

(19) DANMARK

(10) DK/EP 3099713 T3

(12)

Oversættelse af
europæisk patentskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **C 07 K 16/22 (2006.01)** **A 61 K 39/00 (2006.01)** **C 07 K 14/48 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2020-04-14**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2020-01-15**

(86) Europæisk ansøgning nr.: **15701985.2**

(86) Europæisk indleveringsdag: **2015-02-02**

(87) Den europæiske ansøgnings publiceringsdag: **2016-12-07**

(86) International ansøgning nr.: **EP2015052098**

(87) Internationalt publikationsnr.: **WO2015114150**

(30) Prioritet: **2014-02-02 US 201461934828 P**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **MedImmune Limited, Milstein Building , Granta Park, Cambridge, Cambridgeshire CB21 6GH, Storbritannien**

(72) Opfinder: **SCHOFIELD, Darren, MedImmune Limited, Milstein Building, Granta Park, Cambridge CB21 6GH, Storbritannien**
SLEEMAN, Matthew Alexander, MedImmune Limited, Milstein Building, Granta Park, Cambridge CB21 6GH, Storbritannien
CHESSELL, Iain Patrick, MedImmune Limited, Milstein Building, Granta Park, Cambridge CB21 6GH, Storbritannien
HATCHER, Jonathan, MedImmune Limited, Milstein Building, Granta Park, Cambridge CB21 6GH, Storbritannien
LOWE, David, MedImmune Limited, Milstein Building, Granta Park, Cambridge CB21 6GH, Storbritannien

(74) Fuldmægtig i Danmark: **RWS Group, Europa House, Chiltern Park, Chiltern Hill, Chalfont St Peter, Bucks SL9 9FG, Storbritannien**

(54) Benævnelse: **KIMÆERT PROTEIN BESTÅENDE AF ET NGF-ANTAGONISTDOMÆNE OG ET TNFA-ANTAGONISTDOMÆNE**

(56) Fremdragne publikationer:
WO-A2-2007/146968
WO-A2-2010/006060
WO-A2-2011/047262
US-A1- 2011 250 130

DK/EP 3099713 T3

DESCRIPTION

BACKGROUND

[0001] Pain is one of the most common symptoms for which medical assistance is sought and is the primary complaint of half of all patients visiting a physician. Despite the existence and widespread use of numerous pain medications, the elimination of pain, particularly chronic pain, has been without success. Thus, the burden on society remains high. Various studies estimate that pain results in 50 million workdays lost each year and \$61.2 billion in lost productivity. For chronic pain sufferers, only about half are able to manage pain with the available prescribed treatment options. And, the total prescription pain medication market is approximately \$25 billion per year. As is suggested by these data, a large need remains for safe and effective novel analgesics.

[0002] Therapeutic agents that reduce the tissue levels or inhibit the effects of secreted nerve growth factor (NGF or beta-NGF) have the potential to be just such novel analgesics. NGF plays a well-known pivotal role in the development of the nervous system; however, NGF is also a well-validated target for pain as it causes pain in animals and humans. In adults, NGF, in particular, promotes the health and survival of a subset of central and peripheral neurons (Huang & Reichardt, *Ann. Rev. Neurosci.* 24:677-736 (2001)). NGF also contributes to the modulation of the functional characteristics of these neurons and exerts tonic control over the sensitivity, or excitability, of sensory pain receptors called nociceptors (Priestley et al., *Can. J. Physiol. Pharmacol.* 80:495-505 (2002); Bennett, *Neuroscientist* 7:13-17 (2001)). Nociceptors sense and transmit to the central nervous system the various noxious stimuli that give rise to perceptions of pain (nociception). NGF receptors are located on nociceptors. The expression of NGF is increased in injured and inflamed tissue and is upregulated in human pain states. Thus, because of NGF's role in nociception, NGF-binding agents that reduce levels of NGF possess utility as analgesic therapeutics.

[0003] Subcutaneous injections of NGF itself produce pain in humans and animals. Injected NGF causes a rapid thermal hyperalgesia, followed by delayed thermal hyperalgesia and mechanical allodynia (Petty et al., *Ann. Neurol.* 36:244-46 (1994); McArthur et al., *Neurology* 54:1080-88 (2000)). Endogenously secreted NGF is similarly pro-nociceptive. Tissue-injury-induced release of NGF and its subsequent action in the periphery plays a major role in the induction of thermal hyperalgesia through the process of "peripheral sensitization" (Mendell & Arvanian, *Brain Res. Rev.* 40:230-39 (2002)). Tissue injury promotes the release of pro-nociceptive and pro-inflammatory cytokines, which, in turn, induce the release of NGF from keratinocytes and fibroblasts. This released NGF acts directly on nociceptors to induce painful or nociceptive states within minutes of the noxious insult. Thus, NGF also acts indirectly to induce and maintain nociceptive/pain states in a feed-forward release. It triggers mast cell degranulation, releasing pro-nociceptive agents such as histamine and serotonin and, importantly, more NGF, and can also stimulate sympathetic nerve terminals to release pro-

nociceptive neurotransmitters, such as noradrenaline (Ma & Woolf, *Neuroreport*. 8:807-10 (1997)).

[0004] Tissue levels of NGF are elevated in complete Freund's adjuvant (CFA)- and carrageenan-injected animals (Ma & Woolf, *Neuroreport*. 8:807-10 (1997); Amann & Schuligoi, *Neurosci. Lett.* 278:173-78 (2000)). NGF potentiates DRG (dorsal root ganglia) capsaicin response in the rat. Increased levels of NGF have been documented in patients suffering from rheumatoid arthritis (Aloe & Tuveri, *Clin. Exp. Rheumatol.* 15:433-38 (1997)) or cystitis (Lowe et al., *Br. J. Urol.* 79:572-77 (1997)). In rodents, peripheral nerve injury increases the expression of NGF mRNA in macrophages, fibroblasts, and Schwann cells (Heumann et al., *J. Cell Biol.* 104:1623-31 (1987)). Over-expression of NGF in transgenic mice results in enhanced neuropathic pain behavior following nerve injury above that of wild-type mice (Ramer et al., *Pain*, Supp. 6:S111-20 (1998)). Over hours and 15 days, elevated NGF levels play a role in promoting "central sensitization" - the enhancement of neurotransmission at synapses in the nociceptive pathways of the spinal cord. Central sensitization results in persistent and chronic hyperalgesia and allodynia. This process is thought to involve internalization of complexes of NGF and its high affinity receptor, tyrosine receptor kinase A (trkA). Retrograde transport of these complexes to nociceptor cell bodies in the DRG potentiates secretion of nociceptive neuropeptides, e.g., substance P, or calcitonin gene related peptide (CGRP), protein kinase C (PKC) activation, and N-methyl-D-aspartate (NMDA) receptor activation in the dorsal horn of the spinal cord (Sah et al., *Nat. Rev. Drug Disc.* 2:460-72 (2003)) - all processes that promote the sensitization of the nociceptive pathways. NGF also plays a role in the up-regulation and re-distribution of voltage-dependent and ligand-gated ion channels, including sodium channel subtypes and the capsaicin receptor, transient receptor potential cation channel subfamily V member 1 (TRPV1) (Mamet et al., *J. Biol. Chem.* 278:48907-13 (1999); Fjell et al., *J. Neurosci. Res.* 57:39-47 (1999); Priestley et al., *Can. J. Physiol. Pharmacol.* 80:495-505 (2002)). The altered activities and/or expression of transmitters, receptors, and ion channels underlie the increased sensitivity and excitability of nociceptors associated with neuropathic pain states.

[0005] NGF-induced nociception/pain is mediated by the high affinity NGF receptor, trkA (tyrosine receptor kinase A) (Sah, et al., *Nat. Rev. Drug Disc.* 2:460-72 (2003)). About 40-45% of nociceptor cell bodies in DRGs express trkA. These are the cell bodies of the small diameter fibers, or C-fibers, that also express the secreted pro-nociceptive peptides, substance P and CGRP. These fibers terminate in laminae I and II of the dorsal horn, where they transfer to the central nervous system the noxious stimuli sensed by peripheral nociceptors. Mutations or deletions in the trkA gene produce a phenotype characterized by loss of pain sensation both in humans (Indo, *Clin. Auton. Res.* 12 (Supp 1):I20-I32 (2002)) and in trkA knock-out mice (de Castro et al., *Eur. J. Neurosci.* 10:146-52 (1998)). Significantly, the expression of trkA is up-regulated in animals subjected to models of arthritic (Pozza et al., *J. Rheumatol.* 27:1121-27 (2000)) or cystitic pain (Qiao & Vizzard, *J. Comp. Neurol.* 454:200-11 (2002)), or the inflammatory pain induced by injection of CFA or carrageenan into the paw (Cho et al., *Brain Res.* 716:197-201 (1996)).

[0006] NGF also binds to the p75 neurotrophin receptor (p75NTR). The role of p75NTR is

dependent on its cellular environment and the presence of other receptors with which it is believed to play an accessory or co- receptor function. Interaction between trkA and p75NTR results in the formation of high affinity binding sites for NGF. The importance of such receptor interactions in NGF-mediated pain signaling is not clear, but recent studies have implicated the p75NTR in cellular processes that may be relevant (Zhang & Nicol, *Neurosci. Lett.* 366:187-92 (2004)). However, while p75NTR knockout mice display elevated thresholds to noxious stimuli, they remain responsive to the hyperalgesic effects of NGF, suggesting that trkA receptors alone are sufficient to mediate these effects (Bergmann et al., *Neurosci. Lett.* 255:87-90 (1998)).

[0007] NGF blockade produces step-change efficacy versus NSAIDs in chronic nociceptive pain, e.g., in osteoarthritis, (OA) and in chronic lower back pain. A number of therapeutic antibody candidates targeting NGF are in various stages of preclinical and clinical development. Such antibodies include, e.g., Tanezumab (PF-4383119; Pfizer), which is a humanized antibody in an IgG2 format; SAR164877/REGN475 (Sanofi-Aventis/Regeneron Pharmaceuticals), which is a human antibody in an IgG4 format; AMG 403 (Amgen/Johnson & Johnson), which is a human antibody in an IgG2 format; PG110 (PanGenetics/Abbott), which is a humanized antibody in an IgG4 format. Another therapeutic antibody candidate is disclosed in WO 2006/077441, which relates to NGF antibodies and to methods of treating diseases or disorders in which NGF plays a role with the disclosed antibodies. MEDI-578 is a human antibody in an IgG4 format. Despite the development of these candidates, there remains a need to provide analgesic relief for a broader range of pain conditions through an NGF-binding agent that has robust efficacy and improved safety profiles.

[0008] Tumor necrosis factor-alpha (TNF α), also called cachectin, is a pleiotropic cytokine with a broad range of biological activities including cytotoxicity, immune cell proliferation, inflammation, tumorigenesis, and viral replication. Kim et al., *J. Mol. Biol.* 374, 1374 (2007). TNF α is first produced as a transmembrane protein (tm TNF α), which is then cleaved by a metalloproteinase to a soluble form (sTNF α). Wallis, *Lancet Infect. Dis.* 8(10): 601 (2008). TNF α (~17 kDa) exists as a rigid homotrimeric molecule, which binds to cell-surface TNF Receptor 1 or TNF Receptor 2, inducing receptor oligomerization and signal transduction.

[0009] Inflammatory cytokines, and in particular TNF α , are known to have a role in the generation of hyperalgesia. Leung, L., and Cahill, CM., *J. Neuroinflammation* 7:27 (2010). Some preliminary data has shown that TNF α inhibitors may be useful in the control of neuropathic pain. See, e.g., Sommer C, et al., *J. Peripher. Nerv. Syst.* 6:67-72 (2001), Cohen et al, A&A Feb 2013, 116, 2, 455-462, Genevay et al., *Ann Rheum Dis* 2004, 63, 1120-1123 .The results from clinical studies testing TNF α inhibitors as a single therapy in the treatment of neuropathic pain remain inconclusive. See Leung and Cahill (2010).

[0010] Despite the development of NGF-targeting and TNF α -targeting candidates for the treatment of pain, there remains a need to provide analgesic relief for various pain conditions through agents that have better efficacy than current standard of care. This disclosure provides combination treatments that target both NGF and TNF α , which can increase efficacy

and have the potential to decrease both the amount and frequency of administration for pain-sufferers.

[0011] WO 2010/006060 refers to dual variable domain proteins that may bind to two or more of a variety of possible antigens, such as NGF or TNF α . US 2011/250130 refers to use of antibodies that bind to TNF α and that may be administered in combination with an antibody that binds to an array of other targets, such as NGF. WO 2007/146968 refers to bispecific, single chain antibodies comprising a first and second binding domain that recognize targets such as TNF α and NGF. WO 2011/047262 refers to engineered bispecific antibodies or fragments against NGF and TNF α .

BRIEF SUMMARY OF THE DISCLOSURE

[0012] The invention is described by the appended claims. As disclosed in claim 1, there is provided a binding molecule comprising an NGF antagonist domain and a TNF α antagonist domain, wherein the NGF antagonist domain is an anti-NGF scFv fragment, and the TNF α antagonist domain comprises a soluble, TNF α -binding fragment of TNFR-2; wherein the TNF α antagonist domain comprises an amino acid sequence that is at least 90% identical to amino acids 1 to 235 of SEQ ID NO: 13; wherein the anti-NGF scFv fragment comprises an antibody VH domain comprising the amino acid sequence of SEQ ID NO: 94 and an antibody VL domain comprising the amino acid sequence of SEQ ID NO: 95, wherein the anti-NGF scFv fragment is SS-stabilized. Also provided is an isolated polynucleotide as disclosed in claim 15, and a vector as disclosed in claim 16. Further provided is a host cell as disclosed in claim 17, and a composition comprising the binding molecule as disclosed in claim 18. Further advantageous features are disclosed in the remaining dependent claims.

[0013] This disclosure provides compositions for use in controlling pain in a subject, comprising an effective amount of a nerve growth factor (NGF) antagonist and a tumor necrosis factor-alpha (TNF α) antagonist, or a binding molecule comprising an NGF antagonist domain and a TNF α antagonist domain, for administration to a subject in need thereof. In some embodiments, the administration controls pain in the subject more effectively than an equivalent amount of the NGF antagonist or the TNF α antagonist administered alone. In some embodiments, the composition comprises a TNF α antagonist for co-administration with an NGF antagonist. In some embodiments, the composition comprises an NGF antagonist for co-administration with a TNF α antagonist. In some embodiments, the TNF α antagonist and the NGF antagonist are administered sequentially or simultaneously.

[0014] In some embodiments, the composition for use is sufficient to prevent, reduce, ameliorate, or eliminate pain in the subject. In some embodiments, the pain is acute pain, short-term pain, persistent or chronic nociceptive pain, or persistent or chronic neuropathic pain. In some embodiments, the composition for use is at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% more effective at controlling pain in the subject than an equivalent amount of the NGF antagonist or the TNF α antagonist administered alone.

[0015] In some embodiments, the TNF α antagonist portion of the binding molecule binds a polypeptide comprising the amino acid sequence of SEQ ID NO: 2. In some embodiments, the NGF antagonist binds a polypeptide comprising the amino acid sequence of SEQ ID NO: 1.

[0016] In some embodiments, the NGF antagonist portion of the binding molecule is an anti-NGF antibody, or antigen-binding fragment thereof. In some embodiments, the anti-NGF antibody or fragment thereof can inhibit NGF binding to TrkA, p75NTR, or both TrkA and p75NTR. In some embodiments, the anti-NGF antibody preferentially blocks NGF binding to TrkA over NGF binding to p75NTR. In some embodiments, the anti-NGF antibody or fragment thereof binds human NGF with an affinity of about 0.25-0.44 nM. In some embodiments, the anti-NGF antibody or fragment thereof binds to the same epitope as MEDI-578. In some embodiments, the anti-NGF antibody or fragment thereof competitively inhibits binding of MEDI-578 to human NGF.

[0017] In some embodiments, the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising a set of CDRs HCDR1, HCDR2, HCDR3 and an antibody VL domain comprising a set of CDRs LCDR1, LCDR2 and LCDR3, wherein the HCDR1 has the amino acid sequence of SEQ ID NO: 4 or SEQ ID NO: 4 with up to two amino acid substitutions, the HCDR2 has the amino acid sequence of SEQ ID NO: 5 or SEQ ID NO: 5 with up to two amino acid substitutions, the HCDR3 has the amino acid sequence of SEQ ID NO: 6, SEQ ID NO: 6 with up to two amino acid substitutions, SSRIYDFNSALISYYDMDV (SEQ ID NO: 11), or SSRIYDMISSLQPYYDMDV (SEQ ID NO: 12), the LCDR1 has the amino acid sequence of SEQ ID NO: 8 or SEQ ID NO: 8 with up to two amino acid substitutions, the LCDR2 has the amino acid sequence of SEQ ID NO: 9 or SEQ ID NO: 9 with up to two amino acid substitutions, and the LCDR3 has the amino acid sequence of SEQ ID NO: 10 or SEQ ID NO: 10 with up to two amino acid substitutions. In some embodiments, the anti-NGF antibody or fragment thereof comprises a VH having the amino acid sequence of SEQ ID NO: 3. In some embodiments, the anti-NGF antibody or fragment thereof comprises a VL comprising the amino acid sequence of SEQ ID NO: 7. In some embodiments, the anti-NGF antibody or fragment thereof comprises a VH having an amino acid sequence that is at least 80%, 85%, 90%, 95% or 99% identical to the amino acid sequence of SEQ ID NO: 3. In some embodiments, the anti-NGF antibody or fragment thereof comprises a VL having an amino acid sequence that is at least 80%, 85%, 90%, 95% or 99% identical to the amino acid sequence of SEQ ID NO: 7. In some embodiments, the anti-NGF antibody or fragment thereof comprises a VH having the amino acid sequence of SEQ ID NO: 94. In some embodiments, the anti-NGF antibody or fragment thereof comprises a VL comprising the amino acid sequence of SEQ ID NO: 95. In some embodiments, the anti-NGF antibody or fragment thereof comprises a VH having an amino acid sequence that is at least 80%, 85%, 90%, 95% or 99% identical to the amino acid sequence of SEQ ID NO: 94. In some embodiments, the anti-NGF antibody or fragment thereof comprises a VL having an amino acid sequence that is at least 80%, 85%, 90%, 95% or 99% identical to the amino acid sequence of SEQ ID NO: 95.

[0018] In some embodiments, the anti-NGF antibody or fragment thereof is a full H₂L₂

antibody, an Fab, fragment, an Fab' fragment, an F(ab)₂ fragment or a single chain Fv (scFv) fragment. In some embodiments, the anti-NGF antibody or fragment thereof is humanized, chimeric, primatized, or fully human. In some embodiments, the NGF antagonist is an anti-NGF scFv fragment. In some embodiments, the scFv is SS-stabilized. In some embodiments, the anti-NGF scFv fragment comprises, from N-terminus to C-terminus, a VH comprising the amino acid sequence of SEQ ID NO: 3, a 15-amino acid linker sequence (GGGGS)₃ (SEQ ID NO:15), and a VL comprising the amino acid sequence of SEQ ID NO: 7. In some embodiments, the anti-NGF scFv fragment comprises, from N-terminus to C-terminus, a VH comprising the amino acid sequence of SEQ ID NO: 94, a 20-amino acid linker sequence (GGGGS)₄ (SEQ ID NO:19), and a VL comprising the amino acid sequence of SEQ ID NO: 95.

[0019] In some aspects, the composition for use comprises a TNF α antagonist that inhibits binding of TNF α to a TNF receptor (TNFR), thereby blocking TNF α activity. In some embodiments, the TNF α antagonist comprises an anti-TNF α antibody, or antigen-binding fragment thereof. In some embodiments, the anti-TNF α antibody or fragment thereof comprises an antibody VH domain comprising a set of CDRs HCDR1, HCDR2, and HCDR3 and an antibody VL domain comprising a set of CDRs LCDR1, LCDR2 and LCDR3, wherein CDRs are identical to the HCDR1, HCDR2, HCDR3, LCDR1, LCDR2 and LCDR3 of infliximab or the HCDR1, HCDR2, HCDR3, LCDR1, LCDR2 and LCDR3 of adalimumab.

[0020] In some embodiments, the binding molecule comprises a complete anti-TNF α antibody and an anti-NGF scFv fused to the C-terminus of the heavy chain of the anti-TNF α antibody. That binding molecule may comprise a light chain comprising the amino acid sequence of SEQ ID NO: 20 and a heavy chain comprising the amino acid sequence of SEQ ID NO: 22.

[0021] In some embodiments, the TNF α antagonist comprises a soluble, TNF α -binding fragment of a TNFR. In some embodiments, the TNFR is TNFR-2 or a soluble fragment thereof. In other embodiments, the TNFR is TNFR-1 or a soluble fragment thereof. In some embodiments, the soluble fragment of TNFR-1 is a 55kD fragment. In other embodiments, the soluble fragment of TNFR-2 fragment is a 75kD fragment. In some embodiments, the TNFR fragment is fused to an immunoglobulin Fc domain. In some embodiments, the immunoglobulin Fc domain is a human IgG1 Fc domain. In some embodiments, the TNF α antagonist has an amino acid sequence set forth in SEQ ID NO: 13, or a functional fragment thereof.

[0022] In some embodiments, the binding molecule comprises a fusion protein that comprises the NGF antagonist fused to the TNF α antagonist through a linker. In some embodiments, the binding molecule is a homodimer of the fusion protein.

[0023] In some embodiments, the NGF antagonist is an anti-NGF scFv domain and the TNF α antagonist is a soluble, TNF α -binding fragment of TNFR-2 fused at its carboxy-terminus to an immunoglobulin Fc domain. In some embodiments, the scFv is fused to the carboxy-terminus of the immunoglobulin Fc domain via a linker.

[0024] In some embodiments, the binding molecule comprises a homodimer of a fusion polypeptide comprising, from N-terminus to C-terminus, a TNF α -binding 75kD fragment of TNFR-2, a human IgG1Fc domain, a 10-amino-acid linker (GGGGS)₂, a VH comprising the amino acid sequence of SEQ ID NO 3, a 15-amino acid linker sequence (GGGGS)₃ (SEQ ID NO: 15), and a VL comprising the amino acid sequence of SEQ ID NO: 7. In some embodiments, the binding molecule comprises a homodimer of a fusion polypeptide comprising the amino acid sequence of SEQ ID NO: 14. In some embodiments, the binding molecule comprises a homodimer of a fusion polypeptide comprising an amino acid sequence that is at least 80%, 85%, 90%, 95% or 99% identical to the amino acid sequence of SEQ ID NO: 14.

[0025] In some embodiments, the binding molecule comprises a homodimer of a fusion polypeptide comprising, from N-terminus to C-terminus, a TNF α -binding 75kD fragment of TNFR-2, a human IgG1Fc domain, a 10-amino-acid linker (GGGGS)₂, a VH comprising the amino acid sequence of SEQ ID NO: 94, a 20-amino acid linker sequence (GGGGS)₄ (SEQ ID NO: 19), and a VL comprising the amino acid sequence of SEQ ID NO: 95. In some embodiments, the binding molecule comprises a homodimer of a fusion polypeptide comprising the amino acid sequence of SEQ ID NO: 17. In some embodiments, the binding molecule comprises a homodimer of a fusion polypeptide comprising an amino acid sequence that is at least 80%, 85%, 90%, 95% or 99% identical to the amino acid sequence of SEQ ID NO: 17.

[0026] In some embodiments, the binding molecule comprises a homodimer of a fusion polypeptide comprising, from N-terminus to C-terminus, a TNF α -binding 75kD fragment of TNFR-2, a human IgG1Fc domain, a linker sequence, and an anti-NGF scFv domain.

[0027] The disclosure also provides compositions for inhibiting p38 phosphorylation in a cell, wherein the composition contacts a cell with any of the polypeptides described herein (e.g., any of the binding molecules comprising an NGF antagonist domain and a TNF α antagonist domain described herein). The disclosure also provides compositions for inhibiting ERK phosphorylation in a cell, wherein the composition contacts a cell with any of the polypeptides described herein (e.g., any of the binding molecules comprising an NGF antagonist domain and a TNF α antagonist domain described herein). In some embodiments, the cell is a neuronal cell. In other embodiments, the cell is a peripheral neuronal cell. In yet other embodiments, the cell is a central neuronal cell. In some embodiments, the cell is in a mammal. In some embodiments, the mammal is a human. In some embodiments, the cell is in a culture of cells.

[0028] The disclosure also provides polynucleotide sequences encoding the binding molecules disclosed herein, vectors comprising those polynucleotide sequences, and host cells comprising those polynucleotides or vectors.

[0029] The disclosure also provides methods of producing the binding molecules described herein.

[0030] The disclosure also provides compositions, pharmaceutical compositions and kits comprising the binding molecules described herein.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0031]

Figure 1: Schematic representation of a TNFR2-Fc fusion protein (Panel A), and an exemplary multispecific binding molecule, TNFR2-Fc_VH#4, comprising a TNFR2-Fc domain fused to an anti-NGF scFv domain (panel B).

Figure 2A shows the results of SEC-HPLC analysis of the levels of aggregate, monomer and protein fragmentation in a batch of purified TNFR2-Fc_VH#4.

Figure 2B shows SDS-PAGE analysis of purified TNFR2-Fc_VH#4 and the purified TNFR2-Fc protein under reduced and non-reduced conditions. Gel loading order: 1. TNFR2-Fc_VH#4, 2. TNFR2-Fc_VL-VH (TNFR2-Fc fused to an anti-NGF scFv with reverse variable domain gene orientation), 3. TNFR2-Fc irrelevant scFv 1, 4. TNFR2-Fc, 5. TNFR2-Fc irrelevant scFv 2.

Figure 3A shows the purity of TNFR2-Fc_VH#4 following Protein A column purification. Figure 3B shows the purity of TNFR2-Fc_VH#4 following a second purification step on an SP sepharose column.

Figure 4 shows a stability analysis of TNFR2-Fc_VH#4 using differential scanning calorimetry.

Figure 5 shows binding of TNFR2-Fc_VH#4 to TNF α and NGF, both singly and together, as determined by ELISA. Figure 5A shows binding to NGF, Figure 5B shows binding to TNF α , and Figure 5C shows simultaneous binding to TNF α and NGF.

Figure 6 shows a sensorgram of a surface plasmon resonance binding assay for TNFR2-Fc_VH#4. Concurrent antigen binding of the TNFR2-Fc_VH#4 multispecific antibody was performed using BIAcore 2000. Simultaneous antigen binding was assessed by serially binding TNF α and NGF over TNFR2-Fc_VH#4 bound to the sensor surface. The first part of the sensorgram shows binding of saturating amounts of TNF α to the multispecific antibody, the second part of the sensorgram shows binding when a second antigen was applied, either TNF α again, which showed the surface was saturated, or an equimolar mixture of TNF α and NGF. An increase in resonance units equated to binding of the NGF to the multispecific molecule, and hence simultaneous antigen engagement. The assay was also performed with antigen addition in the reverse order confirming these data.

Figure 7 shows the inhibition of NGF-mediated proliferation of TF-1 cells. A. NGF-mediated proliferation in the absence of added NGF antagonist. B. Inhibition of human NGF response by TNFR2-Fc_VH#4. C. Inhibition of murine NGF response by TNFR2-Fc_VH#4. Activity of NGF is normally represented as RLU -Relative luminescence Unit, and % of NGF mediated proliferation calculated as % response to NGF ligand alone using the following formula: 100 *

(well RLU - background RLU)/(Total RLU - background RLU), wherein background RLU = average of media controls, and Total RLU = average of ligand only controls. D. Inhibition of human NGF response by TNFR2-Fc_VarB and ndimab VarB. E. Inhibition of murine NGF response by TNFR2-Fc_VarB and ndimab VarB.

