
(19) United States
US 20010039629A1

(12) Patent Application Publication (10) Pub. No.: US 2001/0039629 A1
Feague (43) Pub. Date: Nov. 8, 2001

(54) SYNCHRONIZATION PROCESS
NEGOTIATION FOR COMPUTING DEVICES

(76) Inventor: Roy W. Feague, Scotts Valley, CA (US)
Correspondence Address:
Darryl A. Smith
Legal Department
1700 Green Hills Rd.
Scotts Valley, CA 95066 (US)

(21) Appl. No.: 09/877,553

(22) Filed: Jun. 8, 2001

Related U.S. Application Data

(63) Continuation of application No. 09/287.546, filed on
Apr. 6, 1999, now Pat. No. 6,247,135, which is a
non-provisional of provisional application No.
60/122,592, filed on Mar. 3, 1999.

Publication Classification

(51) Int. Cl. .. G06F 7/20

(52) U.S. Cl. .. 713/400

(57) ABSTRACT

A methodology providing "synchronization process nego
tiation' is described. Synchronization process negotiation is
the methodology of negotiating between two or more
devices exactly what Synchronization process (protocol) is
to be employed to effect synchronization of the devices. The
methodology, which is adaptable to existing Synchronization
protocols, takes into account the actual Synchronization
capabilities or built-in Support (if any) of each device whose
data is to be Synchronized (e.g., by a Synchronization
engine). The methodology may be implemented by adapting
a given Synchronization protocol (which itself may be one of
a variety of types) to include a “negotiation phase' at the
beginning of the Synchronization, during which the devices
involved will eXchange information about the capabilities of
one or more devices. The individual attributes for a client are
communicated as Synchronization parameters in attribute/
value pair form. Once this negotiation phase has been
completed, the Synchronization can then proceed in a man
ner that is most efficient for the features available.

Patent Application Publication Nov. 8, 2001 Sheet 1 of 5 US 2001/0039629 A1

CENTRAL INTERFACE PROCESSOR

110

153
ORGANIZER

LAPTOP 154

NETWORK 152

151

FIG 1A

100
- 6------------------------------

104

KEYBOARD

105

PONTING
DEVICE :

106

DISPLAY
DEVICE

107 102

MASS :
| STORAGE

103 : MAN
108 MEMORY

| PRINT |
{ I/O

CONTROLLER

109 101

US 2001/0039629 A1

}}EST)

SMOGNIM ENIØNE ONÅS

Nov. 8, 2001 Sheet 2 of 5 Patent Application Publication

Patent Application Publication

RESPECTIVE DEVICES ESTABLISH

Nov. 8, 2001 Sheet 3 of 5

BEGIN

COMMUNICATIONLINK

DEVICES EXCHANGE ACKNOWLEDGMENTS
FOR INITIATING SYNCHRONIZATION

BEGANSYNCHRONIZATIONNEGOTATION:
REQUEST CLIENT'S

SYNCHRONIZATION ATTRIBUTES

TRANSMTSYNCHRONIZATION PARAM'S:
CLIENT'S SYNCHRONIZATION ATTRIBUTES

SWITCH:
CASE OF:

RECORD FILTERING = NONE
CHANGE TRACKING = NONE
RECORD ACCESS = BLOCK

CASE OF:
RECORD FILTERING = NONE
CHANGE TRACKING = NONE
RECORD ACCESS

CASE OF:
STATIC UNIQUE

RECORD FILTERING = HEADERS
CHANGE TRACKING

= CRC | TIMESTAMP | CHANGE COUNTER
RECORD ACCESS

CASE OF:
RECORD FILTERING

= SINCE XCHANGE TRACKING
CHANGE TRACKING

= TIMESTAMP CHANGE COUNTER
RECORD ACCESS

UNIQUE

UNIQUE

205

201

202

203

204

US 2001/0039629 A1

Patent Application Publication Nov. 8, 2001 Sheet 4 of 5 US 2001/0039629 A1

211

OBAIN COMPLETE DATA STORE

PERFORMSYNCHRONIZATION LOCALLY

REPLACE ENTIRE DATA STORE

RETURN

FIG. 2B

212

213

221

OBTAIN COMPLETE DATA STORE

PERFORMSYNCHRONIZATION LOCALY

REPLACE ONLY AFFECTED RECORDS

RETURN

FIG. 2C

222

223

Patent Application Publication Nov. 8, 2001 Sheet 5 of 5 US 2001/0039629 A1

231

OBTAINA SUMMARY OF ALL RECORDS,
WHICH INCLUDESPER RECORD
CHANGE-TRACKING INFORMATION

FETCH ONLY THE CHANGED RECORDS

PERFORMSYNCHRONIZATION LOCALLY

REPLACEAFFECTED RECORDS ONLY

RETURN

REQUEST ONLY THE CHANGED RECORDS
FROM THE TARGET DEVICE

PERFORMSYNCHRONIZATION LOCALLY

REPLACE ONLY AFFECTED RECORDS

RETURN

FIG. 2E

232

233

234

241

242

243

US 2001/0039629 A1

SYNCHRONIZATION PROCESS NEGOTIATION
FOR COMPUTING DEVICES

RELATED APPLICATIONS

0001. The present application claims the benefit of pri
ority from and is related to the following commonly-owned
U.S. provisional application: application Ser. No. 60/122,
592, filed Mar. 3, 1999. The disclosure of the foregoing
application is hereby incorporated by reference in its
entirety, including any appendices or attachments thereof,
for all purposes. The present application is also related to the
following commonly-owned U.S. patent applications, the
disclosures of which are hereby incorporated by reference in
their entirety, including any appendices or attachments
thereof, for all purposes: application Ser. No. 09/020,047,
filed Feb. 6, 1998, and entitled Methods for Mapping Data
Fields from One Dataset to Another in a Data Processing
Environment; application Ser. No. 09/136,215, filed Aug.
18, 1998, and entitled System and Methods for Synchronzng
Two or More Data Sets; application Ser. No. 09/136.212,
filed Aug. 18, 1998, and entitled Data Processing Environ
ment with Methods Providing Contemporaneous Synchro
nization of Two or More Clients; and application Ser. No.
08/923,612, filed Sep. 4, 1997, and entitled System and
Methods for Synchronzng Information Among disparate
datasets.

