发明名称
单体接枝纤维及其用途

摘要
本发明涉及伤口敷料制品、方法，所述伤口敷料制品包括非织造材料，所述非织造材料包
含接枝侧挂亲水性基团的多根纤维，所述方法使用高能辐射来制备具有接枝侧挂亲水性基
团的多根纤维，所述多根纤维用于制备所述伤口敷料制品。
1. 一种伤口敷料，其包括：
非织造材料，所述非织造材料包括用各个聚合物链辐射接枝的多根纤维，所述各个聚合物链从所述纤维的表面延伸；
其中所述多根纤维中的纤维包含纤维素单元；
其中所述各个聚合物链包含各自具有至少一个亲水性基团的亲水性单体单元；
其中所述各个聚合物链未连接至任何可测测量长度，并且
其中所述非织造材料中的所述多根纤维具有在 0.25 至 5.0 范围内的亲水性基团与纤维素重复单元的比例。
2. 根据权利要求 1 所述的伤口敷料，其中所述多根纤维包括纤维素。
3. 根据权利要求 1 所述的伤口敷料，其中所述各个聚合物链包含丙烯酸单体单元。
4. 根据权利要求 3 所述的伤口敷料，其中所述各个聚合物链还包含聚乙二醇单体单元。
5. 根据权利要求 1 所述的伤口敷料，其中所述亲水性基团包括羧酸、羟烷基、甲氧基烷基、聚乙二醇、甲氧基聚乙二醇中的任一种，或它们的组合。
6. 根据权利要求 1 所述的伤口敷料，其中所述亲水性基团包括羧酸基团或其盐，或羧酸基团与其盐的组合。
7. 根据权利要求 6 所述的伤口敷料，其中所述盐包含金属离子，其中所述金属离子包括钠离子、钾离子、铯离子、锶离子、钙离子中的任一种，或它们的组合。
8. 一种制备多根辐射接枝纤维的方法，所述方法包括：
提供多根纤维；
用高能辐射来辐射所述多根纤维以产生经辐射的多根纤维；
提供包含亲水性单体的水溶液；
使所述经辐射的多根纤维与水溶液接触，使得所述经辐射的多根纤维用所述亲水性单体接枝以提供具有从其表面延伸的各个聚合物链的多根经辐射的纤维，其中所述各个聚合物链包含亲水性基团；
其中所述各个聚合物链未连接至任何可测量长度，以及从所述多根经辐射的纤维中去除残余的亲水性单体。
9. 根据权利要求 8 所述的方法，其中所述亲水性单体包含至少一个不饱和双键。
10. 根据权利要求 8 所述的方法，其中从所述多根接枝纤维中去除所述亲水性单体的残余部分包括在所述纤维与酸或碱反应之前洗涤所述多根接枝纤维。
11. 根据权利要求 8 的方法，该方法还包括在从所述多根经辐射的纤维中去除残余的亲水性单体之后形成酸或碱的基团的盐。
12. 根据权利要求 8 所述的方法，其中使所述多根纤维与所述水溶液接触在用高能辐射来辐射所述多根纤维之后进行。
13. 根据权利要求 8 所述的方法，其中去除所述残余的亲水性单体在具有接枝侧挂亲水性基团的所述多根经辐射的纤维中留下不超过 1 重量％的所述残余的亲水性单体。
14. 根据权利要求 8 所述的方法，其中去除所述残余的亲水性单体在具有接枝侧挂亲水性基团的所述多根经辐射的纤维中留下不超过 0.1 重量％的所述残余的亲水性单体。
15. 根据权利要求 8 所述的方法，其中去除所述残余的亲水性单体在具有接枝侧挂亲
水性基团的所述多根经辐射的纤维中留下不超过 0.01 重量％的所述残余的亲水性单体。
单体接枝纤维及其用途

背景技术
【0001】用于吸收性个人产品的羧甲基纤维素纤维已知来源于，例如通过强碱和单氯乙酸酯试剂的反应的溶剂纺成的纤维素纤维。参见，例如美国专利5,731,083（Bahia等人）。

发明内容
【0002】本公开涉及具有亲水性单体接枝纤维的伤口敷料。在一个方面，本公开描述了伤口敷料，其包括非织造材料，所述非织造材料包括用各个聚合物链接枝接枝的多根纤维，所述各个聚合物链从所述纤维表面延伸，其中多根纤维中的纤维包含纤维重复单元，其中各个聚合物链包含各自具有至少一个亲水性基团的亲水性单体单元，并且其中非织造材料中的多根纤维具有在0.25至5.0范围内的亲水性基团与纤维重复单元的比率。在一些实施例中，各个聚合物链包含丙烯酸单体单元。在一些实施例中，各个聚合物链包含丙烯酸单体单元和聚乙二醇单体单元。

【0003】在另一方面，本公开描述制备具有接枝侧挂亲水性基团的多根经辐射的纤维的方法，该方法包括提供多根纤维，用高能辐射来辐射多根纤维以产生经辐射的多根纤维，提供包含亲水性单体的水溶液，将经辐射的多根纤维与水溶液接触，使得经辐射的多根纤维用亲水性单体接枝，提供具有从其表面延伸的各个聚合物链的多根经辐射的纤维，其中各个聚合物链包含亲水性基团，以及从多根经辐射的纤维中去除残余的亲水性单体。在一些实施例中，亲水性单体包含丙烯酸。在一些实施例中，亲水性单体包含丙烯酸和聚乙二醇。

【0004】在另一方面，本公开描述了制备亲水性非织造材料的方法，该方法包括：根据制备具有接枝侧挂亲水性基团的多根经辐射的纤维的本公开的上述方法制备具有接枝侧挂亲水性基团的多根经辐射的纤维，以及由具有接枝侧挂亲水性基团的多根经辐射的纤维形成非织造材料。

【0005】在另一方面，本公开描述了制备亲水性非织造材料的方法，该方法包括：根据制备具有接枝侧挂亲水性基团的多根经辐射的纤维的本公开的上述方法制备具有接枝侧挂亲水性基团的第一多根经辐射的纤维，提供未根据制备具有接枝侧挂亲水性基团的多根经辐射的纤维的本公开的上述方法制备具有接枝侧挂亲水性基团的第二多根经纤维，以及由第一多根纤维和第二多根纤维形成非织造材料。

【0006】在另一方面，本公开描述了制备亲水性非织造材料的方法，该方法包括：根据制备具有接枝侧挂亲水性基团的多根经辐射的纤维的本公开的上述方法制备具有接枝侧挂亲水性基团的第三多根纤维，提供未根据制备具有接枝侧挂亲水性基团的第四多根纤维的制备方法的上述方法，以及由第一多根纤维和第二多根纤维形成非织造材料。其中第一多根纤维与第二多根纤维在组成上彼此不同。