Figure 8 shows the inhibition of TNF α induced Caspase 3 activity in U937 cells. A. TNF α induced Caspase 3 activity in U937 cells in the absence of added TNF α antagonist. B. Inhibition of TNF α induced Caspase 3 activity in U937 cells shown as percent of response in the absence of added antagonist. Activity of TNF is normally represented as RFU -Relative Fluorescence Unit, and % of TNF mediated caspase 3 release was calculated as % response to TNF ligand alone using the formula as described above in FIG. 7C: C. Similar results shown for a related molecule TNFR2-Fc_varB and ndimab VarB.

Figure 9 shows the effect of combination treatment with etanercept and MEDI-578 on a partial sciatic nerve ligation-induced mechanical hyperalgesia. Results are shown as the ipsilateral/contralateral ratio. N=9-10 per group. Data was analyzed using a 2-way ANOVA analysis with time and treatment as dependent factors. Subsequent statistical significance was obtained using Boniferroni's Post Hoc test. ***p<0.001 to Op + CAT-251 control.

Figure 10A shows the effect of TNFR2-Fc_VH#4 on partial sciatic nerve ligation-induced mechanical hyperalgesia. Results are shown as the ipsilateral/contralateral ratio. N=10 per group. Data was analyzed using a 2-way ANOVA analysis with time and treatment as dependent factors. Subsequent statistical significance was obtained using Boniferroni's Post Hoc test. ***p<0.001 vs bispecific isotype control. Figure 10B shows similar results with a related molecule TNFR2-Fc_varB.

Figure 11 shows the effect of co-administration of MEDI-578 and etanercept on pain reduction in a joint pain model of mechanical hypersensitivity. N=9-10 per group. Data was analyzed using a 2-way ANOVA analysis. Subsequent statistical significance was obtained using Boniferroni's Post Hoc test. *P>0.05; ***P<0.001 vs. CAT-251.

Figure 12 shows the effect of TNFR2-Fc_VH#4 on pain reduction in a joint pain model of mechanical hypersensitivity. N=9-10 per group. Data was analyzed using a 2-way ANOVA analysis. Subsequent statistical significance was obtained using Boniferroni's Post Hoc test. ***P<0.001 vs. bispecific isotype control.

Figure 13 shows the effects of five different doses of TNFR2-Fc_varB on CFA-induced hyperalgesia in a rat model.

Figure 14: A heat map showing HTRF ratios from phospho-p38 reactions.

Figure 15: Dose response curves showing the effect of TNF α , NGF, or a combination of TNF α and NGF on p38 phosphorylation.

Figure 16: A heat map showing HTRF ratios from phospho-ERK reactions.

Figure 17: Dose response curves showing the effect of TNF α , NGF, or a combination of TNF α

and NGF on ERK phosphorylation.

DETAILED DESCRIPTION

Definitions

[0032] It is to be noted that the term "a" or "an" entity refers to one or more of that entity. As such, the terms "a" (or "an"), "one or more," and "at least one" can be used interchangeably herein.

[0033] Furthermore, "and/or" where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. Thus, the term "and/or" as used in a phrase such as "A and/or B" herein is intended to include "A and B," "A or B," "A" (alone), and "B" (alone). Likewise, the term "and/or" as used in a phrase such as "A, B, and/or C" is intended to encompass each of the following aspects: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).

[0034] It is understood that wherever aspects are described herein with the language "comprising," otherwise analogous aspects described in terms of "consisting of and/or" "consisting essentially of" are also provided.

[0035] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure is related. For example, the Concise Dictionary of Biomedicine and Molecular Biology, Juo, Pei-Show, 2nd ed., 2002, CRC Press; The Dictionary of Cell and Molecular Biology, 3rd ed., 1999, Academic Press; and the Oxford Dictionary Of Biochemistry And Molecular Biology, Revised, 2000, Oxford University Press, provide one of skill with a general dictionary of many of the terms used in this disclosure.

[0036] Units, prefixes, and symbols are denoted in their Système International de Unites (SI) accepted form. Numeric ranges are inclusive of the numbers defining the range. Unless otherwise indicated, amino acid sequences are written left to right in amino to carboxy orientation. The headings provided herein are not limitations of the various aspects of the disclosure, which can be had by reference to the specification as a whole. Accordingly, the terms defined immediately below are more fully defined by reference to the specification in its entirety.

[0037] As used herein, the term "binding molecule" refers in its broadest sense to a molecule that specifically binds an antigenic determinant, e.g., antigen. Non-limiting example of an binding molecule include antibodies or fragment thereof, soluble receptor fusion proteins or

fragment thereof, non-immunoglobulin scaffolds or fragments thereof, each retaining antigen specific binding. Exemplary non-immunoglobulin scaffolds include Tn3 (Koide et al., *J Mol Biol* 2012 Jan 13;415(2):393-405), DARPin (Boersma & Pluckthun, *Curr Opin Biotechnol.* 2011 22(6):849-57), anticalin (Gebauer & Skerra, *Methods Enzymol.* 2012; 503:157-88). Exemplary soluble receptor fusion proteins and antibodies are provided below. In certain embodiments, the binding molecule could be engineered to comprise combinations of such antibodies or fragments thereof, soluble receptor fusion proteins or fragments thereof, and non-immunoglobulin-based scaffolds or fragment thereof.

[0038] The binding molecule, or any portion of the binding molecule that recognizes an antigen is referred to herein as a "binding domain." Unless specifically referring to full-sized binding molecules such as naturally-occurring antibodies, the term "binding molecule" encompasses, without limitation, full-sized antibodies or other non-antibody binding molecules, as well as antigen-binding fragments, variants, analogs, or derivatives of such binding molecules, e.g., naturally occurring antibody or immunoglobulin molecules or engineered binding molecules or fragments that bind antigen in a manner similar to full-sized binding molecule.

[0039] In certain embodiments, the disclosure provides certain multi-specific binding molecules, e.g., bispecific, trispecific, tetraspecific, etc. binding molecules, or antigen-binding fragments, variants, or derivatives thereof. As used herein, a multi-specific binding molecule can include one or more antibody binding domains, one or more non-antibody binding domains, or a combination thereof.

[0040] The term "nerve growth factor" ("NGF") also referred to in the literature as beta-nerve growth factor, as used herein refers to a secreted protein that functions in the growth and survival of various neurons. Human NGF is presented as Genbank Accession Number NP_002497.2, and is presented here as SEQ ID NO: 1. The term NGF as used herein is not limited to human NGF, and includes all species orthologs of human NGF. The term "NGF" encompasses the pro-form of NGF, pro-NGF, full-length NGF, as well as any form of NGF that results from processing within the cell. The term also encompasses naturally occurring variants of NGF, e.g., splice variants, allelic variants, and isoforms. NGF can bind to two receptors: the p75 neurotrophin receptor (p75(NTR)) and TrkA, a transmembrane tyrosine kinase. NGF is a well-validated target for pain being known to mediate sensitization of nociceptors.

[0041] A variety of agents are being tested as antagonists of NGF activity. One such anti-NGF agent is trkA-Fc, which acts as a decoy or scavenger to bind to, and thereby inactivate, endogenous NGF. TrkA-Fc is a fusion protein consisting of the NGF binding region of trkA linked to a constant domain fragment (Fc) of an IgG antibody. TrkA-Fc produces hypoalgesia in naive animals, decreases nociceptor responses, and decreases sprouting of unmyelinated pain-sensing neurons (Bennett, D. L. et al. (1998) *Eur J Neurosci*, 10:1282-91).

[0042] NGF-mediated pain is particularly well suited to safe and effective treatment with binding molecules as set forth herein because NGF levels increase in the periphery in response to noxious stimuli and antibodies have low blood-brain barrier permeability. A number

of anti-NGF antibodies and antigen-binding fragments thereof which can be used in the therapies and compositions described herein can be found in the literature, see, e.g., PCT Publication Nos. WO02/096458 and WO04/032870.

[0043] The term "MEDI-578" refers to an antibody that specifically binds NGF, which is the subject of International Appl. No. PCT/GB2006/000238 and U.S. Patent Appl. Pub. No. 2008/0107658 A1. The MEDI-578 heavy and light chain sequences are shown in SEQ ID NOs: 3 and 7, respectively.

[0044] The term NGF-NG refers to an antibody that specifically binds NGF. The NGF-NG heavy and light chain sequences are shown in SEQ ID NOs: 24 and 26, respectively.

[0045] The term "tumor necrosis factor alpha" ("TNF α "), also referred to in the literature as cachectin, APC1 protein; tumor necrosis factor; TNF; or tumor necrosis factor ligand superfamily member 2, as used herein refers to the specific TNF α protein, and not the superfamily of TNF ligands. Human TNF α is presented as Genbank Accession Number NP_000585.2, and is presented as SEQ ID NO: 2. The term TNF α as used herein is not limited to human TNF, and includes all species orthologs of human TNF α . The term "TNF α " encompasses the pro-form of TNF α , pro-TNF α , full-length TNF α , as well as any form of TNF α that results from processing within the cell. The term also encompasses naturally occurring and non-naturally-occurring variants of TNF α , e.g., splice variants, allelic variants, and isoforms. TNF α can bind two receptors, TNFR1 (TNF receptor type 1; CD120a; p55/60) and TNFR2 (TNF receptor type 2; CD120b; p75/80). TNF α functions as a pro-inflammatory cytokine, e.g., functioning in neuroinflammation. For example, TNF α is thought to be functionally involved in the generation of neuropathic pain (Leung, L., and Cahill, C.M., *J. Neuroinflammation* 7:27 (2010)).

[0046] A large number of TNF α antagonists are known in the art, and many are commercially available as therapeutics. Examples of commercially available TNF-alpha antagonists which can be used in the therapies and compositions provided herein include etanercept (ENBREL®, Amgen/Pfizer), infliximab (e.g., REMICADE®, Centocor), certolizumab pegol (e.g., CIMZIA®, UCB), golimumab (e.g., SIMPONI™, Centocor), and adalimumab (e.g., HUMIRA®/TRUDEXA®, Abbott).

[0047] An "isolated" binding molecule, polypeptide, antibody, polynucleotide, vector, host cell, or composition refers to a binding molecule, polypeptide, antibody, polynucleotide, vector, host cell, or composition that is in a non-naturally-occurring form. Isolated binding molecules, polypeptides, antibodies, polynucleotides, vectors, host cells or compositions include those which have been changed, adapted, combined, rearranged, engineered, or otherwise manipulated to a degree that they are no longer in the form in which they are found in nature. In some aspects a binding molecule, antibody, polynucleotide, vector, host cell, or composition that is isolated is "recombinant."

[0048] As used herein, the terms "multifunctional polypeptide" and "bifunctional polypeptide"

refer to a non-naturally-occurring binding molecule designed to target two or more antigens. A multifunctional polypeptide as described herein is typically a genetically engineered fusion protein designed to bring together two different desired biological functions into a single binding molecule. For example, a multifunctional polypeptide can be a multifunctional binding molecule. An exemplary multifunctional polypeptide described herein is a multifunctional binding molecule comprising an NGF antagonist domain, e.g., a peptide domain which blocks, reduces, or inhibits one or more natural NGF functions, and a TNF α antagonist domain, e.g., a peptide domain which blocks, reduces, or inhibits one or more natural TNF α functions.

[0049] One group of multifunctional polypeptides provided herein are multispecific binding molecules, e.g., binding molecules that include one or more antibody binding domains, e.g., a "multispecific antibody," one or more non-antibody binding domains, e.g., a decoy receptor, or a combination thereof. Multispecific binding molecules, e.g., including one or more antibody binding domains, one or more non-antibody binding domains, or a combination thereof, are molecules with binding domains capable of specifically recognizing and binding to at least two different epitopes. The different epitopes can either be within the same molecule (e.g., the same NGF) or on different molecules such that, for example, multispecific binding molecules that can specifically recognize and bind NGF as well as another epitope-containing molecule, e.g., TNF α , such that the multispecific binding molecule specifically recognizes NGF and TNF α .

[0050] Techniques for making multispecific binding molecules, e.g., including one or more antibody binding domains, one or more non-antibody binding domains, or a combination thereof, are available in the art (Dimasi, N., et al., 2009, *J Mol Biol.* 393:672-92; Milstein et al., 1983, *Nature* 305:537-539; Brennan et al., 1985, *Science* 229:81; Suresh et al., 1986, *Methods in Enzymol.* 121:120; Traunecker et al., 1991, *EMBO J.* 10:3655-3659; Shalaby et al., 1992, *J. Exp. Med.* 175:217-225; Kostelny et al., 1992, *J. Immunol.* 148:1547-1553; Gruber et al., 1994, *J. Immunol.* 152:5368; and U.S. Patent 5,731,168). Antibodies with more than two valencies are also contemplated. For example, trispecific antibodies can be prepared (Tutt et al., *J. Immunol.* 147:60 (1991)).

[0051] The term "antibody" means an immunoglobulin molecule that recognizes and specifically binds to a target, such as a protein, polypeptide, peptide, carbohydrate, polynucleotide, lipid, or combinations of the foregoing through at least one antigen recognition site within the variable region of the immunoglobulin molecule. As used herein, the term "antibody" encompasses intact polyclonal antibodies, intact monoclonal antibodies, antibody fragments (such as Fab, Fab', F(ab')₂, and Fv fragments), single chain Fv (scFv) mutants, multispecific antibodies such as bispecific, trispecific, tetraspecific, etc antibodies generated from at least two intact antibodies, chimeric antibodies, humanized antibodies, human antibodies, fusion proteins comprising an antigen determination portion of an antibody, and any other modified immunoglobulin molecule comprising an antigen recognition site so long as the antibodies exhibit the desired biological activity. An antibody can be of any the five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, or subclasses (isotypes) thereof (e.g. IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2), based on the identity of their heavy-chain constant domains referred to as alpha, delta, epsilon, gamma, and mu, respectively. The different

classes of immunoglobulins have different and well known subunit structures and three-dimensional configurations.

[0052] In some embodiments, a "blocking" binding molecule, e.g., a blocking antibody or an "antagonist" binding molecule, such as for example, an antagonist antibody or fusion protein is one that inhibits or reduces biological activity of the antigen to which it binds, such as NGF or TNF α . In certain aspects blocking antibodies or antagonist binding molecules substantially or completely inhibit the biological activity of the antigen. For example, the biological activity can be reduced by 0.01%, 0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%, 50%, 70%, 80%, 90%, 95%, or even 100%. "Antagonists" and "antagonist domains" as used herein include polypeptides or other molecules that bind to their target (e.g., TNF α or NGF), thereby blocking or inhibiting the target from interacting with a receptor. NGF and/or TNF α antagonists thus include molecules that block or inhibit NGF interaction with trkA or p75 neurotrophin, or TNF α interaction with TNFR-1 or TNFR-2. NGF and/or TNF α antagonists also include molecules that reduce p38 phosphorylation and/or ERK phosphorylation. Exemplary antagonists include, but are not limited to antibodies or antigen-binding fragments thereof, and target-specific, soluble, non-signaling receptor peptides ("decoy receptors," or ligand-binding fragments thereof).

[0053] The term "antibody fragment" refers to a portion of an intact antibody and refers to the antigenic determining variable regions of an intact antibody. Examples of antibody fragments include, but are not limited to Fab, Fab', F(ab')₂, and Fv fragments, linear antibodies, single chain antibodies, and multispecific antibodies formed from antibody fragments. Antigen-binding fragments of non-antibody binding molecules, described elsewhere herein, are also provided by this disclosure.

[0054] A "monoclonal antibody" refers to a homogeneous antibody population involved in the highly specific recognition and binding of a single antigenic determinant, or epitope. This is in contrast to polyclonal antibodies that typically include different antibodies directed against different antigenic determinants. The term "monoclonal antibody" encompasses both intact and full-length monoclonal antibodies as well as antibody fragments (such as Fab, Fab', F(ab')₂, Fv), single chain (scFv) mutants, fusion proteins comprising an antibody portion, and any other modified immunoglobulin molecule comprising an antigen recognition site. Furthermore, "monoclonal antibody" refers to such antibodies made in any number of ways including by hybridoma, phage selection, recombinant expression, and transgenic animals.

[0055] The term "humanized antibody" refers to forms of non-human (e.g., murine) antibodies that are specific immunoglobulin chains, chimeric immunoglobulins, or fragments thereof that contain minimal non-human (e.g., murine) sequences. Typically, humanized antibodies are human immunoglobulins in which residues from the complementary determining region (CDR) are replaced by residues from the CDR of a non-human species (e.g., mouse, rat, rabbit, or hamster) that have the desired specificity, affinity, and capability (Jones et al., 1986, *Nature*, 321:522-525; Riechmann et al., 1988, *Nature*, 332:323-327; Verhoeyen et al., 1988, *Science*, 239:1534-1536). In some instances, the Fv framework region (FR or FW) residues of a human immunoglobulin are replaced with the corresponding residues in an antibody from a non-

human species that has the desired specificity, affinity, and capability. The humanized antibody can be further modified by the substitution of additional residues either in the Fv framework region and/or within the replaced non-human residues to refine and optimize antibody specificity, affinity, and/or capability. In general, the humanized antibody will comprise substantially all of at least one, and typically two or three, variable domains containing all or substantially all of the CDR regions that correspond to the non-human immunoglobulin whereas all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody can also comprise at least a portion of an immunoglobulin constant region or domain (Fc), typically that of a human immunoglobulin. Examples of methods used to generate humanized antibodies are described in U.S. Pat. 5,225,539 or 5,639,641.

[0056] A "variable region" of an antibody refers to the variable region of the antibody light chain or the variable region of the antibody heavy chain, either alone or in combination. The variable regions of the heavy and light chain each consist of four framework regions (FR or FW) connected by three complementarity-determining regions (CDRs) also known as hypervariable regions. The CDRs in each chain are held together in close proximity by the FRs and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies. There are at least two techniques for determining CDRs: (1) an approach based on cross-species sequence variability (*i.e.*, Kabat et al. Sequences of Proteins of Immunological Interest, (5th ed., 1991, National Institutes of Health, Bethesda Md.)); and (2) an approach based on crystallographic studies of antigen-antibody complexes (Al-lazikani et al (1997) *J. Molec. Biol.* 273:927-948)). In addition, combinations of these two approaches are sometimes used in the art to determine CDRs.

[0057] The Kabat numbering system is generally used when referring to a residue in the variable domain (approximately residues 1-107 of the light chain and residues 1-113 of the heavy chain) (*e.g.*, Kabat et al., Sequences of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).

[0058] The amino acid position numbering as in Kabat, refers to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991). Using this numbering system, the actual linear amino acid sequence can contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or CDR of the variable domain. For example, a heavy chain variable domain can include a single amino acid insert (residue 52a according to Kabat) after residue 52 of H2 and inserted residues (*e.g.*, residues 82a, 82b, and 82c, etc according to Kabat) after heavy chain FR residue 82. The Kabat numbering of residues can be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a "standard" Kabat numbered sequence. Chothia refers instead to the location of the structural loops (Chothia and Lesk *J. Mol. Biol.* 196:901-917 (1987)). The end of the Chothia CDR-H1 loop when numbered using the Kabat numbering convention varies between H32 and H34 depending on the length of the loop (this is because the Kabat

numbering scheme places the insertions at H35A and H35B; if neither 35A nor 35B is present, the loop ends at 32; if only 35A is present, the loop ends at 33; if both 35A and 35B are present, the loop ends at 34). The AbM hypervariable regions represent a compromise between the Kabat CDRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software. A comparison is provided in Table 1 below.

Table 1: Comparison of Antibody Numbering Systems

Loop	Kabat	AbM	Chothia
L1	L24-L34	L24-L34	L24-L34
L2	L50-L56	L50-L56	L50-L56
L3	L89-L97	L89-L97	L89-L97
H1	H31-H35B	H26-H35B	H26-H32..34
		(Kabat Numbering)	
H1	H31-H35	H26-H35	H26-H32
		(Chothia Numbering)	
H2	H50-H65	H50-H58	H52-H56
H3	H95-H102	H95-H102	H95-H102

[0059] The term "human antibody" means a native human antibody or an antibody having an amino acid sequence corresponding to a native human antibody, made using any technique known in the art. This definition of a human antibody includes intact or full-length antibodies, fragments thereof, and/or antibodies comprising at least one human heavy and/or light chain polypeptide such as, for example, an antibody comprising murine light chain and human heavy chain polypeptides.

[0060] The term "chimeric antibodies" refers to antibodies wherein the amino acid sequence of the immunoglobulin molecule is derived from two or more species. Typically, the variable region of both light and heavy chains corresponds to the variable region of antibodies derived from one species of mammals (e.g., mouse, rat, rabbit, etc.) with the desired specificity, affinity, and capability while the constant regions are homologous to the sequences in antibodies derived from another (usually human) to avoid eliciting an immune response in that species. Multispecific binding molecules, e.g., including one or more antibody binding domains, one or more non-antibody binding domains, or a combination thereof, e.g., TNF α antagonists and/or NGF antagonists provided herein can comprise antibody constant regions (e.g., Fc regions) in which at least a fraction of one or more of the constant region domains has been deleted or otherwise altered so as to provide desired biochemical characteristics such as increased tumor localization or reduced serum half-life when compared with an antibody of approximately the same immunogenicity comprising a native or unaltered constant region. Modified constant regions provided herein can comprise alterations or modifications to one or more of the three heavy chain constant domains (CH1, CH2 or CH3) and/or to the light chain constant domain (CL). In some aspects, one or more constant domains can be partially or entirely deleted. In

some aspects, the entire CH2 domain can be deleted (Δ CH2 constructs). See, e.g., Oganesyan V, et al., 2008 Acta Crystallogr D Biol Crystallogr. 64:700-4; Oganesyan V, et al., Mol Immunol. 46:1750-5; Dall'Acqua, W.F., et al., 2006. J. Biol. Chem. 281:23514-23524; and Dall'Acqua, et al., 2002. J. Immunol. 169:5171-5180.

[0061] The term "epitope" or "antigenic determinant" are used interchangeably herein and refer to that portion of an antigen capable of being recognized and specifically bound by a particular antibody. When the antigen is a polypeptide, epitopes can be formed both from contiguous amino acids and noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained upon protein denaturing, whereas epitopes formed by tertiary folding are typically lost upon protein denaturing. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation. An epitope as described herein need not be defined down to the specific amino acids that form the epitope. In some aspects an epitope can be identified by examination of binding to peptide subunits of a polypeptide antigen, or by examining binding competition to the antigen by a group of antigen-specific antibodies.

[0062] By "subject" or "individual" or "animal" or "patient" or "mammal," is meant any subject, particularly a mammalian subject, for whom diagnosis, prognosis, or therapy is desired. Mammalian subjects include humans, domestic animals, farm animals, sports animals, and zoo animals including, e.g., humans, non-human primates, dogs, cats, guinea pigs, rabbits, rats, mice, horses, cattle, bears, and so on.

[0063] The terms "composition and "pharmaceutical composition" refer to a preparation which is in such form as to permit the biological activity of the active ingredient to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the composition would be administered. Such compositions can be sterile.

[0064] As used herein, the terms "effective amount" and "therapeutically effective amount" refer to an amount of one or more therapeutic compositions effective to control pain in a subject. The term "control pain" and grammatical equivalents is used herein to describe any beneficial or desirable effect in a subject in need of pain control. For example, an effective amount of one or more therapeutic compositions described herein can, e.g., prevent pain, maintain a tolerable level of pain, ameliorate pain, reduce pain, minimize pain, or eliminate pain in the subject.

[0065] The term "administering" as used herein refers to administering to a subject one or more therapeutic compositions described herein, e.g., a bifunctional polypeptide comprising an NGF antagonist domain and a TNF α antagonist domain, a therapeutic composition comprising a combination of an NGF antagonist and a TNF α antagonist, or separate therapeutic compositions, one comprising an NGF antagonist and one comprising a TNF α antagonist. The term "co-administering" refers to administering to a subject two or more therapeutic compositions, e.g., one comprising an NGF antagonist and one comprising a TNF α antagonist. As used herein, co-administering includes, but does not require that the two or more

therapeutic compositions be administered to the subject simultaneously. The two or more therapeutic compositions can be administered to the subject sequentially, e.g., thirty minutes apart, one hour apart, two hours apart, three hours apart, four hours apart, or five or more hours apart. The sequence and timing of a co-administration as described herein can be fixed, or can be varied based on the judgment of a healthcare professional.

[0066] The terms "polynucleotide" and "nucleic acid" refer to a polymeric compound comprised of covalently linked nucleotide residues. Polynucleotides can be DNA, cDNA, RNA, single stranded, or double stranded, vectors, plasmids, phage, or viruses.

[0067] The term "vector" means a construct, which is capable of delivering, and expressing, one or more gene(s) or sequence(s) of interest in a host cell. Examples of vectors include, but are not limited to, viral vectors, naked DNA or RNA expression vectors, plasmid, cosmid or phage vectors, DNA or RNA expression vectors associated with cationic condensing agents, DNA or RNA expression vectors encapsulated in liposomes, and certain eukaryotic cells, such as producer cells.

[0068] The terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to polymers of amino acids of any length. The polymer can be linear or branched, it can comprise modified amino acids, and non-amino acids can interrupt it. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component. Also included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), as well as other modifications known in the art.

[0069] A "conservative amino acid substitution" is one in which one amino acid residue is replaced with another amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). For example, substitution of a phenylalanine for a tyrosine is a conservative substitution. In certain aspects, conservative substitutions in the sequences of polypeptides and antibodies provided herein do not abrogate the binding or other functional activity of the polypeptide containing the amino acid sequence. Methods of identifying nucleotide and amino acid conservative substitutions which do not affect function are well-known in the art (see, e.g., Brummell et al., Biochem. 32: 1180-1 187 (1993); Kobayashi et al. Protein Eng. 12:879-884 (1999); and Burks et al. Proc. Natl. Acad. Sci. USA 94:412-417 (1997)).

Binding molecule comprising an NGF antagonist domain and a TNF α antagonist

domain

[0070] This disclosure provides a bifunctional polypeptide comprising an NGF antagonist domain and a TNF α antagonist domain. In certain aspects, administration of an effective amount of a bifunctional polypeptide provided herein can control pain, in a subject in need thereof, more effectively than an equivalent amount of the NGF antagonist or the TNF α antagonist administered alone. Bifunctional polypeptides provided herein can include the NGF antagonist domain and the TNF α antagonist domain in any order, structure, or conformation. Any suitable NGF antagonists or TNF α antagonists can be part of a bifunctional polypeptide provided herein. Exemplary NGF antagonists and TNF α antagonists are described elsewhere in this disclosure.

[0071] In certain aspects, the NGF antagonist is a non-antibody molecule, or a binding domain thereof, capable of inhibiting NGF activity, e.g., a soluble, NGF-binding fragment of TrkA. In certain aspects, the NGF antagonist is an anti-NGF antibody, or antigen-binding fragment thereof. Suitable anti-NGF antagonists, e.g., antagonist antibodies can inhibit NGF binding to TrkA, p75NRT, or both TrkA and p75NRT. In certain aspects, an anti-NGF antagonist, e.g., an antagonist antibody or fragment thereof for use in a bifunctional molecule provided herein, e.g., a multispecific binding molecule, can preferentially block NGF binding to TrkA over NGF binding to p75NRT.