COPYRIGHT NOTICE

0002 A portion of the disclosure of this patent document
contains material which is Subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

0003. The present invention relates generally to synchro
nization of data-that is, the process of taking two different
Stores of data ("data Stores'), comparing them to identify
differences, and applying changes to one or both to make
them identical. More particularly, the present invention
relates to a methodology for negotiating the Synchronization
process that is to occur among two or more computing
devices, in a data-processing or computing environment.
0004. With each passing day, there is ever increasing
interest in providing Synchronization Solutions for con
nected computing devices, particularly information appli
ances. These “appliances' appear in the form of electronic
devices including, but not limited to, cellular phones, pagers,
other hand-held devices (e.g., REXTM, PalmPilot TM and
WindowsTM CE devices), personal computers (PCs) of all
types and sizes, and Internet or intranet access devices (e.g.,
PCS or embedded computers running, for example, Java
virtual machines or browsers or Internet Protocol (IP) han
dlers).
0005 These devices, and the software applications run
ning on these devices, do not communicate particularly well
with one another and are typically not designed with data
Synchronization in mind. Therefore, a problem exists as to
how one integrates information-Such as calendaring,
Scheduling, and contact information-among disparate

Nov. 8, 2001

devices and Software applications. Consider, for instance, a
user who has his or her appointments on a desktop PC at
work, but also has a notebook computer at home, and a
battery-powered, hand-held device for use in the field. What
the user really wants is for the information (e.g., appoint
ments) in each device to remain Synchronized with corre
sponding information in all devices in a convenient and
transparent manner. Still further, Some devices (e.g., PCs)
are typically connected at least occasionally to a Server
computer (e.g., an Internet server which stores information
for the user). The user would, of course, like the information
on the Server computer to participate in the Synchronization
So that the Server also remains Synchronized.
0006 An early approach to maintaining consistency
between data Sets was to import or copy one data Set on top
of another. This simple “one-way' approach, which over
writes a target data Set without any attempt at reconciling
any differences, is inadequate for all but the Simplest of
applications. Not unexpectedly, more Sophisticated Synchro
nization techniques were developed. In particular, tech
niques were developed for Synchronization of exactly two
data Sets by attempting to reproduce in each data Set the
changes found in the other data Set Since a previous Syn
chronization. A detailed review of different synchronization
techniques can be found in the Background Section of
commonly-owned application Ser. No. 08/923,612, filed
Sep. 4, 1997, and entitled System and Methods for Syn
chronizing Information Among Disparate Datasets, the dis
closure of which is hereby incorporated by reference in its
entirety, including any appendices or attachments thereof,
for all purposes.
0007 Today, a variety of approaches exist for synchro
nizing information residing on multiple computing or infor
mation-Storing devices. Consider, for instance, the task of
Synchronizing respective data Sets or "data Stores' residing
on a given pair of devices. Here, the particular Synchroni
Zation proceSS employed depends on the capabilities of the
individual devices. Consider, for instance, the following two
examples:

0008 Example 1: A synchronization or “sync'
engine communicating with a fairly primitive device
may have to obtain a complete copy of the data Store
from the device, do the comparison, and then re
write the entire data Store back to the device.

0009 Example 2: The same sync engine, when
communicating with a higher-level device, may be
able to send a request to the other (target) device for
all changes to the data Store that were made after the
last Sync date. The target device will then transmit
only those changes, reducing the amount of data that
is transmitted and the time required for Synchroni
Zation.

0010 Each example will be reviewed in turn.
0011 Example 1 indicates a primitive synchronization
process, where a Synchronization engine must communicate
with a primitive device (e.g., one not including any native
Support for Synchronization). In Such a case, the Synchroni
zation engine must follow a resource-intensive (and typi
cally slow) process. First, the Synchronization engine
requests the entire data Store from the device and then
proceeds to determine what differences exist in the data Store

US 2001/0039629 A1

by comparing it to a previously-Stored copy of the data Store.
After applying any necessary changes (i.e., for creating a
data Store that is Synchronized according to user-specified
configuration), the Synchronization engine must now trans
mit the entire copy back to the primitive device.
0012 Example 2 indicates a higher-level synchronization
process, in which the Synchronization engine communicates
with a device having at least Some degree of Support for
Synchronization. Support might include, for example, the
ability of the device to transmit to the synchronization
engine any new or modified records as of a certain date.
Typically, the level of Synchronization Support is due in part
to what is Stored in the data Store, the type of program
functionality (i.e., Software features) that is available, and
the processing power that is available for the Synchroniza
tion interface (to that device). Beyond the disparate levels of
Synchronization illustrated by the preceding examples, a
variety of other possible levels exist, each one taking advan
tage of the features of a particular device to get the most
efficient Synchronization possible.

0013 A problem exists with these present-day
approaches, however. In order for two devices to Synchro
nize together (i.e., participate in a Synchronization Session),
they have to have Some means of communication-that is,
a “synchronization protocol'. With existing solutions, how
ever, a “hard-wired” protocol (i.e., one Supporting only a
particular device, Such as a Palm Pilot device) is employed.
AS a result, the protocol employed is specific to the needs
and features of a particular device, at the expense of not
Supporting other devices. From the perspective of the Soft
ware developer, one creates a device-specific “accessor
(i.e., driver capable of accessing data) for a particular target
device, with the requirement that the developer knows the
particular Synchronization capabilities of the target device
beforehand. The problem with Such an approach, however,
is that the Synchronization driver is tied to a specific device;
it cannot be effectively re-used from one device to another.
AS the target device itself typically undergoes revision, the
device-specific driver Soon becomes obsolete, Since it does
not Support newer versions of the very Same device for
which it was specifically designed.

0.014 Recently, some attempts have been made to create
generalized Synchronization protocols. However, instead of
handling a variety of different device Synchronization-Sup
port levels, these protocols assume Some particular level of
Synchronization Support, and only devices capable of that
level of Support can be Synchronized. Here, Such a protocol
attempts to provide Some degree of reuse by adopting a
common denominator for target devices using that protocol.
This approach is also problematic. Quite simply, if a device
does not meet the common denominator, it is completely
shut out from use of the protocol, despite the fact that the
device may actually include Some degree of built-in Syn
chronization Support (which could have been used to opti
mize Synchronization). In other words, the approach has no
capability to Support those devices which, although not
adhering completely to the Specified protocol, have at least
Some intermediate level of Synchronization Support. There
fore, the approach is only an incremental improvement over
the above-described Single-device protocol.

0.015 What is needed are systems and methods that
Support a generalized Synchronization protocol, yet do So in
a manner which is adaptable to the capabilities of a particu
lar target device. In Such a case, the target device is not
required to have a particular degree of Synchronization

Nov. 8, 2001

Support in order to use the protocol. Instead, the protocol
allows the Synchronization process to proceed in the most
efficient manner possible, given the level of Synchronization
Support provided by the target device, whatever level that
might be. The present invention fulfills this and other needs.