【0007】在另一方面，本公开描述了制备亲水性非织造材料的方法，该方法包括：根据公开的方法制备具有接枝侧挂亲水性基团的多根亲水性纤维，以及由多根亲水性纤维形成非织造材料。
在另一方面，本公开描述了处理伤口的方法，该方法包括：根据本公开的方法提供亲水性非织造制品，以及使亲水性非织造制品接触到伤口上。

“邻近伤口”是指直接与伤口接触，任选地，包括在伤口与所述接触伤口的本公开的制品之间至少一个中间材料层。

“非织造”是指根据 ASTM D123-09e1 通过机械、化学、热或溶剂方法及其组合实现的，通过纤维的粘合或结合或两者制备的纺织物结构。

本公开的伤口敷料可用于处理具有渗出物的伤口，特别地用于高度渗液伤口的流体的吸收。

具体实施方式

本公开的伤口敷料制品具有超吸水纤维的非织造幅度。尽管已知多种类型的超吸水纤维，但是根据本公开利用高能辐射来将亲水性单体接枝至各种类型的纤维中的任一种（如，天然纤维（如，棉纤维、羊毛纤维）和／或合成纤维（如，人造丝、尼龙、再生的纤维素纤维））上，超吸水纤维具有接枝至纤维的侧链亲水性基团。

通过使用高能辐射（如，电子束辐射，γ 辐射）引发接枝反应，可避免对各种常用的引发剂试剂的需要，并且所得接枝纤维（以及最后，伤口敷料）不含（例如）在用紫外线或热处理引发的接枝反应中使用的那些引发剂试剂。此外，单根纤维可用高能辐射来辐射并且与亲水性单体反应，并且剩余的亲水性单体（如果残留）可用洗涤方法去除，从而提供具有接枝侧链亲水性基团的单根纤维的纤维和高亲水的纯度，这通常在伤口敷料制品的制备中是可取的。在本公开的方法中已观察到，使用电离辐射可将亲水性单体的溶液聚合最小化，从而避免通过详尽的洗涤方法去除那些亲水性聚合物的需要。

在本公开的接枝方法中使用的特别有用的合成纤维为称为“Lyocell”的再生的纤维素纤维，例如，该 Lyocell 纤维有商标名称“TENCEL”得自 AG (Lenzing AG) (Mobile, AL)。对于 TENCEL 的另外的描述，包括可用的 H5260 级，参见，如 Slater 等人，Lenzinger Berichte (兰精公司报告) , 82 (2003 年)，第 37-42 页。可使用各种尺寸的 Lyocell 纤维（例如，1.7 dtex×38 mm 至 1.7 dtex×51 mm 或 3.3 dtex×60 mm 至 90 mm 或 1.3 dtex×38 mm 或其它合适的纤维尺寸）。

纤维包含“纤维重复单元”（即，单位）。例如，纤维素具有葡萄糖分子的重复单元，而尼龙具有酰胺连接分子的各种重复单元。

侧链亲水性基团通常为接枝聚合物的一部分，其包含“阴离子”单体单元、“中性亲水性”单体单元，或接枝至多根纤维表面的阴离子和中性亲水性单体单元的组合。

用于本公开接枝方法的亲水性单体包括具有至少一个不饱和双键的亲水性单体。亲水性单体可包括“阴离子”（即，带负电的）单体、“阳离子”（即，带正电的）单体、“中性”（即，不带负电也不带正电的）亲水性单体，或这些的任何组合。

带负电的阴离子单体具有至少一个能够经历自由基聚合的烯键式不饱和基团和另外的阴离子官能团。在一些实施例中，烯键式不饱和基团为（甲基）丙烯酸基或乙烯基。阴离子单体可为弱酸、强酸、弱酸的盐、强酸的盐或它们的组合。如果用于制备亲水性纤维的阴离子单体包括弱酸盐或强酸盐，那么这些酸的平衡离子可为但不限于碱金属、碱土金属、铵离子或四烷基铵离子。
说明书

[0019] 合适的阴离子单体包括丙烯酸和甲基丙烯酸;磺酸,诸如乙烯基磺酸和4-苯乙烯磺酸;(甲基)丙烯酰胺磺酸;诸如(甲基)丙烯酰胺基膦酸(如,2-丙烯酰胺乙基膦酸和3-甲基丙烯酰胺丙基膦酸);以及(甲基)丙烯酰胺烷基酯,诸如丙烯酸-2-羧乙酯、甲基丙烯酸-2-羧乙酯、丙烯酸-3-羧丙酯和甲基丙烯酸-3-羧丙酯。其它合适的酸性单体包括(甲基)丙烯酰氨基酸(如, N-丙烯酰甘氨酸、N-丙烯酰天冬氨酸、N-丙烯酰-β-丙氨酸、2-丙烯酰胺甘氨酸、3-丙烯酰胺-3-甲基丁酸以及在美洲4,157,418(Heilmann)中描述的那些,其以引用的方式并入本文)。也可使用这些酸性单体中的任何盐。

[0020] 其它合适的阴离子单体可具有通式(I):

\[ R^1 \text{CH}_2=\text{C} - \text{O} - X - Y - Z, \]

[0022] 其中
[0023] R^1 为 H 或 CH₃;
[0024] X 为 - O- 或 - NR^1-,
[0025] Y 为直链或支链亚烷基,一般为 1 至 10 个碳原子;并且
[0026] Z 为阴离子基团,其可选自磺酸基团、膦酸基团、羧基酸基团及其盐。

[0027] 一些示例的阴离子单体包括式(II)的(甲基)丙烯酰胺磺酸或其盐;

\[ R^1 \text{CH}_2=\text{C} - \text{O} - \text{NH} - Y - \text{SO}_3\text{H}, \] 其中

[0028] R^1 为 H 或 CH₃,并且 Y 为具有 1 至 10 个碳原子的直链或支链亚烷基。根据式(II)的示例性离子单体包括但不限于 N-丙烯酰胺甲烷磺酸、2-丙烯酰胺乙烷磺酸、2-丙烯酰胺 -2-甲基丙烯磺酸和 2-甲基丙烯酰胺-2-甲基丙烯磺酸。也可使用这些酸性单体的盐,例如为(3-磺基丙基)-甲基丙烯酸钾盐和 2-(甲基丙烯酰氧基)乙基磺酸钠盐。

[0029] 接枝聚合物任选地包含具有聚(环氧烷)基团的单官能烯键式不饱和接枝单体单元。将这些单体与接枝阴离子单体共聚合以在基底的表面形成接枝共聚物链。当存在时,这些单体以 2 重量%至 25 重量%,并且更理想地 4 重量%至 20 重量%的量(相对于总单体重量)使用。