[0072] Exemplary antibodies or fragments thereof for use in bifunctional polypeptides, e.g., multispecific binding molecules disclosed herein are available in U.S. Appl. Publication No. 2008/0107658. In certain aspects, the anti-NGF antibody or fragment thereof binds to the same epitope as, can competitively inhibit, or can bind to NGF with a greater affinity than the anti-NGF antibody MEDI-578. In certain embodiments, the anti-NGF antibody or fragment thereof binds human NGF and/or rat NGF with an affinity of or less than 1, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 or 0.2 nM. For example, the anti-NGF antibody or fragment thereof may bind human NGF with an affinity of about 0.2-0.8, 0.2-0.7, 0.2-0.6, 0.2-0.5, and/or 0.25-0.44 nM and rat NGF with an affinity of about 0.2-0.9, 0.2-0.8, and/or 0.25-0.70 nM.

[0073] In certain aspects, the anti-NGF antibody or fragment thereof is MEDI-578. MEDI-578 is disclosed in U.S. Appl. Publication No. 2008/0107658 as clone 1252A5. In other aspects, the anti-NGF antibody or fragment thereof is tanezumab (RN-624), a humanized anti-NGF mAb (Pfizer; described in Kivitz et al., (2013) PAIN, 154, 9, 1603-161), fulranumab, a fully human anti-NGF mAb (Amgen; described in Sanga et al., PAIN, Volume 154, Issue 10, October 2013, Pages 1910-1919); REGN475/SAR164877, a fully human anti-NGF mAb (Regeneron/Sanofi-Aventis); ABT-110 (PG110), a humanized anti-NGF mAb (Abbott Laboratories). An anti-NGF antibody or fragment thereof included in a bifunctional polypeptide, e.g., multispecific binding molecule provided herein, can be, e.g., humanized, chimeric, primatized, or fully human.

[0074] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody

VH domain comprising the HCDR1, HCDR2, and HCDR3 domains of MEDI-578, variants of the MEDI-578 heavy chain CDRs with up to one, two, three, four, five, or more amino acid substitutions, e.g., conservative amino acid substitutions. For example, the anti-NGF antibody or fragment thereof can comprise an HCDR1 with the exact amino acid sequence of SEQ ID NO: 4 or with the amino acid sequence of SEQ ID NO: 4 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions. Similarly, the anti-NGF antibody or fragment thereof can comprise an HCDR2 with the exact amino acid sequence of SEQ ID NO: 5 or with the amino acid sequence of SEQ ID NO: 5 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions. Likewise, the anti-NGF antibody or fragment thereof can comprise an HCDR3 with the exact amino acid sequence of SEQ ID NO: 6 or with the amino acid sequence of SEQ ID NO: 6 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions. In certain aspects, the HCDR3 can comprise the amino acid sequence SSRIYDFNSALISYYDMDV (SEQ ID NO: 11), or SSRIYDMISSLQPYYDMDV (SEQ ID NO: 12).

[0075] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising the LCDR1, LCDR2, and LCDR3 domains of MEDI-578, variants of the MEDI-578 light chain CDRs with up to one, two, three, four, five, or more amino acid substitutions, e.g., conservative amino acid substitutions. In certain aspects, the anti-NGF antibody or fragment thereof can comprise an LCDR1 with the exact amino acid sequence of SEQ ID NO: 8 or with the amino acid sequence of SEQ ID NO: 8 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions. Similarly, the anti-NGF antibody or fragment thereof can comprise an LCDR2 with the exact amino acid sequence of SEQ ID NO: 9 or with the amino acid sequence of SEQ ID NO: 9 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions. Likewise, the anti-NGF antibody or fragment thereof can comprise an LCDR3 with the exact amino acid sequence of SEQ ID NO: 10 or with the amino acid sequence of SEQ ID NO: 10 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions.

[0076] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising a VH amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 3. In some aspects the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising the VH amino acid sequence of SEQ ID NO: 3.

[0077] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising a VL amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 7. In some aspects the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising the VL amino acid sequence of SEQ ID NO: 7.

[0078] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising a VH amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 94. In some aspects the anti-

NGF antibody or fragment thereof comprises an antibody VH domain comprising the VH amino acid sequence of SEQ ID NO: 94.

[0079] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising a VL amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 95. In some aspects the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising the VL amino acid sequence of SEQ ID NO: 95.

[0080] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising the HCDR1, HCDR2, and HCDR3 domains of any one of SEQ ID NOs: 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86 and 96, or variants thereof with up to one, two, three, four, five, or more amino acid substitutions, e.g., conservative amino acid substitutions.

[0081] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising the LCDR1, LCDR2, and LCDR3 domains of any one of SEQ ID NOs: 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87 and 97, or variants thereof with up to one, two, three, four, five, or more amino acid substitutions, e.g., conservative amino acid substitutions.

[0082] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising a VH amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of any one of SEQ ID NOs: 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86 and 96. In some aspects the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising the VH amino acid sequence of any one of SEQ ID NOs: 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86 and 96.

[0083] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising a VL amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of any one of SEQ ID NOs: 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87 and 97. In some aspects the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising the VL amino acid sequence of any one of SEQ ID NOs: 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87 and 97.

[0084] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising the HCDR1, HCDR2, and HCDR3 domains of NGF-NG, variants of the NGF-NG heavy chain CDRs with up to one, two, three, four, five, or more amino acid substitutions, e.g., conservative amino acid substitutions. For example, the anti-NGF antibody or fragment thereof can comprise an HCDR1 with the exact amino acid sequence of SEQ ID NO: 88 or with the amino acid sequence of SEQ ID NO: 88 with one or more, e.g., one, two,

three, four, five, or more amino acid substitutions. Similarly, the anti-NGF antibody or fragment thereof can comprise an HCDR2 with the exact amino acid sequence of SEQ ID NO: 89 or with the amino acid sequence of SEQ ID NO: 89 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions. Likewise, the anti-NGF antibody or fragment thereof can comprise an HCDR3 with the exact amino acid sequence of SEQ ID NO: 90 or with the amino acid sequence of SEQ ID NO: 90 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions.

[0085] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising the LCDR1, LCDR2, and LCDR3 domains of NGF-NG, variants of the NGF-NG light chain CDRs with up to one, two, three, four, five, or more amino acid substitutions, e.g., conservative amino acid substitutions. In certain aspects, the anti-NGF antibody or fragment thereof can comprise an LCDR1 with the exact amino acid sequence of SEQ ID NO: 91 or with the amino acid sequence of SEQ ID NO: 91 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions. Similarly, the anti-NGF antibody or fragment thereof can comprise an LCDR2 with the exact amino acid sequence of SEQ ID NO: 92 or with the amino acid sequence of SEQ ID NO: 92 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions. Likewise, the anti-NGF antibody or fragment thereof can comprise an LCDR3 with the exact amino acid sequence of SEQ ID NO: 93 or with the amino acid sequence of SEQ ID NO: 93 with one or more, e.g., one, two, three, four, five, or more amino acid substitutions.

[0086] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising a VH amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:24. In some aspects the anti-NGF antibody or fragment thereof comprises an antibody VH domain comprising the VH amino acid sequence of SEQ ID NO: 24.

[0087] In certain aspects, the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising a VL amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 26. In some aspects the anti-NGF antibody or fragment thereof comprises an antibody VL domain comprising the VL amino acid sequence of SEQ ID NO: 26.

[0088] A multifunctional polypeptide, e.g., multispecific binding molecule as provided by this disclosure can comprise a complete anti-NGF antibody, i.e., an antibody comprising two complete heavy chains and two complete light chains in an H₂L₂ format. Where the anti-NGF antibody is a complete antibody, one or more TNF α antagonist domains can be fused to the N-terminus or C-terminus of one or more heavy chains of the anti-NGF antibody or to the N-terminus or C-terminus of one or more light chains of the anti-NGF antibody. Alternatively, a multifunctional polypeptide, e.g., multispecific binding molecule as provided by this disclosure can comprise an antigen-binding fragment of an anti-NGF antibody. In certain aspects an anti-NGF antibody fragment can comprise any portion of the antibody's constant domains or can comprise only the variable domains. Exemplary anti-NGF antibody fragments for inclusion in a

bifunctional polypeptide, e.g., multispecific binding molecule, include, but are not limited to Fab fragments, Fab' fragments, F(ab)₂ fragments or single chain Fv (scFv) fragments.

[0089] In certain exemplary compositions provided herein, the anti-NGF antibody is a scFv fragment, e.g. an scFv fragment of MEDI-578, or an NGF-binding variant thereof. In certain exemplary compositions provided herein, the anti-NGF antibody is a scFv fragment, e.g. an scFv fragment of NGF-NG, or an NGF-binding variant thereof. An anti-NGF scFv polypeptide can comprise the VH and VL domains in any order, either N-VH-VL-C, or N-VL-VH-C. ScFv molecules are typically engineered such that the VH and VL domains are connected via a flexible linker. Exemplary scFv structures, including various linkers can be found in Dimasi, N., et al., J Mol Biol. 393:672-92 (2009), and in PCT Publication No. WO 2013/070565. As is understood by persons of ordinary skill in the art, scFv antibody fragments can have reduced stability relative to the variable domains existing in a standard Fab conformation. In some aspects the scFv can be structurally stabilized by introducing stabilizing mutations or by introducing interchain disulfide bond(s) (e.g., SS-stabilized). However, stabilizing mutations and/or an introduced interchain disulfide bond is not required and, in certain aspects, is not present. A number of art-recognized methods are available to stabilize scFv polypeptides.

[0090] Linkers can be used to join domains/regions of bifunctional polypeptides provided herein. Linkers can be used to connect the NGF antagonist domain and the TNF α antagonist domain of a bifunctional molecule, and can also be used to interconnect the variable heavy and light chains of an scFv. An exemplary, non-limiting example of a linker is a polypeptide chain comprising at least 4 residues. Portions of such linkers can be flexible, hydrophilic and have little or no secondary structure of their own (linker portions or flexible linker portions). Linkers of at least 4 amino acids can be used to join domains and/or regions that are positioned near to one another after a bifunctional polypeptide molecule has assembled. Longer linkers can also be used. Thus, linkers can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, residues. Linkers can also be, for example, from about 100-175 residues. When multiple linkers are used to interconnect portions of a bifunctional polypeptide molecule, the linkers can be the same or different (e.g., the same or different length and/or amino acid sequence).

[0091] The linker(s) in a bifunctional polypeptide molecule facilitate formation of the desired structure. Linkers can comprise (Gly-Ser)_n residues (where n is an integer of at least one, two and up to, e.g., 3, 4, 5, 6, 10, 20, 50, 100, or more), with some Glu or Lys residues dispersed throughout to increase solubility. Alternatively, certain linkers do not comprise any Serine residues, e.g., where the linker is subject to O-linked glycosylation. In some aspects, linkers can contain cysteine residues, for example, if dimerization of linkers is used to bring the domains of a bifunctional polypeptide into their properly folded configuration. In some aspects, a bifunctional polypeptide can comprise at least one, two, three, four, or more polypeptide linkers that join domains of the polypeptide.

[0092] In some aspects, a polypeptide linker can comprise 1-50 residues, 1-25 residues, 25-50 residues, or 30-50 residues. In some aspects, the polypeptide linker can comprise a portion of

an Fc moiety. For example, in some aspects, the polypeptide linker can comprise a portion of immunoglobulin hinge domain of an IgG1, IgG2, IgG3, and/or IgG4 antibody or a variant thereof.

[0093] In some aspects, a polypeptide linker can comprise or consists of a gly-ser linker. As used herein, the term "gly-ser linker" refers to a peptide that consists of glycine and serine residues. An exemplary gly-ser linker comprises an amino acid sequence of the formula (Gly₄Ser)_n, where n is an integer of at least one, two and up to, e.g., 3, 4, 5, 6, 10, 20, 50, 100, or more. In some aspects, a polypeptide linker can comprise at least a portion of a hinge region (e.g., derived from an IgG1, IgG2, IgG3, or IgG4 molecule) and a series of gly-ser amino acid residues (e.g., a gly-ser linker such as (Gly₄Ser)_n).

[0094] When a multifunctional polypeptide, e.g., a multispecific binding molecule, comprises an scFv, a flexible linker can connect the heavy and light chains of the scFv. This flexible linker generally does not include a hinge portion, but rather, is a gly-ser linker or other flexible linker. The length and amino acid sequence of a flexible linker interconnecting domains of an scFv can be readily selected and optimized.

[0095] In certain aspects, a multifunctional polypeptide, e.g., a multispecific binding molecule, can comprise an anti-NGF scFv fragment which comprises, from N-terminus to C-terminus, a VH, a 15-amino acid linker sequence (GGGGS)₃, and a VL. In certain embodiments, the linker joining the VH and VL of the scFv is a 20 amino acid linker sequence (GGGGS)₄. In certain aspects the VH comprises the amino acid sequence of SEQ ID NO 3. In certain aspects the VL comprises the amino acid sequence of SEQ ID NO: 7. In certain embodiments, the VH comprises the amino acid sequence of any one of SEQ ID NOs: 24, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 94 and 96. In certain embodiments, the VL comprises the amino acid sequence of any one of SEQ ID NOs: 26, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 95 and 97. In certain aspects, the VH domain comprises an amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of any one of SEQ ID NOs: 3, 24, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 94 and 96. In certain aspects, the VL domain comprises an amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of any one of SEQ ID NOs: 7, 26, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 95 and 97.

[0096] In other aspects, the stability of the polypeptide can be improved by addition of an inter-chain disulphide bond between the VH domain and the VL domain by modifying certain residues within the VH and VL domain to cysteine residues. See for example, Michaelson, J. S., et al. (2009) MAbs 1, 128-41; Brinkmann, U., et al., (1993) Proc Natl Acad Sci U S A 90, 7538-42; Young, N. M., et al., (1995) FEBS Lett 377, 135-9. For example, the glycine residue at positions 100, 101 or 102 of the VL can be modified to a cysteine residue and the glycine

residue at position 44 of the VH can be modified to a cysteine residue.

[0097] A multifunctional polypeptide, e.g., a multispecific binding molecule as provided herein can include a TNF α antagonist domain. In certain aspects, a TNF α antagonist domain can inhibit the binding of TNF α to a TNF receptor (TNFR) on the surface of cells, thereby blocking TNF activity.

[0098] In certain aspects, the TNF α antagonist domain of a multifunctional polypeptide as provided herein is an anti-TNF α antibody or antigen-binding fragment thereof. In certain aspects, the anti-TNF α antibody is infliximab, adalimumab, certolizumab pegol, golimumab, or an antigen-binding fragment of any of these antibodies.

[0099] In certain aspects, the anti-TNF α antibody or fragment thereof binds to the same epitope as, can competitively inhibit, or can bind to TNF α with a greater affinity than any of anti-TNF α antibodies infliximab, adalimumab, certolizumab pegol, or golimumab, or an antigen-binding fragment of any of these antibodies. In certain aspects the anti-TNF α antibody is infliximab, adalimumab, certolizumab pegol, or golimumab, or an antigen-binding fragment of any of these antibodies. The structure and sequences of these anti-TNF α antibodies are easily available to the skilled artisan, and can be included in a multifunctional polypeptide, e.g., a multispecific binding molecule, as described herein without undue experimentation. An anti-TNF α antibody or fragment thereof included in a multifunctional polypeptide can be, e.g., humanized, chimeric, primatized, or fully human.

[0100] In certain aspects, the anti-TNF α antibody or fragment thereof comprises an antibody VH domain comprising the HCDR1, HCDR2, and HCDR3 domains of infliximab, adalimumab, certolizumab pegol, or golimumab, or variants of the infliximab, adalimumab, certolizumab pegol, or golimumab heavy chain CDRs with up to one, two, three, four, five, or more amino acid substitutions, e.g., conservative amino acid substitutions.

[0101] In certain aspects, the anti-TNF α antibody or fragment thereof comprises an antibody VL domain comprising the LCDR1, LCDR2, and LCDR3 domains of infliximab, adalimumab, certolizumab pegol, or golimumab, or variants of the infliximab, adalimumab, certolizumab pegol, or golimumab heavy chain CDRs with up to one, two, three, four, five, or more amino acid substitutions, e.g., conservative amino acid substitutions.

[0102] In certain aspects, the anti-TNF α antibody or fragment thereof comprises an antibody VH domain comprising a VH amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the VH amino acid sequence of infliximab, adalimumab, certolizumab pegol, or golimumab. In some aspects the anti-TNF α antibody or fragment thereof comprises an antibody VH domain comprising the VH amino acid sequence of infliximab, adalimumab, certolizumab pegol, or golimumab.

[0103] In certain aspects, the anti-TNF α antibody or fragment thereof comprises an antibody VL domain comprising a VL amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%,

98%, or 99% identical to the VL amino acid sequence of infliximab, adalimumab, certolizumab pegol, or golimumab. In some aspects the anti-TNF α antibody or fragment thereof comprises an antibody VL domain comprising the VL amino acid sequence of infliximab, adalimumab, certolizumab pegol, or golimumab.

[0104] In certain aspects, the anti-TNF α antibody or fragment thereof comprises an antibody VH domain comprising a VH amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 28. In some aspects, the anti-TNF α antibody or fragment thereof comprises an antibody VH domain comprising the VH amino acid sequence of SEQ ID NO: 28.

[0105] In certain aspects, the anti-TNF α antibody or fragment thereof comprises an antibody VH domain comprising a VL amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 29. In some aspects, the anti-TNF α antibody or fragment thereof comprises an antibody VL domain comprising the VL amino acid sequence of SEQ ID NO: 29.

[0106] A multifunctional polypeptide, e.g., a multispecific binding molecule, as provided by this disclosure can comprise a complete anti-TNF α antibody, i.e., an antibody comprising two complete heavy chains and two complete light chains in an H₂L₂ format. Where the anti-TNF α antibody is a complete antibody, one or more NGF antagonist domains can be fused to the N-terminus or C-terminus of one or more heavy chains of the anti-TNF α antibody or to the N-terminus or C-terminus of one or more light chains of the anti-TNF α antibody. Alternatively, a multifunctional polypeptide, e.g., a multispecific binding molecule, as provided by this disclosure can comprise an antigen-binding fragment of an anti-TNF α antibody. In certain aspects an anti-TNF α antibody fragment can comprise any portion of the antibody's constant domains or can comprise only the variable domains. Exemplary anti-TNF α antibody fragments for inclusion in a multifunctional polypeptide include, but are not limited to Fab fragments, Fab' fragments, F(ab)₂ fragments or single chain Fv (scFv) fragments.

[0107] In some aspects, the multifunctional molecule is Ndimab varB, which is a molecule comprising a complete anti-TNF α antibody, i.e., an antibody comprising two complete heavy chains and two complete light chains in an H₂L₂ format, with MEDI-578 scFv fused to the C-terminus of the heavy chain of the anti-TNF α antibody. Ndimab varB comprises a light chain comprising the amino acid sequence of SEQ ID NO: 20, and a heavy chain comprising the amino acid sequence of SEQ ID NO: 22. In some aspects, the bifunctional molecule comprises a light chain comprising an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 20, and a heavy chain comprising an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 22.

[0108] In certain aspects, the anti-TNF α antibody is an scFv fragment, e.g. an scFv fragment derived from infliximab, adalimumab, certolizumab pegol, or golimumab, or a TNF α -binding variant thereof. An anti-TNF α scFv polypeptide can comprise the VH and VL domains in any

order, either N-VH-VL-C, or N-VL-VH-C. ScFv molecules are typically engineered such that the VH and VL domains are connected via a flexible linker, and can assume a number of different structures, as described above. An anti-TNF α scFv polypeptide can be stabilized, also as described above.

[0109] In certain aspects, the TNF α antagonist is a TNF α -binding soluble fragment of a TNF receptor, e.g., TNFR-1 or TNFR-2, or a variant thereof or a soluble fragment thereof. In certain aspects, the soluble fragment of TNFR-1 is a 55kD fragment. In certain embodiments, the soluble fragment of TNFR-2 is a 75kD fragment. In certain aspects the TNF receptor fragment is fused to a heterologous polypeptide, e.g., an immunoglobulin Fc fragment, e.g., an IgG1 Fc domain. In certain aspects, the TNF α antagonist comprises an amino acid set forth in SEQ ID NO: 13, or a TNF α -binding fragment thereof. The TNFR-2 portion comprises amino acids 1 to 235 of SEQ ID NO: 13. In certain aspects, a variant of a TNF α -binding soluble fragment of TNFR-2 comprises an amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 1 to 235 of SEQ ID NO: 13. In certain aspects, a variant of a TNF α -binding soluble fragment of TNFR-2 comprises amino acids 1 to 235 of SEQ ID NO: 13, except for, e.g., 1, 2, 3, 4, 5, 10, 20, 20, 40, or 50 amino acid insertions, substitutions, or deletions. The IgG1 Fc portion comprises amino acids 236 to 467 of SEQ ID NO: 13. In certain aspects, the TNF α -binding soluble fragment of TNFR-2 can be fused to an Fc portion of any human or non-human antibody, or to any other protein or non-protein substance that would provide stability, e.g., albumin or polyethylene glycol. In certain aspects, a variant of a TNF α -binding soluble fragment of TNFR-2 comprises an amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 236 to 467 of SEQ ID NO: 13. In certain aspects, a variant of a TNF α -binding soluble fragment of TNFR-2 comprises amino acids 236 to 467 of SEQ ID NO: 13, except for, e.g., 1, 2, 3, 4, 5, 10, 20, 20, 40, or 50 amino acid insertions, substitutions, or deletions. In certain aspects, a variant of a TNF α -binding soluble fragment of TNFR-2 comprises an amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 13. In certain aspects, a variant of a TNF α -binding soluble fragment of TNFR-2 comprises SEQ ID NO: 13, except for, e.g., 1, 2, 3, 4, 5, 10, 20, 20, 40, or 50 amino acid insertions, substitutions, or deletions.

[0110] In certain aspects, TNF α -binding soluble fragment of TNFR-2 is a single-chain fusion protein. In certain aspects the TNF α -binding soluble fragment of TNFR-2 is a dimer of two fusion proteins, associated, e.g., through disulfide bonds between the two Fc domains.

[0111] A multifunctional polypeptide, e.g., a multispecific binding molecule, as provided herein can have a variety of different structures and conformations. In one aspect, a multifunctional polypeptide as provided herein comprises a fusion protein where the NGF antagonist domain, as described above, is fused to the TNF α antagonist domain, as described above, through a flexible linker. Examples of linkers are described elsewhere herein. In certain aspects, the multifunctional polypeptide comprises a homodimer of the fusion protein.

[0112] In an exemplary aspect, a multifunctional polypeptide is provided in which the NGF antagonist is an anti-NGF scFv domain derived, e.g., from MEDI-578 and the TNF α antagonist

is a soluble, TNF α -binding fragment of TNFR-2 fused at its carboxy-terminus to an immunoglobulin Fc domain. The anti-NGF scFv can be, in some aspects, fused to the carboxy-terminus of the immunoglobulin Fc domain via a linker. In certain aspects, monomers of this multifunctional polypeptide form a homodimer with each subunit comprising, from N-terminus to C-terminus, a TNF α -binding 75kD fragment of TNFR-2, a human IgG1Fc domain, a 10-amino-acid linker (GGGGS)₂ (SEQ ID NO: 98), an anti-NGF VH comprising the amino acid sequence of SEQ ID NO 3, a 15-amino acid linker sequence (GGGGS)₃ (SEQ ID NO: 15), and an anti-NGF VL comprising the amino acid sequence of SEQ ID NO: 7. In one aspect, the multifunctional polypeptide is TNFR2-Fc_VH#4, which comprises a homodimer of a fusion polypeptide comprising the amino acid sequence of SEQ ID NO: 14. In some aspects, the multifunctional polypeptide comprises a homodimer of a fusion polypeptide comprising an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to SEQ ID NO: 14.

[0113] In another exemplary aspect, the multifunctional polypeptide comprises, from N-terminus to C-terminus, a TNF α -binding 75kD fragment of TNFR-2, a human IgG1Fc domain, a 10-amino-acid linker (GGGGS)₂ (SEQ ID NO: 98), an anti-NGF VH comprising the amino acid sequence of SEQ ID NO 94, a 20-amino acid linker sequence (GGGGS)₄ (SEQ ID NO: 19), and an anti-NGF VL comprising the amino acid sequence of SEQ ID NO: 95. In some aspect, the multifunctional polypeptide is TNFR2-Fc_varB, which comprises a homodimer of a fusion polypeptide comprising the amino acid sequence of SEQ ID NO: 17. In some aspects, the multifunctional polypeptide comprises a homodimer of a fusion polypeptide comprising an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to SEQ ID NO: 17.

Polypeptides

[0114] Polypeptides as provided herein, e.g., multifunctional polypeptides comprising an NGF antagonist domain and a TNF α antagonist domain, or individual polypeptides comprising an NGF antagonist domain and a TNF α antagonist domain, respectively, can be recombinant polypeptides, derived from natural polypeptides, or synthetic polypeptides. It will be recognized in the art that some amino acid sequences can be varied without significant effect of the structure or function of the protein. Thus, the disclosure further provides variations of polypeptides provided herein having substantial activity or which include NGF antagonist domains and TNF α antagonist domains. Such mutants include deletions, insertions, inversions, repeats, and type substitutions.

[0115] The polypeptides and analogs can be further modified to contain additional chemical moieties not normally part of the protein. Those derivatized moieties can improve the solubility, the biological half-life or absorption of the protein. The moieties can also reduce or eliminate any desirable side effects of the proteins. An overview for those moieties can be found in REMINGTON'S PHARMACEUTICAL SCIENCES, 20th ed., Mack Publishing Co., Easton, PA

(2000).

[0116] In certain aspects, a multifunctional polypeptide provided herein can include an NGF or TNF α binding domain that is not an antibody. A variety of methods for identifying and producing non-antibody polypeptides that bind with high affinity to a protein target are known in the art. See, e.g., Skerra, Curr. Opin. Biotechnol., 18:295-304 (2007), Hosse et al., Protein Science, 15:14-27 (2006), Gill et al., Curr. Opin. Biotechnol., 17:653-658 (2006), Nygren, FEBS J., 275:2668-76 (2008), and Skerra, FEBS J., 275:2677-83 (2008). In certain aspects, phage display technology can be used to identify/produce the suitable multifunctional polypeptides. In certain aspects, a multifunctional polypeptide, e.g., a multispecific binding molecule provided herein can comprise a protein scaffold of a type selected from the group consisting of protein A, a lipocalin, a fibronectin domain, an ankyrin consensus repeat domain, and thioredoxin.

Polynucleotides, vectors, and host cells

[0117] This disclosure provides nucleic acid molecules comprising polynucleotides that encode a multifunctional polypeptide comprising an NGF antagonist domain and a TNF α antagonist domain. This disclosure further provides nucleic acid molecules comprising polynucleotides that encode individual polypeptides comprising, respectively, an NGF antagonist and a TNF α antagonist. In certain aspects such polynucleotides encode a peptide domain that specifically binds NGF or a fragment thereof, and also binds TNF α or a fragment thereof. For example, this disclosure provides a polynucleotide that encodes a polypeptide domain comprising an anti-NGF antibody or an antigen-binding fragment thereof, and a polypeptide domain comprising a TNF α antagonist, such as an anti-TNF α antibody or antigen-binding fragment thereof, or a soluble TNF α -binding portion of a TNF receptor, e.g., TNFR2. Polynucleotides can be in the form of RNA or in the form of DNA. DNA includes cDNA, genomic DNA, and synthetic DNA; and can be double-stranded or single-stranded, and if single stranded can be the coding strand or non-coding (anti-sense) strand.