SUMMARY OF THE INVENTION

0016. The present invention provides a methodology for
"synchronization process negotiation'-that is, negotiating
between two or more devices exactly what Synchronization
process (protocol) is to be employed to effect Synchroniza
tion of the devices. The methodology, which is adaptable to
existing Synchronization protocols, takes into account the
actual Synchronization capabilities or built-in Support (if
any) of each device whose data is to be Synchronized (e.g.,
by a Synchronization engine).
0017 More particularly, the present invention may be
implemented by adapting a given Synchronization protocol
(which itself may be one of a variety of types) to include a
“negotiation phase' at the beginning of the Synchronization,
during which the devices involved will eXchange informa
tion about the capabilities of one or more devices. Once this
negotiation phase has been completed, the Synchronization
can then proceed in a manner that is most efficient for the
features available. The present invention itself is actually
independent of any particular literal protocol, as it may be
incorporated into a variety of different Synchronization
protocols, as well as different devices or different commu
nication (message transport) layers. Therefore, the focus of
the present convention is, instead, on the adaptation of a
Synchronization protocol to incorporate a basic mechanism
for negotiating the Synchronization process before Synchro
nization begins, thereby governing how Synchronization
proceeds.
0018. In internal system operation, the present invention
operates by introducing the ability for a Synchronization
System's engine (Sync engine) to query the client or target
device about a particular attribute and to find out what the
device's capabilities are in that respect. The individual
attributes for a client are communicated as Synchronization
parameters, in attribute/value pair form. For example, the
present invention introduces a “RECORD FILTERING”
parameter, which may be communicated from the client
back to the Synchronization engine, to allow the Synchroni
Zation engine to determine what the client's capabilities are
with respect to filtering records from Synchronization. The
parameter may be set to one of the following values:

RECORD FILTERING=
{NONEIHEADERSISINCE X}

0019) NONE indicates that the client does not provide
any record filtering functionality (i.e., similarly to Example
1 above); the client can only give the entire data Store.
HEADERS indicates that the client can provide record
headers. Here, the client cannot pick out what has changed,
but it can provide a Snapshot Summary that is Smaller than
all of the data (from which the Synchronization engine can
then determine changes). SINCE X indicates that the client
can provide records as of a particular "Sync Anchor value,
where Xindicates a time Stamp or change counter value (i.e.,
similarly to Example 2 above). Here, the client is capable of
giving records which have changed from a particular value
(e.g., time Stamp value for a particular date and time) given
by the Synchronization engine.

US 2001/0039629 A1

0020. In the event that the client can provide headers, the
Sync engine needs to know what Sort of information to
expect in those headers in order to perform Synchronization.
Possibilities include the following:

0021 1. Headers include a CRC (cyclic redundancy
checking) value for each record.

0022 2. Headers include a modification time (time
Stamp) for each record.

0023. 3. Headers include a change counter for each
record.

0024. These three options are reflected in a “CHANGE
TRACKING” parameter, which indicates what the device's
capabilities are in terms of knowing what has changed. This
parameter may be set to one of the following values:

CHANGE TRACKING=
{NONEICRCTIMESTAMPCHANGE COUNTER}

0025) NONE indicates that the device or client has no
ability to determine if Something has changed in its data
store. CRC indicates a CRC value for each record; TIMES
TAMP indicates a modification time for each record; and
CHANGE COUNTER indicates a change count value for
each record.

0026 Clients which cannot support a “SINCE X” access
method must either transmit their entire data Store or trans
mit headers. For Such clients, the Sync engine will need to
request the desired records from the device. For example, if
the Synchronization engine has determined, based on a
comparison of CRC values, that a particular record has
changed, the Synchronization engine needs a means to
request that record from the device. Different devices will
provide different levels of access and different types of
access to their records, however. Therefore, a third param
eter is required for Specifying what type of access is pro
vided.

0027. The types of record access that devices can support
include the following:

0028 1. The device can only transmit and receive
the entire data Store as a block; it is not possible to
request or Submit individual records.

0029 2. The device provides “static index' access to
the records (i.e., there are a fixed number of record
Storage "slots', and the Sync engine can request and
Submit records based on this slot number. The
records may move to different slots in between
Synchronizations, So there is no lasting fixed corre
lation between a slot number and a record).

0030) 3. The device provides “unique IDs” for each
record, and the Sync engine can request and Submit
individual records using these IDs. Unique IDs are
guaranteed to be unique within a particular data
Store, and the association between a record and its ID
is never broken.

0031) These three options are reflected in a “RECORD
ACCESS' parameter, which may take one of the following
values:

RECORD ACCESS={BLOCKSTATICUNIQUE
0.032 BLOCK record access indicates that the device can
only give access to the entire set or “block” of records (i.e.,
the entire data store); this is the most primitive type of record
access. STATIC record access indicates a Static indeX

Nov. 8, 2001

mechanism. UNIQUE indicates that each record within the
data Store is represented by a unique ID, within the Scope or
context of that particular data Store (or, if desired, globally
unique). Here, the relationship between the unique identifier
and the record is fixed or permanent. This level of record
acceSS allows the Synchronization engine to get and put an
individual record, based on the ID.
0033. A methodology of the present invention for syn
chronizing a first data Set residing on a first device with a
Second data Set residing on a Second device may be Sum
marized as follows. At the outset, a communication link is
established between the two devices; this step may be
performed in a conventional manner, Such as connecting the
two devices via a Serial cable or via a local area network
(LAN). This allows the second device to query the synchro
nization capabilities of the first device, by transmitting a
request to the first device for the Specific Synchronization
capabilities of the first device. In response to this request, the
first device transmits back to the Second device information
indicating the Specific Synchronization capabilities of the
first device. (If desired, the exchange of information about
Synchronization capabilities may be extended to be bilateral
or mutual in nature (or multilateral, in the case of three or
more devices), Such that the Second device also communi
cates its Synchronization capabilities back to the first
device.) Now, based on the given Synchronization capabili
ties of the first device, a Synchronization protocol may be
Selected for Synchronizing the respective data Sets of the two
devices. Therefore, Synchronization of the first and Second
data sets proceeds using the Selected Synchronization pro
tocol, So that the Synchronization process is performed in a
manner optimized for the available Synchronization capa
bilities (e.g., of the first device).

BRIEF DESCRIPTION OF THE DRAWINGS

0034 FIG. 1A is a block diagram of a computer system
in which the present invention may be embodied.
0035 FIG. 1B is a block diagram of a software system of
the present invention for controlling operation of the com
puter system of FIG. 1A.
0036 FIGS. 2A-E present flow charts illustrating the
overall method Steps employed for Synchronization process
negotiation.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

0037. The following description will focus on the pres
ently-preferred embodiment of the present invention, which
is operative in an environment typically including a variety
of computing or information-storing devices (e.g., desktop
computers, Server computers, and portable computing
devices), that are occasionally or permanently connected to
one another where Synchronization Support is desired. For
purposes of discussion, the following description will
present examples in which it will be assumed that there
exists a “server” or “synchronization (“sync') engine”
which has one data Store locally, and a "client or remote
device which has a Second data Store to be Synchronized.
The present invention, however, is not limited to any par
ticular environment or device. In particular, a client/server
distinction is neither necessary to the invention nor even
necessarily desirable, but is used to provide a framework for

