a2 United States Patent

Sun et al.

US008595138B2

US 8,595,138 B2
Nov. 26, 2013

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(63)

(1)
(52)

(58)

PACKAGING SYSTEM FOR CUSTOMIZING
SOFTWARE

Inventors: Wenchao Sun, San Jose, CA (US);
Jian-Ping Shi, Santa Clara, CA (US);
Chandra P. Patni, Redwood City, CA

(US)

Assignee: QOracle International Corporation,
Redwood Shores, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 228 days.

Appl. No.: 12/877,273

Filed: Sep. 8,2010
Prior Publication Data
US 2010/0333078 Al Dec. 30, 2010

Related U.S. Application Data

Continuation of application No. 10/441,698, filed on
May 20, 2003, now Pat. No. 7,814,477.

Int. CL.
G060 99/00
U.S. CL
USPC e 705/51; 726/26
Field of Classification Search

USPC e 705/51; 726/26
See application file for complete search history.

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS
5,892,900 A * 4/1999 Ginteretal. ... 726/26
6,158,049 A 12/2000 Goodwin et al.
6,317,868 Bl 11/2001 Grimm et al.
6,385,766 Bl 5/2002 Doran et al.
6,754,888 Bl 6/2004 Dryfoos et al.
6,865,736 B2 3/2005 Holmberg et al.
7,784,044 B2* 82010 Bubanetal ... 717/168
2002/0199179 Al 12/2002 Lavery et al.
2003/0046676 Al 3/2003 Cheng et al.
2003/0056201 Al 3/2003 Degenaro et al.
2004/0093595 Al 5/2004 Bilange
2004/0107416 Al* 6/2004 Bubanetal. ... 717/170
2006/0161891 Al 7/2006 Ehnebuske et al.

* cited by examiner

Primary Examiner — James D Nigh
(74) Attorney, Agent, or Firm — Kraguljac Law Group, LLC

(57) ABSTRACT

In one embodiment, a system for customizing executable
software code is provided. The system can include a scan
logic configured to scan the executable software code to
determine an execution trigger point in the executable soft-
ware code. A packager logic can be configured to alter the
execution trigger point by embedding, into the executable
software code, alternative code configured to cause a custom-
ized logic to execute at the execution trigger point.

19 Claims, 4 Drawing Sheets

500
(Start o

505

Scan execulable code for
selected trigger point(s)

|/

Insert alternate executable code
(e.g. digital rights logic)

510

Return execution to selected trigger point
Based on one or more access conditions

515

_

U.S. Patent Nov. 26, 2013 Sheet 1 of 4 US 8,595,138 B2
105
Library of
\ Executable Logic Modules
Software
/ 110
100
| Packaging
System
115
| Customized
Software
Figure 1
| 300

Package Logic

310 | l |

] Definition Scan Embedding
Library of Logic Logic Logic
Custom Logic \ 3920 \ 3925
DRM
Agent

315 /

Figure 3

U.S. Patent Nov. 26, 2013 Sheet 2 of 4 US 8,595,138 B2

-

200 . 220
Customized Code
Iixecutable \ 2135 /
Code
onStartApp CustomVStart
startApp Logic
@
® startApp — 1

. Packager

Logic 0
pauscApp & -—’—l/ o / 230
L]

®
Custom Pause

e onPauseApp Logic
destroyApp 275
pauscApp 1
235 * 240
220 > : [
Custom 210 K) .
\ Start onDestroyApp Cusmﬂl(l) I?:stroy
Logic > &
DRM Agent destroyApp 1
|~ 215
230 onStartApp
Custom
2
\ Pause onPauseApp L 225
Logic
onDestroyApp Lo 233

\ Custom

Destroy
Logic

Figure 2

U.S. Patent Nov. 26, 2013 Sheet 3 of 4 US 8,595,138 B2

400

(Start -
405

Provide interface to allow selection of /
entry/exit point(s) in executable application

410

Associate point(s) with custom logic /
to be packaged and executed within

End

Figure 4

500
(Start -
505

Scan executable code for |/
selected trigger point(s)

510
Insert alternate executable code |
(e.g. digital rights logic)
515
Return execution to selected trigger point _/
Based on one or more access conditions

3

End

Figure §

U.S. Patent Nov. 26, 2013 Sheet 4 of 4 US 8,595,138 B2

600
(Start F
605
Receive request to download J

selected software

610

\

Determine user properties

615

Determine DRM logic (or other custom logic) _/
based on user properties/selected software

620
Modify selected software to include -
DRM logic
625
_./

Transmit modified software to user

End

Figure 6

US 8,595,138 B2

1
PACKAGING SYSTEM FOR CUSTOMIZING
SOFTWARE

CROSS REFERENCE TO RELATED
APPLICATION

This is a continuation of U.S. patent application entitled
“Packaging System for Customizing Software”, Ser. No.
10/441,698; filed May 20, 2003 now U.S. Pat. No. 7,814,477,
inventor Sun et al., which is also assigned to the present
assignee.

