024055 Al

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 03/024055 Al

(22) International Filing Date:
(25) Filing Language:

(26) Publication Language:

1 July 2002 (01.07.2002)
English

English

(30) Priority Data:

2,357,165 10 September 2001 (10.09.2001) CA

(71) Applicant (for all designated States except US): INTER-

NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard road, Armonk, NY 10504
(US).

(71) Applicant (for MG only): TBM UNITED KINGDOM

LIMITED [GB/GB]; PO. Box 41, North Harbour,
Portsmouth, Hampshire PO6 3AU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BIESIEGEL,

Michael [DE/US]; 21 Partners Trace, Poughkeepsie,
NY 12603 (US). DELFINO, Jean-Sebastien, Michel

20 March 2003 (20.03.2003) PCT
(51) International Patent Classification’: HO04L 29/06
(21) International Application Number: PCT/GB02/03050

74

81)

84)

[FR/CA]; 139 Ronan Avenue, Toronto, Ontario M4N 2Y2
(CA). PRZYBYLSKI, Piotr [CA/CA]; 85 Thorncliffe
Park Drive, Apt. 704, Toronto, Ontario M4H 11.6 (CA).

Agent: LING, Christopher, John; IBM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Winches-
ter, Hampshire SO21 2JN (GB).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CH, CN, CO, CR, CU, CZ,
DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

Infrastructure

(54) Title: CONFIGURABLE CONNECTOR ADAPTED TO CONVEY DATA BETWEEN A FIRST APPLICATION AND A
SECOND APPLICATION

F— Client/Application Component
14

E\‘lz "

10—

s ; A 18
Communications Lmk\/ -
18 v

16
Target System
16

Application Component

20

(57) Abstract: Embodiments of the present invention provide a connector (10) adapted to convey data between a first application

~~ (14) and a second application (or application components (20)). The applications may be hosted by different computer systems

interconnected by a communications link (18) or network. The connector in addition to being interposed between the first and second
application is adapted to communicate with one or more protocol handlers (wherein a protocol handler provides the formatting of
data to conform with a specific protocol - e.g., HI'TP, SOAP, etc.). The protocol handlers configure the connector thus allowing
data received by the connector from the first application to be serviced (e.g., formatted) to conform to the protocol provided by the
protocol handler which has been "plugged" into the connector.

w0 03/024055 A1 NI 000 000N

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 03/024055 PCT/GB02/03050

CONFIGURABLE CONNECTOR ADAPTED TO CONVEY DATA BETWEEN A FIRST APPLICATION
AND A SECOND APPLICATION

Field Of The Invention

This invention relates generally to the field of computer
communications. More particularly, the invention relates to a

configurable connector for facilitating data exchange.

Background Of The Invention

In recent years, there has been a dramatic increase in the use of
computer networks for sharing information. Although local area networks
(LANs) and the Internet have existed for some time, a few simple protocols
for data exchange sufficed in these generally homogenous networks. The
very rapid increase in the use of the World Wide Web has resulted in the
interconnection of large numbers of computer systems. Over time many

protocols for data exchange have been developed.

Typically these protocols define a mechanism for packaging data to
be transmitted from one computer system to another. A typical protocol
defines an envelope or header that is assembled when data is to be
transmitted. The envelope may define quality of service information and
other information about the transmitting computer gystem and/or the data.
The envelope and data are then assembled into a message and transmitted to

the receiving computer system.

Every software component, or client, that transmits data according
to the protocol must format the data in accordance with the protocol by
generating the envelope in the required format and combining it with the
data in a required manner. Typically, this is done by using a protocol
handler that assembles the envelope and manages the transmission and

reception of envelope and data.

When the protocol is modified, for example, by changing the format
of the envelope or by adding or replacing parts of the protocol, the
protocol handler must typically be modified. In many cases, the software
component using the protocol must also be modified. Such modifications
can be time-consuming and costly. For a large company that uses many
different software components, each of which must be modified to
accommodate changes in a communication protocol, the cost of modifying or

purchasing updates for each component can be substantial. When the

WO 03/024055 PCT/GB02/03050

components use a variety of different protocols, the cost can become

overwhelming.

It is preferable to connect computer systems with a connector that
allows a data transmission protocol to be modified without requiring
modification of the software that uses the protocol. Preferably, the
connector is configurable so that it can handle and process data of any

format.

Digsclosure Of The Invention

embodiments of the present invention provide a connector adapted to convey
data between a first application and a second application (or application
components). The applications may be hosted by different computer systems

interconnected by a communications link or network.

The connector in addition to being interposed between the first and
second application is adapted to communicate with one or more protocol
handlers (wherein a protocol handler provides the formatting of data to
conform with a specific protocol - e.g., HTTP, SOAP, etc.). The protocol
handlers configure the connector thus allowing data received by the
connector from the first application to be serviced (e.g., formatted) to
conform to the protocol provided by the protocol handler which has been

"plugged" into the connector.

In an exemplary embodiment, a connector, embodying aspects of the
invention, is adapted to receive and transmit data from the first
application in the form of objects. These objects include two functions
(or methods): a "read" method, which is adapted to read information
stored within the object (e.g., get property values); and a "write"

information (e.g., set properties) to the object.

In an exemplary operation, a connector, embodying aspects of the
invention, receives, from the first application, an object containing data
for transmittal ("payload data") to the second application using the
communications link. The connector which has been configured to provide a
protocol service (through the "plugging" in of a protocol handler)
receives the object. This received object is then passed by the connector
to the protocol handler. The protocol handler processes the data
contained therein (through use of the "read" and "write" methods) in
accordance with the protocol supported by the handler and generates a

packet or envelope containing the payload data. The packet is then passed

WO 03/024055 PCT/GB02/03050

to the connector. The connector then passes the packet to the

communications link for transmission.

The connector also performs the same operations (in reverse) for
objects received through the communications link. That is, a packet
received by the connector from the second application (and transmitted
over the communications link), is transferred to the protocol handler
which extracts the payload data and, using the "write" method, populates
an object which is then passed to the connector. The connector then

passes this populated object to the first application.

As will be appreciated, embodiments of the invention provide a
static interface to the first application. As a result, if a change is
made to the protocol being employed for communication between the first
and second application is modified or replaced with a different protocol,
the first application need not be modified. Rather, the connector is
reconfigured by unplugging the protocol handler supporting the previously
employed protocol and a new protocol handler (supported the newly employed

protocol) is plugged into the connector.

In one aspect, the present invention provides a connector for
facilitating data transfer between a first and second application, said
connector providing data conversion service for communications between
said first and second applications, said connector comprising: a receiver
adapted to: receive data from said first application; and receive
formatted data from a protocol handler, said protocol handler supporting a
communications protocol; a transmitter adapted to: transmit formatted
data received from said protocol handler to said second application; and
transmit data received from said first application to said protocol
handler, said protocol handler converting said received data into
formatted data; and wherein said data conversion service provided by said
connector is determined by said communications protocol supported by said

protocol handler.

In a further aspect, the present invention provides a connector for
facilitating data transfer between a first and second application, said
connector comprising: a first interface adapted to communicate with said
first application; a second interface adapted to communicate with a
protocol handler; a third interface adapted to communicate with said
second application; and a processing core in communication with said
first, second and third interfaces, said processing core adapted to:

transmit data to and receive data from said first application through said

WO 03/024055 PCT/GB02/03050

first interface; forward data received from said first application to
said protocol handler through said second interface; forward formatted
data received from said protocol handler through said second interface to
said second application through said third interface; forward data
received from said protocol handler through said second interface to said
first application through said first interface; and forward formatted
data received from said second application through said third interface to

said protocol handler through said second interface.

In a further aspect, the present invention provides a connector
interposed between a first and second application, said connector
comprising: a first interface for communication with said first
application; a second interface for communication with said second
application; a configuration interface adapted to removabiy receive a
selected protocol handler from a plurality of prbtocol handlers; wherein
said connector provides data conversion services for communication between
said first and second applications, said data conversion services
determined by said selected protocol handler received by said

configuration interface.

In a further aspect, the present invention provides a connector for
providing a plurality of different data conversion services for
facilitating communication between a first application and a second
application, said connector communicating with said first application
using a first data format and said connector communicating with said
second application using a second data format, said connector comprising:
a first means for transferring data conforming to said firsf data format
between said connector and said first application; a second means for
transferring data conforming to said second data format between said
connector and said second application; configuration interface means for
removably receiving a first protocol handler, said protocol handler
converting between said first data format and said second data format;
and wherein, if said second data format is modified, said first protocol
handler is replaced with a second protocol handler, said second protocol
handler converting between said first data format and said modified second

data format.