US 2001/0039629 A1

discussion. The focus of the following description, there
fore, is not focused on a particular Synchronization/hardware
configuration (as the present invention may be advanta
geously applied to a variety of disparate configurations).
Instead, the following description will focus on the appli
cation of Synchronization negotiation or dialog among two
or more devices, which may be configured in a variety of
hardware configurations (e.g., according to the particular
needs of the user). Therefore, the following description is for
the purposes of illustration and not limitation.
0038 Brief Overview of Synchronization
0039 A. Introduction
0040. Many software applications, such as personal pro
ductivity applications like Starfish SidekickCR and Lotus(R)
Organizer, have sets of data or "data sets” (e.g., address
books and calendars). Consider, for instance, a user Scenario
where an account executive needs to coordinate contacts and
events with other employees of the XYZ corporation. When
traveling, the executive carries a laptop PC with Starfish
Sidekick(E) installed. At home, she and her husband use
Lotus(R Organizer to plan their family's activities. When on
family outings, the account executive carries her PalmPi
lot" hand-held organizer. AS the foregoing illustrates, a user
often needs a means for Synchronizing Selected information
from the data Sets his or her applications rely upon. The
account executive would not want to Schedule a busineSS
meeting at the same time as a family event, for example.
0041 Conventionally, the process of synchronizing or
reconciling data sets has been a binary process-that is, two
logical data Sets are Synchronized at a time. Any arbitrary
Synchronization topology will be Supported. Here, the SyS
tem guarantees Synchronization Stability and the avoidance
of undesirable side effects (cascading updates, record dupli
cation, or the like). Data sets do not need to be directly
connected but, instead, can be connected via a “store-and
forward’ transport, Such as electronic mail.
0.042 B. Synchronization design
0043 1. Synchronization Type
0044) Data set synchronization may, for convenience of
description, be divided into two types: content-oriented and
record-oriented. Content-oriented Synchronization corre
lates data Set records based on the values of user-modifiable
fields. Value correlation requires Semantic (or at least
advanced syntactic) processing that the human brain is very
good at and computers are not. For example, a record in one
data set with a name field valued "Johann S. Bach' and a
record in a second data set with a name field valued "J. S.
Bach” could possibly refer to the same real-world person. A
human being might arrive at this conclusion by correlating
associated data (addresses) or drawing upon external infor
mation (e.g., Bach is an unusual name in the U.S.). Creating
program logic or code with the ability to make these types
of decisions is computationally very expensive.

0.045 Record-oriented synchronization correlates data
Set records by assuming that each record can be uniquely
identified throughout its lifetime. This unique identifier is
usually implemented as a non-modifiable, hidden field con
taining a “Record ID'. Record-oriented synchronization
algorithms usually require maintaining a mapping from one
set of record IDs to another. In a preferred embodiment, the
System employs record-oriented Synchronization.

Nov. 8, 2001

0046 Record-oriented synchronization is conceptually
Simple and may be Summarized as follows. In the rules
below, A and B refer to two data sets which have a
Synchronization relationship. The rules are assumed to be
Symmetrical.

0047 1. A and B must track similar types of data
(e.g., if A is an address book, then B must be an
address book).

0048 2. A record created in A, will create a record
in B.

0049) 3. A record modified in A, will modify the
corresponding record in B.

0050. 4. If record A1 has been modified in A and the
corresponding record B1 has been modified in B, the
record with the latest time stamp (also, “timestamp'')
takes precedence.

0051. The rules presented above reduce the occurrence of
undesirable side effects with a network of synchronized data
SetS.

0.052 2. Time Stamps
0053. The actual synchronization logic in synchroniza
tion Systems often needs to make processing decisions based
on comparing the time at which past events occurred. For
example, it is necessary to know if a record was modified
before or after the last Synchronization transaction. This
requires recording the time of various events. A “time
Stamp' value may be employed for this purpose. Typically,
data Sets involved in Synchronization Support time Stamps,
or can be Supplied with Suitable time Stamps, in a conven
tional manner. In conjunction with the usage of time Stamps
to compare the relative timing of record creation or modi
fication, the clocks on the respective devices may them
Selves be Synchronized.
0054) 3. Record Transformations
0055. During synchronization, a synchronization system
will typically transform records from one application-usage
Schema Set to another application-usage-Schema Set, Such as
transforming from a Starfish SidekickoR card file for busi
ness contacts to a corresponding PalmPilot'TM data set.
Typically, there is a one-to-one relationship between records
in these two data Sets, that is, between the Source and target
data Sets. If this is not the case, however, the component of
the System that interacts with a non-conforming data Set may
include logic to handle this non-conformance.
0056. The record transformations themselves are a com
bination of field mappings and conversions from a Source
record to a target record. Exemplary types of field mappings
include, for instance, the following:

0057) 1. Null Source field has no equivalent field in
the target data Set and is ignored during Synchroni
Zation.

0.058 2. One-to-One Map exactly one field in the
target data Set to one field in the Source data Set.

0059) 3. One-to-Many Map one field in the target
data Set to many fields in the Source data Set, Such as
parse a single address line to fields for number,
direction, Street, Suite/apartment, or the like.

US 2001/0039629 A1

0060 4. Many-to-One Map several fields in the
target data Set to one field in the Source data Set, Such
as reverse the address line mapping above.

0061 Similarly, exemplary field conversions may be
defined as follows:

0062 1. Size Source field may be larger or smaller
in size than the target field.

0063. 2. Type Data types may be different, such as
float/integer, character VS. numeric dates, or the like.

0064 3. Discrete Values A field's values may be
limited to a known set. These sets may be different
from target to Source and may be user defined.

0065. It is often the case that there are significant differ
ences in the number, size, type, and usage of fields between
two data Sets in a Synchronization relationship. The Speci
fication of transformations is typically user-configurable,
with the underlying System providing defaults.

0.066. With an understanding of the basic process of
Synchronizing information or computing devices, the reader
may now better appreciate the teachings of the present
invention for providing improved Synchronization method
ology for Synchronizing an arbitrary number of devices (i.e.,
Synchronization clients), as described in further detail below.
AS will be noted in further detail below, however, the
methodology of the present invention for negotiating a
particular Synchronization process is largely independent of
any given Synchronization process or Synchronization
engine. Instead, the methodology of the present invention
operates to allow devices participating in a Synchronization
process to Select a specific type of process (or Synchroniza
tion path of execution for a given Synchronization engine),
based on the capabilities of one or more of the participating
devices.

0067. This allows the synchronization process to be opti
mized based on the built-in Synchronization Support of the
participating devices.

0068 System Hardware and Software
0069. The present invention may be embodied on an
information processing System Such as the System 100 of
FIG. 1A, which comprises a central processor 101, a main
memory 102, an input/output (I/O) controller 103, a key
board 104, a pointing device 105 (e.g., mouse, pen device,
or the like), a Screen or display device 106, a mass storage
107 (e.g., hard disk, removable floppy disk, optical disk,
magneto-optical disk, flash memory, or the like), one or
more optional output device(s) 108, and an interface 109.
Although not shown Separately, a real-time System clock is
included with the system 100, in a conventional manner. The
various components of the system 100 communicate through
a system bus 110 or similar architecture. In addition, the
system 100 may communicate with other devices through
the interface or communication port 109, which may be an
RS-232 serial port or the like.
0070 Devices which will be commonly connected to the
interface 109 include a network 151 (e.g., LANs or the
Internet), a laptop 152, a handheld organizer 154 (e.g., the
REXTM organizer, available from Franklin Electronic Pub
lishers of Burlington, N.J.), a modem 153, or the like.