BACKGROUND

Certain types of software applications are developed by
software developers (e.g. content provider) and distributed to
one or more content brokers (e.g. Operators) who then dis-
tribute the software to their customers. An operator, for
example, operates one or more websites that contain catalogs
of available software that can be selected and downloaded by
users. Downloaded software can then be installed and
executed on a user’s device such as a computer, cell phone,
portable computer, hand-held devices, and others. Typically,
each operator desires to control usage of the software by
users. To control the usage of a software application, Digital
Rights Management (DRM) logic can be programmed into
the software application to define selected rules and usage
rights for how the software, or other digital media object, can
be used after ithas been downloaded or otherwise delivered to
a device. Examples of usage rights can be try-and-buy pre-
view rights, user subscription base usage control rights, for-
ward locking rules, and other types of rules and rights.
Although the software application (e.g. a chess game) is
developed generically, meaning, developed to be used for any
user, each particular operator that distributes the software
application potentially desires customized logic to be
included within the software to control desired Digital Rights
Management or other customized functions.

In prior systems, each operator desiring customized logic
would request the software developer to reprogram the soft-
ware for their specific needs. This created software manage-
ment challenges since a software developer might have to
create, maintain, test, and update numerous versions of one
software application where each version is customized for a
particular operator. In some situations, testing of customized
software would be difficult since the software developer may
not have access to actual users using the software. Thus, the
software developer would not have a real-time environment to
accurately test the functionality of the customized logic.

The present invention provides a new and useful method
and system of customizing software.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings which are incorporated in
and constitute a part of the specification, embodiments of a
system and method are illustrated which, together with the
detailed description given below, serve to describe the
example embodiments of the system and method. It will be
appreciated that the illustrated boundaries of elements (e.g.
boxes, groups of boxes, or other shapes) in the figures repre-
sent one example of the boundaries. One of ordinary skill in
the art will appreciate that one element may be designed as
multiple elements or that multiple elements may be designed
as one element. An element shown as an internal component
of another element may be implemented as an external com-
ponent and vise versa.

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 illustrates one embodiment of a packaging system.

FIG. 2 illustrates another embodiment of a software pack-
aging system.

FIG. 3 shows another embodiment of a packager logic.

FIG. 4 shows one embodiment of a methodology for gen-
erating a reconfiguration agent.

FIG. 5 illustrates one embodiment of a methodology for
embedding custom logic into a software application.

FIG. 6 illustrates one embodiment of a methodology for
dynamically reconfiguring software with custom logic.

DETAILED DESCRIPTION OF ILLUSTRATED
EMBODIMENTS

The following includes definitions of selected terms used
throughout the disclosure. The definitions include examples
of'various embodiments and/or forms of components that fall
within the scope of a term and that may be used for imple-
mentation. Of course, the examples are not intended to be
limiting and other embodiments may be implemented. Both
singular and plural forms of all terms fall within each mean-
ing:

“Computer-readable medium”, as used herein, refers to
any non-transitory medium that participates in directly or
indirectly providing signals, instructions and/or datato one or
more processors for execution. Such a medium may take
many forms, including but not limited to, non-volatile media,
and volatile media. Non-volatile media may include, for
example, optical or magnetic disks. Volatile media may
include dynamic memory. Common forms of computer-read-
able media include, for example, a floppy disk, a flexible disk,
hard disk, magnetic tape, or any other magnetic medium, a
CD-ROM, any other optical medium, any other physical
medium with patterns of holes,a RAM, a PROM, an EPROM,
a FLASH-EPROM, any other memory chip or cartridge, or
any other medium from which a computer, a processor or
other electronic device can read.

“Logic”, as used herein, includes but is not limited to
hardware, firmware, instructions stored on a non-transitory
medium and/or combinations of each to perform a function(s)
or an action(s), and/or to cause a function or action from
another component. For example, based on a desired appli-
cation or needs, logic may include a software controlled
microprocessor, discrete logic such as an application specific
integrated circuit (ASIC), a programmable/programmed
logic device, memory device containing instructions, or the
like.

“Signal”, as used herein, includes but is not limited to one
or more electrical signals, analog or digital signals, one or
more computer or processor instructions, messages, a bit or
bit stream, or other means that can be received, transmitted,
and/or detected.