In a further aspect the present invention provides a method of
sending data from a component operating in an infrastructure to a target
system across a communication line, comprising: (a) configuring an
outgoing protocol handler to convert outgoing data into an outgoing

message; (b) establishing a connection between said infrastructure and

WO 03/024055 PCT/GB02/03050

said communication line; (c) receiving an output record containing said
outgoing data from said component; and (d) transmitting said outgoing

data on said communication line.

In a further aspect, the present invention provides a method of

receiving incoming data transmitted over a communication link by a target

system to a component comprising: (a) configuring an incoming protocol
handler to extract said incoming data from an incoming message; (Db)
receiving said incoming message from said communication line; (c)

extracting said incoming data from said incoming message by invoking said
incoming protocol handler; and (d) providing said incoming data to said

component.

In a further aspect, the present invention provides a computer
readable medium contain instructions for implementing a method of sending
data from a component operating in an infrastructure to a target system
across a communication line, comprising:

(a) configuring an outgoing protocol handler to convert outgoing
data into an outgoing message;

(b) establishing a connection between said infrastructure and said
communication line;

(c) receiving an output record containing said outgoing data from
said component;

(d) transmitting said outgoing data on said communication line.

In a further aspect, the present invention provides a computer
readable medium containing instructions for implanting a method of
receiving incoming data transmitted over a communication link by a target
system to a component comprising:

(a) configuring an incoming protocol handler to extract said
incoming data from an incoming message;

(b) receiving said incoming message from said communication line;

(c) extracting said incoming data from said incoming message by
invoking said incoming protocol handler; and

(d) providing said incoming data to said component.

In a further aspect, the present invention provides a method for
facilitating data transfer between a first and second application, said
method providing data conversion service for communications between said
first and second applications, said method comprising: receiving data
from said first application and formatted data from a protocol handler,

said protocol handler supporting a communications protocol; transmitting

WO 03/024055 PCT/GB02/03050

formatted data received from said protocol handler to said second
application; and wherein said data conversion service provided is
determined by said communications protocol supported by said protocol

handler.

In a further aspect, the present invention provides a method for
facilitating data transfer between a first and second application, said
method comprising: transmitting data to and receive data from said first
application through a first interface; forwarding data received from said
first application to said protocol handler through a second interface;
forwarding formatted data received from said protocol handler through said
second interxface to said second application through a third interface;
forwarding data received from said protocol handler through said second
interface to said first application through said first interface; and
forwarding formatted data received from said second application through
said third interface to said protocol handler through said second

interface.

In a further aspect, the present invention provides a method for
facilitating communication between a first and second application, said
method comprising: presenting a first interface for communication with
said first application; presenting a second interface for communication
with said second application; presenting a configuration intexface
adapted to removably receive a selected protocol handler from a plurality
of protocol handlers, wherein said connector provides data conversion
services for communication between said first and second applications,
said data conversion services determined by said selected protocol handler
received by said configuration interface; passing first data received
from said first application destined for said second application to a
removably received protocol handler for data conversion; passing
converted first data received from a removably received protocol handler
to said second application; passing second data received from said second
application to said protocol handler for conversion; and passing

converted second data to said first application.

In a further aspect, the present invention provides a computer
readable media storing data and instructions, said data and instructions
for adapting a computer system to facilitate data transfer between a first
and second application, said coﬁputer system providing data conversion
service for communications between said first and second applications,
said data and instructions adapting said computer system to: receive data

from said first application and formatted data from a protocol handler,

WO 03/024055 PCT/GB02/03050

said protocol handler supporting a communications protocol; transmit
formatted data received from said protocol handler to said second
application; and wherein said data conversion service provided is
determined by said communications protocol supported by said protocol

handler.

In a further aspect, the present invention provides a computer
readable media storing data and instructions, said data and instructions
for adapting a computer system to facilitate data transfer between a first
and second application, said data and instructions adapting said computer
system to: transmit data to and receive data from said first application
through a first interface; forward data received from said first
application to said protocol handler through a second interface; forward
formatted data received from said protocol handler through said second
interface to said second application through a third interface; forward
data received from said protocol handler through said second interface to
said first application through said first interface; and forward
formatted data received from said second application through said third

interface to said protocol handler through said second interface.

In a further aspect, the present invention provides a computer
readable media storing data and instructions, said data and instructions
for adapting a computer system to facilitate communication between a first
and second application, said data and instructions adapting said computer
system to: present a first interface for communication with said first
application; present a second interface for communication with said
second application; present a configuration interface adapted to
removably receive a selected protocol handler from a plurality of protocol
handlers, wherein said connector provides data conversion services for
communication between said first and second applications, said data
conversion services determined by said selected protocol handler received
by said configuration interface; pass first data received from said first
application destined for said second application to a removably received
protocol handler for data conversion; passing converted first data
received from a removably received protocol handler to said second
application; pass second data received from said second application to
said protocol handler for conversion; and pass converted second data to

said first application.

In another aspect, the present invention provides: a J2EE compliant

connector comprising the classes:

WO 03/024055 PCT/GB02/03050

(a) B2BConnection;

(b) B2BConnectionFactory;

(c) B2BConnectionMetabData;

(d) B2BConnectionRequestInfo;

(e) B2BConnectionSpec;

(£) B2BInteraction;

(g) B2BInteractionSpec;

(h) B2BManagedConnectionFactory;
(1) B2BManagedConnection;

(3) B2BManagedConnectionMetaData;
(k) B2BPayloadBufferRecord;

(1) B2BPayloadMappingRecord;

(m) B2BProtocolRecord;

(n) B2BResourceAdapterMetaData;

(o) B2BQOS;

(p) Protocol2ServiceMessageMapping; and
(@) ServiceMessage2ProtocolMapping.

Other aspects of the invention includes any of the above aspects and
embodiments provided on a computer readable medium. Other features and
aspects of the invention are described in the following detailed

description of a preferred embodiment of the invention.

Brief Description Of The Drawings
The present invention will now be explained by way of example only

with reference to the drawings, in which:

Figure 1 is a block diagram of a connector according to the present
invention and a system for using the connector;

Figure 2 is a more detailed block diagram of the connector of Figure
1; and

Figures 3, 4 and 5 are communication and data flow diagrams

illustrating the operation of the connector of Figure 1.

Detailed Description Of The Invention

In overview, the exemplary embodiment described herein provides a
connector adapted to convey data between a first (client) application and
a second (target) application (or application components). The
applications are hosted by different computer systems interconnected by a
communications link or network. However, as will be appreciated, the
first and second applications could be, in alternative embodiments, hosted

by the same computer system.

WO 03/024055 PCT/GB02/03050

The connector in addition to being interposed between the first and
second application is adapted to communicate with one or more protocol
handlers (wherein a protocol handler provides the formatting of data to
conform with a specific protocol - e.g., HTTP, SOAP, etc.). The protocol
handlers configure the connector thus allowing data received by the
connector from the first application to be serviced (e.g., formatted) to
conform to the protocol provided by the protocol handler which has been

"plugged" into the connector.

In the exemplary embodiment, a connector, embodying aspects of the
invention, is adapted to receive and transmit data from the first
application in the form of objects. These objects include two functions
(or methods): a "read" method, which is adapted to read information
stored within the object (e.g., get property values); and a "write"

information (e.g., set properties) to the object.

In an exemplary operation, a connector, embodying aspects of the
invention, receives, from the first application, an object containing data
for transmittal ("payload data") to the second application using the
communications link. The connector which has been configured to provide a
protocol service (through the "plugging" in of a protocol handler)
receives the object. This received object is then passed by the connector
to the protocol handler. The protocol handler processes the data
contained therein (through use of the "read" and "write" methods) in
accordance with the protocol supported by the handler and generates a
packet or envelope containing the payload data. The packet is then passed
to the connector. The connector then passes the packet to the

communications link for transmission to the second (target) application.

The connector also performs the same operations (in reverse) for
data received through the communications link. That is, a packet received
by the connector from the second application (and transmitted over the
communications link), is transferred to the protocol handler which
extracts the payload data and, using the "write" method, populates an
object which is then passed to the connector. The connector then passes
this populated object to the first application. In the exemplary
embodiment, the object populated by the protocol handler may be provided
by to the connector by the first application or, altermatively, the

connector may create an object (a generic object) which the populated.