[0118] In some embodiments, the isolated polynucleotide that encodes a multifunctional polypeptide described herein comprises the nucleotide sequence of SEQ ID NO: 16, 18 or 99, or fragments thereof, or a sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 16, 18 or 99, or fragments thereof.

[0119] The isolated polypeptides described herein can be produced by any suitable method known in the art. Such methods range from direct protein synthetic methods to constructing a DNA sequence encoding isolated polypeptide sequences and expressing those sequences in a suitable transformed host. In some aspects, a DNA sequence is constructed using recombinant technology by isolating or synthesizing a DNA sequence encoding a multifunctional polypeptide comprising an NGF antagonist domain and a TNF α antagonist domain, or individual polypeptides comprising an NGF antagonist domain and a TNF α antagonist domain, respectively. Accordingly, this disclosure provides an isolated polynucleotide that encodes a bifunctional polypeptide comprising an NGF antagonist domain and a TNF α antagonist domain

as described in detail above. Further provided are isolated polynucleotides that encode individual polypeptides that comprise, respectively, an NGF antagonist domain and a TNF α antagonist domain.

[0120] In some aspects a DNA sequence encoding a multifunctional polypeptide, e.g., a multispecific binding molecule of interest or individual polypeptides comprising an NGF antagonist domain and a TNF α antagonist domain, respectively can be constructed by chemical synthesis using an oligonucleotide synthesizer. Such oligonucleotides can be designed based on the amino acid sequence of the desired multifunctional polypeptide and selecting those codons that are favored in the host cell in which the recombinant polypeptide of interest will be produced. Standard methods can be applied to synthesize an isolated polynucleotide sequence encoding a multifunctional polypeptide of interest. For example, a complete amino acid sequence can be used to construct a back-translated gene. Further, a DNA oligomer containing a nucleotide sequence coding for the particular multifunctional polypeptide or individual polypeptides can be synthesized. For example, several small oligonucleotides coding for portions of the desired polypeptide can be synthesized and then ligated. The individual oligonucleotides typically contain 5' or 3' overhangs for complementary assembly.

[0121] In certain aspects, polynucleotides provided herein can comprise the coding sequence for the mature polypeptide fused in the same reading frame to a marker sequence that allows, for example, for purification of the encoded polypeptide. For example, the marker sequence can be a hexa-histidine tag supplied by a pQE-9 vector to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or the marker sequence can be a hemagglutinin (HA) tag derived from the influenza hemagglutinin protein when a mammalian host (e.g., COS-7 cells) is used.

[0122] Polynucleotides provided herein can further contain alterations in the coding regions, non-coding regions, or both. In some aspects the polynucleotide variants contain alterations that produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. In some aspects, nucleotide variants are produced by silent substitutions due to the degeneracy of the genetic code. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as *E. coli*).

[0123] Vectors and cells comprising the polynucleotides described herein are also provided. Once assembled (by synthesis, site-directed mutagenesis or another method), the polynucleotide sequences encoding a particular isolated polypeptide of interest can be inserted into an expression vector and operatively linked to an expression control sequence appropriate for expression of the protein in a desired host. This disclosure provides such vectors. Nucleotide sequencing, restriction mapping, and expression of a biologically active polypeptide in a suitable host can confirm proper assembly. As is well known in the art, in order to obtain high expression levels of a transfected gene in a host, the gene must be operatively linked to transcriptional and translational expression control sequences that are functional in the chosen

expression host.

[0124] In certain aspects, recombinant expression vectors can be used to amplify and express DNA encoding multifunctional polypeptides, e.g., multispecific binding molecules, comprising an NGF antagonist domain and a TNF α antagonist domain, or individual polypeptides comprising an NGF antagonist domain and a TNF α antagonist domain, respectively. Recombinant expression vectors are replicable DNA constructs that have synthetic or cDNA-derived DNA fragments encoding a multifunctional polypeptide or individual polypeptides comprising an NGF antagonist domain and a TNF α antagonist domain, respectively, operatively linked to suitable transcriptional or translational regulatory elements derived from mammalian, microbial, viral or insect genes. A transcriptional unit generally comprises an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, transcriptional promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription and translation initiation and termination sequences, as described in detail below. Such regulatory elements can include an operator sequence to control transcription. The ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to facilitate recognition of transformants can additionally be incorporated. DNA regions are operatively linked when they are functionally related to each other. For example, DNA for a signal peptide (secretory leader) is operatively linked to DNA for a polypeptide if it is expressed as a precursor which participates in the secretion of the polypeptide; a promoter is operatively linked to a coding sequence if it controls the transcription of the sequence; or a ribosome binding site is operatively linked to a coding sequence if it is positioned so as to permit translation. Structural elements intended for use in yeast expression systems include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it can include an N-terminal methionine residue. This residue can optionally be subsequently cleaved from the expressed recombinant protein to provide a final product.

[0125] The choice of expression control sequence and expression vector will depend upon the choice of host. A wide variety of expression host/vector combinations can be employed. Useful expression vectors for eukaryotic hosts include, for example, vectors comprising expression control sequences from SV40, bovine papilloma virus, adenovirus and cytomegalovirus. Useful expression vectors for bacterial hosts include known bacterial plasmids, such as plasmids from *E. coli*, including pCR 1, pBR322, pMB9 and their derivatives, wider host range plasmids, such as M13 and filamentous single-stranded DNA phages.

[0126] This disclosure further provides host cells comprising polynucleotides encoding the polypeptides provided herein. Suitable host cells for expression of the polypeptides provided herein include prokaryotes, yeast, insect or higher eukaryotic cells under the control of appropriate promoters. Prokaryotes include gram negative or gram-positive organisms, for example *E. coli* or bacilli. Higher eukaryotic cells include established cell lines of mammalian origin as described below. Cell-free translation systems can also be employed. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular

hosts are described by Pouwels et al. (Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., 1985). Additional information regarding methods of protein production, including antibody production, can be found, e.g., in U.S. Patent Publication No. 2008/0187954, U.S. Patent Nos. 6,413,746 and 6,660,501, and International Patent Publication No. WO 04009823.

[0127] Various mammalian or insect cell culture systems can also be advantageously employed to express recombinant protein. Expression of recombinant proteins in mammalian cells can be performed because such proteins are generally correctly folded, appropriately modified and completely functional. Examples of suitable mammalian host cell lines include HEK-293 and HEK-293T, the COS-7 lines of monkey kidney cells, described by Gluzman (Cell 23:175, 1981), and other cell lines including, for example, L cells, C127, 3T3, Chinese hamster ovary (CHO), HeLa and BHK cell lines. Mammalian expression vectors can comprise nontranscribed elements such as an origin of replication, a suitable promoter and enhancer linked to the gene to be expressed, and other 5' or 3' flanking nontranscribed sequences, and 5' or 3' nontranslated sequences, such as necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and transcriptional termination sequences. Baculovirus systems for production of heterologous proteins in insect cells are reviewed by Luckow and Summers, Bio/Technology 6:47 (1988).

[0128] This disclosure further provides a method of producing the multifunctional polypeptide as described herein, or for producing individual polypeptides comprising, respectively an NGF antagonist, and a TNF α antagonist. The method entails culturing a host cell as described above under conditions promoting expression of the multifunctional polypeptide or individual polypeptides, and recovering the multifunctional polypeptide or individual polypeptides.

[0129] For long-term, high-yield production of recombinant proteins, stable expression is appropriate. For example, cell lines which stably express the multifunctional polypeptide may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may be used to engineer cell lines which express the multifunctional polypeptide.

[0130] In certain embodiments, multifunctional polypeptides presented herein are expressed in a cell line with transient expression of the multifunctional polypeptide. Transient transfection is a process in which the nucleic acid introduced into a cell does not integrate into the genome or chromosomal DNA of that cell but is maintained as an extrachromosomal element, e.g. as an episome, in the cell. Transcription processes of the nucleic acid of the episome are not affected and a protein encoded by the nucleic acid of the episome is produced.

[0131] The cell line, either stable or transiently transfected, is maintained in cell culture medium and conditions known in the art resulting in the expression and production of polypeptides. In certain embodiments, the mammalian cell culture media is based on commercially available media formulations, including, for example, DMEM or Ham's F12. In some embodiments, the cell culture media is modified to support increases in both cell growth and biologic protein expression. As used herein, the terms "cell culture medium," "culture medium," and "medium formulation" refer to a nutritive solution for the maintenance, growth, propagation, or expansion of cells in an artificial in vitro environment outside of a multicellular organism or tissue. Cell culture medium may be optimized for a specific cell culture use, including, for example, cell culture growth medium which is formulated to promote cellular growth, or cell culture production medium which is formulated to promote recombinant protein production. The terms nutrient, ingredient, and component may be used interchangeably to refer to the constituents that make up a cell culture medium.

[0132] In various embodiments, the cell lines are maintained using a fed batch method. As used herein, "fed batch method," refers to a method by which a fed batch cell culture is supplied with additional nutrients after first being incubated with a basal medium. For example, a fed batch method may comprise adding supplemental media according to a determined feeding schedule within a given time period. Thus, a "fed batch cell culture" refers to a cell culture where the cells, typically mammalian, and culture medium are supplied to the culturing vessel initially and additional culture nutrients are fed, continuously or in discrete increments, to the culture during culturing, with or without periodic cell and/or product harvest before termination of culture.

[0133] In some embodiments, the cell culture medium comprises a basal medium and at least one hydrolysate, e.g., soy-based, hydrolysate, a yeast-based hydrolysate, or a combination of the two types of hydrolysates resulting in a modified basal medium. The additional nutrients may sometimes include only a basal medium, such as a concentrated basal medium, or may include only hydrolysates, or concentrated hydrolysates. Suitable basal media include, but are not limited to Dulbecco's Modified Eagle's Medium (DMEM), DME/F12, Minimal Essential Medium (MEM), Basal Medium Eagle (BME), RPMI 1640, F-10, F-12, .alpha.-Minimal Essential Medium (.alpha.-MEM), Glasgow's Minimal Essential Medium (G-MEM), PF CHO (see, e.g., CHO protein free medium (Sigma) or EX-CELL.TM. 325 PF CHO Serum-Free Medium for CHO Cells Protein-Free (SAFC Bioscience), and Iscove's Modified Dulbecco's Medium. Other examples of basal media which may be used in the technology herein include BME Basal Medium (Gibco-Invitrogen; Dulbecco's Modified Eagle Medium (DMEM, powder) (Gibco-Invitrogen (#31600)).

[0134] In certain embodiments, the basal medium may be is serum-free, meaning that the medium contains no serum (e.g., fetal bovine serum (FBS), horse serum, goat serum, or any other animal-derived serum known to one skilled in the art) or animal protein free media or chemically defined media.

[0135] The basal medium may be modified in order to remove certain non-nutritional

components found in standard basal medium, such as various inorganic and organic buffers, surfactant(s), and sodium chloride. Removing such components from basal cell medium allows an increased concentration of the remaining nutritional components, and may improve overall cell growth and protein expression. In addition, omitted components may be added back into the cell culture medium containing the modified basal cell medium according to the requirements of the cell culture conditions. In certain embodiments, the cell culture medium contains a modified basal cell medium, and at least one of the following nutrients, an iron source, a recombinant growth factor; a buffer; a surfactant; an osmolarity regulator; an energy source; and non-animal hydrolysates. In addition, the modified basal cell medium may optionally contain amino acids, vitamins, or a combination of both amino acids and vitamins. In some embodiments, the modified basal medium further contains glutamine, e.g., L-glutamine, and/or methotrexate.

[0136] In some embodiments, protein production is conducted in large quantity by a bioreactor process using fed-batch, batch, perfusion or continuous feed bioreactor methods known in the art. Large-scale bioreactors have at least 50L liters of capacity, sometimes about more than 500 liters or 1,000 to 100,000 liters of capacity. These bioreactors may use agitator impellers to distribute oxygen and nutrients. Small scale bioreactors refers generally to cell culturing in no more than approximately 100 liters in volumetric capacity, and can range from about 1 liter to about 100 liters. Alternatively, single-use bioreactors (SUB) may be used for either large-scale or small scale culturing.

[0137] Temperature, pH, agitation, aeration and inoculum density may vary depending upon the host cells used and the recombinant protein to be expressed. For example, a recombinant protein cell culture may be maintained at a temperature between 30 and 45 degrees Celsius. The pH of the culture medium may be monitored during the culture process such that the pH stays at an optimum level, which may be for certain host cells, within a pH range of 6.0 to 8.0. An impellor driven mixing may be used for such culture methods for agitation. The rotational speed of the impellor may be approximately 50 to 200 cm/sec tip speed, but other airlift or other mixing/aeration systems known in the art may be used, depending on the type of host cell being cultured. Sufficient aeration is provided to maintain a dissolved oxygen concentration of approximately 20% to 80% air saturation in the culture, again, depending upon the selected host cell being cultured. Alternatively, a bioreactor may sparge air or oxygen directly into the culture medium. Other methods of oxygen supply exist, including bubble-free aeration systems employing hollow fiber membrane aerators.

Protein purification

[0138] The proteins produced by a transformed host as described above can be purified according to any suitable method. Such standard methods include chromatography (e.g., ion exchange, affinity and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for protein purification. Affinity tags such as hexahistidine, maltose binding domain, influenza coat sequence and glutathione-S-transferase can be

attached to the protein to allow easy purification by passage over an appropriate affinity column. Isolated proteins can also be physically characterized using such techniques as proteolysis, nuclear magnetic resonance and x-ray crystallography.

[0139] For example, supernatants from systems that secrete recombinant protein into culture media can be first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate can be applied to a suitable purification matrix. Alternatively, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups. The matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification. Alternatively, a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Finally, one or more reversed-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify an NGF-binding agent. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a homogeneous recombinant protein.

[0140] Recombinant protein produced in bacterial culture can be isolated, for example, by initial extraction from cell pellets, followed by one or more concentration, salting-out, aqueous ion exchange or size exclusion chromatography steps. High performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of a recombinant protein can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

[0141] Methods known in the art for purifying recombinant polypeptides also include, for example, those described in U.S. Patent Publication No. 2008/0312425, 2008/0177048, and 2009/0187005.

Pharmaceutical compositions and compositions for use

[0142] This disclosure provides compositions for controlling or treating pain in a subject, comprising a therapeutically effective amount of a TNF α and NGF antagonist multifunctional polypeptide, e.g., a multispecific binding molecule, as provided herein for administration to a subject, or comprising a TNF α antagonist and an NGF antagonist for co-administration to a subject. In certain aspects, the subject is a human.

[0143] This disclosure further provides pharmaceutical compositions comprising a TNF α and NGF antagonist multifunctional polypeptide, e.g., a multispecific binding molecule, as provided herein or comprising a combination of a TNF α antagonist and an NGF antagonist as provided herein. In certain aspects, the pharmaceutical compositions further comprise a pharmaceutically acceptable vehicle. These pharmaceutical compositions are useful in treating pain, e.g., neuropathic and inflammatory (e.g., osteo or rheumatoid-arthritic) pain.

[0144] The multifunctional polypeptides and compositions comprising an NGF antagonist and a TNF α antagonist provided herein can be useful in a variety of applications including the control or treatment of pain, e.g., neuropathic pain. The compositions may be used *in vitro*, *ex vivo*, or *in vivo*.

[0145] In certain aspects, the disease, disorder, or condition treated with the NGF-binding agent (e.g., an antibody or polypeptide) is associated with pain. In certain aspects, the pain is associated with chronic nociceptive pain, chronic lower back pain, neuropathic pain, cancer pain, postherpetic neuralgia (PHN) pain, or visceral pain conditions.

[0146] This disclosure provides a composition for controlling pain in a subject, comprising an effective amount of a nerve growth factor (NGF) antagonist and a tumor necrosis factor (TNF α) antagonist for administration to a subject in need of pain control, wherein the administration can control pain in the subject more effectively than an equivalent amount of the NGF antagonist or the TNF α antagonist administered alone.

[0147] In certain aspects, the administration is a co-administration of an NGF antagonist and a TNF α antagonist as a combination therapy. As discussed elsewhere herein, the individual components can be administered simultaneously or sequentially. The individual NGF antagonist or the TNF α antagonist can be any NGF or TNF α antagonists provided herein, e.g., a soluble NGF-binding TrkA receptor fragment, an anti-NGF antibody or antigen-binding fragment thereof, a soluble TNF α -binding fragment of a TNF receptor, e.g., TNFR-2, or an anti-TNF α antibody or fragment thereof, e.g., infliximab, adalimumab, certolizumab pegol, golimumab, or an antigen-binding fragment of any of these antibodies.

[0148] The co-administration can comprise various doses of each of the antagonists as needed to control pain. In some aspects, the co-administration can include lower doses or less frequent doses of each component than would be normally administered as an individual therapy, thereby providing for additional safety, convenience, and economy.

[0149] In certain aspects, the compositions for use in controlling pain as provided herein comprise a multifunctional polypeptide, e.g., a multispecific binding molecule, comprising a NGF antagonist domain and a TNF α antagonist domain. Exemplary multifunctional polypeptides for use in this composition are described in detail herein. Based on the disclosure, additional multifunctional polypeptides useful in these compositions will be apparent to the person of ordinary skill in the art.

[0150] By controlling pain "more effectively" than the components administered alone it is meant that the combination treatment is more effective at controlling pain than equivalent amounts of either the NGF antagonist or the TNF α antagonist administered individually. In certain aspects, and as described in more detail below, the compositions for use in controlling pain provided herein can provide synergistic efficacy, e.g., the effect of the administration of both the NGF antagonist and the TNF α antagonist can provide more than an additive effect, or

can be effective where neither the NGF antagonist nor the TNF α antagonist are effective individually. In certain aspects the combination can allow for dose sparing, e.g., the effective dosages of the individual components when co-administered can be less than the effective doses of either component individually.

[0151] In certain aspects, the composition for use in controlling pain provided herein is at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70% 80%, 90%, or 100% more effective at controlling pain in the subject than an equivalent amount of the NGF antagonist or the TNF α antagonist administered alone. In certain aspects, dosages of the individual NGF antagonist or the TNF α antagonist co-administered to the subject or the dose of the relative dose of the NGF antagonist or the TNF α antagonist provided upon administration of a bifunctional polypeptide provided herein can be lower, e.g., 5%, 10%, 20%, 30%, 40%, 50% 60%, 70%, 80% or 90% lower than the dosages necessary for the components administered alone.

[0152] The efficacy of pain control can be measured by asking a patient to rate the quality and intensity of pain experienced according to a number of different scales. A verbal pain scale uses words to describe a range from no pain, mild pain, moderate pain and severe pain with a score from 0-3 assigned to each. Alternatively a patient may be asked to rate their pain according to a numerical pain scale from 0 (no pain) to 10 (worst possible pain). On a visual analog scale (VAS) a vertical or horizontal line has words to describe pain from no pain to worst possible pain and the patient is asked to mark the line at the point that represents their current level of pain. The McGill pain index enables patients to describe both the quality and intensity of pain by selecting words that best describe their pain from a series of short lists e.g. pounding, burning, pinching. Other pain scales can be used for adults who experience difficulty using VAS or numerical scales e.g. FACES or for non-verbal patients e.g. Behavioural rating scale. The functional activity score relates how impeded a patient is by their pain by asking them to carry out a task related to the painful area. Improvements in pain score using these types of scale would potentially indicate an improvement in efficacy of an analgesic.

[0153] According to the composition for use in controlling pain provided herein, the administration of the composition is sufficient to control pain in a subject in need of pain control, e.g., the co-administration of a NGF antagonist and a TNF α antagonist, or administration of a multifunctional polypeptide, e.g., a multispecific binding molecule comprising an NGF antagonist domain and a TNF α antagonist domain can prevent, reduce, ameliorate, or eliminate pain in the subject. In certain aspects, the pain can be acute pain, short-term pain, persistent or chronic nociceptive pain, or persistent or chronic neuropathic pain.

[0154] In certain aspects, formulations are prepared for storage and use by combining a TNF α and NGF antagonist multifunctional polypeptide, e.g., a multispecific binding molecule as provided herein or a combination of a TNF α antagonist and an NGF antagonist as provided herein, with a pharmaceutically acceptable vehicle (e.g., carrier, excipient) (Remington, The Science and Practice of Pharmacy 20th Edition Mack Publishing, 2000). Suitable pharmaceutically acceptable vehicles include, but are not limited to, nontoxic buffers such as

phosphate, citrate, and other organic acids; salts such as sodium chloride; antioxidants including ascorbic acid and methionine; preservatives (e.g. octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride; benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens, such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight polypeptides (e.g., less than about 10 amino acid residues); proteins such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; carbohydrates such as monosaccharides, disaccharides, glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and non-ionic surfactants such as TWEEN or polyethylene glycol (PEG).

[0155] Multifunctional polypeptides of the present disclosure may be formulated in liquid, semi-solid or solid forms depending on the physicochemical properties of the molecule and the route of delivery. Formulations may include excipients, or combinations of excipients, for example: sugars, amino acids and surfactants. Liquid formulations may include a wide range of polypeptide concentrations and pH. Solid formulations may be produced by lyophilisation, spray drying, or drying by supercritical fluid technology, for example. In some embodiments, any of the formulations described herein is a lyophilized formulation.

[0156] In a specific embodiment, a multifunctional polypeptide of the disclosure is formulated in 20 mM sodium phosphate, 50 mM L-arginine-HCL, 150 mM sucrose, 0.03% (w/v) polysorbate 80, pH 6.5.

[0157] A pharmaceutical composition provided herein can be administered in any number of ways for either local or systemic treatment. Administration can be topical (such as to mucous membranes including vaginal and rectal delivery) such as transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders; pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal); oral; or parenteral including intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial (e.g., intrathecal or intraventricular) administration.

[0158] A TNF α and NGF antagonist multifunctional polypeptide as provided herein or a combination of a TNF α antagonist and an NGF antagonist as provided herein can be further combined in a pharmaceutical combination formulation, or dosing regimen as combination therapy, with a second (or third) compound having anti-nociceptive properties.

[0159] For the treatment of pain, the appropriate dosage of a TNF α and NGF antagonist multifunctional polypeptide, e.g., a multispecific binding molecule as provided herein or a combination of a TNF α antagonist and an NGF antagonist as provided herein depends on the type of pain to be treated, the severity and course of the pain, the responsiveness of the pain, whether the multifunctional polypeptide or polypeptide combination is administered for

therapeutic or prophylactic purposes, previous therapy, patient's clinical history, and so on all at the discretion of the treating physician. The multifunctional polypeptide or polypeptide combination can be administered one time or over a series of treatments lasting from several days to several months to maintain effective pain control. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient and will vary depending on the relative potency of an individual antibody or polypeptide. The administering physician can easily determine optimum dosages, dosing methodologies and repetition rates.

[0160] Administration of a multifunctional polypeptide, e.g., a multispecific binding molecule, or polypeptide combination therapy as provided herein can provide "synergy" and prove "synergistic", i.e. the effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately. A synergistic effect can be attained when the active ingredients are: (1) administered as a single, multifunctional fusion polypeptide; (2) co-formulated and administered or delivered simultaneously in a combined, unit dosage formulation; (3) delivered by alternation or in parallel as separate formulations; or (4) by some other regimen. When delivered in alternation therapy, a synergistic effect can be attained when the compounds are administered or delivered sequentially, e.g., by different injections in separate syringes. In general, during alternation therapy, an effective dosage of each active ingredient is administered sequentially, whereas in combination therapy, effective dosages of two or more active ingredients are administered together.

Pain

[0161] In its broadest usage, "pain" refers to an experiential phenomenon that is highly subjective to the individual experiencing it, and is influenced by the individual's mental state, including environment and cultural background. "Physical" pain can usually be linked to a stimulus perceivable to a third party that is causative of actual or potential tissue damage. In this sense, pain can be regarded as a "sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage," according to the International Association for the Study of Pain (IASP). However, some instances of pain have no perceivable cause. For example, psychogenic pain, including exacerbation of a pre-existing physical pain by psychogenic factors or syndromes of a sometimes persistent, perceived pain in persons with psychological disorders without any evidence of a perceivable cause of pain.

Types of Pain

[0162] Pain includes nociceptive pain, neuropathic/neurogenic pain, breakthrough pain, allodynia, hyperalgesia, hyperesthesia, dysesthesia, paresthesia, hyperpathia, phantom limb pain, psychogenic pain, anesthesia dolorosa, neuralgia, neuritis. Other categorizations include malignant pain, anginal pain, and/or idiopathic pain, complex regional pain syndrome I,

complex regional pain syndrome II. Types and symptoms of pain need not be mutually exclusive. These terms are intended as defined by the IASP.

[0163] Nociceptive pain is initiated by specialized sensory nociceptors in the peripheral nerves in response to noxious stimuli, encoding noxious stimuli into action potentials. Nociceptors, generally on A δ fibers and (Polymodal) C fibers, are free nerve endings that terminate just below the skin, in tendons, joints, and in body organs. The dorsal root ganglion (DRG) neurons provide a site of communication between the periphery and the spinal cord. The signal is processed through the spinal cord to the brainstem and thalamic sites and finally to the cerebral cortex, where it usually (but not always) elicits a sensation of pain. Nociceptive pain can result from a wide variety of a chemical, thermal, biological (e.g., inflammatory) or mechanical events that have the potential to irritate or damage body tissue, which are generally above a certain minimal threshold of intensity required to cause nociceptive activity in nociceptors.

[0164] Neuropathic pain is generally the result of abnormal functioning in the peripheral or central nervous system, giving rise to peripheral or central neuropathic pain, respectively. Neuropathic pain is defined by the IASP as pain initiated or caused by a primary lesion or dysfunction in the nervous system. Neuropathic pain often involves actual damage to the nervous system, especially in chronic cases. Inflammatory nociceptive pain is generally a result of tissue damage and the resulting inflammatory process. Neuropathic pain can persist well after (e.g., months or years) beyond the apparent healing of any observable damage to tissues.

[0165] In cases of neuropathic pain, sensory processing from an affected region can become abnormal and innocuous stimuli (e.g., thermal, touch/pressure) that would normally not cause pain may do so (*i.e.*, allodynia) or noxious stimuli may elicit exaggerated perceptions of pain (*i.e.*, hyperalgesia) in response to a normally painful stimulus. In addition, sensations similar to electric tingling or shocks or "pins and needles" (*i.e.*, paresthesias) and/or sensations having unpleasant qualities (*i.e.*, dysesthesias) may be elicited by normal stimuli. Breakthrough pain is an aggravation of pre-existing chronic pain. Hyperpathia is a painful syndrome resulting from an abnormally painful reaction to a stimulus. The stimulus in most of the cases is repetitive with an increased pain threshold, which can be regarded as the least experience of pain that a patient can recognize as pain.

[0166] Examples of neuropathic pain include tactile allodynia (e.g., induced after nerve injury) neuralgia (e.g., post herpetic (or post-shingles) neuralgia, trigeminal neuralgia), reflex sympathetic dystrophy/causalgia (nerve trauma), components of cancer pain (e.g., pain due to the cancer itself or associated conditions such as inflammation, or due to treatment such as chemotherapy, surgery or radiotherapy), phantom limb pain, entrapment neuropathy (e.g., carpal tunnel syndrome), and neuropathies such as peripheral neuropathy (e.g., due to diabetes, HIV, chronic alcohol use, exposure to other toxins (including many chemotherapies), vitamin deficiencies, and a large variety of other medical conditions). Neuropathic pain includes pain induced by expression of pathological operation of the nervous system following nerve

injury due to various causes, for example, surgical operation, wound, shingles, diabetic neuropathy, amputation of legs or arms, or cancer. Medical conditions associated with neuropathic pain include traumatic nerve injury, stroke, multiple sclerosis, syringomyelia, spinal cord injury, and cancer.