“Software”, as used herein, includes but is not limited to
one or more computer readable and/or executable instruc-
tions that are stored in a non-transitory computer readable
medium that cause a computer or other electronic device to
perform functions, actions, and/or behave in a desired man-
ner. The instructions may be embodied in various forms such
as objects, routines, algorithms, modules or programs includ-
ing separate applications or code from dynamically linked
libraries. Software may also be implemented in various forms
such as a stand-alone program, a function call, a servlet, an
applet, instructions stored in a memory, part of an operating
system or other type of executable instructions. It will be
appreciated by one of ordinary skill in the art that the form of
software may be dependent on, for example, requirements of

US 8,595,138 B2

3

a desired application, the environment it runs on, and/or the
desires of a designer/programmer or the like.

“User”, as used herein, includes but is not limited to one or
more persons, software, computers or other devices, or com-
binations of these.

In one embodiment, a packaging system is provided for
combining executable software with customized logic so that
the executable software can be re-configured to perform
desired functions. One scenario where the packaging system
can be used is where two software operators distribute the
same executable software (e.g. a chess game) to customers/
users. But, each operator desires to provide the software to its
customers with different rules. For example, operator one
may want the software to be accessible to its users for only a
limited time after downloading. Operator two may want the
software to only be accessible by a user if the user keeps a
monthly subscription paid up to date.

In one embodiment, the packaging system can be dynami-
cally configured to embed custom logic into the executable
code of the software so that re-programming of source code
and re-compiling of the software can be avoided. A library of
custom logic modules can be maintained where each module
provides a desired digital rights management function that
provides particular usage rights to a selected software appli-
cation or even to a selected user that can be dynamically
embedded into the selected software application. The custom
logic may also be configured to provide other desired func-
tions to a software application such as displaying special
banners, marketing campaign messages or other notices spe-
cific to the operator providing the software application. With
the packaging system, an operator can modify software with-
out having to go back to a software developer to reprogram
the software code.

Ilustrated in FIG. 1 is one embodiment of a packaging
system 100 configured to customize executable software 105
(also referred to herein as software, executable code, or appli-
cation). The packaging system 100 is configured to modify
the executable software 105 with customized code that can,
for example, be selected from a library of logic modules 110.
It will be appreciated that the library 110 may include mul-
tiple locations. Each logic module can be configured to per-
form one or more desired functions such as controlling usage
and/or access rights to the executable software 105. These
types of functions are generally referred to as digital rights
management (DRM) functions.

In one embodiment, the logic modules 110 are in an execut-
able form such that the packaging system 100 can combine
executable code of the software 105 and executable code of a
selected logic module 110. Once combined, a customized
software application 115 is generated. In this manner, before
the executable software 105 is transmitted to a customer or
user, the software 105 can be dynamically customized with
desired functions and downloaded as the customized soft-
ware 115.

The executable software 105 and logic modules 110 can be
based on any desired programming language. For purposes of
explanation, the system will be described with respect to a
Java-based environment where the executable software 105 is
a MIDlet application configured to run on a mobile informa-
tion device profile (MIDP) device. Examples of MIDP
devices include cellular phones, pocket PCs, palm pilots,
pagers, Blackberry devices, or other devices that can support
J2ME. These types of devices typically have resource con-
strained environments and have limited computational power
and storage capacity as compared to a standard computer
system. Of course, the software can be configured to operate
on any desired device.

20

25

30

35

40

45

50

55

60

65

4

If the software 105 and logic modules 110 are developed
using Java, their compiled form includes machine indepen-
dent byte code. In one embodiment, the packaging system
100 can be configured to inspect the byte code of the execut-
able software 105 to determine where a selected logic module
can be embedded. For example, the packaging system 100
can search for application program interface (API) points
such as entry points and exit points of the software. These
points are also referred to herein as trigger points. The API
points can affect an execution path of the software 105 and
indicate life cycle methods that change the state of the soft-
ware during execution.

Example states include an active/running state, a paused
state, and a destroyed state. Based on current Java protocols,
the active state is initiated with a “startApp()” method, the
paused state is initiated by a “pauseApp()” method, and the
destroyed state is initiated by a “destroyApp(boolean b)”
method. Thus, an entry point of the executable software 105
is where the “startAppQ” appears in the byte code and an exit
point would be where the “destroyApp(boolean b)” appears
in the byte code. Thus, the packaging system 100 can be
configured to located these methods in the byte code. Of
course, other programming languages will have different
code that initiates state changes, in which case, the packaging
system 100 can be configured to locate the appropriate code.