As will be appreciated, embodiments of the invention provide a

static interface to the first application. As a result, if a change is

WO 03/024055 PCT/GB02/03050

10

made to the protocol being employed for communication between the first
and second application is modified or replaced with a different protocol,
the first application need not be modified. Rather, the connector is
reconfigured by unplugging the protocol handler supporting the previously
employed protocol and a new protocol handler (supported the newly employed

protocol) is plugged into the connector.

As will be further appreciated, if a protocol changes, the
application component is "unaware" of the change in the protocol handler
and the machinations performed thereby (since the application component
communicates only with the comnector). Other advantages of the present
invention will be appreciated by those of ordinary skill in the art upon

reading the entirety of the specification.

Reference is first made to Figure 1, which illustrates a connector
10 according to the present invention. Connector 10 operates within an
infrastructure 12, which will typically be a computer system.
Infrastructure 12 may be referred to as a platform, and may include an
operating system and other software and hardware. An application
component 14 (or client) is also operative within infrastructure 12. In
this exemplary embodiment, component 14 is configured to use XML to format
outgoing data that is sent, using a bi-directional communication link 18,
to a target computer system 16 for use by an application component 20
operating within target system 16. Application component 20 returns
incoming data, also formatted using XML, using communications link 18. 1In
another embodiment, the incoming and outgoing data may be formatted using

any other format or method.

Connector 10 allows component 14 to transmit outgoing data and
receive incoming data using communication link 18. Communication link 18
may be a fixed link established between infrastructure 12 and target
system 16. Alternatively, communication link 18 may be a transient or
persistent link established over a network such as the Internet, a LAN or
a WAN using a transport protocol, for example HTTP or MQSeries, made

available through the J2EE Connector Architecture interfaces.

Connector 10 accesses communication link 18 through infrastructure
12, using its security and other services. Communication link 18 operates
using a selected transport protocol. In this exemplary embodiment,
communication link 18 operates using the HTTP protocol as its transport
protocol and Simple Object Access Protocol (SOAP) as the data format. The

SOAP protocol is described on the Internet at www.w3.org/TR/SOAP, version

WO 03/024055 PCT/GB02/03050

11

1.1, the contents of which are hereby incorporated herein by reference.
The SOAP protocol, like most other protocols, specifies an envelope that
is added to data to form a message that is transmitted via communication

link 18.

The present exemplary embodiment of the invention is consistent with
the Java 2, Enterprise Edition Connector Architecture, Proposed Final
Draft 2 document, which is available on the Internet at
http://java.sun.com/j2ee/download.html#connectorspec (the "J2EE Connector
Architecture Specification", version 1.0, proposed final draft 2, released
April 4, 2001), the contents of which are hereby incorporated herein by

reference.

Exemplary connector 10 is intended to allow "Business-to-Business"
(B2B) computer connections. However, this usage is merely exemplary and
connector 10 is equally suitable for connecting any types of computer
systems or infrastructures to one another. The use of "B2B" is only
exemplary and the names of the classes and methods of connector 10, which

are described below, may be varied within the scope of the invention.

Connector 10 includes the following classes:

1. B2BConnection

2. B2BConnectionFactory

3. B2BConnectionMetaData

4. B2BConnectionRequestInfo

5. B2BConnectionSpec

6. B2BInteraction

7. B2BInteractionSpec

8. B2BManagedConnectionFactory

9. B2BManagedConnection

10. B2BManagedConnectionMetaData
11. B2BPayloadBufferRecord

12. B2BPayloadMappingRecord

13. B2BProtocolRecord

14. B2BResourcelAdapterMetaData

15. B2BQOS

16. Protocol2ServiceMessageMapping
17. ServiceMessage2ProtocolMapping

The functionality of each of these classes and interfaces is

discussed below.

WO 03/024055 PCT/GB02/03050

12

1. B2BConnection class

The B2BConnection class includes the following methods:
B2BConnection (ManagedConnection)
void call (InteractionSpec, Record, Record)
void close()
Interaction createInteraction()
boolean getAutoCommit ()
LocalTransaction getLocalTransaction()
B2BManagedConnection getManaged ()
ConnectionMetaData getMetaData()
ResultSetInfo getResultSetInfo()
void logTrace (String)
void setAutoCommit (boolean)
void setLogWriter (PrintWriter)

void setManaged (B2BManagedConnection)

The B2BConnection c¢lass represents an application handle of
component 14 to the communication link 18. A B2Bconnection object is
created by the B2BConnectionFactory class and is associated with a
particular B2BManagedConnection instance through which data is transmitted
on communication link 18. The B2BConnection object creates B2BInteraction

objects, using its createInteraction() method implementation.

The B2BConnection object throws a
javax.resource.NotSupportedException from the following methods:
setAutoCommit (boolean), getLocalTransaction(), getAutoCommit () and
getResultSetInfo() .

The close request (in the close() method implementation) passes the

close request to the associated B2BManagedConnection instance.
This class handles interaction requests from the B2BInteraction
objects it creates, in the call() method, which is implemented in addition

to the required interface methods by passing the execution request along

with its instance to the associated B2BManagedConnection instance.

2. B2BconnectionFactory

The B2BConnectionFactory class includes the following methods:

WO 03/024055 PCT/GB02/03050

13

B2BConnectionFactory ()

B2BConnectionFactory (ConnectionManager)

Connection getConnection()

Connection getConnection (ConnectionSpec)

Connection getConnection (Map)
ManagedConnectionFactory getManagedConnectionFactory ()
ResourceAdapterMetaData getMetaData ()

RecordFactory getRecordFactory ()

Reference getReference()

Service getService()

void logTrace (String)

void setConnectionManager (ConnectionManager)

void setManagedConnectionFactory (ManagedConnectionFactory)

void setReference (Reference)

The B2BConnectionFactory class represents objects capable of
creating active connections using communication link 18. It is
instantiated by and maintains an association with an instance of the
B2BManagedConnectionFactory. It also contains an instance of the
ConnectionManager class which it uses to obtain connections during the

connection request, in the getConnection() method implementations.

3. B2BConnectionMetaData

The B2BConnectionMetaData class includes the following methods:

B2BConnectionMetaData (B2BConnection)
String getEISProductName ()

String getEISProductVersion ()
String getUserName ()

The B2BconnectionMetaData class is an object used to store
connection information. It contains accessor methods to retrieve the
following information:

EISProductName

EISProductVersion

UserName

4, B2BConnectionRequestInfo

The B2BConnectionRequestInfo class includes the following methods:

WO 03/024055 PCT/GB02/03050

14

boolean equals (Object)
String getPassword ()
String getUserName ()

int hashCode ()

void setPassword(String)

void setUserName (String)

The B2BConnectionRequestInfo class contains the connection specific
information that does not change the characteristics of a
B2BManagedConnection object. In this exemplary embodiment, a
B2BconnectionRequestInfo object contains a user name and password. The
user name and password represent credentials of the component 14, and are

used to authenticate the component 14.

S. B2BConnectionSpec

The B2BConnectionSpec class includes the following methods:
boolean equals (Object)
String getPassword()
String getUserName ()
int hashCode ()
void setPassword(String)

void setUserName (String)
The B2BconnectionSpec class represents application level access to
the connection specific information corresponding to the information

contained in an associated B2BconnectionRequestInfo object.

6. B2Binteraction

The B2BInteraction class includes the following methods:

B2BInteraction (Connection)

void clearWarnings ()

void close()

Record execute (InteractionSpec, Record)

boolean execute (InteractionSpec, Record, Record)
Connection getConnection ()

RecordFactory getRecordFactory ()
ResourceWarning getWarnings()

void logTrace (String)

void setLogWriter (PrintWriter)

WO 03/024055 PCT/GB02/03050

15

The B2BInteraction class represents objects used by component 14 to
perform communications with target system 16 through the connector 10 over
communications link 18. The B2BInteraction object is created by the
B2BConnection class, which maintains a reference to this object. The
execution request from either of the B2Binteraction class's execute()
methods is passed to the associated B2BConnection instance for processing

(by invoking the call() method).

If the execute method with only an input record is invoked (Record
execute (InteractionSpec, Record)), the B2BInteraction creates a new
instance of the B2BPayloadBufferRecord and passes it to the call method as

the output record.

Since the B2BInteraction does not maintain any state, the
implementation of the close method does not perform any operation except
verifying that it is not already closed. If it is, i.e. the close method
had been previously invoked, the method throws javax.resource.spi.
IllegalStateException. This exception is also thrown if one of the

execute () methods is invoked when the B2BInteraction has been closed.