[0167] A pain-causing stimulus often evokes an inflammatory response which itself can contribute to an experience of pain. In some conditions pain appears to be caused by a complex mixture of nociceptive and neuropathic factors. For example, chronic pain often comprises inflammatory nociceptive pain or neuropathic pain, or a mixture of both. An initial nervous system dysfunction or injury may trigger the neural release of inflammatory mediators and subsequent neuropathic inflammation. For example, migraine headaches can represent a mixture of neuropathic and nociceptive pain. Also, myofascial pain is probably secondary to nociceptive input from the muscles, but the abnormal muscle activity may be the result of neuropathic conditions.

Kits comprising TNF α and NGF antagonists

[0168] This disclosure provides kits that comprise a TNF α and NGF antagonist multifunctional polypeptide, e.g., a multispecific binding molecule, as provided herein or a combination of a TNF α antagonist and an NGF antagonist as provided herein, that can be used for the compositions for use described herein. In certain aspects, a kit comprises at least multifunctional fusion polypeptide comprising a TNF α antagonist and an NGF antagonist, e.g., a polypeptide comprising an amino acid sequence of SEQ ID NO: 14 or 17, in one or more containers, or a combination of an NGF antagonist, e.g., MEDI-578, and a TNF α antagonist, e.g., an anti-TNF α antibody such as infliximab or adalimumab, or a TNF α -binding soluble fragment of a TNF receptor, e.g., TNFR2-Fc. One skilled in the art will readily recognize that the disclosed TNF α and NGF antagonists provided herein can be readily incorporated into one of the established kit formats, which are well known in the art.

EXAMPLES

[0169] The disclosure now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present disclosure, and are not intended to limit the disclosure.

Example 1 - Construction and Characterization of an Anti NGF scFv / TNFR2-Fc multispecific binding molecule

[0170] A multifunctional molecule, specifically, a multispecific binding molecule comprising an

anti NGF antibody domain and a TNFR2-Fc domain was produced as follows. The anti-NGF antibody scFv fragment was fused to the C-terminus of a TNFR2-Fc fusion protein (SEQ ID NO: 13) via the heavy chain CH3 domain, according to the Bs3Ab format described in Dimasi, N., et al., J Mol Biol. 393:672-92 (2009), and in PCT Publication No. WO 2013/070565. A diagram of the structure is shown in Fig. 1. DNA constructs encoding the TNFR2-Fc polypeptide and the multispecific binding molecule were synthesized by GeneArt (Invitrogen). For the multispecific binding molecule, an anti-NGF scFv comprising the VH (SEQ ID NO: 3) and VL (SEQ ID NO: 7) domains of MEDI-578 joined together via a 15 amino acid linker sequence (GGGGS)₃ (SEQ ID NO: 15) was constructed. The N-terminus of the scFv was fused, via a 10-amino-acid linker sequence (GGGGS)₂, to the C-terminus of SEQ ID NO: 13. This multispecific binding molecule is referred to herein as TNFR2-Fc_VH#4. The DNA construct encoding the multispecific binding molecule was engineered to contain a stop codon and an EcoRI restriction site at the 3' end for cloning into the Bs3Ab expression vector. The DNA sequence encoding TNFR2-Fc_VH#4 is presented as SEQ ID NO: 16 and its amino acid sequence as SEQ ID NO: 14.

[0171] The thermostability of the TNF-NGF multispecific binding molecule was improved by the addition of an inter-chain disulphide bond between the VH and VL domains of the MEDI-578 scFv portion of the multispecific binding molecule. This was done by introducing a G->C mutation at amino acid 44 of the VH domain (SEQ ID NO: 94) and at amino acid 102 of the VL domain (SEQ ID NO: 95). This clone was designated TNFR2-Fc_varB. The amino acid sequence of TNFR2-Fc_varB is presented as SEQ ID NO: 17. A DNA sequence encoding TNFR2-Fc_varB is presented as SEQ ID NO: 18. A codon optimized DNA sequence encoding TNFR2-Fc_varB is presented in SEQ ID NO: 99. TNFR2-Fc_varB further differs from TNFR2-Fc_VH#4 in that the 15 amino acid linker sequence (GGGGS)₃ joining the VH and VL of the scFv portion is replaced with a 20 amino acid linker (GGGGS)₄ (SEQ ID NO: 19). Differential scanning fluorimetry (DSF) was used to measure the Tm of TNFR2-Fc_VH#4 and TNFR2-Fc_varB. This method measures the incorporation of a fluorescent dye, Sypro Orange (Invitrogen), which binds to hydrophobic surfaces revealed during protein domain unfolding upon exposure to elevated temperatures. In the DSF assay, the Tm of TNFR2-Fc_VH#4 was 62°C, whereas the Tm of TNFR2-Fc_varB was 66°C. Therefore, the addition of the inter-chain disulphide bond in the MEDI-578 scFv portion of the multispecific molecule improved the thermostability of the molecule by 4°C.

[0172] The TNFR2-Fc protein and TNFR2-Fc_VH#4 were transiently expressed in suspension CHO cells using Polyethylenimine (PEI) (Polysciences) as the transfection reagent. The cells were maintained in CD-CHO medium (Life Technologies). Culture harvests from small-scale transfections were purified using 1ml HiTrap MabSelect SuRe™ affinity chromatography in accordance with the manufacturer's protocol (GE Healthcare) and were subsequently buffer exchanged in 1% sucrose, 100 mM NaCl, 25 mM L-arginine hydrochloride, and 25 mM sodium phosphate (pH 6.3). The purity of the recombinant proteins was analyzed using SDS-PAGE under reducing conditions and using analytical size-exclusion chromatography (see method below), and concentrations were determined by reading the absorbance at 280 nm using

theoretically determined extinction coefficients.

[0173] Small scale transient expression and protein A column purification of the TNFR2-Fc fusion protein and the TNF-NGF multispecific construct, TNFR2-Fc_VH#4, produced yields of 36.6 and 79.9 mg L⁻¹ respectively.

[0174] A larger batch of TNFR2-Fc_VH#4 was produced as follows. A crude culture harvest from a large-scale transfection (up to 6L) was filtered using depth filtration and loaded onto a 1.6 x 20cm Protein A agarose column (GE Healthcare) pre-equilibrated with buffer A (phosphate buffered saline pH 7.2). The column was then washed with buffer A and the product eluted in a step gradient of buffer B (50 mM Sodium Acetate pH <4.0). The product was further purified by loading onto a 1.6 x 20 cm Poros HS 50 column (Applied Biosystems) pre-equilibrated in buffer C (50 mM Sodium Acetate buffer pH<5.5), washed in buffer C and then subsequently the product was eluted in a linear gradient from 0 to 1 M NaCl in 50 mM Sodium Acetate buffer pH <5.5. The resulting eluates were analysed by Size Exclusion HPLC. The protein concentration was determined by A280 spectroscopy with a Beckman DU520 spectrophotometer using a calculated extinction coefficient of 1.36.

Methods for Characterization of TNFR2-Fc_VH#4

[0175] Western blot analysis was carried out using standard protocols. Proteins were transferred onto the polyvinylidene fluoride membrane (Life Technologies) using the Xcell SureLock™ system (Invitrogen) according to the manufacturer's instructions. The membrane was blocked with 3% (w/v) skim milk powder in phosphate-buffered saline (PBS) for 1 h at room temperature. Western blots were developed using standard protocols with HRP-conjugated anti-human IgG Fc-specific antibody (Sigma).

[0176] Size exclusion HPLC was performed using a Gilson HPLC system (Isocratic pump-307, UV/Vis-151 detector, Liquid Handler-215 and Injection Module-819) with a Phenomenex BioSep-SEC-S3000 (300 x 7.8mm) column with a mobile phase of D-PBS (life Technologies) at a flow rate of 1 ml/min. Twenty-five μ L samples were injected onto the column and separation of protein species was monitored at A280nm

[0177] Enzymatic deglycosylation of small-scale purified TNFR2-Fc_VH#4 was performed using an EDGLY kit (Sigma Aldrich) according to the manufacturer's protocols. Proteins were deglycosylated under both denatured and native conditions. For denatured proteins, 30 μ g of protein was deglycosylated with PNGase F, O-glycosidase, and α -(2→3, 6, 8, 9)-neuraminidase, β -N-acetylglucosaminidase and P-(1→4)-galactosidase for 3 h at 37°C. Under native conditions, 35 μ g of protein was deglycosylated with the same set of enzymes as above for 3 days at 37°C. The deglycosylated proteins were analyzed by coomassie stained SDS-PAGE and by western blot using standard assay protocols.

[0178] N-terminal amino acid sequencing of TNFR2-Fc_VH#4 was carried out as follows. Approximately 2 µg of TNFR2-Fc_VH#4 was run on an SDS-PAGE gel using standard protocols. Proteins were transferred onto the PVDF membrane using the Xcell SureLock™ system (Invitrogen) according to the manufacturer's instructions. The membrane was stained with 0.1% (w/v) amidoblack for approximately 15 min on an orbital shaking platform then washed with dH₂O to reduce background staining of the PVDF membrane. The membrane was air-dried prior to N-terminal sequencing. The bands of interest were cut out and sequence determination of the N-terminus of the multispecific binding molecule was performed on an Applied Biosystems 494 HT sequencer (Applied Biosystems, San Francisco, CA, U.S.A.) with on-line phenylthiohydantoin analysis using an Applied Biosystems 140A micro HPLC.

Characterization Results

[0179] Purified TNFR2-Fc_VH#4 and TNFR2-Fc proteins were profiled by SEC-HPLC for levels of aggregate, monomer and protein fragmentation (Figs. 2A and 2B). The main peak comprising monomer constituted approximately 90% of the total protein present with the remaining approximately 10% of the protein mass with a lower column retention time indicating the presence of higher order species or aggregates. However, the monomer peak from the SEC-HPLC had two pronounced shoulders indicating that the protein within this peak was not a single species. SDS-PAGE analysis with coomassie staining showed two distinct bands for TNFR2-Fc_VH#4 (at approx. 100 and 75 kD) and similarly two distinct bands for the TNFR2-Fc fusion protein also (at approx. 70 and 45 kD) under reducing conditions (Fig. 2B). Under non-reducing conditions, three major bands were present for TNFR2-Fc_VH#4 (between 150 and 250 kD) and one major band and one minor band for the TNFR2-Fc fusion protein at approx. 150 and 120 kD respectively. Since the molecular mass difference between the two bands under reducing conditions was approximately equivalent to the size of a scFv fragment (~26.5 kD) further analysis was performed in order to understand in what forms the multispecific binding molecule were being generated. Mass spectroscopic analysis under native conditions confirmed the SDS-PAGE data, that for two separate purified protein preparations there were three molecular masses present in the purified TNFR2-Fc_VH#4 preparation at approximately 125, 152 and 176 kD (Fig. 2C).

[0180] If the banding pattern observed by SDS-PAGE gel was due to differential glycosylation of TNFR2-Fc_VH#4, then upon deglycosylation this would be resolved back down to a single band. However, the banding pattern was maintained under both reducing and non-reducing conditions when TNFR2-Fc_VH#4 was deglycosylated either as a native protein or as denatured protein (data not shown). Western blot staining of both the glycosylated and deglycosylated TNFR2-Fc_VH#4 with a polyclonal anti-human IgG Fc specific antibody showed that both the full length expected band and the lower molecular mass band were reactive with anti-Fc specific antibodies (data not shown).

[0181] Final identification of the truncated product was made by N-terminal amino acid sequencing of the protein. This revealed that the first 8 amino acids of the N-terminus of the

truncated protein to be SMAPGAVH corresponding to amino acids 176 to 183 of the TNFR2-Fc_VH#4 sequence (SEQ ID NO: 14). This represented a 175 amino acid truncation at the N-terminus of TNFR2-Fc_VH#4, which left only 42 amino acids of the TNFR2 domain. This allows us to accurately interpret the mass data from the SDS-PAGE, mass spectroscopy and SEC-HPLC analysis. There were three possible combinations of TNFR2-Fc_VH#4 dimers and all were present in the purified protein preparations: (1) full length homodimer, (2) a heterodimer of full length and truncated species, and (3) a homodimer of truncated species. In order to accurately measure biological activity both *in vitro* and *in vivo*, a preparation of the full-length homodimer was generated by a two-step column chromatography process. In the first step, post Protein A purification, the product contained 80.5% monomer (Fig. 3A) and after the second column purification step (SP sepharose) the monomer percentage was 97.8% (Fig. 3B). The yield over the whole process was 7.3%.

Example 2 - Thermal Stability Analysis by Differential Scanning Calorimetry (DSC)

[0182] An automated MicroCal VP-Capillary DSC (GE Healthcare, USA) was used for the calorimetric measurements. Protein samples were tested at 1 mg/mL in 25 mM Histidine/Histidine-HCl buffer pH 6.0. The protein samples and buffer were subjected to a linear heat ramp from 25°C to 100°C at a rate of 95°C per hour. The buffer was subtracted as a reference from the protein sample using Origin 7 software and the thermal transitions were determined.

[0183] The thermogram for TNFR2-Fc_VH#4 (Fig. 4) shows three distinct unfolding transitions with denaturation temperatures (Tm) of 64, 67, and 84°C. We deduced that the Tm of 64°C corresponded with the denaturation of both the TNFR2 domain and the anti-NGF scFv domain, with the Tms of 67°C and 84°C being typical of the denaturation Tms for IgG1 CH2 and CH3 domains respectively (e.g. Dimasi, N., et al., J Mol Biol. 393:672-92 (2009), and PCT Publication No. WO 2013/070565). While not wishing to be bound by theory, scFv generally have lower denaturation temperatures than the other antibody domains, and their unfolding is characterized by a single transition event (Roberge et al., 2006, Jung et al., 1999, Tischenko et al., 1998).

Example 3 - Confirmation of antigen binding to TNFR2-Fc_VH#4

A. Single and dual antigen binding by ELISA

[0184] Nunc Maxisorp wells were coated at 4°C overnight with 50 µl of TNF α (R&D Systems) diluted to 5 µg ml $^{-1}$ in PBS (pH 7.4). The following day the coating solution was removed and the wells blocked with 150 µl of blocking buffer [3% skimmed milk-PBS] for 1 h at room temperature. The wells were rinsed three times in PBS, prior to the addition of 50 µl of a

dilution series of TNFR2-Fc_VH#4 made in blocking buffer. After 1 h at room temperature, the wells were washed three times in PBS-Tween 20 (0.1% v/v; PBS-T). Fifty microliters of biotinylated NGF was then added to the wells and incubated for a further hour at room temperature, prior to washing as above and addition of 50 μ l of streptavidin-HRP (1:100). After 1 hour at room temperature, the wells were washed with PBS-T, 50 μ l of 3,3',5,5'-tetramethylbenzidine substrate added and the color allowed to develop. The reaction was stopped by the addition of 1M H₂SO₄ and the absorbance at 450 nm was measured using a microtiter plate reader. The resulting data were analyzed using Prism 5 software (GraphPad, San Diego, CA). For the single antigen binding ELISA, the wells were coated with either TNF α or NGF-biotin as above and antibody binding detected with anti-Human IgG Fc specific HRP conjugated antibody (1:5000), and color developed as above.

[0185] The ELISA results are shown in Fig. 5. TNFR2-Fc_VH#4 was designed to bind to both TNF α and NGF antigens. Single antigen binding was performed by first immobilizing one antigen onto a 96-well microtiter plate, followed by the addition of serial dilutions of TNFR2-Fc_VH#4. Specific binding was detected by using a horseradish peroxidase (HRP)-conjugated anti-IgG Fc specific antibody. For the dual antigen binding ELISA, the first antigen, TNF α was immobilized on the ELISA plate, and then a serial dilution of TNFR2-Fc_VH#4 was added, followed by the addition of the second biotinylated antigen, NGF at a fixed concentration. Specific binding was then detected using an HRP-conjugated streptavidin. TNFR2-Fc_VH#4 bound to TNF α and NGF in the single antigen binding ELISA (Fig. 5A and B). In the dual antigen binding ELISA, TNFR2-Fc_VH#4 bound to both TNF α and NGF simultaneously (Fig. 5C).

B. Simultaneous antigen binding by surface plasmon resonance

[0186] Simultaneous antigen binding experiments were carried out essentially as described in Dimasi, N., et al., J Mol Biol. 393:672-92 (2009) using a BIACore 2000 instrument (GE Healthcare). Briefly, a CM5 sensor chip was used to immobilize approximately 1500 resonance units of TNFR2-Fc_VH#4 at 100 nM. The sensor chip surfaces were then used for concurrent binding for TNF α and NGF. The antigens were prepared in HBS-EP buffer [10 mM HEPES (pH 7.4), 150 mM NaCl, 3 mM ethylenediaminetetraacetic acid (EDTA), 0.005% P20]. A flow rate of 30 μ l/min was used for all binding measurements. For determining the simultaneous binding of the multispecific antibody to TNF α and NGF, 1 μ M of TNF α (molecular mass, 17.5 kD) was injected over the sensor chip surface, and upon completion of injection, a mixture of TNF α and NGF (molecular mass, 13.5 kD), both at 1 μ M, was then injected. TNF α was included in the mixture with NGF to prevent the signal loss due to TNF α dissociation during NGF binding phase. As a control, a similar binding procedure was performed, and at the last injection only TNF α was added, no further increase in resonance units for this injection indicated that the TNF α was bound at saturating levels. Similar binding and control experiments were performed in which the injection order of TNF α and NGF was reversed.

[0187] Simultaneous antigen binding of TNFR2-Fc_VH#4 was characterized by surface plasmon resonance. The binding events were analyzed qualitatively in a sequential manner. TNFR2-Fc_VH#4 was covalently immobilized on to the sensor chip surface using amine coupling chemistry. Subsequently, the first antigen was injected to give saturating levels of binding to TNFR2-Fc_VH#4, then the second antigen was injected as an equimolar admixture with antigen 1. The binding sensorgram clearly showed that TNFR2-Fc_VH#4 bound simultaneously to TNF α and NGF (Fig. 6). Simultaneous binding of the two antigens occurred regardless of the order of antigen injection.

Example 4 - Inhibition of TF-1 cell proliferation induced by NGF

[0188] TF-1 cells (ECACC Catalog No. 93022307) were seeded at 1.5×10^4 cells/well in 50 μ l serum free culture media in 96 well tissue culture plate (Corning Costar) and incubated for 18 h at 37°C with 5% CO₂. Recombinant human (Sigma) or mouse NGF (R&D Systems) were pre-incubated with dilutions of TNFR2-Fc_VH#4, MEDI-578 IgG1 TM YTE, a non-binding IgG1 TM YTE isotype control for MEDI-578, or a non-binding bispecific isotype control R347 Bs3Ab for 30 min at 37°C in 96 well round bottomed plate (Greiner). Fifty microliters of each sample was then added to cell plate and incubated for 48 h at 37°C. Following the incubation period, 100 μ l of cell TITRE GLO® assay buffer (Promega) was added and the plate was incubated for 10 min. at 37°C with 5% CO₂. Luminescence was then measured using standard luminescence protocol. Standard NGF-induced TF-1 proliferation in the absence of antibody is shown in Fig. 7A.

[0189] The functional activity of TNFR2-Fc_VH#4 was determined using NGF induced TF-1 proliferation. TNFR2-Fc_VH#4 was able to completely inhibit both human and murine NGF induced proliferation (Fig. 7B and 7C, respectively). Fig. 7B: TF-1 cells were stimulated with recombinant human NGF corresponding to EC₈₀ concentration. Cells were incubated with ligand with a dilution series of antibody for 48 hrs, after which cell proliferation was quantified by culture for 10 mins with cell TITRE GLO® assay buffer (Promega). Fig. 7C: TF-1 cells were stimulated with recombinant murine NGF corresponding to EC₈₀ concentration. Cells were incubated with ligand with a dilution series of antibody for 48 hrs., after which cell proliferation was quantified by culture for 10 mins. with cell TITRE GLO® assay buffer (Promega). These data demonstrate that the NGF inhibitory portion of TNFR2-Fc_VH#4 is biologically active and inhibits NGF induced proliferation with a similar potency to MEDI-578 as an IgG1TM. Similar data was also observed for TNFR2-Fc_varB and another TNF-NGF multispecific binding molecule ndimab var B (FIG. 7D & 7E). ndimab varB comprises a complete anti-TNF α antibody, *i.e.*, an antibody comprising two complete heavy chains and two complete light chains in an H₂L₂ format, with MEDI-578 scFv fused to the C-terminus of the heavy chain of the anti-TNF α antibody. The light chain of ndimab varB is depicted in SEQ ID NO: 20 and the heavy chain of ndimab varB is depicted in SEQ ID NO: 22.

Example 5 - Inhibition of U937 cell apoptosis induced by TNF α

[0190] U937 cells (ECACC Cat. No. 85011440) were plated in a black walled 96 well tissue culture plate (Corning Costar) at a concentration of 8×10^5 cells/well in 50 μ l culture media. U937 cells were stimulated with recombinant human TNF α corresponding to EC₈₀ concentration. Cells were incubated with ligand with a dilution series of antibody for 2 hrs, after which caspase 3 activity was quantified by culture for 2 hours with Caspase 3 assay reaction buffer. TNFR2-Fc_VH#4, a non-binding bispecific isotype control, R347 Bs3Ab, and etanercept were pre-incubated with the cells for 30 min at 37°C. This was followed by the addition of 50 μ l recombinant human TNF α (R&D Systems) to obtain a final assay concentration of 20 ng/ml and a subsequent 2 h incubation at 37°C. Following the incubation period, 50 μ l of Caspase 3 assay reaction buffer (0.2% w/v CHAPS, 0.5% v/v Igepal CA-630, 200mM NaCl, 50mM HEPES, 20 μ M DEVD-R110 substrate (Invitrogen)) was added and cells incubated for 2.5 h at 37°C. Fluorescence was measured by excitation at 475nm and emission 512nm. Caspase activity in the absence of a TNF α antagonist is shown in Figure 8A.

[0191] The functional activity of TNFR2-Fc_VH#4 was determined using a TNF α induced Caspase 3 activity assay in U937 cells. TNFR2-Fc_VH#4 completely inhibited TNF α induced Caspase 3 activity as did etanercept (Fig. 8B). This clearly illustrates that the TNF α inhibitory portion of TNFR2-Fc_VH#4 is biologically active and has a similar potency to etanercept. Similar data was also observed for TNFR2-Fc_varB and ndimab varB (see Figure 8C).

Example 6 - *In vivo* assays

[0192] All *in vivo* procedures were carried out in accordance with the UK Home Office Animals (Scientific Procedures) Act (1986) and approved by a local ethics committee. Female C57B1/6 mice (Charles River, UK) were used throughout. Mice were housed in groups of 5/6 per cage, in individually ventilated cages (IVC) with free access to food and water under a 12-hour light/dark cycle (lights on 07:00-19:00). Housing and procedure rooms were maintained at 24°C and constant background noise was maintained by way of a conventional radio station. All mice underwent insertion of transponders under anaesthesia (3% isoflurane in oxygen) for identification purposes at least 5 days before the start of each study.

A. Seltzer Model of Neuropathic Pain

[0193] Mechanical hyperalgesia was determined using an algometer (Randall LO, Selitto JJ, Arch Int Pharmacodyn Ther. 111:409-19 (1957)) (Ugo Basile). An increasing force was applied to the dorsal surface of each hind paw in turn until a withdrawal response was observed. The application of force was halted at this point and the weight in grams recorded. Data was expressed as withdrawal threshold in grams for ipsilateral and contralateral paws. Following the establishment of baseline readings mice were divided into 2 groups with

approximately equal ipsilateral/contralateral ratios and underwent surgery. Mice were anaesthetised with 3% isoflurane. Following this approximately 1 cm of the left sciatic nerve was exposed by blunt dissection through an incision at the level of the mid thigh. A suture (10/0 Virgin Silk: Ethicon) was then passed through the dorsal third of the nerve and tied tightly. The incision was closed using glue and the mice were allowed to recover for at least seven days prior to commencement of testing. Sham operated mice underwent the same protocol but following exposure of the nerve the wound was glued and allowed to recover. Mice were tested for hyperalgesia on day 7 and 10 post surgery. Following testing on day 10, operated mice were further sub-divided into groups which received CAT251 IgG1 isotype control (0.03 mg/kg s.c.), etanercept (0.01 mg/kg s.c.), MEDI-578 (0.03 mg/kg s.c.) or a combination of etanercept (0.01 mg/kg s.c.) and MEDI-578 (0.03 mg/kg s.c.). Sham operated mice all received CAT251 (0.03 mg/kg s.c.). Mechanical hyperalgesia was measured at 4 h, 1, 2, 3, 4 and 7 days post dose.

[0194] Co-administration of etanercept and MEDI-578 in a mechanical hyperalgesia model manifested as a significant reduction in the ipsilateral/contralateral ratio on day 10 post surgery when compared to sham operated controls (Fig. 9). Administration of a single dose of either etanercept (0.01 mg/kg s.c.) or MEDI-578 (0.03 mg/kg s.c.) failed to significantly reverse this hyperalgesia. The co-administration of etanercept (0.01 mg/kg s.c.) together with MEDI-578 (0.03 mg/kg s.c.) significantly reversed the mechanical hyperalgesia at 4 h post dose and the effect was maintained through to 7 days post dose.

[0195] In a second study the effect of TNFR2-Fc_VH#4 was assessed. Following establishment of a mechanical hyperalgesia, mice were dosed on day 13 post surgery with R347 Bs3Ab isotype control (0.03 mg/kg s.c.), etanercept (0.01 mg/kg s.c.), MEDI-578 (0.03 mg/kg s.c.) or TNFR2-Fc_VH#4 (0.01 mg/kg or 0.03 mg/kg s.c.). Sham prepared animals received R347 Bs3Ab isotype control (0.03 mg/kg s.c.). Mice were tested for mechanical hyperalgesia at 4 h post dose and on days 1, 2, 4 and 7 post dose as described above.

[0196] Administration of TNFR2-Fc_VH#4 produced a significant reduction in the ipsilateral/contralateral ratio on day 10 post surgery when compared to sham operated controls (Fig. 10A). The administration of either etanercept (0.01 mg/kg s.c.) or MEDI-578 (0.03 mg/kg s.c.) failed to significantly reverse the mechanical hyperalgesia. However, the administration of TNFR2-Fc_VH#4 (0.01 and 0.03 mg/kg s.c.) produced a significant reversal of the mechanical hyperalgesia at 4 h post dose, an effect which was maintained through to 6 days post dose. No effect was seen following administration of the R347 control Bs3Ab. Similar data was observed when TNFR2-Fc_varB was administered (see Figure 10B). These data suggest that TNFR2-Fc_VH#4 can significantly reverse pain at very low doses where equivalent doses have been shown to be ineffective or minimally effective with either MEDI-578 or etanercept alone.

B. Chronic joint pain model

[0197] Mechanical hypersensitivity was determined using a mouse incapacitance tester (Linton

Instrumentation). Mice were placed in the device with their hind paws on separate sensors, and the body weight distribution calculated over a period of 4 s. Data was expressed as the ratio of ipsilateral and contralateral weight bearing in grams.