In a case where a selected logic module from library 110 is
a digital rights management (DRM) object for controlling
usage and/or access rights, the DRM logic module would be
embedded where the “startApp()” appears in order to execute
the DRM logic module before the original software executes.
Thelogic module can be configured to receive notifications of
life cycle methods of the software 105 based on selected entry
points and/or exit points in the software 105. The customized
DRM object can then be configured to act on the received
notifications and decide if the software 105 should resume or
terminate its execution based on desired access conditions.
For example, if a user satisfies required access conditions for
using the software, such as paying a subscription fee, then the
DRM logic module would continue execution of the software
115 thus allowing access to the user.

By way of another example, suppose the executable soft-
ware 105 is to be offered to users free of charge for a one-week
trial period. Once the trial period expires, the executable
software 105 should no longer be accessible unless the user
pays for the software. Further suppose that a custom logic has
been previously generated and has been configured to deter-
mine whether a one-week period has expired or not. Accord-
ingly, the custom logic would be embedded into the execut-
able software 105 by the packaging system 100 so that access
to the executable software 105 is controlled. As such, an
execution path of the software 105 would be modified to
cause the custom logic to initially execute before the software
105 is executed. In this manner, operators can easily apply
custom features to a software application based on their spe-
cific needs rather than having to re-program the source code
of the software.

As described above, an entry point of the software 105 can
be intercepted in the byte code and alternative code can be
inserted that calls or otherwise executes a selected custom
logic. Thus, when the customized software 115 is executed,
the custom logic will be caused to first execute to determine
whether access is permitted prior to executing the original
entry point for the software. The packaging system 100 can
also configure the custom logic to control how the execution
path returns to the software 115. For example, if the user’s
trial period has not yet expired, the custom logic will return
execution back to the entry point of the software 115. If the

US 8,595,138 B2

5

trial period has expired, the custom logic can be programmed
to call an exit point of the software 115 to terminate its
execution. A more detailed example of how custom logic can
be embedded into executable code is shown in FIG. 2.

Tlustrated in FIG. 2 is one embodiment of a packager logic
200 that is configured to add customized digital rights man-
agement logic to a software application which is in a form of
executable code 205. In one embodiment, the executable code
205 can be a Java class that has been previously compiled into
byte code. A “Java Class”, as used herein, can include but is
not limited to a translated format of Java Programs or com-
pilation units of machine-independent byte code. Likewise,
each custom logic can be a Java class in the form of byte code.
In this form, the executable code 205 will include life cycle
methods representing entry points and exit points during
execution of the code 205. As described previously, the entry/
exit points include byte code corresponding to “startApp”,
“pauseApp”, and “destroyApp”. In another embodiment, the
executable code 205 can have a form of a machine-dependent
code.

The packager logic 200 can be configured to allow an
operator to select custom logic to be executed at a desired
entry and/or exit point. In that regard, a digital rights man-
agement (DRM) agent 210 can be generated that defines how
the executable code 205 should be modified and associates
selected custom logic to a selected entry/end point. For
example, the DRM agent 210 can define that at the entry point
associated with “startApp”, an alternative code is to be
embedded that executes “on StartApp” 215 that initiates a
custom start logic 220. Likewise, other entry/exit points can
be defined. For example, a method “on PauseApp” 225 can be
defined to initiate a custom pause logic 230 that is executed
prior to the “pauseApp” code in the executable code 205.
Also, an “on DestroyApp” method 235 can be defined to
initiate a custom destroy logic 240 and embedded in the
executable code 205 prior to the “destroy App” method in the
executable code 205. It will be appreciated that the alternate
code can be embedded in other desired manners with respect
to their associated entry/exit point such as being executed
prior to, in place of, or after their associated entry/exit point.

With the definitions from the DRM agent 210, the packager
logic 200 includes logic to modify the executable code 205
and generate a customized code 245 that is ultimately trans-
mitted to a user. The customized code 245 is illustrated in
FIG. 2 with an example logical representation of how an
execution path of the customized code 245 can be modified
with the embedded custom logic. For example, the entry/exit
points “startApp”, “pauseApp”, and “destroyApp” have
selected to be customized with alternative code “on startApp”
215, “on pauseApp” 225, and “on destroyApp” 235. Each of
the alternative code has been configured to initiate its corre-
sponding custom logic. It will be appreciated that the alter-
native code is not necessarily embedded adjacent to its asso-
ciated entry point in the byte code. Rather, the byte code of the
customized code 245 can be modified such that the address of
“startApp” is assigned to “on startApp” 215 which then con-
tinues the execution path to the custom start logic 220. The
custom start logic 220, depending on its configuration, can
return execution to “startApp” and resume execution or, ter-
minate the execution if access to the software is not permitted.