7. B2BInteractionSpec

The B2BInteractionSpec class includes the following methods:
int getlInteractionVerb ()
InteractionSpec getTransportInteractionSpec ()
void setInteractionVerb (int)

void setTransportInteractionSpec (InteractionSpec)

The B2BInteractionSpec interface extends the InteractionSpec
interface of the J2EE Connector Architecture. The B2BInteractionSpec is
used to configure the behavior of connector 10 with respect to the
communication link 18 being used. The implementation of
B2BInteractionSpec is provided by the provider of the
ServiceMessage2ProtocolMapping and Protocol2ServiceMessageMapping protocol
handlers. B2BInteractionSpec contains methods to set and retrieve the
InteractionVerb of the B2BInteractionSpec that determines the type of the
interaction to be performed (send, receive or send_receive) and the type
transport InteractionSpec. The latter determines properties of the

interaction performed using the selected transport protocol.

The B2BInteractionSpec provides an interface between connector 10

and application 14. Additionally, B2BInteractionSpec provides an

WO 03/024055 PCT/GB02/03050

16

interface with communication link 18 (and, thus, application component 20
of target computer system 16). Additionally, B2BInteractionSpec provides
an interface for configuring comnector 10 to provide the data conversion
process (i.e., processing or converting data received from application
component 14 into a format for transmittal to application component 20 on
communications link 18). As such, in this latter feature,
B2BInteractionSpec provides a configuration interface so that connector 10
can be engage or interfaced with a protocol handler 24. The protocol

handler 24 being removably engaged or interfaced with connector 10.

B2BInteractionSpec provides a portion of the processing core (e.g.,
the receiving and transmittal of the various forms data from application
component 14, application component 20 and protocol handler 24) of

connector 10.

This processing core, for which B2BInteractionSpec forms a part,
acts as a receiver of data from application 14 (which conforms to one data
format - an object in the exemplary embodiment) and data which has been
converted from a packet or envelope. Additionally, the processing core
acts as transmitter for date which requires transmission to applications

14 and 20. Accordingly, connector 10, in part, acts as a transceiver.

As will be appreciated, connector 10 provides three interfaces to
three elements: application 14, application 20 and protocol handler 24.
However, much of these three interfaces are provided by

B2BInteractionSpec.

8. B2BManagedConnectionFactory

The B2BManagedConnectionFactory class includes the following

methods:

B2BManagedConnection (Subject, ConnectionRequestInfo)
void addConnectionEventListener (ConnectionEventListener)
void associateConnection (Object)

void call (B2BConnection, InteractionSpec, Record, Record)
void cleanup()

void close (B2BConnection)

void destroy()

void errorOccurred (Exception)

Object getConnection(Subject, ConnectionRequestInfo)

LocalTransaction getLocalTransaction()

WO 03/024055 PCT/GB02/03050

17

PrintWriter getLogWriter ()

ManagedConnectionMetaData getMetaData ()

Subject getSecurityContext ()

String getUserName ()

XAResource getXAResource ()

boolean isDirty()

void logTrace (String)

void removeConnectionEventListener (ConnectionEventListener)
void setDirty(boolean)

void setLogWriter (PrintWriter)

void setManagedConnectionFactory (B2BManagedConnectionFactory)

The B2BManagedConnectionFactory creates physical connections over
communications link 18. This is done by using the
createManagedConnection() method to create instances of the
B2BManagedConnection that use communication link 18 to perform actual

communication with target system 16.

The B2BManagedConnectionFactory allows the behavior of connector 10

to be configured by providing accessors for the following properties:

Protocol2ServiceMessageMapping - this property contains an instance
of a custom protocol handler capable of processing inbound messages
received by the connector 10 from communication link 18 and interpreting
the envelope in the message. The Protocol2ServerMessageMapping property

extracts data from an incoming message and forwards it to component 14.

ServiceMessage2ProtocolMapping - this property contains an instance
of a custom protocol handler capable of receiving output data from
component 14 and producing an envelope consistent with the protocol used

by communications link 18 to produce a message suitable for transmission.

TransportSpec - this property is an instance of the
B2BManagedConnectionTransportSpec object that defines the transport

protocol to be used by connector 10.

Alternatively, the transport protocol may be the protocol used by
communication link 18, or it may be a protocol understood by any other
connector that complies with the J2EE Connector Architecture. This allows
connector 10 to be stacked, with another connector. In this case, the
TransportSpec property contains an instance of the transport protocol's

ConnectionFactory, which is used to create connections, and an instance of

WO 03/024055 PCT/GB02/03050

18

the transport protocol's InteractionSpec, which characterizes interactions

performed by connector 10 using this specific transport protocol.

If connector 10 is not stacked with another connector, then the
TransportSpec property is undefined. 1In this case, connector 10 must
perform communications on communication link 18 using communication link
specific interfaces set out in the implementation of the

B2BManagedConnection's call() method.

TransportSpecName - the name of the transport protocol to be used.
If the transportSpec property is not defined, but the TransportSpecName
property is specified, the B2BManagedConnectionFactory will attempt to
retrieve the TransportSpec object from the JNDI context by looking up the

TransportSpecName, in the createTransportSpec() method implementation.

HttpTransportURL - if the transport protocol is the HTTP protocol,
the URL address of system 16 may be specified directly using this
property, without providing transport specification in any other way (i.e.
without using the TransportSpec and TransportSpecName properties). The

HTTP protocol is a default transport for connector 10.

The B2BManagedConnectionFactory class also implements methods

required by the J2EE Connector Architecture specification, such as:

(i) createConnectionFactory(..) that creates B2BConnectionFactory
objects,

(ii) equals() that compares instances of the B2BManagecConnectionFactory,

(iii) get/setLogWriter() to specify the logging facility,

(iv) hashCode() calculating the hash value of the factory instance, and

(v) matchManagedConnections (), a method that selects from a candidate
set he B2BManagedConnection instance's best matching component's

request.

9. B2BManagedConnection

The B2BManagedConnection class includes the following methods:

Object createConnectionFactory()

Object createConnectionFactory{ConnectionManager)

ManagedConnection createManagedConnection(Subject, ConnectionRequestInfo)
void createTransportSpec ()

boolean equals (Object)

WO 03/024055 PCT/GB02/03050

19

String getHttpTransportURL()

PrintWriter getLogWriter ()

Protocol2ServiceMessageMapping getProtocol2ServiceMessageMapping ()
ServiceMessage2ProtocolMapping getServiceMessage2ProtocolMapping ()
B2BManagedConnectionTransportSpec getTransportSpec ()

String getTransportSpecName ()

int hashCode ()

void logTrace (String)

The B2BManagedConnection class represents a physical connection on
communication link 18 to target system 16. B2BManagedConnection
instantiates B2BConnections, which component 14 uses to access the

physical connection.

The B2BManagedConnection supports multiple handles, however only the
most recently created handle can be used to perform interactions. An
attempt to the access the physical connection from any other handle,
before the last handle created is closed, is treated as an error and

causes the an IllegalStateException to be thrown.

Validation and current handle maintenance is implemented by storing
handles in the stack data structure with the valid (and most recently
created) handle at the top. Each access to the physical connection from
the B2BConnection is validated against this data structure and the

appropriate action is taken.

B2BManagedConnection class implements support for the construction
of the generic envelope enclosing outgoing data being. sent by connector 10
by allowing the configured outbound protocol handler
ServiceMessage2ProtocolMapping to add the protocol specific envelope to

produce an outgoing message.

The call() method, implemented in addition to methods defined on the
interface, of B2BManagedConnection is a protected method that invokes the
ServiceMessage2ProtocolMapping and Protocol2ServiceMessageMapping protocol
handlers. The call() method passes the current handle, InteractionSpec,

input and output records to the protocol handler.

The B2B ManagedConnection class also implements the following

methods that are used to manage connections:

WO 03/024055 PCT/GB02/03050

(1)

20

void associateConnection (Object) - in this method, the passed
B2BRConnection object is disassociated from its current
B2BManagedConnection, by invoking its close method and then
associated with this managed connection. After execution, the
passed B2BConnection is the current handle to the

B2BManagedConnection;

(ii) void cleanup() this method empties the connection handles stack;

(iii) void close(B2BConnection) - in this method the B2BManagedConnection
removes the handle that invoked the method from the top of the stack
and fires CONNECTION_CLOSED event;

(iv) void destroy() - this method cleans up the internal state of the
B2BManagedConnection by emptying and deallocating handles stack; and

(v) Object getConnection(Subject, ConnectionRequestInfo) - in this
method, a new connection handle is created, put on the top of the
handles stack and returned.