[0198] Following the establishment of baseline readings, mice were divided into 2 groups with approximately equal ipsilateral/contralateral ratios. Intra-articular injections were carried out using the following technique: animals were anaesthetised using 3% isoflurane in oxygen and the left knee was shaved and cleaned. The knee joint of each mouse was injected with either 10 μ l of Freund's complete adjuvant (FCA) (10 mg/ml) or vehicle (light mineral oil) using a 25-gauge needle mounted on a 100 μ l Hamilton syringe. Injections were made directly into the synovial space of the knee joint. Mice were allowed to recover and were re-tested for changes in mechanical hypersensitivity on days 7 and 10 post injection as described above. Following testing on day 10, FCA treated mice were further randomised into groups and on day 13 mice were dosed with etanercept (0.01 mg/kg i.p.) or vehicle after which they received a dose of MEDI-578 (0.03 mg/kg i.v.) or CAT251 isotype control (0.03 mg/kg i.v.). Mice were tested for mechanical hypersensitivity at 4 h post dose and on days 1, 2, 4 and 7 post dose as described above.

[0199] The effect of co-administration of etanercept and MEDI-578 was assessed using the intra-articular FCA model of inflammatory pain. Intra-articular administration of FCA caused a mechanical hypersensitivity that manifested as a significant reduction in the ipsilateral/contralateral ratio on days 7 and 10 when compared to vehicle control (Fig. 11). No reduction in the ipsilateral/contralateral ratio was observed in the sham treated groups compared to pre-treatment baseline levels. The administration of etanercept (0.01 mg/kg i.p.) + CAT251 (0.03 mg/kg i.v.) or PBS (10 ml/kg i.p.) + MEDI-578 (0.03 mg/kg i.v.) caused a slight reversal of the FCA induced mechanical hypersensitivity at 4 h and days 1, 2, 4 and 7 post dose but this failed to reach statistical significance. However, the administration of etanercept (0.01 mg/kg i.p.) + MEDI-578 (0.03 mg/kg i.v.) caused a significant reversal of the FCA induced mechanical hypersensitivity at all times of testing post dose.

[0200] In a second study, the effect of TNFR2-Fc_VH#4 was assessed. Following establishment of FCA induced mechanical hypersensitivity, mice were dosed on day 13 post-FCA with: R347 Bs3Ab isotype control (0.01 mg/kg s.c.), etanercept (0.01 mg/kg s.c.), MEDI-578 (0.01 mg/kg s.c.) or TNFR2-Fc_VH#4 (0.003 mg/kg or 0.01 mg/kg s.c.). Again mice were tested for mechanical hypersensitivity at 4 h post dose and on days 1, 2, 4 and 7 post dose as described above.

[0201] The effect of TNFR2-Fc_VH#4 ("bispecific") as compared to the effects of etanercept and MEDI-578 individually is shown in Fig. 12. Neither etanercept (0.01 mg/kg s.c.) nor MEDI-578 (0.01 mg/kg s.c.) significantly reversed the FCA induced mechanical hypersensitivity at any time point post dose. However, administration of TNFR2-Fc_VH#4 caused a significant reversal of FCA induced mechanical hypersensitivity. The higher dose of TNFR2-Fc_VH#4 (0.01 mg/kg s.c) showed significant activity for the duration of the study whereas the lower dose (0.003 mg/kg s.c.) reached significance on day 1 post dose and remained at a similar

level to the higher dose for the duration of the study.

C. Established FCA induced model of mechanical hypersensitivity in the rat

[0202] Intraplantar injection of Freunds Complete adjuvant (FCA) causes an inflammatory reaction, which induces hypersensitivity and edema, and mimics some aspects of clinical inflammatory pain. These effects can be investigated using equipment to measure weight bearing. Assessment of potential anti-hyperalgesic properties of TNFR2-Fc_VH#4 FCA induced hypersensitivity using weight bearing method. Naive rats distribute their body weight equally between the two hind paws. However, when the injected (left) hind paw is inflamed and/or painful, the weight is re-distributed so that less weight is put on the affected paw (decrease in weight bearing on injured paw). Weight bearing through each hind limb is measured using a rat incapacitance tester (Linton Instruments, UK). Rats are placed in the incapacitance tester with the hind paws on separate sensors and the average force exerted by both hind limbs are recorded over 4 seconds.

[0203] For this study, naive rats (Male, Sprague Dawley Rats (Harlan, UK), 198-258g) were acclimatised to the procedure room in their home cages, with food and water available ad libitum. Habituation to the incapacitance tester was performed over several days. Baseline weight bearing recordings were taken prior to induction of insult. Inflammatory hypersensitivity was induced by intraplantar injection of FCA (available from Sigma, 100 μ l of 1mg/ml solution) into the left hind paw. A pre-treatment weight bearing measurement was taken to assess hypersensitivity 23 hours post-FCA.

[0204] Animals were then ranked and randomised to treatment groups according to the weight bearing FCA window in a Latin square design. At 24 hours post FCA injection, animals were treated with either TNFR2-Fc_VH#4 ("bispecific") given i.v. at 0.003, 0.01, 0.03, 0.3, & 3mg/kg, a negative control antibody, NIP228 (an antibody raised to bind to hapten nitrophenol) given i.v. at 3mg/kg, vehicle (1% Methylcellulose) given p.o. 2ml/kg, or indomethacin given 10mg/kg p.o.

[0205] Weight bearing was assessed 4 and 24 hours post antibody/drug treatment. Data were analyzed by comparing treatment groups to the vehicle control group at each time point. Statistical analysis included repeated measures ANOVA followed by Planned comparison test using InVivoStat (invivostat.co.uk), (p<0.05 considered significant). The results are shown in FIG. 13. A significant reversal of the hypersensitivity was observed with Indomethacin (10mg/kg) at 4 and 24hours. TNFR2-Fc_VH#4 dosed at 0.3 and 3mg/kg showed significant reversal of the hypersensitivity at both 4 and 24 hours, TNFR2-Fc_VH#4 dosed at 0.003 and 0.03 mg/kg also showed a significant reversal of the hypersensitivity, but only at 24 hours. The isotype control, NIP228 had no significant effect on the FCA response at any time point.

Example 7 - p38 Phosphorylation by TNF α and NGF

[0206] Literature suggests that p38 phosphorylation plays an important role in the development of neuropathic pain. For example, treatment with p38 inhibitors have been shown to prevent the development of neuropathic pain symptoms in the spared nerve injury model (Wen YR et al., Anesthesiology 2007, 107:312-321) and in a sciatic inflammatory neuropathy model (Milligan ED et al., J Neurosci 2003, 23:1026-1040). In the present experiment, the role of TNF α , NGF, and the combination TNF α and NGF on p38 phosphorylation was investigated in a cell culture assay. Briefly, Neuroscreen-1 cells (a subclone of PC-12 rat neuroendocrine cells) were incubated with increasing amounts of TNF α , NGF, or a combination of TNF α and NGF. Following a 20 minute incubation period, phospho-p38 was quantified using a homogeneous time resolved fluorescence (HTRF) assay (Cisbio).

[0207] *HTRF Assay:* Following stimulation with TNF α , NGF, or a combination of TNF α and NGF, cell supernatants were rapidly removed and cells lysed in lysis buffer. Phospho-p38 MAPK (Thr180/Tyr182) was detected in lysates in a sandwich assay format using two different specific antibodies; an anti-phospho-p38 antibody conjugated to europium cryptate (donor fluorophore) and an anti-p38 (total) antibody conjugated to d2 (acceptor fluorophore). Antibodies were incubated with cell lysates and HTRF ratios calculated from fluorescence measurements at 665 nm and 620 nm made using an EnVision Multilabel Plate Reader (Perkin Elmer).

[0208] Data are presented as HTRF ratios, which are calculated as the ratio between the emission at 665 nm and the emission at 620 nm. A heat map showing HTRF ratios from phospho-p38 reactions is shown in FIG. 14. Dose response curves showing the effect of TNF α , NGF, or a combination of TNF α and NGF are shown in FIG. 15. As can be seen from FIG. 15, the combined effect of higher concentrations of TNF α and NGF on phospho-p38 is greater than the predicted sum of the phospho-p38 signal induced by either factor alone. These data suggest that TNF α and NGF may act together to induce p38 phosphorylation, and that the two pathways may be implicated in molecular signaling leading to pain.

Example 8 - ERK Phosphorylation by TNF α and NGF

[0209] Like p38, ERK is also activated during neuropathic pain development (Zhuang ZY et al., Pain 2005, 114:149-159). In the present experiment, the role of TNF α , NGF, and the combination TNF α and NGF on ERK phosphorylation was investigated in a cell culture assay. Briefly, Neuroscreen-1 cells (a subclone of PC-12 rat neuroendocrine cells) were incubated with increasing amounts of TNF α , NGF, or a combination of TNF α and NGF. Following a 20 minute incubation period, phospho-ERK was quantified using a HTRF assay (Cisbio).

[0210] *HTRF Assay:* Following stimulation, cell supernatants were rapidly removed and cells lysed in lysis buffer. Phospho-ERK MAPK (Thr202/Tyr204) was detected in lysates in a sandwich assay format using two different specific antibodies; an anti-phospho-ERK antibody conjugated to europium cryptate (donor fluorophore) and an anti-ERK (total) antibody

conjugated to d2 (acceptor fluorophore). Antibodies were incubated with cell lysates and HTRF ratios calculated from fluorescence measurements at 665 nm and 620 nm made using an EnVision Multilabel Plate Reader (Perkin Elmer).

[0211] Data are presented as HTRF ratios, which are calculated as the ratio between the emission at 665 nm and the emission at 620 nm. A heat map showing HTRF ratios from phospho-ERK reactions is shown in FIG. 16. Dose response curves showing the effect of TNF α , NGF, or a combination of TNF α and NGF are shown in FIG. 17. As can be seen from FIG. 17, low amounts of TNF α alone did not induce phospho-ERK, but higher amounts, enhanced NGF-induced phospho-ERK. These data suggest that TNF α and NGF may act together to induce p38 phosphorylation, and that the two pathways may be implicated in molecular signaling leading to pain.

Sequence listing

[0212]

SEQ ID NO: 1 NP_002497.2| beta-nerve growth factor precursor [Homo sapiens]

```

1 MSMLFYTLIT AFLIGIQAEP HSESNVPAGH TIPQAHWTKL QHSLDTALRR ARSAPAAAIA
61 ARVAGQTRNI TVDPRLFKKR RLRSPRVLFS TQPPREAADT QDLDFEVGGA APFNRTHRHK
121 RSSSHPIFHR GEFSCVDSVS VVVGDKTTAT DIKGKEVMVL GEVNINNSVF KQYFFETKCR
181 DPNPVDSGCR GIDSKHWN SY CTTHTFVKA LTMDGKQAAW RFIRIDTACV CVLSRKAVRR
241 A

```

SEQ ID NO: 2 NP_000585.2| tumor necrosis factor [Homo sapiens]

```

1 MGTESMIRDV ELAEEALPKK TGGPQGSRRC LFSLSLFSFLI VAGATTLFCL LHFGVIGPQR
61 EEFPRDLSLI SPLAQAVRSS SRTPSDKPVA HVVANPQAEG QLQWLNRAN ALLANGVELR
121 DNQLVVPSEG LYLIYSQVLF KGQGCPSTHV LLHTHISRIA VSYQTKVNL SAIKSPCQRE
181 TPEGAEAKPW YEPYLGGVF QLEKGDRLSA EINRPDYLDF AESGQVYFGI IAL

```

SEQ ID NO: 3 MEDI-578 VH (1256A5 VH)

```

1 QVQLVQSGAE VKKPQSSVKV SCKASGGTFS TYGISWVRQA PGQGLEWMGG IIPIFDTGNS
61 AQSFGQGRVTI TADESTSTAY MELSSLRSED TAVYYCARSS RIYDLNPSLT AYYDMDVWGQ
121 GTMVTVSS

```

SEQ ID NO: 4 MEDI-578 VHCDR1

1 TYGIS

SEQ ID NO: 5 MEDI-578 VHCDR2

1 GIIPIFDTGN SAQSFQG

SEQ ID NO: 6 MEDI-578 VHCDR3

1 SSRIYDLNPS LTAYYDMDV

SEQ ID NO: 7 MEDI-578 VL (1256A5 VL)

```

1 QSVLTQPPSV SAAPGQKVTI SCGSSSNIG NNYVSWYQQL PGTAPKLLIY DNNKRPSGIP
61 DRFSGSKSGT SATLGITGLQ TGDEADYYCG TWDSSLSSAWV FGGGTKLTVL

```

SEQ ID NO: 8 MEDI-578 VLCDR1

1 SGSSSNIGNN YVS

SEQ ID NO: 9 MEDI-578 VLCDR2

1 DNNKRPS

SEQ ID NO: 10 MEDI-578 VLCDR3

1 GTWDSSLSAW V

SEQ ID NO: 11

1 SSRIYDFNSA LISYYDMDV

SEQ ID NO: 12

1 SSRIYDMISS LQPYYDMDV

SEQ ID NO: 13 soluble TNFR2 amino acid sequence

```

1 LPAQVAFTPY APEPGSTCRL REYYDQTAQM CCSKCSPQH AKVFCTKTSD TVCDSCEDST
61 YTQLWNWVPE CLSCGSRCSS DQVETQACTR EQNRICTRP GWYCALSKQE GCRLCPLRK
121 CRPGFGVARP GTETSDVVCK PCAPGTSNT TSSTDICRPH QICNVVAIPG NASMDAVCTS
181 TSPTRSMAPG AVHLPQPVST RSQHTQPTPE PSTAPSTSFL LPMGPSPPAE GSTGDEPKSC
241 DKTHTCPFC APELLGGPSV FLFPPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD
301 GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK
361 GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTPPPVLDs
421 DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK

```

SEQ ID NO: 14 TNFR2-Fc_VH#4 - amino acid sequence

1 LPAQVAFTPY APEPGSTCRL REYYDQTAQM CCSKCSPQH AKVFCTKTSD TVCDSCEDST

```

61 YTQLWNWVPE CLSCGSRCSS DQVETQACTR EQNRICTRP GWYCALSKQE GCRLCPLRK
121 CRPGFGVARP GTETSDVVCK PCAPGTSNT TSSTDICRPH QICNVVAIPG NASMDAVCTS
181 TSPTRSMAPG AVHLPQPVST RSQHTQPTPE PSTAPSTSFL LPMGPSPPAE GSTGDEPKSC
241 DKTHTCPFC APELLGGPSV FLFPPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD
301 GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK
361 GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTPPPVLDs
421 DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGKGGG GGGGGSQVQ
481 LVQSGAEVKK PGSSVKVSCK ASGGTFSTYQ ISWVRQAPGQ GLEWMGIIIP IFDTGNSAQS
541 FQGRVTITAD ESTSTAYMEL SSLRSEDTAV YYCARSSRIY DLNPSLTAYY DMVWGGQTM
601 VTVSSGGGGGS GGGGSGGGGS AQSVLTQPPS VSAAPGQKVt ISCSGSSSNI GNNYVSWYQQ
661 LPGTAPKLLI YDNNKRPSGI PDRFSGSKSG TSATLGITGL QTGDEADYYC GTWDSSLSAW
721 VFGGGTKLTV L

```

SEQ ID NO: 15 (Gly₉Ser)₃ 15 aa linker sequence1 **GGGGSGGGGS** GGGGS

SEQ ID NO: 16 TNFR2-Fc_VH#4 - nucleotide sequence

```

1 CTGCCCCCCC AGGTGGCCTT TACCCCTTAT GCCCCCGAGC CCGGCAGCAC CTGTCGGCTG
61 AGAGAGTACT ACGACCAGAC CGCCCAGAAG TGCTGCAGCA AGTGCCTCTCC TGGCCAGCAT
121 GCCAAGGTGT TCTGCACCAA GACCAGCGAC ACCGTGTGCG ACAGCTGCGA GGACAGCACC
181 TACACCCAGC TGTGGAACCTG GGTGCCCGAG TGCCTGAGCT GCGGCAGCAG ATGCAGCAGC
241 GACCAGCTGG AAACCCAGGC CTGCAACAGA CAGCAGAACCC GGATCTGCAC CTGTAGACCC
301 GGCTGGTACT GCGCCCTGAG CAAGCAGGAA GGCTGCAGAC TCTGCGCCCC TCTGCGGAAG
361 TGCAGACCCG GCTTGGCGT GGCAGACCC GGCACCGAGA AAAGCAGCGT GGTCTGTAAAG
421 CCCTGCCCTC CTGGCACCTT CAGCAACACC ACCAGCAGCA CCGACATCTG CAGACCCAC
481 CAGATCTGCA ACGTGGTGGC CATCCCCGGC AACGCCAGCA TGGATGCCGT CTGCACCAAG
541 ACTAGCCCCA CCAGAAAGTAT GGCCTCTGGC GCGGTGCATC TGCCCCAGCC TGTGTCCACC
601 AGAACCCAGC ACACCCASCC CACCCCTGAG CCTAGCACCG CCCCCCTCCAC CAGCTTCTG
661 CTGCCTATGG GCCCTAGCCC TCCAGCCGAG GGAAGCACAG GCGACGAGCC CAAGAGCTGC
721 GACAAGACCC ACACCTGCTC CCCCTGCCCT GCCCCTGAAC TGCTGGCGG ACCCAGCGTG
781 TTCCCTGTTCC CCCCCAAAGCC CAAGGACACC CTGATGATCA GCCGGACCCC CGAAGTGACC
841 TGCCTGGTGG TGGAGCTGTC CCACGAGGAC CCTGAAGTGA AGTTCAATTG GTACGTGGAC
901 GGCCTGGAAG TGCACAAACGC CAAGACCAAG CCCAGAGAGG AACAGTACAA CTCCACCTAC
961 CGGGTGGTGT CCGTGCCTGAC CGTGCCTGAC CAGGACTGGC TGAACGGCAA AGAGTACAAAG
1021 TGCAAGGTCT CCAACAAGGC CCTGCCTGCC CCCATCGAGA AAACCATCAG CAAGGCCAAG
1081 GGCCAGCCCC GCGAGCCTCA GGTGTACACA CTGCCCCCCC GCCGGAAAGA GATGACCAAG
1141 AACCAGGTGT CCCTGACCTG CCTGGTCAAA GGCTTCTACC CCAGCGATAT CGCCGTGGAA
1201 TGGGAGAGCA ATGCCAGCC CGAGAACAAAC TACAAGACCA CCCCCCTGT GCTGGACAGC
1261 GACGGCTCAT TCTTCCCTGTA CAGCAAGCTG ACCGTGGACA AGAGCCGGTG GCAGCAGGGC
1321 ATGCTGTTCA CTTCAAGCTG CTTCAGGAGA GGCTTCTACAA ACCTACTAC CTTCAAGCTG

```

1381 CTGAGCCTGA GCCCCGGAAA GGGCGGTGGC GGATCCGGAG GTGGGGATC TCAGGTGCAG
 1441 CTGGTGCAGT CTGGCGCCGA AGTGAAGAAA CCCGGCTCTA GCGTGAAGGT GTCCTGCAAG
 1501 GCCAGCGCG GCACCTCTC CACCTACGGC ATCAGCTGGG TCCGCCAGGC CCCTGGACAG
 1561 GGCTTGGAAAT GGATGGCGG CATCATCCCC ATCTTCGACA CCGGCAACAG CGCCCGAGAC
 1621 TTCCAGGGCA GAGTGACCAT CACCGCCGAC GAGAGCACCT CCACCGCCTA CATGGAAC
 1681 AGCAGCTGC CGAGCGAGGA CACCCCGTGA TACTACTCGC CCAGAAGCAG CGGGATCTAC
 1741 GACCTGAACC CCAGCCTGAC CGCCTACTAC GACATGGACG TGTGGGGCA GGGCACCATG
 1801 GTCACAGTGT CTAGCGGAGG CGCGGGATCT CGCGGGCGG GAAGTGGCGG GGGAGGATCT
 1861 GCCCAGAGCG TGCTGACCCA GCCCCCTCTC GTGTCTGCCG CCCCTGGCCA GAAAGTGC
 1921 ATCTCTGCA GCAGCAGCAG CAGCAACATC GGCAACAAC TACGTGCTCTG GTATCAGCAG
 1981 CTGCCCCGCA CGCCGCCCTAA GCTGCTGATC TAGGACAACA ACAAGCAGGCC CAGCGGCATC
 2041 CCCGACCGGT TTAGCGGAG CAAGAGCGGG ACTTCTGCTA CACTGGGCAT CACAGGCTG
 2101 CAGACCGGCG ACAGAGGCCGA CTACTACTGC GGCACCTGGG ACAGCAGCCT GAGCGCTTGG
 2161 GTGTTCGGCG GAGGCCACAA GCTGACAGTG CTG

SEQ ID NO: 17 - TNFR2-Fc_varB - amino acid sequence

1 LPAQVAFTPY APEPGSTCRL REYYDQTAQM CCSKCSPGQH AKVFCTKTSD TVCDSCEDST
 61 YTQLWNWVPE CLSCGSRCSS DQVETQACTR EQNRICTRP GWYCALSKQE GCRLCAPLRK
 121 CRPGFGVAPR GTETSDVVCK PCAGPTFSNT TSSTDICRPH QICNVVAIPG NASMDAVCTS
 181 TSPTRSMAPG AVHLPQPVST RSQHTQPTPE PSTATPSTSFL LPMGPSPPAE GSTGDEPKSC
 241 DKIHTCPPCP APELLGGPSV FFLPPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD
 301 GVEVHNATK PREEQYNSTY RVVSLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK
 361 GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTPPPVLD
 421 DGSFFLYSKL TVDKSRWQOQ NVFSCSVMHE ALHNHYTQKS LSLSPKG~~GGG~~ GSGGGGSQVQ
 481 LVQSGAEVKK PGSSVKVSKC ASGGTFSTYQ ISWVRQAPGQ CLEWMGGIIP IFDTGNSAQS
 541 FQGRVTITAD ESTSTAYMEL SSLSRSEDTAV YYCARSSRIY DLNPSLTAYY DMVWQGQGM
 601 VTVSS~~GGGG~~ GGGGGGGGG GGGGSQSVLT QPPVSAAAPG QKVTISCSGS SNNIGNNYVS
 661 WYQOLPGTAP KLLIYDNNKR PSGIPDRFSG SKSGTSATLG ITGLQTGDEA DYYCGIWDS
 721 LSAWVFGCGT KLTVL

SEQ ID NO: 18 - TNFR2-Fc_varB - nucleotide sequence

1 CTGCCCCCCC AGGTGGCCTT TACCCCTTAT GCCCCCGAGC CCGGCAGCAC CTGTCGGCTG
 61 AGAGAGTACT ACGACCCAGAC CGCCCGAGATG TGCTGCAGCA AGTGCCTCTCC TGCCAGCAT
 121 GCCAAGGTGT TCTGCACCAA GACCAGCGAC ACCGTGTGCG ACAGCTGCGA GGACAGCACC
 181 TACACCAGC TGTGGAACGT GGTGCCCGAG TGCCTGAGCT GCGGCAGCAG ATGCAGCAGC
 241 GACCAAGTGG AAACCCAGGC CTGCACCAAGA GAGCAGAACCC GGATCTGCACT CTGTAGACCC
 301 GGCTGGTACT GCGCCCTGAG CAAGCAGGAA GGCTGCAGAC TCTGCCGCCCC TCTGCGGAAG
 361 TGCAGACCCCG GCTTGGCGT GGCAGACCC GGCACCCGAGA CAAGCAGCGT GGTCTGCAAG
 421 CCCTGCGCTC CTGGCACCT CAGCAACACC ACCAGCAGCA CCGACATCTG CAGACCCAC
 481 CAGATCTGCA ACGTGGTGGC CATCCCCGGC AACGCCAGCA TGGAATCCCGT GTGCACCAAG
 541 ACCAGCCCCA CCAGAACTAT GGCCCCCTGGC GCGTGCATC TGCCCCAGCC TGTGTCCACC
 601 AGAACCCAGC ACACCCAGCC CACCCCTGAG CCTAGCACCG CCCCCCTCCAC CAGCTTCTG
 661 CTGCCTATGG GCCCTAGCCC TCCAGCCGAG GGAAGCACAG GCGACGAGCC CAAGAGCTG
 721 GACAAAGACCC ACACCTGTCC CCCCTGCCCT GCCCCTGAAC TGCTGGCGG ACCCAGCGT
 781 TTCTGTTTCC CCCCCAAAGCC CAAGGACACC CTGATGATCA GCUGGACCCCC CGAAGTGC
 841 TCGCTGGTGG TGGAGCTGTC CCACCGAGGAC CCTGAAGTGA AGTCAATTG GTACGTGGAC
 901 GGCGTGGAAAG TGCACAAACGC CAAGACCAAG CCCAGAGAGG AACAGTACAA CTCCACCTAC
 961 CGGGTGGTGT CCGTGCAC CGTGCAC GAGACTGGC TGAAACGCAA AGAGTACAAG
 1021 TGCAAAGTCT CCAACAAGGC CCTGCCTGCC CCCATCGAGA AAACCATCAG CAAGGCCAAG
 1081 GGCCAGCCCC GCGAGCCTCA GGTGTACACA CTGCCCCCCA GCCGGAAAGA GATGACCAAG
 1141 AACCAAGTGT CCCTGACCTG CCTGGTCAAA GGCTTCTACC CCAGCGATAT CGCCGTGGAA
 1201 TGGGAGAGCA ACGGCCAGCC CGAGAACAAAC TACAAGACCA CCCCCCTGT GCTGGACAGC
 1261 GACGGCTCAT TCTTCCCTA CAGCAAGCT ACCGTGGACCA AGAGCCGGTG GCAGCAGGGC
 1321 AATGTCCTCA GCTGTAGCGT GATGACCGAG GCCCTGCACA ACCACTACAC CCAGAACTC
 1381 CTGAGCTGA GCCCCGGAAA CGCGGGAGGAG GGATCCGGAG GTGGGGGATC TCAGGTGCAG
 1441 CTGGTGCAGT CTGGCGCCGA AGTGAAGAAA CCCGGCTCTA GCGTGAAGGT GTCCTGCAAG
 1501 GCCAGCGCG GCACCTCTC CACCTACGGC ATCAGCTGGG TCCGCCAGGC CCCTGGACAG
 1561 TGTCTGGAAT GGATGGCGG CATCATCCCC ATCTTCGACA CCGGCAACAG CGCCCGAGAGC
 1621 TTCCAGGGCA GAGTGACCAT CACCGCCGAC GAGAGCACCT CCACCGCCTA CATGGAAC
 1681 AGCAGCTGC GGAGCGAGGA CACCGCCGTG TACTACTCGC CCAGAAGCAG CGGGATCTAC
 1741 GACCTGAACCC CGACGCTGAC CGCCTACTAC GACATGGACG TGTGGGGCA GGGCACCATG
 1801 GTCACAGTGT CTAGCGGAGG CGGAGGCAGC GGAGGTGGTG GATCTGGTGG CGGAGGAAGT
 1861 GGCGGCGGAG GCTCTCAGAG CGTGCAC GAGCCCCCTT CTGTGCTGTC CGCCCGTGGC
 1921 CAGAAAGTGA CCATCTCTG CAGCGGCAGC AGCAGCAACA TCGGCAACAA CTACGTGTC
 1981 TGGTATCAGC AGCTGCCCGG CACCGCCCTT AAGCTGCTGA TCTACGACAA CAACAAGCGG
 2041 CCCAGCGCA TCCCCGACCGG GTTACGCGG AGCAAGAGCG GGACTTCTGC TACACTGGGC
 2101 ATCACAGGCC TGCAGACCGG CGACGAGGCC GACTACTACT GCGGCACCTG GGACAGCAGC
 2161 CTGAGCGCTT GGGTGTTCGG CTGCGGCACC AAGCTGACAG TGCTG