[0030] 具有聚(环氧烷)基团的单体单元由下式表示:

\[ Z - Q - (R^1) - \text{CH}_2 - Q - R^1, \]  III

[0032] 其中 Z 为可聚合烯键式不饱和部分, R^1 为 H 或 CH₃, R^2 为 H、C₁-C,烷基、芳基或它们的组合,并且 m 为 2 至 100,优选地 5 至 20,并且 Q 为选自以下的二价连接基团: - O-, -NR^1-, -CO₂-, 和 -CONR^1-。在一个实施例中,聚(环氧烷)基团为聚(环氧乙烷)(共)聚合物。

[0033] 在另一个实施例中,侧挂聚(环氧烷)基团为聚(环氧乙烷共环氧丙烷)共聚物。此类共聚物可为嵌段共聚物、无规共聚物或梯度共聚物。

[0034] 单体的可用烯键式不饱和部分 Z 可包括:
其中 $R'$ 为 H 或 Me 并且 $r=1-10$。

例如，通过使单 - 或双 - 官能环氧烷烃 (共) 聚合 (其通常为市售的) 与反应性烯
键式不饱和化合物 (如，丙烯酸酯) 反应可制备具有聚 (环氧烷) 基团的单体。使聚 (环
氧烷) 封端的官能团可包括羟基、胺基和羧基。可使用多种反应性烯键式不饱和化合物
(例如丙烯酸盐衍生物)，包括但不限于 (甲基) 丙烯酸、(甲基) 丙烯酰氯、(甲基) 丙烯酸酯
和 2- 甲基丙烯酸异氰酸酯乙酯。优选地，单体通过使单或双官能环氧烷烃 (共) 聚合物与
(甲基) 丙烯酸酯反应制备。通常，如果化学计量的烯键式不饱和反应物与单官能环氧烷
烃 (共) 聚合物 (例如单羟基封端的环氧烷烃 (共) 聚合物) 混合，那么可获得单取代产物的
100% 转化率。

合适的单官能聚 (环氧烷) 单体的例子包括聚 (环氧乙烷) (甲基) 丙烯酸酯、聚
(环氧丙烷) (甲基) 丙烯酸酯、聚 (环氧乙烷 - 环氧丙烷) (甲基) 丙烯酸酯，以及它
们的组合。此类单体优选地包括一种非反应性端基，例如 (C$_1$-C$_6$) 烷氧基、芳氧基
(例如，苯氧基) 和 (C$_1$-C$_6$) 烷氧基。这些基团可为直接或支链的。这些单体可在宽泛的分子
量范围内并且可商购获得自以下来源：诸如 Sartomer Company, Exton, PA (包括以商标
名为“SR550”获得的甲氧基聚乙烯)；Shinnakamura Chemical Co., Ltd., Tokyo, Japan；Aldrich, Milwaukee, WI；Osaka Organic Chemical Ind., Ltd., Osaka, Japan。

合适的中性亲水性单体的另外例子包括 (甲基) 丙烯酸 2- 羟乙酯 (HEMA)、(甲
基) 丙烯酸 -2- 羟丙酯、(甲基) 丙烯酸 -3- 羟丙酯、(甲基) 丙烯酸 -2,3- 二羟基丙基丙
基、(甲基) 丙烯酸 -4- 羟丁酯、N- 乙烯基乙内酰胺、N- 乙烯基乙酰胺、N- 乙烯基吡咯烷酮、丙
烯腈、丙烯酸四氢糠基酯、丙烯酰胺，单或双 N- 烷基取代的丙烯酰胺，以及它们的组合。这些合适的中性亲水性单体的另外例子中，特别合适的实例包括 (甲基) 丙
烯酸 2- 羟乙酯 (HEMA)、N- 乙烯基吡咯烷酮、N- 乙烯基乙酰胺、甲基丙烯酰胺，以及它
们的混合物。

在一些实施例中，中性亲水性单体可包括羟烷基、甲氧基烷基、聚乙二醇、甲氧基
聚乙二醇中的任一种或这些的任何组合的亲水性基团。

因为聚合物优选地为非交联的，所以含有单体混合物的吸入溶液优选地不含有聚
烯键式不饱和单体 (即，无交联剂)。

在一些典型实施例中，总接枝亲水性单体含量可为具有接枝侧挂亲水性基团的多
根经辐射的纤维的重量的 0.75 倍至 2 倍。希望避免聚合物链形成连接单独的纤维的桥接，
因为这可降低亲水性基团吸收伤口流体的可用性。一种通过接枝聚合物使纤维 - 纤维桥接
最小化的方式为降低给定的纤维尺寸的单体浓度。另一种减低桥接的方式包括降低高能辐
射的剂量，不受理论的束缚，这增加了在辐射纤维的表面上产生的自由基之间的空间。
接枝亲水性单体单元作为各个(即，非交联的)聚合物链从纤维的表面延伸。在此接枝方法中,将纤维的重复单元用第一亲水性单体单元接枝(第二亲水性单体单元反应),以生成自纤维表面延伸的每个聚合物链。根据高能辐射产生自由基的位置(通常,来自碳原子或氧原子),第一亲水性单体单元的附连点将为无规的。

聚合物链未交联至任何可测量程度。当前方法的目的为形成自纤维表面延伸的各个未交联的聚合物链。在一些实施例中,可能有利的是将水可混溶有机溶剂添加至接枝吸入溶液以提高接枝的各个聚合物链的分子量并减少聚合物链的桥接。

例如,就具有氯乙酸的纤维素的羧甲基化而言,本文所述方法可区别于在纤维重复单元上的羟基和亲水性基团之间形成键的方法。已经观察到,与(例如)用100%丙烯酸接枝的纤维相比,PEG共单体的添加可产生脆性较小的纤维,并且具有较柔软“触感”的纤维。还观察到,本公开的接枝纤维在存在润滑剂的情况下可更容易地重新打开以用于制备辅材,并且PEG单体提供某些润滑剂性质。或者,可将PEG添加剂(如,PEG400)添加至接枝纤维。用于增强纤维加工的其它润滑剂是本领域技术人员已知的。

相对于对应非接枝纤维,具有接枝侧挂亲水性基团的辐射纤维已增加吸水能力。在一些实施例中,吸水率的水平,如吸水率(参见实例部分)可增加超过10倍。在一些实施例中,相对于对应非接枝纤维,吸水率的水平,如吸水率,可增加至少15倍、多达20倍、多达25倍或甚至多达30倍。