10. B2BManagedConnectionMetaData
The B2BManagedConnectionMetaData class includes the following

methods:

B2BManagedConnectionMetaData (B2BManagedConnection)

String getEISProductName ()

String getEISProductVersion()

int getMaxConnections ()

String getUsexrName ()
B2BPayloadBufferRecord

Object clone()

String getRecordName ()

String getRecordShortDescription ()

void read(InputStream)

void setRecordName (String)

void setRecordShortDescription (String)

void write (OutputStream)

The B2BManagedConnectionMetaData class provides information about

connector 10 such as target system 16 product and version, max number of

WO 03/024055 PCT/GB02/03050

21

connections supported by the target system 16 and the user name of the

component 14.

11. 1B2BPavloadBufferRecord

The B2BPayloadBufferRecord implements methods defined by the J2EE
Connector Architecture specification interfaces it implements (Record and

Streamable). These methods are:

clone ()

equals (Object)

getRecordName ()
getRecordShortDescription ()
hashCode ()

setRecordName (String)
setRecordShortDescription (String)
read (InputStream)

write (OutputStream)

The B2BPayloadBufferRecord class implements payload record,
javax.resource.cci.Record and javax.resource.cci.Streamable interfaces
from the J2EE Connector Architecture specification and therefore can be
used as an argument to the execute() method of the Interaction. Connector
10 uses B2BPayloadBufferRecord as the output record in the implementation

of the execute() method of the B2BInteraction with input only argument.

12. B2BPavlocadMappingRecord

The B2BPayloadMappingRecord class includes the following methods:

Object clone()

String getRecordName ()

String getRecordShortDescription()
void read (InputStream)

void setRecordName (String)

void setRecordShortDescription(String)
void setX2XMLMapping (X2XMLMapping)
void setXML2xMapping (XML2xMapping)

void write (OutputStream)

WO 03/024055 PCT/GB02/03050

22

The B2BPayloadMappingRecord implements a record whose contents can
be written out or read into using mapping. This implementation can be

used to map the contents of an arbitrary record to XML.

13. B2BProtocolRecord

The B2BProtocolRecord class includes the following methods:

Object clone ()

String getRecordName ()

String getRecordShortDescription ()

void read (InputStream)

void setB2BInteractionSpec (B2BInteractionSpec)

void setB2BQOS (B2BQOS)

void setProtocol2ServiceMessageMapping (Protoceol2ServiceMessageMapping)
void setProtocol2ServiceResponseMapping (Protocol2ServiceMessageMapping)
void setRecord (Record)

void setRecordName (String)

void setRecordShortDescription(String)

void setServiceMessage2ProtocolMapping(ServiceMessage2ProtocolMapping)

void write (OutputStream)

The role and operation of the B2BProtocolRecord class is described in the

description of transaction 100, described below.

14. B2BresourceAdapterMetaData

The B2BResourceAdapterMetaData class includes the following methods:

String getAdapterName ()

String getAdapterShortDescription()

String getAdapterVendorName ()

String getAdapterVersion ()

String getInteractionSpecsSupported ()

String getSpecVersion()

boolean supportsExecuteWithInputAndOutputRecord ()
boolean supportsExecuteWithInputRecordOnly ()

boolean supportslLocalTransactionDemarcation ()

The B2BResourceAdapterMetaData class provides component 14 with the
characteristics of the connector 10 such as name, description, vendor

name, adapter version and specification version supported. It also

WO 03/024055 PCT/GB02/03050

23

contains information describing which optional features of the J2EE
Connector Architecture have been implemented, such as names of
InteractionSpec implementation classes, which type of execute() methods

connector 10 supports and whether connector 10 supports local

transactions.
15. B2BQOS

This class is provided to allow the implementor of the connector to
pass various quality of service (QOS) information. The QOS can include,
transactional information, authentication information and authorization
information. The implementation of this method depends on the
capabilities of the infrastructure 12 and therefore the invention does not
define any methods of the class. These methods will be defined by the

implementor of the class for the specific infrastructure 12.

16. Protocol2ServiceMessageMapping

The Protocol2ServiceMessageMapping class includes the following
methods:
void execute ()
void setB2BInteractionSpec (B2BInteractionSpec)
void setB2BQOS (B2BQOS)
void setInputStream(InputStream)

void setRecord (Recoxd)

The Protocol2ServiceMessageMapping class is a protocol handler used
by connector 10 to convert an incoming message received on communication
link 18 into incoming data for use by component 14. The
Protocol2ServiceMessageMapping is implemented by a provider of connector
10 or another entity in accordance with the selected transport protocol or
data protocol. When a change is made in the transport protocel or data
protocol, the Protocol2ServiceMessageMapping implementation is
correspondingly modified, allowing connector 10 and component 14 to
utilize the modified transport protocol or data protocol without

modification.

17. ServiceMessage2ProtocolMapping

The ServiceMessage2ProtocolMapping includes the following methods:

WO 03/024055 PCT/GB02/03050

24

void execute()

void setB2BInteractionSpec (B2BInteractionSpec)
void setB2BQOS (B2BQOS)

void setOutputStream(OutputStream)

void setRecord(Record)

The ServiceMessage2ProtocolMapping class is the complement to the
Protocol2ServiceMessageMapping class for outgoing messages. It is
similarly implemented and kept up to date by the provider of connector 10
so that it is consistent with the current version of the selected

transport protocol or data protocol.

Reference is next made to Figure 2. Collectively, the
Protocol2ServiceMessageMapping and ServiceMessage2ProtocolMapping mapping
classes provide a protocol handler 24 that allows component 14 to (i)
transmit outgoing data 26 on communications channel as part of an outgoing
message 28 that includes the outgoing data 26 and an envelope 30 and (ii)
receive incoming data 32 which is extracted from an incoming message 34

that includes an envelope 36.

B2BInteractionSpec class, which is used to configure connector 10
according to the communication link 18, is coupled between protocol
handler 24 and component 14 to allow the type of interaction (send,

receive or send and receive) to be set.

The operation of connector 10 will now be described with reference
to Figures 3, 4 and 5 which illustrate the communication and data flow
during an exemplary transaction 100 between component. 14 and target system
16. Transaction 100 may be a send transaction or a receive transaction,
or a combination send and receive transaction. Steps 102 to 122 of
transaction 100 are common to both the send and receive transactions.
After step 122, transaction 100 divides into branches 200 and 300. Branch
200 is performed if a send transaction is specified. Branch 300 is
performed if a receive transaction is specified. Branches 200 and 300 may
be performed sequentially or they may be performed concurrently. Send and
receive transactions are specified by setting the InteractionVerb property

of the B2BInteractionSpec class.

The exemplary transaction 100 begins in step 102, in which component
14 creates an instance of the B2BManagedConnection Factory and sets its
Protocol2ServiceMessageMapping, ServiceMessage2ProtocolMapping and

TransportSpec properties.

WO 03/024055 PCT/GB02/03050

25

The settings of the Protocol2ServiceMessageMapping and
ServiceMessage2ProtocolMapping properties will depend on the data
transport protocol. In the present exemplary embodiment, the
Protocol2ServiceMessageMapping and ServiceMessage2ProtocolMapping
properties contain a custom handler that handles incoming and outgoing

messages, respectively, using the SOAP protocol.

The TransportSpec property defines the transport protocol of the
connector intended for use as the transport connector. In the present
example, connector 10 is stacked with a J2EE compliant HTTP transport

connector, which allows communication over communication link 18.

During step 102, component 14 uses the createConnectionFactory()
method of the B2BManagedConnectionFactory class to create an instance of a
B2BConnectionFactory. Component 14 then calls the getComnection() method
of the B2BConnectionFactory, causing infrastructure 12 to request a new

connection from the B2BManagedConnectionFactory.

Transaction 100 next proceeds to step 104, in which the
B2BManagedConnectionFactory creates a new instance of the
B2BManagedConnection and sets its properties. One of the properties that
is set is the B2BManagedConnectionFactory itself, which in turn gives the
B2BManagedConnection access to the Protocol2ServiceMessageMapping and

ServiceMessage2ProtocolMapping protocel handlers.

Transaction 100 next proceeds to step 106, the B2BManagedConnection
created in step 104 creates an instance of a B2BConnection. A connection
handle to the B2BManagedConnection, an instance of B2BConnection is

returned to component 14.