SEQ ID NO: 19 - (Gly₄Ser)₄ 20 aa linker sequence

1 GGGGSGGGGS GGGGSGGGGS

SEQ ID NO: 20 - ndimab varB - L chain amino acid sequence

1 EIVLTQSPAT LSLSPGERAT LSCRASQSVY SYLAWYQQKP GOAPRLLIYD ASNRAIGIPA
61 RFSGSGSGTDF TLTISSELP EDFAVYYCQQ RSNWPPFTFG PGTKVDIKRT VAAPSVFIFP
121 PSDEQLKSGT ASVVCCLNNF YPREAKVQWK VDNALQSGNS QESVTEQDSK DSTYSLSSL
181 TLSKADYEKH KKYACEVTHQ GLSSPVTKSF NRGE

SEQ ID NO: 21 - ndimab varB - L chain nucleotide sequence

```

1 GAAATCGTGC TGACCCAGAG CCCCAGCCACC CTGTCCTCTGA GCCCTGGCGA GAGAGCCACC
61 CTGAGCTGCA GAGCCAGCCA GAGCGTGTAC TCCTACCTGG CTGGTATCA GCAGAACGCC
121 GGCCAGGCCC CCAGACTGCT GATCTACCGAC GCCAGCAACC GGGCCATCGG CATCCCTGCC
181 AGATTTCTG GCAGCGGCAG CGGCACCGAC TTCACCCCTGA CCATCAGCAG CCTGGAACCC
241 GAGGACTTCG CCGTGTACTA CTGCCAGCAG CGGAGCAACT GGGCCCCCTT CACCTTCGCG
301 CCTGGCACCA AGGTGGACAT CAAGCGTACG GTGGCTGCAC CATCTGTCIT CATCTTCCCG
361 CCATCTGATG AGCAGTTGAA ATCTGGAACCT GCCTCTGTG TTGTCCTGCT GAATAACTTC
421 TATCCCCAGAG AGGCCAAAGT ACAGTGGAAAG GTGGATAACG CCCTCCAATC GGGTAACCTCC
481 CAGGAGACTG CTACAGGACA CGACAGCAAG GACAGCACCT ACAGCCTCATG CAGCACCCCTG
541 ACGCTGAGCA AAGCAGACTA CGAGAAACAC AAAGTCTACG CCTGCGAAGT CACCCATCAG
601 GGCTGAGCT CGCCCGTCAAAAGAGCTTC AACAGGGGAG AGTGT

```

SEQ ID NO: 22 - ndimab varB - H chain amino acid sequence

1 QVQLVESGGG VVQPGRLRL SCAASGFIFS SYAMHWRQA PGNGLEWVAF MSYDGSNKYY
61 ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARDR GISAGGNNYY YGMDVWQGQT
121 TVTIVSSASTK GPSVFPLAPS SKSTSGGTAA LGCLVKDVFYFP EPVTWSWNSG ALTSGVHTFP
181 AVLQSSGLYS LSSVTVPPSS SLGTQTYICN VNHKPSNTKV DKRVEPKSCD KTHTCPPCPA
241 PELLGCPSPV LFPKPKDTRI MISRTPEVTC VVVDVSHEDF EVFKFNWYVVDG VEVHNNAKTP
301 REEQSYNTRY VVSVLTVLHQ DWLNGKEYKVC KVSNAKLAP IEKTISKAKG QPREPVQVYTL
361 PPSREEMTKN QVSLTCLVKG FYPSDIAVEW ESNQOPENNY KTPPPVLDSD GSFFFLYSKLT
421 VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGKGGGG SGGGGSQVQL VQSGAEVKKP
481 GSSVKVSCKA SGGTFSTYGI SWVRQAPGQC LEWMGGIPI FDGTGNSAQSF QGRVTITADE
541 STSTAYMELS SLRSEDTAVY YCARSSRIYD LNPSLTAYYD MDVWVGQGTMV TVSSGGGGSG
601 GGGSGGGGSG GGGSQSVLTQ PPSVSAAPGQ KVTISCGSS SNIGNNYVSW YQQLPGTAPK
661 LLIYDDNNKRP SGIPDRFSGS KSGTSATLGI TGLQTGDEAD YYCGTWDSSL SAWVFGCTK
721 LTVL

SEQ ID NO: 23 - ndimab varB - H chain nucleotide sequence

1	CAGGTGCAGC	TGGTGGAAAG	CGGCGGAGCC	GTGGTGCAGC	CCGGCAGAACG	CCTGAGACTG
61	AGCTGCGCTG	CCAGCGGCTT	CATCTTCAGC	AGCTACGCCA	TGCACTGGGT	CCGCAGGCC
121	CCTGGCAACG	GACTGGAATG	GGTGGCCCTC	ATGAGCTACG	ACGGCAGCAA	CAAGAACGAC
181	GCCGACAGCG	TGAAGGGCCG	GTTCACCAAC	AGCCGGGACA	ACAGCAAGAA	CACCCCTGAC
241	CTCAGATG	ACAGCCTGCG	GGCTGAGGAC	ACCCGGCTGT	ACTACTGCGC	CAGAGACCGA
301	GGCATCAGTG	CTGGGGCA	CTACTACTAC	TACGGCATGG	ACGTGTGGGG	CCAGGGCAC
361	ACCGTGGCCG	TGCTTAGCGC	GTGCAACAG	GGCCCCATCCG	TCTTCCCCCT	GGCACCCCTC
421	TCCAGAGCA	CCTCTGGGGC	CACAGGGCC	CTGGGCTGCC	TGGGCTAAGGA	CTACTTCCCC
481	GAACCGGTG	CGGTGCTCTG	GAACTCAGCC	GCTCTGACCA	GGCGCGTGCA	CACCTTCCCG
541	GCTGCTTAC	AGTCCTCAGG	ACTCTACTCC	CTCAGCAGCG	TGGTGACCGT	GCCCTCCAGC
601	AGCTTGGCA	CCCAGACCTA	CATCTGCAAC	GTGAATCACA	AGCCCAGCAA	CACCAAGGTG
661	GACAAGAGAG	TTGAGCCCA	ATCTTGTGAC	AAAACTCACA	CATGCCCA	GTGCCAGCA
721	CCTGAACCTC	TGGGGGACCC	GTCAGTCTTC	CTCTTCCCCC	AAAACCCAA	GGACACCCCTC
781	ATGATCTCCC	GGACCCCTGA	GGTCACATGC	GTGGTGGTGG	ACGTGAGCCA	CGAACAGCTT
841	GAGGTCAAGT	TCAACTGGTA	CGTGGACGGC	GTGGAGGTGC	ATAATGCCAA	GACAAAGCCG
901	CGGGAGGAGC	ATGACAACAG	CACGTCACGT	GTGGTCAGGC	TCTCCTACCGT	CCTGCACCG
961	GACTGGCTGA	ATGGCAAGGA	GTACAAGTGC	AAGGTCTCCA	ACAAAGCCCT	CCCAAGCCCC
1021	ATCGAGAAAA	CCATCTCAA	AGCCAAAGGG	CAGCCCCGAG	AACCACAGGT	CTACACCCCTG
1081	CCCCCATCCC	GGGAGGAGAT	GACCAAGAAC	CAGGTCAGCC	TGACCTGCCT	GGTCAAAGGC
1141	TTCTATCCCA	GCGACATCGC	CGTGGAGTGG	GAGAGCAATG	GGCAGGCCGA	GAACAACTAC
1201	AAGACCACGC	CTCCCGTGT	GGACTCCGAC	GGCTCCTTCT	TCCTCTATAG	CAAGCTCAC
1261	GTGGACAAGA	GCAGGGTGGCA	GCAGGGGAAC	GTCTCTCAT	GCTCCGTGAT	GCATGAGGCT
1321	CTGCACAACC	ACTACACGC	GAAGAGCCTC	TCCCTGTCTC	CGGGTAAAGG	CGGAGGGGGA
1381	TCCGGGGAG	GGGGCTCTCA	GGTGCAGCTG	GTGCACTGCTG	GGCCCGAAGT	GAAGAACCC
1441	GGCTCTAGCG	TGAAGGTGTC	CTGCAAGGCC	AGCGCGGCCA	CCTTCTCCAC	CTACGGCATC
1501	AGCTGGGTCC	GCCAGCCCCC	TGGACAGTGT	CTGGAAATGGA	TGGCGGGCAT	CATCCCCATC
1561	TTGCACACCG	GCAACAGCGC	CCAGAGCTTC	CAGGGCAGAG	TGACCATCAC	CGCCGACGAG
1621	AGCACCTCCA	CCGCCTACAT	GGAAACTGAGC	AGCCTGCGGA	GGCAGGACAC	CGCCGTGAC
1681	TACTCGGCCA	GAAGCAGCGC	GATCTACGAC	CTGAACCCCCA	GCTGACCGGC	CTACTACGAC
1741	ATGGACGTGT	GGGGCCAGGG	CACCATGGTC	ACAGTGTCTA	GGGGAGGCGG	AGGCAGCGGA
1801	GGTGGTGGAT	CTGGTGGCGG	AGGAAGTGGC	GGCGGAGGCT	CTCAGAGCGT	GCTGACCCAG
1861	CCCCCTTCTG	TGTCCTGCCG	CCCTGGCCAG	AAAGTGACCA	TCTCCTGCAG	CGGCAGCAGC
1921	AGCAACATCG	GCAACAACTA	CGTGTCTTGG	TATCAGCAGC	TGCCCCGGC	CGCCCTTAAG
1981	CTCTGTATCT	ACGAAACAA	CAAGCGGCC	AGCGGCATCC	CCGACCGGGT	TAGCCGGCAGC
2041	AAAGCGGGGA	CTTCTGTAC	ACTGGGCATC	ACAGGCCCTGC	AGACCGGGC	CGAGGCCGAC
2101	TACTACTGCG	GCACCTGGGA	CAGCAGCTG	AGCGCTTGGG	TGTCGGCTG	CGGCACCAAG
2161	GTGAGCTCG	TG				

2161 CIGACAGIGC TG

SEQ ID NO: 24 - NGF-NG VH amino acid sequence

QVQLVQSGAEVKKPGSSVKVSCKASGGTFWFGAFTWVRQAPGQGLEWMGGIIPIFGLTNLAQNFQGRVTITADESTST
VYMELESSLRSEDTAVYYCARSSRIYDLDNPSLTAYYDMDVWGQGTMVTVSS

SEQ ID NO: 25 - NGF-NG VH nucleotide sequence

caggtgcagc	tgggtcagtc	tggggctgag	gtgaagaagc	ctgggtcctc	ggtaaggtc	60
tccctgcaagg	cctctggagg	cacccctctgg	ttccggcggt	tcacctgggt	gcgcacaggcc	120
cctggacaag	gacttgagt	gatgggaggg	attatccata	tcttcgggtt	gacgaaacttg	180
gcacacagaact	tcacggccag	agtcaacatt	accggccacg	aatccacag	cacagtctac	240
atggagctga	gcagcttgag	atctgaagac	acggccgtat	attatgtgc	acgttcaagt	300
cgtatctacg	atctgaaccc	gtccctgacc	gcctactacg	atatggatgt	ctggggccag	360
gggacaatgg	tcaccgtc	tgat				384

SEQ ID NO: 26 - NGF-NG VL amino acid sequence

QSVLTQPPSVAAAPGQKVТИSCGSSSDIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSSLSAWVFGCGTKLTVL

SEQ ID NO: 27 - NGF-NG VL nucleotide sequence

cagtctgtgc	tgactcagcc	ccatcagtg	tctcgccccc	caggacagaa	ggtcaccatc	60
tcctgtctg	gaaggcagtc	cgacattggg	aataattatg	tatcgtggta	ccagcagtc	120
ccaggaacag	cccccaact	cctcatttat	gacaataata	acgcacccctc	aggattct	180
gaccgattct	ctggctccaa	gtctggcacg	tcagccaccc	tgggcatcac	cggaactccag	240
actggggacg	aggccgatta	ttactgcgga	acatgggata	gcagcctgag	tgcttggtg	300
ttcggccggag	ggaccaagct	gaccgtcata				330

SEQ ID NO: 28 - ndimab VH amino acid sequence

1 QVQLVESGGG VVQPGRSIRL SCAASGFIFS SYAMHWVRQA PGNGLEWVAF MSYDGSNKKY
61 ADSVKRFTI SRDNSKNTLY LQMNLSRAED TAVYYCARDR GISAGGNYYY YGMDVWGQGT
121 TTVVSS

SEQ ID NO: 29 - ndimab VL amino acid sequence

1 EIVLTQSPAT LSLSPGERAT LSCRASQSVY SYLAWYQQKP GQAPRLLIYD ASNRAIGIPA
61 RFSGSGSGTD FTLTISSELP EDFAVYYCQQ RSNWPPFTFG PGTKVDIK

SEQ ID NO: 30 - 1126F1 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDANRQAVPYYDMDVWGQGTMVTVSS

SEQ ID NO: 31 - 1126F1 VL amino acid sequence

QAVLTQPSVSTPPGQMVTISCSGSSSDIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 32 - 1126G5 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDFTGLAPYYDMDVWGQGTMVTVSS

SEQ ID NO: 33 - 1126G5 VL amino acid sequence

QAVLTQPSVSTPPGQKVТИSCGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPPGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 34 - 1126H5 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDAGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDHHIQKGGYYDMDVWGQGTMVTVSS

SEQ ID NO: 35 - 1126H5 VL amino acid sequence

QAVLTQPSVSTPPGQKVТИSCGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 36 - 1127D9 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDHTIAYYD

SEQ ID NO: 37 - 1127D9 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCSGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLAWVFGGGTTLTVL

SEQ ID NO: 38 - 1127F9 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFFQGRVTITADESTST
AYMKVSSLRSDDTAVYYCASSSRIYDIPGMRPYYDMDVWGGTMTVSS

SEQ ID NO: 39 - 1127F9 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCSGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLAWVFGGGTTLTVL

SEQ ID NO: 40 - 1131D7 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDFNSSLIAYYDMDVWGGTMTVSS

SEQ ID NO: 41 - 1131D7 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCSGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDETDYYCGTWDSLAWVFCGTTLTVL

SEQ ID NO: 42 - 1131H2 VH amino acid sequence

EVQLVQSGAEVKKPGSTVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDLNPSLTAYYDMDVWGGTMTVSS

SEQ ID NO: 43 - 1131H2 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCSGTSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLAWVFGGGTTLTVL

SEQ ID NO: 44 - 132A9 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFGTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDFEPSLIYYYDMDVWGGTMTVSS

SEQ ID NO: 45 - 132A9 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCSGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLAWVFGGGTTLTVL

SEQ ID NO: 46 - 1132H9 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDLNPSLTAYYDMDVWGGTMTVSS

SEQ ID NO: 47 - 1132H9 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCSGSSSDIGNNYVSWYQQLPGTAPKLLIYDNNKRPTGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLAWVFGGGTTLTVL

SEQ ID NO: 48 - 1133C11 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDLNPSLTAYYDMDVWGGTMTVSS

SEQ ID NO: 49 - 1133C11 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCSGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLAWVFGGGTTLTVL

SEQ ID NO: 50 - 1134D9 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFFQGRVTAITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDLNPSLTAYYDMDVWGGTMTVSS

SEQ ID NO: 51 - 1134D9 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCSGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLAWVFGGGTTLTVL

SEQ ID NO: 52 - 1145D1 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDLNPSLTAYYDMDVWGGTMTVSS

AYMEVSSLRSDDTAVYYCASSSR1YDFRFLYSTYDMDVWGQG1MVTVSS

SEQ ID NO: 53 - 1145D1 VL amino acid sequence

QAVLTQPSSVTPPGQKVТИSCGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGIA
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 54 - 1146D7 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSR1YDLNPSLTAYYDMDVWGQGTMVTVSS

SEQ ID NO: 55 - 1146D7 VL amino acid sequence

QAVLTQPSSVTPPGQEVTKVTCGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 56 - 1147D2 VH amino acid sequence

EVQLVQSGAEVKKPGSSVRISCKASGGTFSTYGVSWVRQAPGQGLEWIGGIIPFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSR1YDLNPSLTAYYDMDVWGQGTMVTVSS

SEQ ID NO: 57 - 1147D2 VL amino acid sequence

QAVLTQPSSVTPPGQKVTVSCGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 58 - 1147G9 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSR1YDLNPSLTAYYDMDVWGQGTMVTVSS

SEQ ID NO: 59 - 1147G9 VL amino acid sequence

QAVLTQPSSVTPPGQKVTVSCGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 60 - 1150F1 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPFDTGNSAQSFFQDRVTITADESTST
AYMEVGSLSRSDDTAVYYCASSSR1YDLNPSLTAYYDMDVWGQGTMVTVSS

SEQ ID NO: 61 - 1150F1 VL amino acid sequence

QAVLTQPSSVTPPGQKVTVSCGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 62 - 1152H5 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSR1YDMISSLQPYDMDVWGQGTMVTVSS

SEQ ID NO: 63 - 1152H5 VL amino acid sequence

QAVLTQPSSVTPPGQKATISCGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 64 - 1155H1 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSR1YDFHLANKGYYDMDVWGQGTMVTVSS

SEQ ID NO: 65 - 1155H1 VL amino acid sequence

QAVLTQPSSVTPPGQKATISCGSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLDITG
LQTGDEADYYCGTWDSSLSAWVFGGGTAKLTVL

SEQ ID NO: 66 - 1158A1 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYGISWVRQAPGQGLEWIGGIIPFDTGNSAQSFFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSR1YDHNNHVGGYYDMDVWGQGTMVTVSS

SEQ ID NO: 67 - 1158A1 VL amino acid sequence

QAVLTQPSSVTPPGQKVTVSCGSSNIGNNYASWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDGSLSAWVFGGGTAKLTVL

SEQ ID NO: 68 - 1160E3 VH amino acid sequence

EVQLVQSGAEVKKPGSSAKVSKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDLNPSLTAYYDMDVWGQGTMVTVSS

SEQ ID NO: 69 - 1160E3 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCSGSNSIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLSAWVFGGGTAKLTV

SEQ ID NO: 70 - 1165D4 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDLNPSLTAYYDMDVWGQGTMVTVSS

SEQ ID NO: 71 - 1165D4 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLSAWVFGGGTAKLTV

SEQ ID NO: 72 - 1175H8 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDLNPSLTAYYDMDVWGQGTMVTVSS

SEQ ID NO: 73 - 1175H8 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLSAWVFGGGTAKLTV

SEQ ID NO: 74 - 1211G10 VH amino acid sequence

EVQLVQSGAEVRKGSSVKVSKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDMVSTLIPYYDMDVWGQGTMVTVSS

SEQ ID NO: 75 - 1211G10 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLSAWVFGGGTAKLTV

SEQ ID NO: 76 - 1214A1 VH amino acid sequence

EVQLVQSGAEVKKPGSSVRVSKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDAHLQAYYDMDVWGQGTMVTVSS

SEQ ID NO: 77 - 1214A1 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTRDSLAWVFGGGTAKLTV

SEQ ID NO: 78 - 1214D10 VH amino acid sequence

EVOLVQSGAEAKKGSSVKVSKASGGTFSTYGISWVRQAPGRGLEWIGGIIPIFDTGNSAQSFQGRVTAITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDAHLNHHGYYDMDVWGQGTMVTVSS

SEQ ID NO: 79 - 1214D10 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQAGDEADYYCGTWDSLAWVFGGGTAKLTV

SEQ ID NO: 80 - 1218H5 VH amino acid sequence

EVQLVQSGAVVKKPGSSVKVSKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGSSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDLNPSLTAYYDMDVWGQGTMVTVSS

SEQ ID NO: 81 - 1218H5 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLAWVFGGGTAKLTV

SEQ ID NO: 82 - 1230H7 VH amino acid sequence

EVQLVQSGAEVKKPGSSVKVSKASGGTFSTYGISWVRQAPGQGLEWIGGIIPIFDTGNSAQSFQGRVTITADESTST
AYMEVSSLRSDDTAVYYCASSSRIYDFNSALISYYDMDVWGQGTMVTVSS

SEQ ID NO: 83 - 1230H7 VL amino acid sequence

QAVLTQPSSVSTPPGQKVТИSCGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITG
LQTGDEADYYCGTWDSLAWVFGGGTAKLTV

SEQ ID NO: 84 - 1083H4 VH amino acid sequence

QMQLVQSGAEVKKTGSSVKVSCKASGYTFAYHYLHWVRQAPGQGLEWMGGIIPIFGTTNYAQRFQDRVTITADESTST
AYMELSSLRSEDTAVYYCASADYVWGSYRPDWYFDLWGRGTMVTVSS

SEQ ID NO: 85 - 1083H4 VL amino acid sequence

QSVLTQPPSASGTPGQRVTISCGSSSNIGSNTVNWYQRLPGAAPQQLIYNNDQRPSGIPDRFSGSKSGTSGSLVISG
LQSEDEADYYCASWDDSLNGRVFGCGTKLTVAL

SEQ ID NO: 86 - 1227H8 VH amino acid sequence

QMQLVQSGAEVKKTGSSVKVSCKASGHTFAYHYLHWVRQAPGQGLEWMGGIIPIFGTTNYAQRFQDRVTITADESTST
AYMELSSLRSEDTAVYYCASADYAWESYQPPQINGVWGRGTMVTVSS

SEQ ID NO: 87 - 1227H8 VL amino acid sequence

QSVLTQPPSVAAPGQKVITICSGSTSIGNNYVSWYQQHPGKAPKLMYDVSKRPSGVPDFSGSKSGNSASLDISG
LQSEDEADYYCAAWDDSLSEFFGTGKLTVAL

SEQ ID NO: 88 - NGF-NG HCDR1

FGAFT

SEQ ID NO: 89 - NGF-NG HCDR2

GIPIFGLTNLAQNQFQG

SEQ ID NO: 90 - NGF-NG HCDR3

SSRIYDLNPSLTAYYDMDV

SEQ ID NO: 91 - NGF-NG LCDR1

SGSSSDIGNNYVS

SEQ ID NO: 92 - NGF-NG LCDR2

DNNKRPS

SEQ ID NO: 93 - NGF-NG LCDR3

GTWDSSLSSAWW

SEQ ID NO: 94 - MEDI-578 VH amino acid sequence with G->C

QVQLVQSGAE VKKPGSSVKV SCKASGGTFS TYGISWVRQA PGQCLEWMGG IIPIFDTGNS
AQSFQGRVTI TADESTSTAY MELSSLRSED TAVYYCARSS RIYDLNPSLT AYYMDWVGQ
GTMVTVSS

SEQ ID NO: 95 - MEDI-578 VL amino acid sequence with G->C

QSVLTQPPSV SAAPGQKVITI SCSSGSSNIG NNYVSWYQQQL PGTAPKLLIY DNNKRPSGIP
DRFSGSKSGT SATLGITGLQ TGDEADYYCG TWDSLSSAWV FGCCTGKLTVAL

SEQ ID NO: 96 - 1230D8 VH amino acid sequence

QMQLVQSGAEVKKTGSSVKVSCKASGYTFPYHYLHWVRQAPGQGLEWMGGIIPIFGTTNYAQRFQDRVTITADESTST
AYMELSSLRSEDTAVYYCASADYVWESYHPATSLSLWGRGTMVTVSS

SEQ ID NO: 97 - 1230D8 VL amino acid sequence

QSVLTQPPSVAAPGQKVITISCPGSTSIGNNYVSWYQQRPKGAKLMIYDVSKRPSGVPDFSGSKSGNSASLDISE
LQSEDEADYYCAAWDDSLSEFLFGTGTVAL

SEQ ID NO: 98

GGGGSGGGGS

SEQ ID NO: 99 - TNFR2-Fc_varB - codon optimized nucleotide sequence

1 CTGCCCGCCC AGGTGGCCTT TACCCCTTAT GCTCCTGAGC CCGGCTCTAC CTGCCGGCTG
61 AGAGAGTACT ACGACCAGAC CGCCCAGATG TGCTGCTCCA AGTGCCTCTCC TGGCCAGCAC

```

121      GCCAAGGTGT TCTGCACCAA GACCTCCGAT ACCGTGTGCG ACTCCTGCAG GGACTCCACC
181      TAGACCCAGC TGTGGAACIG GGTGCCGAG TGCCCTGCCT GCGGCTCCAG ATGTTCCCTCC
241      GACCAGGTGG AAACCCAGGC CTGCACCCAGA GAGCAGAACCG GGATCTGCAC CTGTCGGCCT
301      GCCTGGTACT GCGCCCTGTC TAAGCAGGAA GGCTGCAGAC TGTCGGCCCC TCTGCCGAAG
361      TGTAGACCTG GCTTTGGCGT GGCCAGACCC GGCACCGAGA CATCTGATGT CGTGTGCAAG
421      CCTTGCGCC CTGGCACCTT CTCCAACACC ACCTCCCTCCA CGCACATCTG CGGGCCTCAC
481      CAGATCTGCA ACGTGGTGGC CATCCCTGGC AACGCCTCTA TGGACGCCGT GTGCACCTCT
541      ACCTCCCCCA CCAGAAGTAT GGCCCCCTGGC GCTGTGCATC TGCCCGAGCC TGTGTCTACC
601      AGATCCCAGC ACACCCAGCC CACCCCTCAG CCTCTCTACCG CCCTCTAC CAGCTTCCCTG
661      CTGCTATGG GCCCTAGCCC TCCCTGCTGAG GGATCTACAG GCGACGAGCC CAAGTCTGC
721      GACAAGACCCC ACACCTCTC CCCTTGTCTC GCCCCCTGAAC TGCTGGGCCGG ACCTTCCCTG
781      TTCTGTTC CCCCCAAGGCC CAAGGACACC CTGATGATCA GCGCGACCCCC TGAAGTGACC
841      TCGGTGGTGG TGGAIGTGTG CCACGAGGAT CCCGAAGTGA AGTTCAATTG GTACGTGGAC
901      GCGGTGAAAG TGCAACACGC CAAGACCAAG CCCAGAGAGG AACAGTACAA CTCCACCTAC
961      CGGGTGGTGT CGTGCTGAC CGTGCTGCAC CAGGATTGGC TGAACGGCAA AGAGTACAAG
1021     TGCAGGGTGT CCAACAAGGC CCTGCCCTGCC CCCATCGAAA AGACCATCTC CAAGGCCAAG
1081     GCCCAGCCCC GGGAAACCCC GGTGTACACA CTGCCCCCTA GCGGGGAAGA GATGACCAAG
1141     AACCAAGGTGT CCCTGACCTC TCTCGTGAAG GGCTCTTACCC CCTCCGATAT CGCCGTGGAA
1201     TGGGAGTCCA ACGGCCAGCC TGAGAACAAAC TACAAGACCA CCCCCCCTGT GCTGGACTCC
1261     GACGGCTCAT TCTTCTGTG CTCCAAGCTG ACAGTGGACA AGTCCCCGGTGCAGCAGGGC
1321     AACGTGTTCT CCTGCTCCGT GATGCACGAG GCCCCCTGCACA ACCACTACAC CCAGAAAGTCC
1381     CTGTCCCTGA GCCCTGGAAA AGGCGGGCGA GGATCTGGCG GAGGCGGATC TCAGGTGCAG

1441     CTGGTGCAGT CTGGCGCTGA AGTGAAGAAA CCCGGCTCCT CCGTGAAGGT GTCCCTGCAG
1501     GCTCTGGCG GCACCTTCCTC TACCTACGGC ATCTCCCTGGG TCGCACAGGC CCCTGGCCAG
1561     TGCTTGAAT GGATGGCGG CATCATCCCC ATCTTCGACA CCGGCAACTC CGCCCGAGAGC
1621     TTCCAGGGCA GAGTGAACCAT CACCGCCGAC GAGTCTACCT CCACCGCCTA CATGGAACCTG
1681     TCCCTCCCTGC GGAGCGAGGA CACCGCCGTG TACTACTGCG CCCGGTCTCTC TCGGATCTAC
1741     GACCTGAACC CTTCCCTGAC CGCCTACTAC GACATGGACG TGTGGGGCCA GGGCACAAATG
1801     GTCACCGTGT CATCTGGTGG TGGCGGCCTCT GGTGGCGGAG GAAGTGGGGGG AGGGGGTTCT
1861     GGGGGGGGAG GATCTCAGTC TGTGCTGACC CAGCTCTCTT CCGTGTCTGC TGCCCCAGGGC
1921     CAGAAAGTGA CAATCTCCCTG CAGCGGCCTCC AGCTCCAACA TCGGCAACAA CTACGTGTCC
1981     TGGTATCAGC AGCTGCCCGG CACCGCTCCC AAACCTGCTGA TCTACGATAA CAACAAGCGG
2041     CCCTCCGGCA TCCCCGACAG ATTCTCCGGC TCTAAGTCCG GCACCTCTGC CACCCCTGGC
2101     ATCACCGGAC TGCAAGACAGG CGACGAGGCC GACTACTACT GTGGCACCTG GGACTCCTCC
2161     CTGTCCCGCTT GGGTGTTCGG CTGGCGCACC AAACCTGACTG TGCTG