Nov. 8, 2001

0071. In operation, program logic (implementing the
methodology described below) is loaded from the Storage
device or mass storage 107 into the main memory 102, for
execution by the processor 101. During operation of the
program (logic), the user enters commands through the
keyboard 104 and/or pointing device 105, which is typically
a mouse, a track ball, or the like. The computer System
displayS text and/or graphic images and other data on the
display device 106, such as a cathode-ray tube or an LCD
display. A hard copy of the displayed information, or other
information within the system 100, may be obtained from
the output device 108 (e.g., a printer). In a preferred embodi
ment, the computer system 100 includes an IBM PC
compatible personal computer (available from a variety of
vendors, including IBM of Armonk, N.Y.) running Windows
9x or Windows NT (available from Microsoft Corporation
of Redmond, Wash.). In a specific embodiment, the system
100 is an Internet, intranet, or other type of network server
and receives input from, and Sends output to, a remote user
via the interface 109 according to standard techniques and
protocols.

0072 Illustrated in FIG. 1B, a computer software system
120 is provided for directing the operation of the computer
system 100. Software system 120, which is stored in system
memory 102 and on storage 107 (e.g., disk memory),
includes a kernel or operating system (OS) 140 and a
windows shell 150. One or more application programs 145,
Such as client application Software or “programs' may be
“loaded” (i.e., transferred from storage 107 into memory
102) for execution by the system 100.
0.073 System 120 includes a user interface (UI) 160,
preferably a Graphical User Interface (GUI), for receiving
user commands and data and for producing output to the
user. These inputs, in turn, may be acted upon by the System
100 in accordance with instructions from operating System
module 140, windows module 150, and/or client application
module(s) 145. The UI 160 also serves to display the user
prompts and results of operation from the OS 140, windows
150, and application(s) 145, whereupon the user may supply
additional inputs or terminate the Session. In the preferred
embodiment, OS 140 and windows 150 together comprise
Microsoft Windows software (e.g., Windows 9x or Windows
NT). Although shown conceptually as a separate module, the
UI is typically provided by interaction of the application
modules with the windows shell and the OS 140.

0074 Although the methodology of the present invention
may be embodied on a Single device for Synchronizing or
reconciling multiple data Sets present on that device, the
present invention will instead typically be embodied in an
environment including two or more computing or informa
tion-storing devices, which are occasionally or continually
connected. For purposes of the discussion which follows,
therefore, it is convenient to consider an embodiment of the
present intention in a client/server-like System having a
client (e.g., hand-held or portable “organizer” device 154,
laptop computer 152, or the like) in communication with a
Synchronization engine residing on a "host' or "server'
computer (e.g., computer System 100). The Synchronization
engine itself is constructed to effect reconciliation or Syn
chronization among two or more data Sets, according to
user-specified conditions or criteria. For a description of the
details construction and operation of a Synchronization
engine, See e.g., commonly-owned application Ser. No.
09/136.212, filed Aug. 18, 1998, the disclosure of which has
previously been incorporated by reference.

US 2001/0039629 A1

0075. The present invention is not limited to any particu
lar Synchronization engine or hardware configuration but,
instead, may be advantageously employed in any environ
ment requiring and capable of Supporting Synchronization of
two or more data Stores. For example, the laptop computer
152 may serve as the “server” with both the computer
system 100 and the organizer device 154 serving as “cli
ents.” Hence, for purposes of the present invention, which
device functions as a "client” (or multiple devices function
ing as "clients”) and which device functions as a "server, is
largely an arbitrary choice. And in instances where the
present invention is employed to Support peer-to-peer con
figurations, the use of “client” and “server” distinctions is in
fact not even applicable. Therefore, although the distinction
of a particular device being a “client' and another device
being a "server' is useful as a framework for presenting
exemplary Synchronization Scenarios for application of the
present invention, the present invention itself actually
requires no Such distinction.

0.076 Additionally, the means for communication may be
one of a variety of communication means, including Serial
link (e.g., RS 232 wired link), parallel link, infrared link,
wireless (cellular) link, or the like. The present invention is
independent of communication means, So long as Synchro
nization messages can eventually be transmitted and
received, whether in a Synchronous or asynchronous man
ner. Instead, what is required is an interface to the underlying
Synchronization protocol (whatever that protocol may be),
So that there exists Some means of initiating a Synchroniza
tion Session which is adapted to include a negotiation phase
of the present invention, as described below. Typically, the
interface would be implemented in program code existing at
the target device and complementary program code existing
at the Synchronization engine, So that the two may exchange
messages or commands (including parameter information)
in the format Specified by the particular Synchronization
protocol. The Synchronization protocol should, however, at
least allow the exchange of attribute information, So that
Synchronization attributes of the target device may be com
municated to the Synchronization engine.

0077 Synchronization Process Negotiation

0078 A. Overview
0079 The present invention introduces into a given syn
chronization protocol (which itself may be one of a variety
of types) a “negotiation phase' at the beginning of the
Synchronization, during which the devices involved will
eXchange information about the capabilities of one or more
devices. Typically, the capabilities of the client device are
the limiting factor for Synchronization, So that the negotia
tion phase may proceed by only including enumeration of
the client's capabilities. Once this negotiation phase has
been completed, the Synchronization can then proceed in a
manner that is most efficient for the features that are avail
able. The present invention itself is actually independent of
any particular literal protocol, as it may be incorporated into
a variety of different Synchronization protocols, as well as
different devices or different communication (message trans
port) layers. Therefore, the focus of the present convention
is, instead, on the adaptation of a Synchronization protocol
to incorporate a basic mechanism for negotiating the Syn
chronization proceSS before Synchronization begins, thereby
governing how Synchronization proceeds.

Nov. 8, 2001

0080) B. Synchronization Processes
0081 From the perspective of a synchronization engine,
a given Synchronization process may be divided into the
following basic steps (using the above-described client/
Server framework for discussion):

0082) 1. Figure out what records have changed on
the client (i.e., target device).

0083 2. Reconcile those changes with the local data
StOre.

0084 3. Update the client data store appropriately.
0085. How these three steps are actually performed varies
Significantly from one client to another, depending upon the
capabilities of the underlying device. For instance, as pre
viously illustrated in Example 1 and Example 2 above, the
task of figuring out what records have changed on the client
varies considerably, depending on capabilities of the client.
Therefore, of particular interest herein is the process to be
used for these Steps that is negotiated in the “negotiation
phase' before Synchronization begins.
0086. With regard to step 1 above, three different ways
exist that a Sync engine can figure out what has changed on
the client:

0087 1. Download the entire data store and compare
to a previously stored copy (slowest).

0088 2. Download a set of record “headers” (e.g.,
containing time Stamp or Signature/checksum infor
mation) which can be compared to a previous copy
to determine what has changed. This approach is
faster than #1, Since leSS information is transmitted.

0089) 3. Ask the device to transmit all the records
which have changed since a particular "Sync
Anchor" value (fastest). Here, Sync Anchor refers to
a value, Such as a time Stamp or a change counter
(e.g., value incremented each time a record is
changed), that allows one to determine whether a
record has changed since a particular point in time,
usually since last Synchronization. This is a value
which is associated with a particular record and is
changed whenever the record is changed. The Sync
engine can then compare this value to a previously
Stored value to detect that changes have been made.