Transaction 100 next proceeds to step 108. 1In this step, component
14 requests a B2BInteraction by calling the createlnteraction() method of
the B2BConnection instance. During the call to its createInteraction()
method, B2BConnection creates a new instance of a B2BInteraction object.
The B2BManagedConnectionFactory's TransportSpec object is retrieved and
used to get the ConnectionFactory of the transport protocel. The
TransportSpec object is in turn used to create a Connection object. From
the Connection object, the B2BManagedConnection creates an instance of a

B2BInteraction object.

Transaction 100 next proceeds to step 110, in which the new

B2BInteraction object is returned to component 14.

WO 03/024055 PCT/GB02/03050

26

Transaction 100 next proceeds to step 112, in which component 14
invokeg the execute() method of the new B2BInteraction object. Component
14 passes a B2BInteractionSpec interface and input and output records to

the B2BInteraction object.

The B2BInteractionSpec is an interface to the SOAPInteractionSpec
object of the SOAP protocol that implements, in the current exemplary
embodiment, the B2BInteractionSpec interface. In another embodiment, the
B2BInteractionSpec interface will be an interface consistent with the
Protocol2ServiceMessageMapping and ServiceMessage2ProtocolMapping protocol

handlers specified for the B2BManagedConnectionFactory in step 102.

The input and output records implement the javax.resource.cci.Record
and javax.resource.cci.Streamable interfaces and input record contains XML

data to be sent to target system 16.

Transaction 100 next proceeds to step 114, in which the
B2BInteraction object invokes the call() method of the B2BConnection and

passes the component request to it.

Transaction 100 next proceeds to step 116, B2BConnect invokes the
call() method of the B2BManagedConnection and passes the request from

component 14 and a reference to itself to the B2BManagedConnection.

Transaction 100 next proceeds to step 118, in which
B2BManagedConnection executes the call() method invoked in step 116. In
this step, if the InteractionVerb property of InteractionSpec object is
receive or send_receive,B2BManagedConnection creates a new instance of the

B2BprotocolRecord and then sets its properties as follows:

i. Protocol2ServiceMessageMapping, as set by component 14 in step 102

and received from B2BManagedConnectionFactory;

ii. B2BInteractionSpec, which was passed by component 14 to the

execute () method of the B2BInteraction object in step 112;

iii. the input record, passed by the component to the execute() method of

the B2BInteraction object in step 112; and

iv. a B2BQOS object that contains quality of service information

relating to infrastructure 12.

WO 03/024055 PCT/GB02/03050

27

This B2BProtocolRecord object is the new incoming B2BProtocolRecord

record.

Transaction 100 next proceeds to step 120. If the InteractionVerb
property of InteractionSpec object is send or send receive,
B2BManagedConnection creates a new instance of a B2BProtocolRecord object

and sets its properties as follows:

i. ServiceMessage2ProtocolMapping - taken from the
B2BManagedConnectionFactory instance, as set by component 14 in step

102;

ii. B2BInteractionSpec, which was passed by component 14 to the execute

method() of the B2BInteraction object in step 112;

iii. output record, which was also passed by passed by component 14 to

the execute method() of the B2BInteraction object in step 112; and

iv. a B2BQOS object that contains quality of service information

relating to infrastructure 12.

This B2BProtocolRecord object is the new outgoing B2BProtocolRecord

record.

Transaction 100 next proceeds to step 122, in which the
B2BManagedConnection object invokes the execute() method of the transport
connector's Interaction object. This Interaction was created in step 102
by setting the transportSpec property of the B2BManagedConnection Factory
to identify the transport connector, which in this exemplary embodiment is
an HTTP transport connector. In the present example, both an input
B2BProtocolRecord object and an ouputB2BProtocolRecord object have been

instantiated by B2BManagedConnection.

Transaction 100 then has two branches 200 and 300, which may be

executed separately or in sequence, send then receive.

If the InteractionVerb property of InteractionSpec object is send or

send_receive, then branch 200 will be performed.

Branch 200 begins in step 202, during which transport invokes a

write() method of the input B2BProtocolRecord object.

WO 03/024055 PCT/GB02/03050

28

Branch 200 next proceeds to step 204, in which the write() method
invoked in step 124 is processed. The input B2BProtocolRecord object set
the following properties of the ServiceMessage2ProtocolMapping protocol

handler:

B2BInteractionSpec, Record, B2BQOS (all of which were set in step 118) and
the output stream (i.e. the port on which communication link 18 is
connected to infrastructure 12). The output stream is subsequently passed

as an argument to the write() method by the transport connector.

Branch 200 next proceeds to step 206, in which the execute() method
of the ServiceMessage2ProtocolMapping transport handler is invoked. The
ServiceMessage2ProtocolMapping transport handler writes to the envelope
and the data, taken from the data record passed in step 112. When the
data is written, the execute() returns allowing the return from the

write() method of the B2BProtocolRecord, which was defined in step 124.
Branch 200 then ends.

Neither the B2BProtocolRecord nor the B2B Connector have any
knowledge of the contents of the envelope or the ocutgoing message written
by the ServiceMessage2ProtocolMapping transport handler to the output
stream. Because of this transparency, the ServiceMessage2ProtocolMapping
transport handler can change the data it writes out without the need of

altering connector 10 or component 14 in any way.

Branch 300 illustrates the receive operation of connector 10.
Branch 300 begins in step 302, which is performed after step 122, if a
receive operation has been configured by instantiating an input

B2BProtocolRecord object.

In step 302, the transport connector invokes the read() method of
the input B2BProtocolRecord object and passes the input stream to the read
method. The input stream contains both an envelope and input data from

the target system 16.

Branch 300 next proceeds to step 304, in which the input
B2BProtocolRecord objects sets the following properties of the
Protocol2ServiceMessageMapping object (in a manner analogous to step 120):
data output record, B2BQOS, B2BInteractionSpec and the input stream passed
to the read() method.

WO 03/024055 PCT/GB02/03050

29

Branch 300 next proceeds to step 306, in which the input
B2BProtocolRecord object invokes the execute() method of the
Protocol2ServiceMessageMapping object. The Protocol2ServiceMessageMapping
object reads the envelope and input data from the input stream passed by
the transport connector. The Protocol2ServiceMessageMapping object strips

the envelope and puts the input data only into the output record.

Branch 300 next proceeds to step 308, in which the execute() method
of the Protocol2ServiceMessageMapping returns. At this point, the output
record of the input B2BProtocolRecord object (which was set in step 120)

contains the data, without envelope, transmitted by the target system 16.

Branch 300 next proceeds to step 310, in which the read() method of
the input B2BProtocolRecord object returns.

Branch 300 next proceeds to step 312, in the transport execute()
method returns from the invocation started in step 122. At this point the
B2BManagedConnection returns from its call() method, which was invoked in
step 116. Then B2BConnection returns from its call() method, which was
invoked in step 114. Then B2BInteraction returns from its call() method,
which was invoked in step 112. The output record specified by component

14 in step 112 contains the input data returned from the target system.

Branch 300 therefore provides the incoming data to component 14 with
the envelope removed from it, thereby eliminating any need to modify
component 14 if the protocol used to defined the envelope (the SOAP
protocol in the present embodiment) or the transport protocol (the HTTP
protocol in the present embodiment) is modified or even completely

replaced.

Connector 10 provides a transparent mechanism for a component 14 to
communicate with a target system 16. The assembly and disassembly of
outgoing and incoming message is made transparent. Any change to the
envelope in the messages or in the transport protocol may be addressed by
simply modifying the ServiceMesssage2ProtocolMapping and

Protocol2ServiceMessageMapping protocol handlers.

The present invention has been described in a business-to-business
("B2B") context. The invention is suitable for any context in which a
component requires access to a target system across a communication link.
Furthermore, the use of specific names for the classes, methods, objects

and interfaces of connector 10 and other elements is only exemplary and

WO 03/024055 PCT/GB02/03050

30

any appropriate names may be used. These and other variations of the
described embodiment fall within the spirit and scope of the invention,

which is limited only by the following claims.

As will be appreciated, alternatives to the embodiment described
herein possible. For example, a single connector could removably connect
to multiple applications, communication links and/or protocol handlers
simultanecusly. Additionally, while in the exemplary embodiment objects
were passed between connector and application 14, alternative embodiments
need not pass objects but could pass other data formats. Additionally,
while the exemplary embodiment was described with object oriented
constructs, other language types (e.g., structure languages, etc.) could

equally be employed.