在一些实施例中,可用的纤维长度可包括已经使用的51mm~90mm。较短的纤维长度也为可用的,尽管加工技术(如,针钉)可从使用较长纤维中获益。

已经观察到在一些实施例中,接枝效率可取决于纤维表面积。不受理论的约束,认为,随着纤维表面积增加,吸水性将提高,并且随着纤维表面积下降,吸水性将降低。

在本公开中,制备具有接枝侧挂亲水性基团的多根经辐射的纤维的典型方法包括以下步骤:提供多根纤维(“基底”),用高能辐射来辐射多根纤维(通常在惰性气氛中),以及随后使暴露的基底与包含阴离子单体的溶液(和如所述的任选地其它单体)接触(通常,通过吸液)以将所述接枝单体共聚至多根纤维的表面。

在第一步骤中,在惰性气氛中将基底暴露于电离辐射,诸如电子束辐射。一般来讲,将基底置于氧气吹扫的容器中。通常,容器包含惰性气氛,诸如氮气、二氧化碳、氨、氩等,具有较少量的氧气(小于100ppm),已知惰性气氛抑制自由基聚合。合适的容器可包括(例如)密封的聚合物袋。就使用γ辐射而言,可使用金属容器(如,铅)。

辐射步骤包括将基底暴露于电离辐射,优选地,用电离的电子束或γ辐射以在单体随后接枝的此类表面上制备自由基反应位点。“电离辐射”意指足够剂量和能量的辐射以引起在基底基底的表面上形成自由基反应位点。电离辐射可包括γ、电子束、X-射线和其它形式的电磁辐射。在某些情况下,可使用电子束。辐射为足够高的能的,当被基础基底的表面吸收时,足够能量转移至基底以在基底中产生化学键的裂解并在基底上形成所得的自由基位点。

高能辐射剂量以千戈瑞的单位(kGy)测量。剂量可以所需水平的单剂量施或以累积至所需水平的多剂量施。一般来讲,良好的结果可在40~100kGy的范围内实现。剂量可一次性递送,诸如来自电子束源,或经若干小时由缓慢剂量比率累积,诸如由γ源递
送的剂量。

由于商业来源的便利性，电子束作为一种优选的接枝方法。电子束发生器可从多种来源商购获得，包括来自Energy Sciences, Inc. (Wilmington, MA) 的ESI “电固化”EB系统(ESI “ELECTROCURE”EB SYSTEM)，来自PCT Engineered Systems, LLC (Davenport, IA) 的光束处理器 (BROADBEAM EB PROCESSOR) 以及得自ADVANCED ELECTRON BEAMS (AEB, Wilmington, MA) 的那些系统。对于任何给定的设备和辐射样品的位置，递送的剂量可根据名称为“Standard practice for dosimetry in an electron beam facility for radiation processing at energies between 80 and 300 keV (电子束设施 80keV 至 300keV 能量下辐射剂量标准测量操作)” 的ISO/ASTM51818 进行测量。通过改变接收器的栅极电压、光束直径和/或与源的距离，可获得各种剂量。

在辐射步骤中，将基底暴露于足够量的电离辐射中以便在基底的表面形成自由基。所述腔室可含有至少一个能够提供足够剂量的辐射装置。单个装置能够提供足够剂量的辐射，尽管尤其对于相对厚的基底可使用两个或多个装置，和/或两次通过单个装置。含有基底的环境包含惰性气氛，诸如氮气、二氧化碳、氨、氩等，具有少量的氧气，已知惰性气氛抑制自由基聚合。

剂量为每质量单位吸收的能量的总量。剂量用千戈瑞 (kGy) 或者兆拉德 (Mrad; 10kGy=1Mrad) 的单位表示。千戈瑞为每千克的质量供应 1 焦耳的能量所需的辐射量。由基底接受的总剂量取决于多个参数，包括源活性、停留时间 (即，辐射样品的总时间)、至源的距离以及源自源与样品之间材料的居间横截面的衰减。剂量通常通过控制停留时间、至源的距离或两者来调节。对于电子束辐射，剂量主要由电子束电流和辐照速度 (以及电压，在适当的情况下) 确定。

一般来讲，据现在，在约 50~70kGy (即，5~7 MRad) 范围内的剂量适用于产生自多根纤维的表面延伸的接枝的各个聚合物链。对于任何指定的组成所需的总剂量将随所需接枝的目标、选择的单体、使用的基底和剂量比率的变化而变化。因此，剂量比率可基于指定组成所需的性质选择。剂量比率通常在 0.0005kGy/sec (γ) 至 200kGy/sec (电子束) 的范围内。

可使用具有相同接枝性能的其它辐射源；电离辐射的理想源包括电子束源，因为电子束可产生高且快的剂量递送速率。电子束 (e-束) 一般来讲通过向钨线细丝施加高压来制备，所述钨线细丝固定在维持在约 10^6托的真空室内的推斥板和提取栅之间。所述细丝在高强度电流下加热以产生电子。电子通过推斥板和提取栅进行引导和加速至金属箔的薄窗口。以超过 10^17 个/s/微米 (m/sec) 的速度移动并具有约 100 至 300 千电子伏 (keV) 的加速电子经箔窗口通过真空室，并且穿透越过箔窗口立即定位的任何材料。

产生电子的数量与电流直接相关。随着提高栅电压，从钨线细丝中得到的电子的加速度 (或速度) 增加。当计算机控制时，电子束处理可极其精确，使得电子的精确剂量和剂量比率相对于基底可控制。

通过常规方法将所述腔室内的温度有利地维持在环境温度下。不用受任何特定机理的限制，据信，基底暴露于电子束导致在基底表面上产生自由基位点，然后此自由基位点可随后与接枝单体在吸液步骤中反应。

由基底接收的总剂量主要影响在其表面上形成的自由基位点的数目以及随后接
枝单体接枝至基底的程度。剂量取决于多个处理参数，包括电压、辐照或线速度和束电流。剂量可通过控制线速度（即，在辐射装置下基底通过的速度）和提供至提取栅的电流来便利地调节。靶剂量（如，＜10kGy）可通过将实验上测量的系数（机械常数）乘以束电流并除以辐材速度便利地计算以确定暴露。机械常数随着束电压的变化而变化。

尽管电子束辐射暴露的受控与取决于停留时间，但是取决于特定聚合物，基底经受从约 1 千戈瑞（kGy）的最小剂量至小于约 200kGy 的实际最大剂量的范围内的受控量的剂量。一般来讲，合适的 γ 射线源发出具有 400keV 或更大能量的 γ 射线。通常，合适的 γ 射线源发出能量在 500keV 至 5MeV 范围内的 γ 射线。合适的 γ 射线源的例子包括钴-60 同位素（其发出几乎等比例的大约 1.17 和 1.33MeV 的能量的光子）和铯 -137 同位素（其发出大约 0.662MeV 的能量的光子）。与所述源的距离可为固定的或通过改变靶或所所述源的位置使其可变。从所述源发出的 γ 射线的通量一般随所述源的距离的平方和同位素的半衰期控制的持续时间而衰减。