0090 The present invention introduces the ability for the
Synchronization engine to query the client or target device
about a particular attribute, to find out what the device's
capabilities are in that respect. (AS previously described, the
approach is adaptable to a variety of different Synchroniza
tion engines, including for example the Synchronization
engine described by application Ser. No. 09/136.212). Given
the above ways in which a Synchronization engine can
determine what has changed on a client, the present inven
tion introduces a “RECORD FILTERING” parameter, to
allow the Synchronization engine to determine what the
client's capabilities are with respect to these three processes
(i.e., with respect to filtering records from Synchronization).
The parameter may be set to one of the following values:

RECORD FILTERING=
{NONEIHEADERSISINCE X}

0091) NONE indicates that the client does not provide
any record filtering functionality (i.e., process #1 above); the
client can only give the entire data store. HEADERS indi
cates that the client can provide record headers (i.e., process
#2 above). Here, the client cannot pick out what has

US 2001/0039629 A1

changed, but it can provide a Snapshot Summary that is
Smaller than all of the data (from which the synchronization
engine can then determine changes). SINCE X indicates
that the client can provide records as of a particular "Sync
Anchor value, where X indicates a time Stamp or change
counter value. Here, the client is capable of providing
records which have changed from a particular value (e.g.,
time stamp value for a particular date and time) given by the
Synchronization engine.

0092. In the event that the client can provide headers, the
Sync engine needs to know what Sort of information to
expect in those headers in order to perform Synchronization.
Possibilities include the following:

0093 1. Headers include a CRC (cyclic redundancy
checking) value for each record.

0094 2. Headers include a modification time (time
Stamp) for each record.

0095 3. Headers include a change counter for each
record.

0096) These three options are reflected in a “CHANGE
TRACKING” parameter, which indicates what the device's
capabilities are in terms of knowing what has changed. This
parameter may be set to one of the following values:

CHANGE TRACKING=
{NONEICRCTIMESTAMPCHANGE COUNTER}

0097) NONE indicates that the device or client has no
ability to determine if Something has changed in its data
store. CRC indicates a CRC value for each record; TIMES
TAMP indicates a modification time for each record; and
CHANGE COUNTER indicates a change count value for
each record.

0098 Clients which cannot support a “SINCE X” access
method must either transmit their entire data Store or trans
mit headers. For Such clients, the Sync engine will need to
request the desired records from the device. For example, if
the Synchronization engine has determined, based on com
parison of CRC values that a particular record has changed,
the Synchronization engine needs a means in order to request
that record from the device. Different devices will provide
different levels of access and different types of access to
their records, however. Therefore, a third parameter is
required for Specifying what type of access is provided.

0099. The types of record access that devices can support
include the following:

0.100) 1. The device can only transmit and receive
the entire data Store as a block; it is not possible to
request or Submit individual records.

0.101) 2. The device provides “static index' access to
the records (i.e., there are a fixed number of record
Storage "slots', and the Sync engine can request and
Submit records based on this slot number. The
records may move to different slots in between
Synchronizations, So there is no lasting fixed corre
lation between a slot number and a record).

0102) 3. The device provides “unique IDs” for each
record, and the Sync engine can request and Submit
individual records using these IDs. Unique IDs are
guaranteed to be unique within a particular data
Store, and the association between a record and its ID
is never broken.

Nov. 8, 2001

0103) These three options are reflected in a “RECORD
ACCESS' parameter, which may take one of the following
values:

RECORD ACCESS={BLOCKSTATICUNIQUE
0104 BLOCK record access indicates that the device can
only give access to the entire set or “block” of records (i.e.,
the entire data store); this is the most primitive type of record
access. STATIC record access indicates a Static index
mechanism. For example, a Motorola StarTacE) phone pro
vides 99 slots for storing phone numbers. A synchronization
engine can request, for instance, the contents of slot #5.
There is, however, no association between the slot number
and the value Stored (i.e., record contents), and in fact the
phone can Shuffle the records around at its discretion.
UNIQUE indicates that each record within the data store is
represented by a unique ID, within the Scope or context of
that particular data Store. Here, the relationship between the
unique identifier and the record is fixed or permanent. This
level of record acceSS allows the Synchronization engine to
get and put an individual record, based on the ID.
0105 B. Example Utilizing Parameter Information
0106 Based on the just-described three synchronization
negotiation parameters of the present invention, the Syn
chronization engine can use the parameters to control the
Synchronization process and to pick a Synchronization pro
ceSS that is optimized for a particular target device. When the
Sync engine is able to query the device for its Synchroniza
tion capabilities using these three basic parameters, there
fore, it becomes possible for the Sync engine to proceed with
a method of Synchronization that is appropriate to the
capabilities of the device. This is perhaps best illustrated by
way of example, using the following for Synchronization
proceSSeS.

0107 Consider the following four synchronization pro
cesses, with their corresponding parameter values:

EXAMPLE if1

0.108 Synchronization Attribute Parameters:
0109) RECORD FILTERING-NONE
0110 CHANGE TRACKING-NONE
0111 RECORD ACCESS=BLOCK

0112 Optimal Synchronization Process Available:

0113 (a) Obtain complete data store;
0114 (b) Perform sync locally; and
0115 (c) Replace entire data store.

EXAMPLE if?

0116 Synchronization Attribute Parameters:

0117 RECORD FILTERING-NONE
0118 CHANGE TRACKING-NONE
0119) RECORD ACCESS-STATICUNIQUE

0120 Optimal Synchronization Process Available:

0121 (a) Obtain complete data store;
0122 (b) Perform sync locally; and
0123 (c) Replace only affected records.

US 2001/0039629 A1

EXAMPLE if3

0124 Swnchronization Attribute Parameters: y

0125 RECORD FILTERING=HEADERS
0126 CHANGE TRACKING=
CRCTIMESTAMPCHANGE COUNTER

O127 RECORD ACCESS-UNIQUE
0128 Optimal Synchronization Process Available:

0129 (a) Obtain a summary of all records which
includes per-record change-tracking information;

0130 (b) Fetch only the changed records;
0131 (c) Perform sync, and
0132 (d) Replace only affected records.

EXAMPLE if4

0133) Synchronization Attribute Parameters:
0134) RECORD FILTERING=SINCE X
0135 CHANGE TRACKING=
TIMESTAMPCHANGE COUNTER

0136 RECORD ACCESS-UNIQUE
0.137 Optimal Synchronization Process Available:

0138 (a) Request only the changed records from the
device;

0139 (b) Perform syne; and
0140 (c) Replace only the affected records.

0.141. The following illustrates an exemplary communi
cation Session for Such a case.

TABLE 1.