WO 03/024055 PCT/GB02/03050

31

CLAIMS

1. A connector for facilitating data transfer between a first and
second application, said connector providing data conversion service for
communications between said first and second applications, said connector
comprising:

a receiver adapted to:

receive data from said first application; and

receive formatted data from a protocol handler, said protocol
handler supporting a communications protocol,

a transmitter adapted to:

transmit formatted data received from said protocol handler to said
second application; and

transmit data received from said first application to said protocol
handler, said protocol handler converting said received data into
formatted data; and

wherein said data conversion service provided by said connector is
determined by said communications protocol supported by said protocol

handler.

2. The connector of claim 1 wherein said connector is adapted to
communicate with at least one protocol handler of a plurality of protocol
handlers, each of said plurality of protocol handlers supporting a
different communications protocol, and wherein an interface presented to
first application remains static irrespective of the communication

protocol supported by said at least one protocol handler.

3. The connector of claim 2 wherein:

said receiver is further adapted to receive formatted data from said
second application and data from said protocol handler; and

said transmitter is further adapted to transmit formatted data
received from said second application to said protocol handler and data

received from said protocol handler to said first application.

4. The connector of claim 3 wherein said data comprises an object and

wherein said formatted data comprises a packet.

5. The connector of claim 4 wherein:
a packet received from said protocol handler is generated from
payload data stored by an object received from said first application; and
an object transmitted to said first application is generated from

payload data stored within a packet received from said second application.

WO 03/024055 PCT/GB02/03050

32

6. The connector of claim 5 wherein said object includes methods to

read payload data from said object and write payload data to said object.

7. The connector of claim 3 further comprising said at least one
protocol handler and wherein said at least one protocol handler comprises

an incoming protocol handler and an outgoing protocol handler.

8. The connector of claim 7 wherein said incoming protocol handler
generates an object from a packet received by said connector from said
second application and wherein said outgoing protocol handler generates a
packet from an object received by said connector from said first

application.

9. The connector of claim 8 wherein outgoing protocol handler comprises
a B2BServiceMessage2ProtocolMapping protocol handler and wherein said
incoming protocol handler comprises a B2BProtocol2ServiceMessage protocol

handler.

10. A connector for facilitating data transfer between a first and
second application, said connector comprising:

a first interface adapted to communicate with said first
application; ’

a second interface adapted to communicate with a protocol handler;

a third interface adapted to communicate with said second
application; and

a processing core in communication with said first, second and third
interfaces, said processing core adapted to:

transmit data to and receive data from said first application
through said first interface;

forward data received from said first application to said protocol
handler through said second interface;

forward formatted data received from said protocol handler through
said second interface to said second application through said third
interface;

forward data received from said protocol handler through said second
interface to said first application through said first interface; and

forward formatted data received from said second application through
said third interface to said protocol handler through said second

interface.

11. The connector of claim 10 wherein said data comprises an object and

wherein said formatted data comprises a packet.

WO 03/024055 PCT/GB02/03050

33

12. The connector of claim 11 wherein:
a packet received from said protocol handler is generated from
payload data stored by an object received from said first application; and
an object transmitted to said first application is generated from

payload data stored within a packet received from said second application.

13. The connector of claim 12 wherein said first, second and third

interfaces are provided by a single transceiver.

14. A connector interposed between a first and second application, said
connector comprising:

a first interface for communication with said first application;a
second interface for communication with said second application;

a configuration interface adapted to removably receive a selected
protocol handler from a plurality of protocol handlers;

wherein said connector provides data conversion services for
communication between said first and second applications, said data
conversion services determined by said selected protocol handler received

by said configuration interface.

15. A connector for providing a plurality of different data conversion
services for facilitating communication between a first application and a
second application, said connector communicating with said first
application using a first data format and said connector communicating
with said second application using a second data format, said connector
comprising:

a first means for transferring data conforming to said first data
format between said connector and said first application;

a second means for transferring data conforming to said second data
format between said connector and said second application;

configuration interface means for removably receiving a first
protocol handler, said protocol handler converting between said first data
format and said second data format; and

wherein, if said second data format is modified, said first protocol
handler is replaced with a second protocol handler, said second protocol
handler converting between said first data format and said modified second

data format.

16. A method of sending data from a component operating in an
infrastructure to a target system across a communication line, comprising:
(a) configuring an outgoing protocol handler to convert outgoing

data into an outgoing message;

WO 03/024055 PCT/GB02/03050

34
(b) establishing a connection between said infrastructure and said
communication line;
(c) receiving an output record containing said outgoing data from
said component; and
(d) transmitting said outgoing data on said communication line.
17. The method of claim 16 wherein in said outgoing protocol handler is

configured to format said outgoing message according to a selected data

protocol.

18. The method of claim 17 wherein in said outgoing protocol handler is
configured to format said outgoing message according to a selected

transport protocol;

19. The method of claim 16 wherein receiving an output record comprises:
i. creating an output protccol record object;
ii. specifying said output record in said output protocol record
object and
iii. specifying a quality of service object in said output protocol

record object.

20. The method of claim 19 wherein receiving an output record comprises
further comprises:
iv. specifying said outgoing protocol handler in said output

protocol record object.

21. The method of claim 20 wherein receiving an output record comprises
further comprises:
v. specifying a send interaction in said output protocol record

object.

22. The method of claim 21 wherein receiving an output record comprises
further comprises:
vi. specifying a send and receive interaction in said incoming

protocol record object.

23. The method of claim 16 wherein transmitting said outgoing data on

said communication line comprises invoking said protocol handler.

24. A method of receiving incoming data transmitted over a communication

link by a target system to a component comprising:

WO 03/024055 PCT/GB02/03050

35

(a) configuring an incoming protocol handler to extract said
incoming data from an incoming message;

(b) receiving said incoming message from said communication line;

(e) extracting said incoming data from said incoming message by
invoking said incoming protocol handler; and

(d) providing said incoming data to said component.

25. The method of claim 24 wherein said incoming protocol handler is
configured to extract said incoming data from said incoming message

according to a selected protocol.

26. A computer readable medium contain instructions for implementing a
method of sending data from a component operating in an infrastructure to
a target system across a communication line, comprising:

(a) configuring an outgoing protocol handler to convert outgoing
data into an outgoing message;

(b) establishing a connection between said infrastructure and said
communication line;

(c) receiving an output record containing said outgoing data from
said component;

(d) transmitting said outgoing data on said communication line.

27. A computer readable medium containing instructions for implanting a
method of receiving incoming data transmitted over a communication link by
a target system to a component comprising:

(a) configuring an incoming protocol handler to extract said
incoming data from an incoming message;

{b) receiving said incoming message from said communication line;

(c) extracting said incoming data from said incoming message by
invoking said incoming protocol handler; and

(d) providing said incoming data to said component.

28, A method for facilitating data transfer between a first and second
application, said method providing data conversion service for
communications between said first and second applications, said method
comprising:

receiving data from said first application and formatted data from a
protocol handler, said protocol handler supporting a communications
protocol;

transmitting formatted data received from said protocol handler to

said second application; and

WO 03/024055 PCT/GB02/03050

36

wherein said data conversion service provided is determined by said

communications protocol supported by said protocol handler.

29, The method of claim 28 wherein formatted data may received from at
least one protocol handler of a plurality of protocol handlers, each of
said plurality of protocol handlers supporting a different communications
protocol, and wherein an interface presented to said first application
remains static irrespective of the communication protocol supported by

said at least one protocol handler.

30. The method of claim 29 further comprising:

receiving formatted data from said second application and data from
said protocol handler; and

transmitting formatted data received from said second application to
said protocol handler and data received from said protocol handler to said

first application.

31. The method of claim 30 wherein said data comprises an object and

wherein said formatted data comprises a packet.

32. The method of claim 31 wherein:
a packet received from said protocol handler is generated from
payload data stored by an object received from said first application; and
an object transmitted to said first application is generated from

payload data stored within a packet received from said second application.

33. The method of claim 32 wherein said object includes methods to read

payload data from said object and write payload data to said object.

34. A method for facilitating data transfer between a first and second
application, said method comprising:

transmitting data to and receive data from said first application
through a first interface;

forwarding data received from said first application to said
protocol handler through a second interface;

forwarding formatted data received from said protocol handler
through said second interface to said second application through a third
interface;

forwarding data received from said protocol handler through said
second interface to said first application through said first interface;

and

WO 03/024055 PCT/GB02/03050

37

forwarding formatted data received from said second application

through said third interface to said protocol handler through said second

interface.