In this manner, the packager logic 200 can change byte
code addresses to customize what happens during execution
of the customized code 245 based on selected triggering
events such as start, pause, and/or destroy. Since the custom-
ized logic that is embedded in the executable code 245 is
defined in pre-verified class files in the form of byte codes, the
packager logic 200 can modify the executable code 205

20

25

30

35

40

45

50

55

60

65

6

dynamically without having to re-compile the code. Thus in
one embodiment, the packager logic 200 is configured to
combine a pre-verified class file (e.g. a software application)
with other pre-verified class files (e.g. custom logic modules).
It will be appreciated that when moving and/or changing byte
code, care should be taken not to destroy the integrity of the
class file.

Preverification is a phase in the development and deploy-
ment cycle for Java applications designed to run on a J2ME
Connected Limited Device Configuration (CLDC). For
example, preverification performs certain checks on byte
codes ahead of runtime. If this first verification check is
passed, a preverifier can annotate the class files using, for
example, Java byte code attributes, and then saves the anno-
tated class files or passes the files along to the next tool in the
compile chain. Using byte code attributes can allow the class
files to be executable in a byte code interpreter, such as a
virtual machine, that is not aware of the benefits of preverifi-
cation.

When a byte code interpreter, such as a K virtual machine
(KVM), attempts to run execute a J2ME CLDC-based appli-
cation, it checks the Java class files for preverification anno-
tations. Proper annotations in the class files guarantee that
certain compile-time checks were made, and so the byte code
interpreter can pass through its own verification and security
checks much faster and start executing the application more
quickly.

With reference to FIG. 3, another embodiment of a pack-
ager logic 300 is shown. The packager logic 300 is configured
to package a selected software application with logic
designed to apply or enforce selected rules that an operator
wishes to apply to the software application. The packaged
logic 300 can, for example, control usage of the software, add
functionality, or other desired features. A library of custom
logic 305 can be made available to the packager logic 300
from which an operator can select. Thus, one generic software
application can be distributed to many operators and the pack-
ager logic 300 can be used to customize that generic software
application.

Examples of custom logic may include logic that controls
a monthly subscription for an application and cancels access
to the application if the subscription is not paid. Another logic
module can be configured to advertise different promotional
items or prices to a user during the execution of the applica-
tion. Each custom logic 310 can be specifically generated for
an operator’s particular needs which may be different from
other operator’s needs. Of course, the custom logic 310 may
also include non-unique logic that performs a desired func-
tion. In one embodiment, logic from the custom logic 310 can
be translated into Java classes in a form of byte code.

The packager logic 300 can include a definition logic 310
configured to identify which software is to be packaged with
which selected custom logic. The definition logic 310 can
include a graphical interface that receives instructions from
an operator/user to make these identifications manually. The
identifications can also be made programmatically based on
predetermined rules. The rules can be based on one or more
conditions such as which user desires to download a particu-
lar software application, a current subscription status of the
user, other user properties or, other desired conditions. For
example, one desired condition can be that all software appli-
cations downloaded during a particular time period will be
free for a trial period. In such case, the definition logic 310 can
be programmed to automatically combine a selected custom
logic to every software application transmitted to a user such
that access to the application is limited for a trial period only.

US 8,595,138 B2

7

With further reference to FIG. 3, the definition logic 310, in
one embodiment, can be configured to apply digital rights
management (DRM) logic to a software application to control
auser’s access and usage rights to the software. In that regard,
a DRM agent 315 can be generated to define what custom
logic is to be executed at desired triggering points in the
software. One embodiment of the DRM agent 315 is shown in
FIG. 2 as agent 210. Of course, a similar component can be
used to define other types of custom logic besides digital
rights management logic. Once custom logic has been asso-
ciated with selected triggering points (e.g. entry points and
exit points), a scan logic 320 inspects the executable code of
the software application to identify the location of the
selected triggering points.

In one embodiment, the scan logic 320 is configured to
scan byte code and determine the addresses for the triggering
points that are defined by the DRM agent 315. As discussed
previously, example triggering points include life cycle meth-
ods “startApp”, “pauseApp”, and “destroyApp”. The
addresses can then be shifted or replaced by alternate code
corresponding to the custom logic selected. The alternate
code can be embedded into the byte code by an embedding
logic 325. For example, the embedding logic 325 can be
configured to insert alternative byte code and to change
addresses in a software application. In this manner, the execu-
tion path of the software application can be modified and
redirected to perform the custom logic being applied to the
software application. The software application can then be
downloaded or otherwise transmitted to a user.