在本方法中，在辐射步骤之后且非同时，在基底的表面上具有自由基位点的经辐射的基底吸入单体溶液。在基底表面上生成的自由基位点具有几分钟至若干小时的平均寿命，并且在室温下约 1 小时内逐渐地衰减至低浓度。较低温度，诸如低温也，促进较快的自由基寿命。或者，由于羟基自由基的产生，潮湿和一氧化氮可增加自由基自由基形成的速率。当保持在惰性条件下时，来自接枝聚合的方法的接枝非定义的反应聚合的吸收能力在约 12 小时的反应时间之后几乎未发生变化。已观察到，约 2 小时的反应时间可足够实现接枝聚合的所需水平。

一般来讲，在辐射步骤之后，辐射基底立即吸入单体溶液。一般来讲，当使用电子束时，辐射基底在 1 小时内（优选为十分钟内）吸入。一般来讲，当使用 γ 射线时，辐射基底通常在辐射之后几分钟内与亲水性单体的水溶液接触，因为辐射停留时间将较长。已观察到，将辐射基底保持在低温条件下（如，干冰冷却）可延长多根纤维的辐射的和亲水性单体接触水溶液之间的时间。由于在 γ 设施中和在常规下通常较长的停留时间（几小时），所以优选的是将待辐射的材料包装在干冰或另一吸热材料中以防止在形成的自由基在暴露时间期间的降解。

将吸入溶液与基底（在基底的辐射之后）保持接触足够长时间以引发自由基位点与接枝单体的聚合反应。当吸入单体溶液时，在 12 小时的暴露之后基本完成接枝反应；大致上得到单体至接枝聚合物的约 50% 以上的转化率。因此，基底包含附接至基底的空隙和外表面的接枝聚合物和 / 或共聚物。

如以上所讨论，吸入溶液可包含适于接枝至基底表面的一种或多种接枝单体。以上描述的示例性接枝单体中的任一种可包含在吸入溶液中。

在吸入溶液中每个接枝单体的浓度可根据多个因素变化，包括但不限于接枝单体或吸入溶液中的单体、所需接枝的程度、接枝单体的反应性和使用的溶剂。通常，基于吸入溶液的总重量计，吸入溶液中单体的总浓度范围为约 1 重量 % 至约 100 重量 %，期望地约 2 重量 %，并希望地约 4 重量 % 为约 20 重量 %。

一旦基底已吸入达到所需的时段，通常洗涤具有接枝聚合物基团的基底以去除残余单体。在洗涤步骤中，将官能化纤维基底洗涤或冲洗一次或多此以去除任何未反应单体、溶剂或其它反应副产物。通常，使用水冲洗来将官能化基底洗涤或冲洗若干次（如，三次
次。在一些实施例中，可能有用的是用水酸或碱（如，氢氧化钠溶液）来洗涤接枝纤维。在每个冲洗步骤中，官能化基底可通过冲洗浴或冲洗喷雾。

[0070] 当使用水溶性单体时，通常使用水对接枝纤维进行洗涤。如果接枝单体中的一者为酸和/或碱时，有利的是在将酸或碱转化成盐形式之前进行洗涤过程。在将超吸收性质引入至纤维之前，最好从接枝纤维反应中去除杂质，如监测在洗涤溶液中制备的用于该测试方法的有机机碳水平的实例中所示（参见实例部分）。

[0071] 在任选的干燥步骤中，干燥官能化基底以去除任何冲洗溶液。通常，官能化基底在对于所需时段（本文中称为“烘干周期时间”）具有相对低的烘箱温度的烘箱中干燥。烘箱温度的范围通常为约 40 °C 至约 120 °C，而烘箱周期时间的范围通常为约 1 分钟至约 30 分钟。在任选干燥步骤中，可使用任何常规的烘箱。还应指出的是，在其它实施例中，可在冲洗步骤之前进行干燥步骤以在提取非接枝残留物之前消除挥发性的组分。

[0072] 在一些实施例中，希望在接枝纤维上形成亲水性基团的盐，其中所述基团与酸或碱为“可反应的”以形成盐。例如，当接枝纤维包括羧酸或磺酸基团作为亲水性基团时，可用氢氧化钠溶液处理接枝纤维以将酸基团转化成钠盐。在一些实施例中，可能有利的是，在接枝纤维上形成可反应基团的多种其它合适的金属盐。例如，可将具有如以上所述的钠盐的纤维浸泡在盐的水溶液中以实现金属离子的交换。在一些实施例中，合适的金属离子可包括钠离子、钾离子、钙离子、锌离子、钙离子中的任一种或这些离子中的任何组合。这些金属离子的各种组合可对处理伤口具有有益效果，例如，在美国专利 No. 6,149,947 和 7,014,870 中所述，每个专利的公开内容以引用的方式全文并入本文。

[0073] 本公开的具有接枝侧挂亲水性基团的纤维可使用常规技术（如，使用 Rando 设备、粗糙法、无规粗糙法、卷入）形成非织造材料。非织造材料可进一步通过技术包括例如交叉堆叠法、针刺法处理。在一些实施例中，在形成非织造材料中加入粘合纤维或其它类型的纤维可能为有利的。可将对本领域技术人员已知的这些幅材形成技术的各种组合用于形成本公开的伤口敷料制品。

[0074] 通常，对于本公开的伤口敷料，非织造材料具有不超过 0.1 克/立方厘米的比重（在一些实施例中，不超过 0.08 克/立方厘米，或甚至不超过 0.05 克/立方厘米）。在一些实施例中，非织造材料的比重可在不超过 0.2 克/立方厘米。然后非织造材料的比重通过称重给定厚度的样品和另外确定样品的体积（面积 × 厚度）来确定。非织造材料试样的厚度也可根据示于Davies, C. N.的“气载尘埃及粒子的分离（The Separation of Airborne Dust and Particles）”中，机械工程研究所（Institution of Mechanical Engineers）（伦敦（London）程序 1B（Proceeding 1B），1952 年）的方法确定。通常，10cm×10cm 接枝非织造材料的样品可用于进行比重测量。使用具有接枝纤维素纤维的非织造材料作为实例，比重可计算为 [样品的总质量除以 [（纤维素的质量分数乘以纤维素的密度）加（接枝聚合物的质量分数乘以接枝聚合物的密度）]] 除以样品体积。

[0075] 应当理解，可选择亲水性单体的各种组合以实现伤口敷料中吸水率水平、纹理、强度或其它性质的所需组合。还应当理解，伤口敷料可包括多于一种非织造材料（如，多于一层的非织造材料可包括在一伤口敷料内），使得可产生多种构形的伤口敷料。