EXEMPLARY COMMUNICATION SESSION

Client Server Notes:

Login
Login Response
Request Sync Attributes

Return Sync Attributes
RequestChangesSinceX

UpdateRecord
UpdateRecord
LastRecordSent

AckLastRecordSent
Perform
synchronization
at Server

DeleteRecord
InsertRecord
UpdateRecord
LastRecordSent

AckLastRecordSent
UpdateMap (optional details)
LastMap Sent

AckLastMapSent
Logout

0142. This synchronization session demonstrates
exchange (e.g., Synchronization protocol-based dialog) in
which the target device is capable of knowing which records
to Send to the Server, based on the last Sync time commu
nicated during login. Here, the Server performs Synchroni

Nov. 8, 2001

zation (including, conflict resolution) after receiving all
client changes. Alternatively, the Server may be configured
to perform Synchronization or at least Some degree of
conflict resolution upon receipt of each client record (i.e.,
process does not wait until receipt of all client records before
commencing).

0.143 C. Methodology Summarized
014.4 FIGS. 2A-E present flow charts illustrating the
overall method Steps employed for Synchronization process
negotiation. In Step 201, the respective devices establish a
communication link (i.e., establish communication link
between target device(s), client(s), and Synchronization
engine). In step 202, the devices exchange acknowledg
ments for initiating Synchronization protocol. In Step 203,
the devices begin Synchronization negotiation by eliciting
the Synchronization capabilities of the target device(s). This
occurs, for instance, by transmitting a request from the
Synchronization engine to the client for Synchronization
parameters or attributes of the client. AS indicated by Step
204, in response to this request, the client transmits Syn
chronization parameters indicating the client's capabilities.
In the currently-preferred embodiment, Such parameters or
attributes include: (1) whether records are filtered
(RECORD FILTER parameter), (2) what type of change
tracking (e.g., time stamp or change value) is provided at the
client (CHANGE TRACKING parameter), and (3) what
level of record access is afforded by the client (RECORD
ACCESS parameter). Based on the transmitted parameter
values, the Synchronization engine will Select an optimal
Synchronization process or Strategy.

0145 Processing at this point depends on the actual
values Set in the parameters. In other words, how the
Synchronization process proceeds from this point on
depends, at least in part, on the Synchronization capabilities
(if any) of the client: a Synchronization protocol is selected
that allows optimization of the Synchronization process,
based on client capabilities. The processing logic applied by
the method at this point is summarized by step 205. In the
event that record filtering is Set to “none', change tracking
is Set to “none', and record acceSS is set to “block', the
method proceeds to steps to 211-213 (case instance or
condition A). In Such a case, the Synchronization engine
obtains the complete data Store (step 211), performs Syn
chronization locally (step 212), and then replaces the entire
data store (step 213), as shown in FIG.2B. In the event that
record filtering is Set to “none', change tracking is Set to
“none', and record access is Set to “static' or “unique”, the
method proceeds to steps to 221-223 (case condition B).
Here, the Synchronization engine obtains the complete data
Store (step 221), performs Synchronization locally (Step
222), but then only replaces the affected records (step 223),
as shown in FIG. 2C.

0146 Continuing with the other case conditions, in the
event that record filtering is set to "headers', change track
ing is set to “CRC", or “timestamp' or “change counter',
and record access is Set to “unique', the method proceeds to
Steps to 231-234 (case condition C). In Such a case, the
Synchronization engine obtains a Summary of all records
which includes per record change-tracking information (Step
231), fetches only the changed records (step 232), performs
Synchronization locally (Step 233), and then replaces only
the affected records (step 234), as shown in FIG. 2D. In the

US 2001/0039629 A1

event that record filtering is Set to “since X change' tracking,
change tracking is Set to "time Stamp' or “change counter',
and record acceSS is Set to “static' or “unique', the method
proceeds to steps to 241-243 (case condition D). Here, the
Synchronization engine requests only the changed records
from the target device (step 241), performs Synchronization
locally (step 242), and then only replaces the affected
records (step 243), as shown in FIG. 2E. After conclusion
of the proper case condition invocation, the method is done.
0147 The above demonstrates that, based on synchroni
Zation parameter combinations, the Synchronization engine
proceeds with Synchronization in a manner Selected to
optimize the process, based on the capabilities of the par
ticular target device participating in Synchronization. The
ability of the client to facilitate the process is utilized based
on the recognition by the Synchronization engine that the
client is able to assist in the process. Here, in contrast to
hard-wired approaches in prior art Systems, the Synchroni
Zation engine adapts to the capabilities of each individual
client, even though each client itself may have a degree of
Support for Synchronization that is quite different than that of
other clients. In effect, both the client and the synchroniza
tion engine “negotiate' as to the best Synchronization pro
ceSS to use. Synchronization then proceeds based on the
negotiated or agreed-upon Synchronization protocol (which
itself can be any one of a number of Synchronization
protocols).
014.8 D. Conclusion
0149. By providing a mechanism to access basic syn
chronization parameters, the present invention allows a Sync
engine to effect Synchronization among a variety of different
devices in a manner that is optimal for the capabilities of
each particular device. In this fashion, the amount of traffic
(information) over the communication link may be mini
mized. This is particularly important in configurations hav
ing slow communication links (e.g., Serial cable link) and/or
large amounts of data. Additionally, the amount of work
which the Synchronization engine must do is minimized. All
told, the present invention Solves the previously-described
problem that exists with these present-day approaches
employing a "hard-wired” protocol approach: a Synchroni
Zation protocol may be negotiated between or among an
arbitrary Set of devices, Such that an optimal Synchronization
protocol is Selected for those devices.
0150. While the invention is described in some detail
with Specific reference to a single preferred embodiment and
certain alternatives, there is no intent to limit the invention
to that particular embodiment or those Specific alternatives.
Thus, the true Scope of the present invention is not limited
to any one of the foregoing exemplary embodiments but is
instead defined by the appended claims.
What is claimed is:

1. In a data processing environment, a method for Syn
chronizing a first data Set residing on a first device with a
Second data Set residing on a Second device, the method
comprising:

establishing a communication link between Said first and
Second devices,

transmitting from the Second device to the first device a
request for Synchronization capabilities of the first
device;

Nov. 8, 2001

in response to Said request, transmitting from the first
device to the Second device information indicating Said
Synchronization capabilities of the first device;

based on Said Synchronization capabilities of the first
device, Selecting a Synchronization protocol for Syn
chronizing Said first and Second data Sets, and

performing Synchronization of Said first and Second data
Sets using Said Selected Synchronization protocol,
wherein Said Synchronization is performed in a manner
optimized for the Synchronization capabilities of the
first device.

2. The method of claim 1, wherein Said communication
link comprises a wireleSS link.

3. The method of claim 1, wherein said communication
link comprises a wired link.

4. The method of claim 1, wherein said first and second
devices are only occasionally connected via Said communi
cation link.

5. The method of claim 1, wherein said first and second
devices are persistently connected via Said communication
link.

6. The method of claim 1, wherein said request for
Synchronization capabilities of the first device comprises a
communication message requesting Synchronization param
eters from the first device.

7. The method of claim 6, wherein said synchronization
parameters comprise attribute/value pairs indicating Syn
chronization capabilities of the first device.