Tlustrated in FIG. 4 is one embodiment of a methodology
400 for defining an agent module that can be used by a
packager logic to modity a software application with custom
logic. An example agent module can be the DRM agent 210
shown in FIG. 2. The illustrated elements denote “processing
blocks” and represent computer software instructions or
groups of instructions that cause a computer to perform func-
tions, actions, and/or to make decisions. Alternatively, the
processing blocks may represent functions and/or actions
performed by functionally equivalent circuits such as a digital
signal processor circuit, an application specific integrated
circuit (ASIC), or other logic device. The diagram, as well as
the other illustrated diagrams, does not depict syntax of any
particular programming language. Rather, the diagram illus-
trates functional information one skilled in the art could use to
fabricate circuits, generate computer software, or use a com-
bination of hardware and software to perform the illustrated
processing. It will be appreciated that electronic and software
applications may involve dynamic and flexible processes
such that the illustrated blocks can be performed in other
sequences different than the one shown and/or blocks may be
combined or, separated into multiple components. They may
also be implemented using various programming approaches
such as machine language, procedural, object oriented, func-
tional and/or artificial intelligence techniques. The foregoing
applies to all methodologies described herein.

With reference to FIG. 4, upon initiating the process, an
interface can be provided that allows an operator to identify
original content (e.g. an executable software application) to
be packaged with custom logic (Block 405). This may include
allowing for selection of one or more triggering points in the
executable software where the custom logic is to be applied.
As previously described, a triggering point can include an
entry/exit point into a state such as where the software starts,
pauses, or terminates. In an alternative embodiment, the iden-
tification of the original content and the triggering points can
be programmatically determined. For each triggering point, a
custom logic can be selected and associated with a triggering

20

25

30

35

40

45

50

55

60

65

8

point (Block 410). The identification and selection can be
determined by receiving instructions from an operator, pro-
grammatically, or a combination of both. Once the definitions
have been generated, the selected software can be reconfig-
ured to include the custom logic, for example, in a manner as
shown in FIG. 5.

Iustrated in FIG. 5 is one example of a methodology 500
for packaging an executable software application with cus-
tom logic. Based on predefined triggering points, the execut-
able code of the software application is scanned to locate the
triggering points (e.g. entry point(s), exit point(s)) (Block
505). Upon locating a triggering point, its address can then be
determined. Alternate executable code can then be inserted
into the software application and assigned the address corre-
sponding to the triggering point (Block 510). For example,
the alternate executable code represents code that executes
the custom logic to be applied to the triggering point.

In one embodiment, the address of a triggering point is
shifted or reassigned such that an execution path of the soft-
ware performs the custom logic. One example of custom
logic can include digital rights logic that can be configured to
control access and/or usage of the software. Once the trigger-
ing points are determined, the custom logic can be reconfig-
ured to return execution to a triggering point based on one or
more conditions (Block 515). Depending on the function of
the custom logic, execution of the software can continue as
normal, can terminate to prohibit access, or can branch to
another portion of the executable code. Thus, the executable
software application can be reconfigured with custom logic
by redirecting addresses in the byte code of the executable
software to perform the custom logic without having to
recompile the software.

Iustrated in FIG. 6 is one embodiment of a methodology
600 to dynamically package a software application with
selected digital rights logic. The methodology will be
described with reference to a network environment where one
or more software applications are made available to users by
downloading over a network, such as the Internet. For
example, a user may access a web site controlled by an opera-
tor that provides software. The user would select desired
software for download. When a request is received to down-
load a selected software (Block 605), user properties or other
factors that may affect which digital rights to use can be
determined (Block 610). This determination can be optional
depending on requirements desired by the operator who is
distributing the software. For example, the same digital rights
logic can be applied to a selected software application regard-
less of the user properties.

If specific factors are to be used, an appropriate digital
rights management logic can be determined based on the
specific user properties and/or based on the software selected
(Block 615). The selected software can then be modified with
the appropriate digital rights logic (Block 620). As previously
described, byte code from the software application can be
inspected for entry/exit points. Alternate byte code can then
be embedded or otherwise incorporated into the original byte
code. Addresses can be modified to include the digital rights
logic within the execution path of the software application.
Thus, when the software application is executed by a user, the
digital rights logic can be executed first to determine whether
access is permissible or to perform other desired functions.
Once the selected software has been reconfigured, it can be
transmitted to the user (Block 625).