[0076] 尽管本公开主要描述多根纤维的高能辐射接枝，但是应当理解，多根纤维可呈线形、丝条、纤维或绳状。
【0077】在一些实施例中，本公开的伤口敷料可包括一种或多种药物。例如，可并入抗菌剂、抗生素、或麻醉剂或抗炎剂或皮肤保护剂或旨在消除恶臭的物质。合适的抗菌剂可包括，例如，银、含银化合物、聚维酮碘、季铵、聚六亚甲基双胍（PHMB）和释放过氧化氢的制剂。

【0078】药物的结合可以多种方式实现。例如，银或其它金属离子可通过离子交换反应化学地结合。在辐射接枝方法的最后阶段期间或在辐射接枝方法之后的额外阶段中，通过使药物的溶液与纤维接触然后干燥，在纤维的表面留下药物的沉积物，可添加其它药物。

【0079】在一些实施例中，可将本公开的伤口敷料制品（如非织造布条）包装至伤口，而无需任何衬垫材料。任选地，可将非织造布条用条带、绷带、多孔密封外壳（如，网片）以提供触及伤口流体，但不允许纤维向网片外移动。

【0080】实施例（以“项目”的列表提供）：

【0081】项目1.一种伤口敷料，其包括：

【0082】非织造布条，所述非织造布条包括用各聚合物链辐射接枝的多根纤维，所述各聚合物链从所述纤维表面延伸；

【0083】其中所述多根纤维中的纤维包含纤维重复单元；

【0084】其中所述各个聚合物链包含各自具有至少一个亲水基团的亲水基单体单元；

【0085】并且其中所述非织造布条中的所述多根纤维具有在 0.25 至 5.0 范围内的亲水性基团与纤维重复单元的比率。

【0086】项目2.根据项目1所述的伤口敷料，其中所述非织造布条具有不超过0.1克/立方厘米的比重。

【0087】项目3.根据项目1所述的伤口敷料，其中所述多根纤维包含纤维素。

【0088】项目4.根据前述项目中任一项所述的伤口敷料，其中所述各个聚合物链包含丙烯酸单体单元。

【0089】项目5.根据项目4所述的伤口敷料，其中所述各个聚合物链还包含聚乙二醇单体单元。

【0090】项目6.根据前述项目中任一项所述的伤口敷料，其中所述亲水性基团包括羧酸、羟烷基、甲氧基烷基、聚乙二醇、甲氧基聚乙二醇中的任一种，或它们的组合。

【0091】项目7.根据前述项目中任一项所述的伤口敷料，其中所述亲水性基团包括羧酸基团或其盐，或羧酸基团和其盐的组合。

【0092】项目8.根据项目7所述的伤口敷料，其中所述盐包含金属离子，其中所述金属离子包括钠离子、钾离子、钙离子、锌离子、钙离子中的任一种，或它们的组合。

【0093】项目9.根据前述项目中任一项所述的伤口敷料，其中所述多根纤维根据吸水性测试方法具有至少15的吸水率。

【0094】项目10.根据前述项目中任一项所述的伤口敷料，其中所述多根纤维根据吸水性测试方法具有至少20的吸水率。

【0095】项目11.根据前述项目中任一项所述的伤口敷料，所述伤口敷料进一步包含抗菌剂、抗炎剂、麻醉剂、抗敏剂中的至少一种，或它们的组合。

【0096】项目12.根据前述项目中任一项所述的伤口敷料，其中所述非织造布条的至少一部分邻近伤口。
[0097] 项目 13. 根据任一项前述项目所述的伤口敷料，其中所述非织造布材的至少一部分吸收伤口流体。
[0098] 项目 14. 一种制备多根辐射接枝纤维的方法，所述方法包括：
[0099] 提供多根纤维；
[0100] 用高能辐射来辐射所述多根纤维以产生经辐射的多根纤维；
[0101] 提供包含亲水性单体的水溶液；
[0102] 使所述辐射多根纤维与所述水溶液接触，使得所述辐射多根纤维用所述亲水性单体接枝以提供具有从其表面延伸的各个聚合物链的多根经辐射的纤维，其中所述各个聚合物链包含亲水性基团；以及
[0103] 从所述多根经辐射的纤维中去除残余的亲水性单体。
[0104] 项目 15. 根据项目 14 所述的方法，其中所述高能辐射为电子束辐射或 γ 辐射中
至少数种。
[0105] 项目 16. 根据项目 14 或项目 15 所述的方法，其中所述亲水性单体包含至少一个
饱和双键。
[0106] 项目 17. 根据项目 14~16 中任一项所述的方法，其中所述亲水性单体包含为酸或
碱的基团。
[0107] 项目 18. 根据项目 14~17 中任一项所述的方法，其中从所述多根接枝纤维中去除
所述亲水性单体的残余部分包括在所述纤维与酸或碱反应之前洗涤所述多根接枝纤维。
[0108] 项目 19. 根据项目 18 所述的方法，其中洗涤包括用水洗涤。
[0109] 项目 20. 根据项目 14~19 中任一项所述的方法，其中所述亲水性单体包含丙烯酸。
[0110] 项目 21. 根据项目 17~20 中任一项所述的方法，该方法还包括在从所述多根经辐
射的纤维去除残余的亲水性单体之后形成所述为酸或碱的基团的盐。
[0111] 项目 22. 根据项目 14~21 中任一项所述的方法，其中在使所述多根纤维与所述水
溶液接触之前用高能辐射来辐射所述多根纤维。
[0112] 项目 23. 根据权利要求 14~21 中任一项所述的方法，其中使所述多根纤维与所述
水溶液接触在用高能辐射来辐射所述多根纤维之后进行。
[0113] 项目 24. 根据项目 14~23 中任一项所述的方法，其中所述水溶液还包含盐。
[0114] 项目 25. 根据项目 14~24 中任一项所述的方法，其中所述多根纤维包含含有纤维
素的纤维。
[0115] 项目 26. 根据项目 14~25 中任一项所述的方法，其中所述多根纤维包含再生的纤
维素纤维。
[0116] 项目 27. 根据项目 14~26 中任一项所述的方法，其中去除所述残余的亲水性单体
在具有接枝侧挂亲水性基团的所述辐射纤维中留下不超过 1 重量％的所述残余的亲水性单体。
[0117] 项目 28. 根据项目 14~26 中任一项所述的方法，其中去除所述残余的亲水性单体
在具有接枝侧挂亲水性基团的所述辐射纤维中留下不超过 0.1 重量％的所述残余的亲水性单体。
[0118] 项目 29. 根据项目 14~26 中任一项所述的方法，其中去除所述残余的亲水性单体
在具有接枝侧挂亲水性基团的所述辐射纤维中留下不超过 0.01 重量％的所述残余的亲水
性单体。

