +FAD -a—— 2= 2FAD’ 2FAD+20, — 5 2H,0,+20,

——
K, ka

Scheme 1: Predominant mechanisms for the non-StyA related oxidation of
FADH,. P k,=1x10° M" s,
k4=5x10% M7 s°; ky=8x10" M s

Accordingly, the formation of the semiquinone radical anion by reversible synpropor-
tionation limits the overall rate for the non-enzyme-supported oxidation of reduced
flavins. Thus, in our experiments ¢(0,) did not influence the rate of the non-enzyme
supported re-oxidation of FADH,. On the other hand, molecular oxygen is involved di-
rectly in the formation of the catalytically active 4a-peroxoflavin. Provided this is the
overall rate-limiting step of the StyA-catalyzed epoxidation reaction, this would suffi-
ciently explain the dependence of the epoxidation rate on the aeration rate. The latter
assumption is supported by similar findings with the FAD-dependent p-
hydroxyphenylacetate-3-hydroxylase where formation of 4a-peroxoftavin was found to
be rate-limiting and O,-dependent. ¥ Future experiments will examine the influence of
the in situ concentration of O, on the electroenzymatic reaction more deliberately.

One particular challenge for the preparative application of the new electroenzymatic
epoxidation reaction so far is its comparably low long-term stability. Generally, the re-
actions ceased after 1 to 1.5 h. From the results obtained so far, some qualitative con-
clusions can be drawn. First, a correlation of the overall reaction time with the total pro-
tein content applied can be detected (compare also Fig. 10) and, second, the reaction
times decrease with the rate of air intake (Fig. 12) Both observations point towards a
low stability of the biocatalyst under the reaction conditions. This low stability of StyA
may partially be due to the absorption of StyA to the cathode surface were it is exposed
to locally high concentrations of partially reduced oxygen originating from cathodic re-
duction of O,. % Furthermore, the heterogeneous intake of O, brings about the occur-
rence of shear forces and surface tensions at the liquid-gaseous interface destabilizing
the three-dimensional structure of the biocatalyst. Previous studies suggested a bene-
ficial influence of additional ‘sacrificial’ proteins such as bovine serum albumin (BSA)
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B9 also heterogenzation of StyA, e.g. via immobilization to Eupergit C may be viable.
Further studies aiming fowards increased biocatalyst stability under the conditions are
underway.

In conclusion, our study demonstrates for the first time the direct electrochemical re-
generation of a flavin-dependent monooxygenase. Driven only by electrical power, op-
tically pure epoxides were synthesized from corresponding vinyl aromatic compounds.
Thus, the rather complicated native electron transport chain consisting of 3 polypep-
tides (StyA, StyB, and a NADH regenerating enzyme) and 2 cofactors (NADH and
FAD) could be cut down to the components absolutely necessary for the epoxidation a
maximally simple biocatalytic epoxidation reaction. Now, having shown the usefulness
of the electroenzymatic approach to simplify such complicated enzyme system it may
be extended to other enzymatic oxygenation reactions ! making synthetically interest-
ing reactions such as oxidative desulphurization 1*?, specific hydroxylation of aromatic
rings “**, enantioselective Baeyer-Villiger Reactions, “® and even selective halogena-
tion reactions " feasible using only the isolated monooxygenases and FAD in an
electrochemical cell.

Experimental Section

Chemicals were purchased from Fluka (Buchs, Switzerland) in the highest purity avail-
able and used without further purification.

StyA was enriched from recombinant Escherichia coli JM101 as described previously
B8 The purity of the lyophilized biocatalyst was approximately 70% (as determined by
SDS gel-electrophoresis).

Electrolyses were performed in a thermostatted stirred tank reactor. Cylindrical carbon
felt served as cathode (working electrode) and the potential was adjusted versus a sa-
turated Ag/AgClsa reference electrode. The dimensions of the working electrode are
given a macroscopic area (corresponding to an average of 27.1 + 2.1 mg cm?). Condi-
tions of either a divided or an undivided cell were chosen. For the divided cell, the Pt~
wire counter electrode was placed in a dialysis membrane; otherwise a Pt-foil (&1cm)
was used. After supplementing the reactor with the reaction components indicated a
cathode potential of -550 mV vs. Ag/AgCls, was applied. In case of divided cell, O,
was supplied by heterogeneous intake of air (intake rates were estimated with a Hew-
lett Packard soap film flowmeter; under the conditions of an undivided cell, O, was ge-
nerated at the counter electrode.

Reaction rates (and enzyme performances calculated thereof) were determined based

on the product formation as determined by HPLC using protocols previously reported.
[34, 35]
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Claims:

10.

Process for an enzymatic oxygenation of an educt E‘to a product P catalyzed by
an FAD-dependant monooxygenase, characterized in that the FAD-dependant
monooxygenase is regenerated by direct electrochemical reduction.

Process according to claim 1 where the oxygenation reaction is an epoxidation.

Process according to claim 1 where the oxygenation reaction is an oxidative
desulphurization. :

Process according to claim 1 where the oxygenation reaction is an enantioselec-
tive Baeyer-Villiger reaction.

Process according to claim 1 where the oxygenation reaction is a hydroxylation of
an aromatic molecule.

Process according to claim 1 where the FAD-dependant monooxygenase is 4-
hydroxyphenylacetate-monooxygenase

Process according to claim 1 where the FAD-dependant monooxygenase is pyr-
role-2-carboxylate-monooxygenase.

Process according to claim 1 where the FAD-dependant monooxygenase is
chlorophenol-4-hydroxylase.

Process according to claim 1 where the educt E is a substituted or unsubstituted
styrene.

Process according to claim 1 where the FAD-dependant monooxygenase is the
styrene monooxygenase (Sty AB) from pseudomonos.

12 Fig.
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