With the various embodiments described above, the soft-
ware can be better managed by being able to apply custom
requirements to software. Reconfiguring of software can be
performed in a flexible manner without having to reprogram

US 8,595,138 B2

9

corresponding source code, which in some cases may not be
available. It will be appreciated that the present systems and
methods can be applied in a variety of environments and with
a variety of software types. For example, the software and
custom logic may be Java-based software such as J2ME
applications, J2EE applications, or other desired software
types.

Suitable software for implementing the various compo-
nents of the present system and method using the teachings
presented here include programming languages and tools
such as Java, C#, HTML, Perl, SQL, APIs, SDKs, assembly,
firmware, microcode, and/or other languages and tools. The
components embodied as software include computer read-
able/executable instructions that cause one or more comput-
ers, processors and/or other electronic device to behave in a
prescribed manner. Any software, whether an entire system or
a component of a system, may be embodied as an article of
manufacture and, maintained or distributed as part of a com-
puter-readable medium as defined previously. Another form
of the software may include signals that transmit program
code of the software to a recipient over a network or other
communication medium. It will be appreciated that compo-
nents described herein may be implemented as separate com-
ponents or may be combined together.

It will be appreciated that the term “custom” used with
logic or software throughout the disclosure is generally used
to represent a logic or software that is selected to be embed-
ded or otherwise used to customize another software. Thus,
the custom logic may not necessarily be unique logic or
software. For example, the logic modules 110, custom start
logic 220, the library of custom logic 305, and the like, may
include unique logic specially configured for a user, non-
unique logic obtained from a third party, other types of logic,
and combinations of these.

While the present invention has been illustrated by the
description of embodiments thereof, and while the embodi-
ments have been described in considerable detail, it is not the
intention of the applicants to restrict or in any way limit the
scope of the appended claims to such detail. Additional
advantages and modifications will readily appear to those
skilled in the art. Therefore, the invention, in its broader
aspects, is not limited to the specific details, the representative
apparatus, and illustrative examples shown and described.
Accordingly, departures may be made from such details with-
out departing from the spirit or scope of the applicant’s gen-
eral inventive concept.

We claim:

1. A computer-implemented method, the method compris-
ing:

selecting, by at least a processor, an execution trigger point

within an executable software code that is stored in a
non-transitory computer readable medium using a com-
puting device configured to allow operator selection of
executable custom code;

locating, by at least the processor, code within the execut-

able software code corresponding to the execution trig-
ger point;

altering, by at least the processor without having to recom-

pile the executable software code, the execution trigger
point by embedding, before the execution trigger point,
digital rights code into the executable software code in
the non-transitory computer readable medium such that
an execution path of the executable software code is
modified to execute the digital rights code when execu-
tion reaches the digital rights code, where the digital
rights code is configured to control access to the execut-
able software code; and

20

25

30

35

40

45

50

55

60

65

10

modifying, by at least the processor, the digital rights code
in the non-transitory computer readable medium to con-
trol access to the executable software code by deciding if
the executable software code should execute or termi-
nate based on access conditions that are determined
when the executable software code is executed, wherein:
if the digital rights code decides that the executable
software code is to execute, then the digital rights
code returns execution to the execution trigger point;
and
if the digital rights code decides that the executable
software code is to terminate, then the digital rights
code terminates the execution of the executable soft-
ware code.

2. The method as set forth in claim 1 wherein the selecting
the execution trigger point includes selecting at least one of a
start application point, a pause application point, or a termi-
nate application point.

3. The method as set forth in claim 1 where the embedding
comprises reassigning an address associated with the execu-
tion trigger point in the executable software code to an
address of the digital rights code.

4. The method as set forth in claim 1 further including:

providing one or more executable applications for selec-

tion;

receiving a selection from an operator; and

upon receiving the selection of one executable application

from the operator, dynamically embedding a selected
digital rights code into the executable software code
based on properties of a user prior to transmitting the
executable software code to the user.

5. The method as set forth in claim 1 wherein embedding
the digital rights code into the executable software code adds
the digital rights code without replacing existing code in the
executable software code.

6. The method as set forth in claim 1 wherein the digital
rights code, when executed during execution of the execut-
able software code, prohibits continued execution of the
executable software code after the executable software code
is executing based on one or more properties.

7. The method as set forth in claim 1 where the digital rights
code is configured to perform a subscription fee determina-
tion that controls execution of the executable software code
based on at least whether a subscription fee has been paid.