【0119】项目30。一种制备亲水性非织造制品的方法，该方法包括：
【0120】根据项目12至29中任一项所述的方法制备具有接枝侧挂亲水性基团的多根经辐
射的纤维；以及
【0121】由具有接枝侧挂亲水性基团的上述多根经辐射的纤维形成非织造制品。
【0122】项目31。一种制备亲水性非织造制品的方法，该方法包括：
【0123】根据项目14至29中任一项所述的方法制备具有接枝侧挂亲水性基团的第一多根
纤维；
【0124】提供未根据项目14所述的方法处理的第二多根纤维；以及
【0125】由所述第一多根纤维和所述第二多根纤维形成非织造制品。
【0126】项目32。一种制备亲水性非织造制品的方法，该方法包括：
【0127】根据项目14至29中任一项所述的方法制备具有接枝侧挂亲水性基团的第二多根
纤维；
【0128】根据项目14至29中任一项所述的方法制备具有接枝侧挂亲水性基团的第二多根
纤维；以及
【0129】由所述第一多根纤维和所述第二多根纤维形成非织造制品；
【0130】其中所述第一多根纤维与所述第二多根纤维在组成上彼此不同。
【0131】项目33。一种处理伤口的方法，该方法包括：
【0132】根据项目30至32中任一项提供亲水性非织造制品；以及
【0133】使所述亲水性非织造制品接触到伤口上。
【0134】项目34。一种伤口敷料制品，其包含根据项目14至29中任一项所述的方法制备
的多根亲水性纤维。
【0135】项目35。一种伤口敷料制品，其包含根据项目30至32中任一项所述的方法制备
的亲水性非织造制品。
【0136】项目36。一种伤口敷料制品，其包含多孔非织造材料，所述多孔非织造材料包含
具有从其表面延伸的接枝丙烯酸基团的多孔纤维。
【0137】项目37。根据项目36所述的伤口敷料制品，其中接枝丙烯酸基团作为非交联链从
所述表面延伸。
【0138】项目38。根据项目36所述的伤口敷料制品，其中所述非织造材料具有小于10%的
绑定节点。
【0139】项目39。根据项目36所述的伤口敷料制品，其中所述多孔纤维还包含接枝PEG材
料。
【0140】项目40。根据项目36所述的伤口敷料制品，其中所述多孔纤维包含热塑性材料。
【0141】项目41。根据项目36所述的伤口敷料制品，其中从所述表面延伸的所述接枝丙烯
酸基团形成1至500丙烯酸单元的链。
【0142】通过以下实例进一步说明本公开的目的和优点，但是不得将在此例中引用的具
体材料及其量以及其它条件和细节理解为进一步限制。除非另外指明，否则所有的份数
和百分比以重量计，所有的水为蒸馏水并且所有的分子量为重均分子量。
【0143】实例
实例的制备中利用的材料示于表1中。

<table>
<thead>
<tr>
<th>组分</th>
<th>来源</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPS-铵盐</td>
<td>Lubrizol (Wickliffe, OH)</td>
<td>2-丙烯酰胺-2-甲基丙烷磺酸(铵盐)单体</td>
</tr>
<tr>
<td>SR550</td>
<td>Sartomer (Exton, PA)</td>
<td>甲氧基聚乙二醇单甲基丙烯酸酯单体</td>
</tr>
<tr>
<td>丙烯酸(AA)</td>
<td>Sigma Aldrich (St. Louis, MO)</td>
<td>丙烯酸单体</td>
</tr>
<tr>
<td>LYOCELL</td>
<td>Lenzing AG (Mobile, AL)</td>
<td>1.3dtex x 38mm 再生的纤维素纤维</td>
</tr>
</tbody>
</table>

测试方法

吸水性
将干燥纤维的样品称重(干重)，然后用蒸馏水完全水合。将过量的水从纤维中溢出。然后称重湿纤维样品(湿重)。根据以下等式计算吸水率:

吸水率 = 湿重 / 干重

总有机碳
根据“Standard Method for the Examination of Water and Wastewater(检测水和废水的标准方法)”的方法5310C进行总有机碳测定。

单体转化率水平
将用于反应的纤维的重量从接枝纤维重量中减去。将所得值除以用于反应的单体的重量。将所得值乘以100从而得到单体转化率(%)。

使用电子束设备(来自Energy Sciences Inc., Wilmington, MA, 商品名为“CB-300 型电子束系统 (MODEL CB-300ELECTRON BEAMSYSTEM)” )进行电子束辐照，以在每个实例指定的剂量水平递送电子束辐射。

实例1

将LYOCELL TENCEL纤维(8g) 在氮气气氛下在塑料袋中加热密封。将纤维经受电子束辐照，得到60kGy总剂量。将纤维添加至单体溶液中，所述单体溶液已在氮气环境中(含有4g的AMPS-铵盐(1.78 x 10^{-2}mol)和15g的氯化钠，在100g的水中(2.23 x 10^{-2}mol单体/g纤维))平衡。将纤维在氮气气氛中反应18小时，用水洗涤，然后真空过滤。将所得单体接枝纤维在55℃下干燥并称重。获得8.8g的最终重量，得到20%的单体转化率。

实例2-3

使用如实例1所述的类似的程序，但是用不同的单体。详细内容示于表2中。

表2: 实例1-3的制备
表 3 : 实例 4-7 的制备

<table>
<thead>
<tr>
<th>实例</th>
<th>单体</th>
<th>最终重量(g)</th>
<th>单体转化率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7g AA, 3g SR550</td>
<td>19.4</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>10g AA, 5g SR550</td>
<td>24.7</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>12g AA, 5g SR550</td>
<td>26.3</td>
<td>88</td>
</tr>
<tr>
<td>[a]</td>
<td>15g AA, 7g SR550</td>
<td>32.7</td>
<td>93</td>
</tr>
</tbody>
</table>

[a] 反应期间发生了交联

实例 8

将 LYCELL TENCEL 纤维 (150g, 1.7 分特 ("dtex"), 51mm) 包装在 FOODSAVER 塑料袋中并在氮气氛围下真空密封。将所述装置置于含有干冰的绝缘包装箱中。使用钴-60 源将该箱用 γ-辐射来辐射大约 62kGy 的总剂量。将所得纤维在氮气氛围下从袋中移除并添加至由 2194g 的蒸馏水、158g 的 AA 和 48g 的 SR550 组成的已用氮气脱气的单体溶液中。将纤维与单体溶液在氮气氛围下反应 18 小时。对两种纯化方法进行评估。
纯化方法 1: 将辐射接枝纤维（50g）用 20ml 的蒸馏水进行水合挤压以从纤维中去除液体。将该方法重复 10 次（200ml 的水的总体积）。然后将纤维添加至含有 3.4g 的 50% 氢氧化钠的 200ml 的蒸馏水中。将纤维搅拌 2 分钟并使用烧结的过滤器在真空下过滤。将纤维用 200ml 的蒸馏水洗涤以去除任何残余氢氧化钠。使用 200ml 的蒸馏水进行最终洗涤并收集所得滤液。加入硫酸（3ml）以稳定溶液，用于总有机碳分析。