35. The method of claim 34 further comprising:
when said format of said formatted data is modified, replacing said

protocol handler with another protocol handler.

36. A method for facilitating communication between a first and second
application, said method comprising:

presenting a first interface for communication with said first
application;

presenting a second interface for communication with said second
application;

presenting a configuration interface adapted to removably receive a
selected protocol handler from a plurality of protocol handlers, wherein
said connector provides data conversion services for communication between
said first and second applications, said data conversion services
determined by said selected protocol handler received by said
configuration interface;

passing first data received from said first application destined for
said second application to a removably received protocol handler for data
conversion;

passing converted first data received from a removably received
protocol handler to said second application;

passing second data received from said second application to said
protocol handler for conversion; and

passing converted second data to said first application.

37. A computer readable media storing data and instructions, said data
and instructions for adapting a computer system to facilitate data
transfer between a first and second application, said computer system
providing data conversion service for communications between said first
and second applications, said data and instructions adapting said computer
system to:

receive data from said first application and formatted data from a
protocel handler, said protocol handler supporting a communications
protocol;

transmit formatted data received from said protocol handler to said
second application; and

wherein said data conversion service provided is determined by said

communications protocol supported by said protocol handler.

WO 03/024055 PCT/GB02/03050

38

38. A computer readable media storing data and instructions, said data
and instructions for adapting a computer system to facilitate data
transfer between a first and second application, said data and
instructions adapting said computer system to:

transmit data to and receive data from said first application
through a first interface;

forward data received from said first application to said protocol
handler through a second interface;

forward formatted data received from said protocol handler through
said second interface to said second application through a third
interface;

forward data received from said protocol handler through said second
interface to said first application through said first interface; and

forward formatted data received from said second application through
said third interface to said protocol handler'through said second

interface.

39. A computer readable media storing data and instructions, said data
and instructions for adapting a computer system to facilitate
communication between a first and second application, said data and
instructions adapting said computer system to:

present a first interface for communication with said first
application;

present a second interface for communication with said second
application;

present a configuration interface adapted to removably receive a
selected protocol handler from a plurality of protocol handlers, wherein
said connector provides data conversion services for communication between
said first and second applications, said data conversion services
determined by said selected protocol handler received by said
configuration interface;

pass first data received from said first application destined for
said second application to a removably received protocol handler for data
conversion;

passing converted first data received from a removably received
protocol handler to said second application;

pass second data received from said second application to said
protocol handler for conversion; and

pass converted second data to said first application.

PCT/GB02/03050

WO 03/024055

1/5

jusuodwo) uoneosyddy

22
Jusuodwo) uonesyddyausin

(/4

~

L 34N91d

9l
waysAg jebie]

&

<1

P

8l

8l

JUIT SUOHEDIUNWIWOD

or \\

~

— —— 0l
1ojo8uu0)

\/.N!_u

ainjonJjselju)

PCT/GB02/03050

FEr e
L

" 82

2/5

— — — | _ [
_) _
Buiddewy Buiddepy
_ abessape01A18SZ]000)0.d j000)014zabessapaoineg
_ Py N
\T\. JojpueH
_ , j020j0.d
‘(99dg \
_ h uopoRIBIUIgZE u
I A Z —

e e i)

WO 03/024055

PCT/GB02/03050

WO 03/024055

3/5

€ 34N9I4 001
_ jl
9l
1
AL
1
H
]
r .
N 804
1
!
I
_ 20}
+
uoj}oBUU0D oo
oo uojoBUNO]) -
mm_mes . mmwosao nomumwu uoammw_n ¥l weuodwon

PCT/GB02/03050

WO 03/024055

4/5

v 34N91d

\/

90¢

H-t---F----

00l

02 L
20¢
221
0¢}
84
ul 1+ 1V]

Bujddepjoocioljzebessopy uofloesaiju| piooay nw_won:m_“‘ou
LTIV Hodsues| joooj0i49z28 az8

PCT/GB02/03050

WO 03/024055

5/5

S 3¥N9I4

00}

| \ !
! ‘
| |
_] .]
L ! ‘
= ! 9ig !
1429 |
X s _
S _
0l¢ " 1
R] — |lFJ
ol " 80¢
1
)
! -, 90§
{ _
_ il
“ v0§ '
| |
(t
l 1
“ $
| _ y 20¢
¢ | \
! | 1 !
) } ! |
Buiddepysbessepy uojoei8iu] pi028Y uojIBULGYD
99|A18$ZI1000j04d yodsuesy 1ov010.d8Z4 pefeuengzg

INTERNATIONAL SEARCH REPORT

PCT/GB 02/03050

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 HO04L29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic dala base consulted during the inlernational search (name of data base and, where practical, search terms used)

EPO-Internal, IBM-TDB, INSPEC, COMPENDEX, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 305 317 A (SZCZEPANEK ANDRE) 1,3,10,
19 April 1994 (1994-04-19) 14-16,
24,
26-28,
34,36-39
abstract
column 2, line 35 -column 3, line 12
column 5, line 25 -column 7, line 65
figures 1,2,6
X US 5 991 885 A (CHANG WEN F ET AL) 1,2,10,
23 November 1999 (1999-11-23) 14-16,
24,
26-28,
34,36-39
column 7, line 19 -column 8, line 5
column 12, 1ine 44 -column 13, line 54
figures 4A,7
-/

m Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

° Special categories of cited documents :

*A' document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publfication date of another
citation or other special reason (as specified)

*Q" document referring to an oral disclosure, use, exhibition or
other means

P document published prior 1o the international filing date but
later than the priority date claimed

"T* later document published after the international filing date
or priority date and not in conflict with the application but
cited 1o understand the principle or theory underlying the
invention

*X' document of particular relevance; the claimed invention
cannol be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to invoilve an inventive step when the
document is combined with one or more other such docu—
me'r]ns, such combination being obvious to a person skilled
in the art.

& document member of the same patent family

Date of the actual completion of the international search

8 October 2002

Date of mailing of the international search report

14/10/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Korbler, G

Fomn PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

PCT/GB 02/03050

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

WO 01 15042 A (BLACK PEAR INC)

1 March 2001 (2001-03-01)

page 7, line 5 -page 8, 1ine 17

page 10, line 10 -page 11, line 3

page 13, line 24 -page 15, line 4

page 27, line 6 -page 30, line 7
figures 1-7

EP 1 061 444 A (SUN MICROSYSTEMS INC)
20 December 2000 (2000-12-20)
column 3, Vine 6 -column 6, line 16
figures 1-3
OHNO S ET AL: "THE I-OPENDIOSA DRIVES TO
INTEGRATE A MISSION CRITICAL SYSTEM FOR
INTERNET BUSINESS BASED ON J2EE"
NEC RESEARCH AND DEVELOPMENT, NIPPON
ELECTRIC LTD. TOKYO, JP,
vol. 41, no. 4, October 2000 (2000-10),
pages 301-306, XP000967718
ISSN: 0547-051X
page 302, left-hand column, line 5 -page
302, right-hand column, line 4
figure 2

CHU C~-H ET AL: "BUILDING A XML-BASED
UNIFIED USER INTERFACE SYSTEM UNDER J2EE
ARCHITECTURE"
PROCEEDINGS INTERNATIONAL SYMPOSIUM ON
MULTIMEDIA SOFTWARE ENGINEERING, XX, XX,
11 December 2000 (2000-12-11), pages
208-214, XP002905595
the whole document
figures 1-4
BOX D ET AL: "Simple Object Access
Protocol (SOAP) 1.1"
W3cC,
8 May 2000 (2000-05-08), XP002163943
page 1, paragraph 1 -page 12, paragraph
5.1

1-39

1-39

1-39

1-39

1-39

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

PClI/uB UZ2/03050

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5305317 A 19-04-1994 GB 2264845 A 08-09-1993

US 5991885 A 23-11-1999 AU 8253998 A 30-12-1998
CN 1265202 T 30-08-2000
EP 1019798 A2 19-07-2000
JP 2002507349 T 05-03-2002
TW 431100 B 21-04-2001
Wo 9857248 A2 17-12-1998

W0 0115042 A 01-03-2001 AU 6919400 A 19-03-2001
WO 0115042 A2 01-03-2001

EP 1061444 A 20-12-2000 EP 1061444 A2 20-12-2000
JP 2001056767 A 27-02-2001

Form PCT/ISA/210 (patent family annex) (July 1962)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