8. A system for customizing executable software code, the
system comprising:

a processor;

a non-transitory computer-readable medium including

stored instructions that when executed by the processor:

scan the executable software code for a location of a
selected execution trigger point in the executable soft-
ware code;

alter the execution trigger point based on at least the
location of the execution trigger point by embedding,
into the executable software code, alternative code
configured to cause a selected executable custom
code to execute prior to the execution trigger point,
where the alternative code alters the execution of the
executable software code and controls access to the
executable software code using the selected execut-
able custom code;

reconfigure the selected executable custom code to con-
trol access to the executable software code by decid-
ing, during execution of the executable software code,
if the executable software code should continue to
execute or terminate based on access conditions that

US 8,595,138 B2

11

are determined when the selected executable custom

code is executed from within the executable software

code, wherein:

ifthe selected executable custom code decides that the
executable software code is to continue to execute,
then the selected executable custom code returns
execution to the execution trigger point; and

ifthe selected executable custom code decides that the
executable software code is to terminate, then the
selected executable custom code terminates the
execution of the executable software code.

9. The system of claim 8 wherein the execution trigger
point includes a start point, a pause point or, a termination
point in the executable software code.

10. The system of claim 8 wherein the alternative code
includes byte code.

11. The system of claim 8 wherein the non-transitory com-
puter-readable medium further including stored instructions
to dynamically customize the executable software code for a
selected client prior to the executable software code being
downloaded to the selected client.

12. The system of claim 8 wherein the executable custom
code includes digital rights configured to control access rights
to the executable software code.

13. The system of claim 8 wherein the executable custom
code is translated into classes having a form of byte code.

14. A non-transitory computer-readable medium having
instructions stored therein, which when executed cause a
computer to perform a method, the method comprising:

scanning, by at least a processor in the computer, an execut-

able software code to locate a selected execution trigger
point in the executable software code; and

altering, by at least the processor, the execution trigger

point based on at least the location of the selected execu-
tion trigger point by embedding, into the executable
software code, alternative executable code configured to
cause a selected executable custom logic to execute prior
to the execution trigger point, where the selected execut-
able custom logic includes digital rights configured to

20

25

30

35

12

control access rights to the executable software code
during execution of the executable software code;
modifying, by at least the processor, the digital rights to
control access to the executable software code by decid-
ing, during execution of the executable software code, if
the executable software code should continue to execute
or terminate based on whether a predetermined condi-
tion is met that is determined when the executable soft-
ware code is executed, wherein:
if the digital rights decides that the executable software
code is to execute, then the digital rights returns
execution to the execution trigger point; and
if the digital rights decides that the executable software
code is to terminate, then the digital rights terminates
the execution of the executable software code.

15. The non-transitory computer-readable medium of
claim 14 further comprising modifying the executable soft-
ware code to return execution to the execution trigger point
based on the predetermined condition being access rights of a
user.

16. The non-transitory computer-readable medium of
claim 14, comprising using a graphical user interface to allow
a user to select the selected execution trigger point.

17. The non-transitory computer-readable medium of
claim 14, further comprising locating a plurality of selected
execution trigger points in the executable software code.

18. The non-transitory computer-readable medium of
claim 14, wherein the alternative executable code includes
instructions for changing execution of the executable soft-
ware from the selected execution trigger point to execute the
selected executable custom logic.

19. The non-transitory computer-readable medium of
claim 14, where the digital rights implement a subscription
fee determination that controls execution of the executable
software code based at least in part on the predetermined
condition, where the predetermined condition includes
whether a predetermined subscription fee has been paid by a
user.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,595,138 B2 Page 1 of 1
APPLICATION NO. 1 12/877273

DATED : November 26, 2013

INVENTORC(S) : Sun et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In column 1, line 67, delete “vise versa.” and insert -- vice versa. --, therefor.

In column 4, line 19, delete “startAppQ” and insert -- startApp() --, therefor.

In column 4, line 22, delete “located” and insert -- locate --, therefor.

In column 5, line 29, delete “on StartApp™ and insert -- onStartApp --, therefor.

In column 5, line 31, delete “on PauseApp™ and insert -- onPauseApp --, therefor.

In column 5, line 34, delete “on DestroyApp™ and insert -- onDestroyApp --, therefor.
In column 5, line 49, delete “on StartApp™ and insert -- onStartApp --, therefor.

In column 5, line 50, delete “on PauseApp™ and insert -- onPauseApp --, therefor.

In column 5, line 50, delete “on DestroyApp™ and insert -- onDestroyApp --, therefor.

In column 5, line 56, delete “on StartApp™ and insert -- onStartApp --, therefor.

Signed and Sealed this
Third Day of June, 2014

Decbatle X Loa

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office