纯化方法 2: 将辐射接枝纤维（50g）添加至含有 3.4g 的 50% 氢氧化钠的 200ml 的蒸馏水中。将纤维搅拌 2 分钟并使用烧结的过滤器在真空下过滤。将纤维用 200ml 的蒸馏水（×4, 总计 800ml）洗涤以去除任何残余氢氧化钠。使用 200ml 的蒸馏水进行最终洗涤并收集所得滤液。加入硫酸（3ml）以稳定溶液，用于总有机碳分析。

利用具有 1mg/ml 的报道限值的方法 SM5310C 测量总有机碳。方法 1 的滤液不含可检测的总有机碳，而方法 2 的滤液含有 2.6mg/ml 的总有机碳。

实例 9-12
将 LYOCELL TENCEL 纤维（6g, 1.7dtex, 51mm）包装至四个单独的 FOODSAVER 塑料袋中并在氮气氛围下真空密封。使用 50kGy 的剂量的电子束对所述袋进行辐射。将所得纤维在氮气氛围下从袋中移除并添加至四个单独的单体溶液中。将纤维在氮气氛围下反应 18 小时，然后悬浮于 250ml 的水中。将氢氧化钠添加至纤维溶液中以将 AA 转化成钠盐。测量单体（AA 加 SR550）接枝的摩尔数和吸水性水平。组成和数据示于表 4 中。

实例 13-15 以与实例 9-12 类似的方式进行制备，不同的是纤维为 3.3dtex 和 60－90mm 长。组成和数据示于表 4 中。

表 4: 吸水性 vs. 单体接枝
<table>
<thead>
<tr>
<th>实例</th>
<th>单体</th>
<th>最终重量(g)</th>
<th>单体/纤维(mol/g)</th>
<th>吸水性(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>3.14g AA 0.55g SR550</td>
<td>10.3</td>
<td>0.0075</td>
<td>15.9</td>
</tr>
<tr>
<td>10</td>
<td>4.17g AA 0.73g SR550</td>
<td>12.0</td>
<td>0.0100</td>
<td>20.3</td>
</tr>
<tr>
<td>11</td>
<td>5.22g AA 0.92g SR550</td>
<td>13.7</td>
<td>0.0125</td>
<td>24.9</td>
</tr>
<tr>
<td>12</td>
<td>6.29g AA 1.23g SR550</td>
<td>15.1</td>
<td>0.0150</td>
<td>27.7</td>
</tr>
<tr>
<td>13</td>
<td>4.17g AA 0.73g SR550</td>
<td>9.5</td>
<td>0.0100</td>
<td>15.5</td>
</tr>
<tr>
<td>14</td>
<td>5.22g AA 0.92g SR550</td>
<td>11.1</td>
<td>0.0125</td>
<td>16.8</td>
</tr>
<tr>
<td>15</td>
<td>6.29g AA 1.23g SR550</td>
<td>12.5</td>
<td>0.0150</td>
<td>21.2</td>
</tr>
</tbody>
</table>

[0180] 实例 16
[0181] 将 LYOCELL TENCEL 纤维 (6g, 3.3dtex, 60–90mm) 包装至八个单独的 FOODSAVER 塑料袋中并在氮气氛围下真空密封。使用 50kGy 的剂量的电子束对所述袋进行辐射。将所得纤维在氮气氛围下从袋中移除并添加至含有 88.68g 的蒸馏水、6.29g 的 AA 和 1.23g 的 SR550 的单体溶液的已用氮气脱气的十个单独的容器中。将辐射纤维 (6g) 与单体溶液在氮气氛围下反应特定时间，然后进行增重测试。结果示于表 5 中。

[0182] 表 5：增重 vs. 时间

<table>
<thead>
<tr>
<th>反应时间（小时）</th>
<th>增重(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>6.08</td>
</tr>
<tr>
<td>1.0</td>
<td>6.08</td>
</tr>
<tr>
<td>2.0</td>
<td>6.30</td>
</tr>
<tr>
<td>3.0</td>
<td>6.24</td>
</tr>
<tr>
<td>4.0</td>
<td>6.21</td>
</tr>
</tbody>
</table>
[0184] 实例 17-22
[0185] 将Tencel纤维（6g，1.7dtx，51mm）包装至六个单独的Foodsaver塑料袋并在氮气气氛下真空密封。使用50kGy的剂量的电子束对三袋进行辐射（实例17-19），而使用100kGy的剂量的电子束对另外三袋进行辐射（实例20-22）。将所得纤维在氮气气氛下从袋中移除，添加至单体溶液，并反应18小时。洗涤接枝纤维以去除未反应的单体。将纤维进一步处理以提供酸基团的钠盐。将纤维添加至含有7.0g的50%氢氧化钠的500ml的蒸馏水中。将纤维搅拌5分钟并使用烧结的过滤器在真空下过滤。用200ml的蒸馏水洗涤纤维以去除残余氢氧化钠。最终洗涤使用500ml的蒸馏水进行，并且纤维通过过滤收集。组成和测试数据示于表6中。

[0186] 表6：吸水性 vs. 单体接枝

<table>
<thead>
<tr>
<th>实例</th>
<th>单体</th>
<th>最终重量(g)</th>
<th>分子 AA/分子葡萄糖</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>4.17g AA 0.73g SR550</td>
<td>10.4</td>
<td>1.16</td>
</tr>
<tr>
<td>18</td>
<td>5.22g AA 0.92g SR550</td>
<td>12.4</td>
<td>1.50</td>
</tr>
<tr>
<td>19</td>
<td>6.29g AA 1.23g SR550</td>
<td>13.6</td>
<td>1.96</td>
</tr>
<tr>
<td>20</td>
<td>4.17g AA 0.73g SR550</td>
<td>10.8</td>
<td>1.26</td>
</tr>
<tr>
<td>21</td>
<td>5.22g AA 0.92g SR550</td>
<td>12.2</td>
<td>1.65</td>
</tr>
<tr>
<td>22</td>
<td>6.29g AA 1.23g SR550</td>
<td>14.0</td>
<td>2.30</td>
</tr>
</tbody>
</table>