8. The method of claim 6, wherein said synchronization
parameters include a record filtering parameter indicating
what capability the first device has for filtering records from
Synchronization.

9. The method of claim 8, wherein said record filtering
parameter can express a value of “none' to indicate that the
first device has no record filtering capability.

10. The method of claim 8, wherein said record filtering
parameter can express a value indicating that the first device
has the capability of providing record headers for records of
the first data Set.

11. The method of claim 8, wherein said record filtering
parameter can express a value indicating that the first device
has the capability of providing only those records of the first
data Set which meet a particular condition.

12. The method of claim 11, wherein said particular
condition comprises a Synchronization anchor value against
which records are tested.

13. The method of claim 12, wherein said synchronization
anchor value comprises a time Stamp value.

14. The method of claim 12, wherein said synchronization
anchor value comprises a change counter value.

15. The method of claim 14, wherein said change counter
value comprises a value incremented each time a particular
record is changed, thereby allowing a device to determine
whether a change has occurred to the particular record.

16. The method of claim 6, wherein said synchronization
parameters include a change tracking parameter indicating
what type of information the first device provides when
transmitting record headers.

17. The method of claim 16, wherein Said change tracking
parameter comprises a Selected one of a cyclic redundancy
checking (CRC) value, a time stamp value, and a change
counter value.

US 2001/0039629 A1

18. The method of claim 6, wherein said synchronization
parameters include a record acceSS parameter indicating
what level of access the first device provides to other
devices.

19. The method of claim 18, wherein said record access
parameter comprises a value indicating that the first device
can only give access to the entire first data Set.

20. The method of claim 19, wherein said value indicating
that the first device can only give access to the entire first
data Set comprises a “block' value.

21. The method of claim 18, wherein said record access
parameter comprises a value indicating that the first device
can give access to individual records of the first data Set
through a Static index mechanism.

22. The method of claim 21, wherein Said value indicating
that the first device can give access to individual records of
the first data Set through a Static index mechanism comprises
a “static' value.

23. The method of claim 18, wherein said record access
parameter comprises a value indicating that the first device
can give access to individual records of the first data Set
using a unique identifier for each record.

24. The method of claim 23, wherein said value indicating
that the first device can give access to the individual records
of the first data using a unique identifier for each record
comprises a “unique' value.

25. The method of claim 23, wherein said value indicating
that the first device can give access to the individual records
of the first data using a unique identifier indicates that the
first device allows other devices to get and put an individual
record, based on an ID that is unique to that record.

26. The method of claim 23, each unique identifier for
records of the first device is a Selected one of an identifier
that is unique within the Scope of the first device and an
identifier that is globally unique.

27. A method for Synchronizing a first device having a
first data Set with a Second device having a Second data Set,
the method comprising:

Selectively connecting the first device to a Second device,
for establishing communication between the two
devices,

negotiating a Synchronization process for Synchronizing
Said first and Second data Sets by performing Substeps
of:

Sending a request from the Second device to the first
device for Synchronization capabilities of the first
device;

in response to Said request, transmitting from the first
device to the Second device Synchronization param
eters conveying the Synchronization capabilities of
the first device; and

based on Said Synchronization parameters received
from the first device, Selecting a Synchronization
proceSS for Synchronizing Said first and Second data
Sets, and

performing Synchronization of Said first and Second data
Sets using Said Selected Synchronization process.

28. The method of claim 27, wherein synchronization
parameters indicate that the first device provides no record
filtering, provides no change tracking, and provides block
record access, and wherein Said Synchronization Step is
performed by:

Nov. 8, 2001

(a) transmitting from the first device to the Second device
an entire copy of the first data Set,

(b) performing Synchronization locally at the Second
device, using Said copy of the first data Set, and

(c) once said copy of the first data set has been Synchro
nized, replacing the first data Set of the first device with
the copy of the first data Set which has been Synchro
nized at the Second device.

29. The method of claim 27, wherein synchronization
parameters indicate that the first device provides no record
filtering, provides no change tracking, and provides record
acceSS using either a Static indeX or a unique record identi
fier, and wherein Said Synchronization Step is performed by:

(a) transmitting from the first device to the Second device
an entire copy of the first data Set,

(b) performing Synchronization locally at the Second
device, using Said copy of the first data Set, and

(c) once said copy of the first data set has been Synchro
nized, replacing only those records of the first data Set
of the first device that are affected by the synchroni
Zation.

30. The method of claim 27, wherein said synchronization
parameters indicate that the first device provides record
filtering using record headers, provides change tracking, and
provides record acceSS using a unique record identifier, and
wherein Said Synchronization Step is performed by:

(a) transmitting from the first device to the second device
a Summary of the first data Set, which includes per
record change-tracking information;

(b) based on Said change-tracking information, transmit
ting from the first device to the Second device a copy of
only those records of the first data set which have
changed;

(c) performing Synchronization locally at the Second
device, using Said copy of only those records of the first
data Set which have changed; and

(d) once said copy of the first data set has been Synchro
nized, replacing each record of the first data Set of the
first device that is affected by the synchronization,
using the unique record identifier for each record.

31. A Synchronization System comprising:

a communication link between a first data Set from a first
device with a Second data Set from a Second device;

a Synchronization engine for enumerating particular Syn
chronization capabilities of devices and for performing
Synchronization between data Sets;

a Synchronization interface capable of responding to Said
Synchronization engine, for transmitting from the first
device information indicating the particular Synchroni
Zation capabilities of the first device; and

whereupon said Synchronization engine Selects a particu
lar Synchronization process for Synchronizing Said first
and Second data Sets, based on the particular Synchro
nization capabilities of the first device, and thereafter
performs Synchronization of Said first and Second data
Sets using Said Selected Synchronization process.

US 2001/0039629 A1

32. The system of claim 31, wherein said communication
link is a Selected one of a wireleSS communication link and
a wired communication link.

33. The system of claim 32, wherein said wireless com
munication link comprises a cellular phone link.

34. The system of claim 32, wherein said wired commu
nication link comprises a Serial RS232 communication link.

35. The system of claim 31, wherein said communication
link comprises a Selected one of a Synchronous communi
cation link and an asynchronous communication link.

36. The system of claim 31, wherein said synchronization
interface resides, at least in part, at Said first device.

37. The system of claim 31, wherein said synchronization
interface Supports communication of Synchronization com
mands and parameters between Said first and Second
devices.

38. The system of claim 31, wherein said information
indicating the particular Synchronization capabilities of the
first device comprises Synchronization parameters.

Nov. 8, 2001

39. The system of claim 38, wherein said synchronization
parameters comprise attribute/value pairs indicating Syn
chronization capabilities of the first device.

40. The system of claim 38, wherein said synchronization
parameters include a record filtering parameter indicating
what capability the first device has for filtering records from
Synchronization.

41. The system of claim 38, wherein said synchronization
parameters include a change tracking parameter indicating
what type of information the first device can provide by
transmitting only record headers.

42. The system of claim 38, wherein said synchronization
parameters include a record access parameter indicating
what level of access the first device provides to other
devices.