```

[0213] The disclosure is not to be limited in scope by the specific aspects described which are intended as single illustrations of individual aspects of the disclosure, and any compositions or methods that are functionally equivalent are within the scope of this disclosure. Indeed, various modifications of the disclosure in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

SEQUENCE LISTING

[0214]

<110> MEDIMMUNE LIMITED

<120> COMPOUNDS AND METHODS FOR TREATING PAIN

<130> 110421-0054-WO1

<140>

<141>

<150> 61/934,828

<151> 2014-02-02

<160> 99

<170> PatentIn version 3.5

<210> 1

<211> 241

<212> PRT

<213> Homo sapiens

<400> 1

Met Ser Met Leu Phe Tyr Thr Leu Ile Thr Ala Phe Leu Ile Gly Ile
1 5 10 15

Gln Ala Glu Pro His Ser Glu Ser Asn Val Pro Ala Gly His Thr Ile
20 25 30

Pro Gln Ala His Trp Thr Lys Leu Gln His Ser Leu Asp Thr Ala Leu
35 40 45

Arg Arg Ala Arg Ser Ala Pro Ala Ala Ile Ala Ala Arg Val Ala
50 55 60

Gly Gln Thr Arg Asn Ile Thr Val Asp Pro Arg Leu Phe Lys Lys Arg
65 70 75 80

Arg Leu Arg Ser Pro Arg Val Leu Phe Ser Thr Gln Pro Pro Arg Glu
85 90 95

Ala Ala Asp Thr Gln Asp Leu Asp Phe Glu Val Gly Gly Ala Ala Pro
100 105 110

Phe Asn Arg Thr His Arg Ser Lys Arg Ser Ser Ser His Pro Ile Phe
115 120 125

His Arg Gly Glu Phe Ser Val Cys Asp Ser Val Ser Val Trp Val Gly
130 135 140

Asp Lys Thr Thr Ala Thr Asp Ile Lys Gly Lys Glu Val Met Val Leu
145 150 155 160

Gly Glu Val Asn Ile Asn Asn Ser Val Phe Lys Gln Tyr Phe Phe Glu
165 170 175

Thr Lys Cys Arg Asp Pro Asn Pro Val Asp Ser Gly Cys Arg Gly Ile
180 185 190

Asp Ser Lys His Trp Asn Ser Tyr Cys Thr Thr His Thr Phe Val
195 200 205

Lys Ala Leu Thr Met Asp Gly Lys Gln Ala Ala Trp Arg Phe Ile Arg
210 215 220

Ile Asp Thr Ala Cys Val Cys Val Leu Ser Arg Lys Ala Val Arg Arg
 225 230 235 240

Ala

<210> 2

<211> 233

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Thr Glu Ser Met Ile Arg Asp Val Glu Leu Ala Glu Ala
 1 5 10 15

Leu Pro Lys Lys Thr Gly Gly Pro Gln Gly Ser Arg Arg Cys Leu Phe
 20 25 30

Leu Ser Leu Phe Ser Phe Leu Ile Val Ala Gly Ala Thr Thr Leu Phe
 35 40 45

Cys Leu Leu His Phe Gly Val Ile Gly Pro Gln Arg Glu Glu Phe Pro
 50 55 60

Arg Asp Leu Ser Leu Ile Ser Pro Leu Ala Gln Ala Val Arg Ser Ser
 65 70 75 80

Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val Val Ala Asn Pro
 85 90 95

Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg Ala Asn Ala Leu
 100 105 110

Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu Val Val Pro Ser
 115 120 125

Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe Lys Gly Gln Gly
 130 135 140

Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile Ser Arg Ile Ala
 145 150 155 160

Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser Ala Ile Lys Ser Pro
 165 170 175

Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu
 180 185 190

Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu
 195 200 205

Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe Ala Glu Ser Gly
 210 215 220

Gln Val Tyr Phe Gly Ile Ile Ala Leu
 225 230

<200>

<200>

<210> 3
<211> 128
<212> PRT
<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 3

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 4

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 4

Thr Tyr Gly Ile Ser
1 5

<210> 5

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 5

Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe Gln
1 5 10 15

Gly

<210> 6

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 6

Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr Tyr Asp
1 5 10 15

Met Asp Val

<210> 7

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 7

Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 8

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 8

Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn Tyr Val Ser
1 5 10

<210> 9

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 9

Asp Asn Asn Lys Arg Pro Ser
1 5

<210> 10

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 10

Gly Thr Trp Asp Ser Ser Leu Ser Ala Trp Val
1 5 10

<210> 11

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 11

Ser	Ser	Arg	Ile	Tyr	Asp	Phe	Asn	Ser	Ala	Leu	Ile	Ser	Tyr	Tyr	Asp
1				5					10				15		

Met Asp Val

<210> 12

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 12

Ser	Ser	Arg	Ile	Tyr	Asp	Met	Ile	Ser	Ser	Leu	Gln	Pro	Tyr	Tyr	Asp
1				5				10				15			

Met Asp Val

<210> 13

<211> 467

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 13

Leu	Pro	Ala	Gln	Val	Ala	Phe	Thr	Pro	Tyr	Ala	Pro	Glu	Pro	Gly	Ser
1				5				10				15			

Thr	Cys	Arg	Leu	Arg	Glu	Tyr	Tyr	Asp	Gln	Thr	Ala	Gln	Met	Cys	Cys
			20		25							30			

Ser	Lys	Cys	Ser	Pro	Gly	Gln	His	Ala	Lys	Val	Phe	Cys	Thr	Lys	Thr
	35				40							45			

Ser	Asp	Thr	Val	Cys	Asp	Ser	Cys	Glu	Asp	Ser	Thr	Tyr	Thr	Gln	Leu
	50			55							60				

Trp	Asn	Trp	Val	Pro	Glu	Cys	Leu	Ser	Cys	Gly	Ser	Arg	Cys	Ser	Ser
65				70				75				80			

Asp	Gln	Val	Glu	Thr	Gln	Ala	Cys	Thr	Arg	Glu	Gln	Asn	Arg	Ile	Cys
				85				90				95			

Thr	Cys	Arg	Pro	Gly	Trp	Tyr	Cys	Ala	Leu	Ser	Lys	Gln	Glu	Gly	Cys
			100			105						110			

Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala
 115 120 125

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro
 130 135 140

Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His
 145 150 155 160

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala
 165 170 175

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val
 180 185 190

His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr
 195 200 205

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly
 210 215 220

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Glu Pro Lys Ser Cys
 225 230 235 240

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
 245 250 255

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
 260 265 270

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
 275 280 285

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
 290 295 300

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
 305 310 315 320

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
 325 330 335

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
 340 345 350

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
 355 360 365

Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
 370 375 380

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
 385 390 395 400

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro

405 410 415

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
420 425 430

Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
435 440 445

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
450 455 460

Pro Gly Lys
465

<210> 14

<211> 731

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 14

Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser
1 5 10 15

Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys
20 25 30

Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr
 35 40 45

Ser	Asp	Thr	Val	Cys	Asp	Ser	Cys	Glu	Asp	Ser	Thr	Tyr	Thr	Gln	Leu
50						55					60				

Trp	Asn	Trp	Val	Pro	Glu	Cys	Leu	Ser	Cys	Gly	Ser	Arg	Cys	Ser	Ser
65					70					75					80

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys
85 90 95

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys
100 105 110

Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala
115 120 125

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro
130 135 140

Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His
145 150 155 160

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala
165 170 175

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val
180 185 190

His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr
195 200 205

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly
210 215 220

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Glu Pro Lys Ser Cys
225 230 235 240

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
245 250 255

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
260 265 270

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
275 280 285

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
290 295 300

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
305 310 315 320

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
325 330 335

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
340 345 350

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
355 360 365

Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
370 375 380

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
385 390 395 400

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
405 410 415

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
420 425 430

Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
435 440 445

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser

450	455	460
Pro Gly Lys Gly Gly Gly Ser Gly Gly Gly Ser Gln Val Gln		
465	470	475
480		
Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys		
485	490	495
Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr Gly Ile Ser		
500	505	510
Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Gly Ile		
515	520	525
Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe Gln Gly Arg		
530	535	540
Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met Glu Leu		
545	550	555
560		
Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser		
565	570	575
Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr Tyr Asp Met		
580	585	590
Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Gly Gly		
595	600	605
Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Ala Gln Ser Val		
610	615	620
Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln Lys Val Thr		
625	630	635
640		
Ile Ser Cys Ser Gly Ser Ser Asn Ile Gly Asn Asn Tyr Val Ser		
645	650	655
Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Asp		
660	665	670
Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys		
675	680	685
Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln Thr Gly Asp		
690	695	700
Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu Ser Ala Trp		
705	710	715
720		
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu		
725	730	

<210> 15

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 15

Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Ser
1				5				10				15

<210> 16

<211> 2193

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 16

ctggccgccc	aggtgtgcctt	tacccttat	gcccccgagc	ccggcagcac	ctgtcggt	60
agagagta	ct	acgaccagac	cgcccagatg	tgctgcagca	agtgc	120
gccaagggt	gt	tctgcaccaa	gaccagcgac	accgtgtgcg	acagctgcga	180
ta	ccccc	tg	ttggaaactg	ggtgc	ccgag	240
gaccagg	tt	gg	ttggc	ttgg	atgcagc	300
ggctgg	tttt	gg	ttttggcgt	ggcc	atgcac	360
ttgcagac	cc	gg	ttttggcgt	ggcc	atgcacgt	420
ccctgc	cc	gg	ccctgc	cc	atgcacgt	480
cagatctg	cc	gg	ccctgc	cc	atgcacgt	540
actagcccc	cc	gg	ccctgc	cc	atgcacgt	600
agaaggcc	cc	gg	ccctgc	cc	atgcacgt	660
ctgcctatgg	cc	gg	ccctgc	cc	atgcacgt	720
gacaaggac	cc	gg	ccctgc	cc	atgcacgt	780
ttccctgtcc	cc	gg	ccctgc	cc	atgcacgt	840
tgctgttgg	cc	gg	ccctgc	cc	atgcacgt	900
ggcgttgg	cc	gg	ccctgc	cc	atgcacgt	960
cgggtgg	cc	gg	ccctgc	cc	atgcacgt	1020
tgcaagg	cc	gg	ccctgc	cc	atgcacgt	1080
ggccagcccc	cc	gg	ccctgc	cc	atgcacgt	1140
aaccagg	cc	gg	ccctgc	cc	atgcacgt	1200
tgggagag	cc	gg	ccctgc	cc	atgcacgt	1260
gacggctcat	cc	gg	ccctgc	cc	atgcacgt	1320
aacgtgttca	cc	gg	ccctgc	cc	atgcacgt	1380

ctgagccctga gccccggaaa gggcggtggc ggatccggag gtgggggatc tcaggtgcag	1440
ctggcgcagt ctggcgccga agtgaagaaa cccggctcta gcgtgaaggt gtcctgcaag	1500
gccagcgcg gcaccctctc caccctacggc atcagctggg tccgccaggc ccctggacag	1560
ggcctggaat ggatgggcgg catcatcccc atcttcgaca cccgcaacag cggccagagc	1620
ttccaggcga gagtgaccat caccggccgac gagagcacct ccaccgccta catggaaactg	1680
agcagcctgc ggagcgagga caccggcggt tactactgcg ccagaagcag cggatctac	1740
gacctgaacc ccagcctgac cgcctactac gacatggacg tgtggggcca gggcaccatg	1800
gtcacagtgt ctacgggagg cggcgatct ggccggcgag gaagtggcg gggaggatct	1860
gccccagacg tgctgaccca gccccattct gtgtctgcgg cccctggcca gaaagtgacc	1920
atatccctgca gcggcagcag cagcaacatc ggcaacaact acgtgtcctg gtatcagcag	1980
ctgccccggca ccccccctaa gctgctgatc tacgacaaca acaagggcc cagggcattc	2040
ccccgaccggc tttagcgccag caagagcggt acttctgcata cactggccat cacaggcctg	2100
cagaccggcg acgaggccga ctactactgc ggcacctggg acagcagcct gagcgcttgg	2160
gtgttcqgqcg qagggcaccaa qctqacactg ctg	2193

<210> 17

<211> 735

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 17

Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser
1 5 10 15

Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys
 20 25 30

Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr

35 40 45

Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu
 50 55 60

Trp	Asn	Trp	Val	Pro	Glu	Cys	Leu	Ser	Cys	Gly	Ser	Arg	Cys	Ser	Ser
65					70					75					80

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys
85 90 95

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys
 100 105 110

Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala
115 120 125

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro
130 135 140

Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His
145 150 155 160

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala
165 170 175

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val
180 185 190

His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr
195 200 205

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly
210 215 220

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Glu Pro Lys Ser Cys
225 230 235 240

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
245 250 255

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
260 265 270

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
275 280 285

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
290 295 300

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
305 310 315 320

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
325 330 335

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
340 345 350

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
355 360 365

Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
370 375 380

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
385 390 395 400

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
405 410 415

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
 420 425 430

Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
 435 440 445

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
 450 455 460

Pro Gly Lys Gly Gly Ser Gly Gly Ser Gln Val Gln
 465 470 475 480

Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys
 485 490 495

Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr Gly Ile Ser
 500 505 510

Trp Val Arg Gln Ala Pro Gly Gln Cys Leu Glu Trp Met Gly Gly Ile
 515 520 525

Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe Gln Gly Arg
 530 535 540

Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met Glu Leu
 545 550 555 560

Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser
 565 570 575

Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr Tyr Asp Met
 580 585 590

Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Gly Gly Gly
 595 600 605

Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
 610 615 620

Ser Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly
 625 630 635 640

Gln Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn
 645 650 655

Asn Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu
 660 665 670

Leu Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe
 675 680 685

Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu
 690 695 700

Gln Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser
 705 710 715 720

Leu Ser Ala Trp Val Phe Gly Cys Gly Thr Lys Leu Thr Val Leu
 725 730 735

<210> 18

<211> 2205

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 18

ctgcccggcc	aggtgtgcctt	taccgccttat	gcccccgagc	ccggcagcac	ctgtcggtcg	60
agagagtact	acgaccagac	cggccagatg	tgctgcagca	agtgcctc	tggccagcat	120
gccaagggtgt	tctgcaccaa	gaccagcgac	accgtgtcg	acagctgcga	ggacagcacc	180
tacacccagc	tgtggaaactg	ggtgcccgag	tgcctgagct	gcccgcagcag	atgcagcagc	240
gaccaggtgg	aaacccaggc	ctgcaccaga	gagcagaacc	ggatctgcac	ctgttagaccc	300
ggctggtaact	gcgcctgag	caagcaggaa	ggctgcagac	tctgcgc	tctgcggaag	360
tgcagaccccg	gctttggcgt	ggccagaccc	ggcaccgaga	caagcgacgt	ggtctgcaag	420
ccctgcgc	ctggcacctt	cagcaacacc	accagcagca	ccgacatctg	cagacccac	480
cagatctgca	acgtggtggc	catccccggc	aacgcccagca	tggatgcgt	gtgcaccagc	540
accagcccca	ccagaagtat	ggccctggc	gccgtgcata	tgc	ccatggc	600
agaagccagc	acacccagcc	caccctgag	cctagcaccg	ccccctccac	cagcttctg	660
ctgcctatgg	gccctagccc	tccagccgag	ggaagcacag	gcgacgagcc	caagagctgc	720
gacaagaccc	acacctgtcc	cccctgcctt	gcccctgaac	tgc	ttggcggcgg	780
ttcctgttcc	ccccaaagcc	caaggacacc	ctgatgatca	gccggacccc	cgaagtgacc	840
tgcgtggtgg	tggacgtgtc	ccacgaggac	cctgaagtga	agttcaattt	gtacgtggac	900
ggcgtgaaag	tgcacaacgc	caagaccaag	cccagagagg	aacagtacaa	ctccacccat	960
cgggtggtgt	ccgtgctgac	cgtgctgcac	caggactggc	tgaacggcaa	agagtacaag	1020
tgc	aaagtct	ccaacaaggc	cctgcctgccc	ccatcgaga	aaaccatcg	1080
ggccagccccc	gcgagcctca	ggtgtacaca	ctgccccccca	gccggaaaga	gatgaccaag	1140
aaccaggtgt	ccctgaccc	cctgtcaaa	ggcttctacc	ccagcgatat	cgccgtggaa	1200
tgggagagca	acggccagcc	cgagaacaac	tacaagacca	ccccccctgt	gctggacagc	1260
gacggctcat	tcttcctgt	cagcaagctg	accgtggaca	agagccggtg	gcagcaggc	1320
aatgtttca	gctgttagcgt	gatgcacgag	gccctgcaca	accactacac	ccagaagtcc	1380
ctgagcctga	gccccggaaa	ggcggaggc	ggatccggag	gtggggatc	tcagtgcaag	1440
ctgggtcgagt	ctggcgccga	agtgaagaaa	cccggtctta	gcgtgaaggt	gtcctgcaag	1500
gccagcggcg	gcaccccttc	cacctacggc	atcagctggg	tccggccaggc	ccctggacag	1560
tgtctggaaat	ggatggcgg	catcatcccc	atcttgcaca	ccggcaacag	cgcccgagc	1620

ttccagggca gagtgaccat caccggcgcac gagagcacct ccaccgccta catggaactg	1680
agcagcctgc ggagcgagga caccggcgtg tactactgcg ccagaagcag ccggatctac	1740
gacctgaacc ccagcctgac cgcctactac gacatggacg tgtggggca gggcaccatg	1800
gtcacagtgt ctagcggagg cggaggcagc ggaggtggtg gatctggtgg cggaggaagt	1860
ggcggcggag gctctcagag cgtgctgacc cagccccctt ctgtgtatgc cgcgcctggc	1920
cagaaagtga ccatctcctg cagccgcagc agcagcaaca tcggcaacaa ctacgtgtcc	1980
tggtatcagc agctgcccgg caccggccct aagctgctga tctacgacaa caacaagcgg	2040
cccagcggca tccccgaccg gtttagcggc agcaagagcg ggacttctgc tacactggc	2100
atcacaggcc tgcagaccgg cgacgaggcc gactactact gccggcacctg ggacagcagc	2160
ctgagcgcctt ggggtttcgg ctgcggcacc aagctgacag tgctg	2205

<210> 19

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 19

Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Gly	Gly	Ser	Gly
1				5			10			15		

Gly	Gly	Gly	Ser
20			

<210> 20

<211> 215

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 20

Glu	Ile	Val	Leu	Thr	Gln	Ser	Pro	Ala	Thr	Leu	Ser	Leu	Ser	Pro	Gly
1				5				10			15				

Glu	Arg	Ala	Thr	Leu	Ser	Cys	Arg	Ala	Ser	Gln	Ser	Val	Tyr	Ser	Tyr
20					25						30				

Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala	Pro	Arg	Leu	Leu	Ile
35				40					45						

Tyr	Asp	Ala	Ser	Asn	Arg	Ala	Ile	Gly	Ile	Pro	Ala	Arg	Phe	Ser	Gly
50				55					60						

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro
 65 70 75 80

Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser Asn Trp Pro Pro
 85 90 95

Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg Thr Val Ala
 100 105 110

Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
 115 120 125

Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
 130 135 140

Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser
 145 150 155 160

Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu
 165 170 175

Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val
 180 185 190

Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys
 195 200 205

Ser Phe Asn Arg Gly Glu Cys
 210 215

<210> 21

<211> 645

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 21

gaaatcgtgc tgacccagag ccccgccacc ctgtctctga gcccgtgcga gagagccacc	60
ctgagctgca gagccagcca gagcgtgtac tcttacctgg ctggatcatca gcagaagccc	120
ggccaggccc ccagactgct gatctacgac gccagcaacc gggccatcgg catccctgcc	180
agattttctg gcagcggcag cggcaccgac ttcaccctga ccatcagcag ccttggaaaccc	240
gaggacttcg ccgtgtacta ctgcgcagcag cggagcaact ggcccccctt caccctcgcc	300
cctggcacca aggtggacat caagcgtacg gtggctgcac catctgtctt catcttcccg	360
ccatctgtatg agcagttgaa atcttggact gctctgttg tgtgcctgct gaataacttc	420
tatcccagag aggc当地aaatg acagtggaaat gtggataacg ccctccaaatc gggtaactcc	480
caggagagtg tcacagagca ggacagcaag gacagcacct acagcctcag cagcaccctg	540

acgctgagca aagcagacta cgagaaacac aaagtctacg cctgcgaagt caccatcag 600
 ggctgagct cgcgtcac aaagagttc aacaggggag agtgt 645
 <210> 22
 <211> 724
 <212> PRT
 <213> Artificial Sequence
 <220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"
 <400> 22
 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ile Phe Ser Ser Tyr
 20 25 30
 Ala Met His Trp Val Arg Gln Ala Pro Gly Asn Gly Leu Glu Trp Val
 35 40 45
 Ala Phe Met Ser Tyr Asp Gly Ser Asn Lys Lys Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Asp Arg Gly Ile Ser Ala Gly Gly Asn Tyr Tyr Tyr Gly
 100 105 110
 Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser
 115 120 125
 Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr
 130 135 140
 Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro
 145 150 155 160
 Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val
 165 170 175
 His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
 180 185 190
 Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile
 195 200 205

Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val
210 215 220

Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala
225 230 235 240

Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
245 250 255

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
260 265 270

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
275 280 285

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
290 295 300

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
305 310 315 320

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
325 330 335

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
340 345 350

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr
355 360 365

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
370 375 380

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
385 390 395 400

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
405 410 415

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
420 425 430

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
435 440 445

Ser Leu Ser Leu Ser Pro Gly Lys Gly Gly Gly Ser Gly Gly Gly
450 455 460

Gly Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro
465 470 475 480

Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser
485 490 495

Thr Tyr Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Cys Leu Glu
500 505 510

Trp Met Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln
 515 520 525

Ser Phe Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr
 530 535 540

Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr
 545 550 555 560

Tyr Cys Ala Arg Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr
 565 570 575

Ala Tyr Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val
 580 585 590

Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
 595 600 605

Ser Gly Gly Gly Ser Gln Ser Val Leu Thr Gln Pro Pro Ser Val
 610 615 620

Ser Ala Ala Pro Gly Gln Lys Val Thr Ile Ser Cys Ser Gly Ser Ser
 625 630 635 640

Ser Asn Ile Gly Asn Asn Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly
 645 650 655

Thr Ala Pro Lys Leu Leu Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly
 660 665 670

Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu
 675 680 685

Gly Ile Thr Gly Leu Gln Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly
 690 695 700

Thr Trp Asp Ser Ser Leu Ser Ala Trp Val Phe Gly Cys Gly Thr Lys
 705 710 715 720

Leu Thr Val Leu

<210> 23

<211> 2172

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 23

caggtgcagc tggtgaaag cggcgaggc gtgggcagc cggcagaag cctgagactg 60

agctgcgtg ccagcgctt catttcagc agtacgcca tgcactgggt cggcaggcc 120

cctggcaacg gactggaatg ggtggccttc atgagctacg acggcagcaa caagaagtac 180

gccgacagcg tgaaggccg gttcaccatc agccgggaca acagcaagaa caccctgtac	240
ctgcagatga acagcctgcg ggctgaggac accgcccgtgt actactgcgc cagagaccga	300
ggcatcagtg ctggccgcaa ctactactac tacggcatgg acgtgtgggg ccagggcacc	360
accgtgaccg tgcgttagcgc gtcgaccaag ggcccatccg tcttccccct ggccacctcc	420
tccaagagca cctctgggg cacagccgccc ctggcgtgcc tggtaagga ctacttcccc	480
gaaccggta cggtgtcctg gaactcaggc gctctgacca gcccgtgca caccttcccc	540
gctgtcctac agtcctcagg actctactcc ctcagcagcg tggtgaccgt gccctccagc	600
agcttggca cccagaccta catctgcaac gtgaatcaca agcccagcaa caccaaggtg	660
gacaagagag ttgagccaa atcttgcac aaaactcaca catgcccacc gtgcccagca	720
cctgaactcc tgggggacc gtcagtcttc ctcttcccc caaaacccaa ggacaccctc	780
atgatctccc ggacccctga ggtcacatgc gtgggtgtgg acgtgagcca cgaagaccct	840
gaggtcaagt tcaactggta cgtggacggc gtggaggtgc ataatgcca gacaaagccg	900
cgggaggagc agtacaacag cacgtaccgt gtggcagcg tcctcaccgt cctgcaccag	960
gactggctga atggcaagga gtacaagtgc aaggcttcca acaaagccct cccagccccc	1020
atcgagaaaa ccatctccaa agccaaaggg cagccccgag aaccacaggt ctacaccctg	1080
cccccatccc gggaggagat gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc	1140
ttctatccca gcgacatcgc cgtggagtgg gagagcaatg ggcagccgga gaacaactac	1200
aagaccacgc ctccctgtct ggactccgac ggctccttct tcctctatag caagctcacc	1260
gtggacaaga gcaggtggca gcaggggaac gtcttctcat gctccgtat gcatgaggct	1320
ctgcacaacc actacacgca gaagagccctc tccatgtatc cggtaaagg cggaggggga	1380
tccggccggag gggctctca ggtcagctg gtgcagtctg gcccgaagt gaagaaaccc	1440
ggctctagcg tgaagggtgc ctgcaaggcc agccggccgca ctttctccac ctacggcattc	1500
agctgggtcc gccaggcccc tggacagtgt ctggaatgga tggcggcat catccccatc	1560
ttcgacacccg gcaacagcgc ccagagcttc cagggcagag tgaccatcac cgccgacgag	1620
agcacctcca ccgcctacat ggaactgagc agcctgcggc gcgaggacac cgccgtgtac	1680
tactgcgcacca gaagcagccg gatctacgac ctgaaacccca gcctgaccgc ctactacgac	1740
atggacgtgt gggccaggg caccatggtc acagtgtcta gcggaggccg aggcagccgga	1800
ggtgtggat ctggtggccg aggaagtggc ggcggaggct ctcagagcgt gctgacccag	1860
cccccttctg tgcgtgcgc ccctggccag aaagtgacca tctcctgcag cggcagcagc	1920
agcaacatcg gcaacaacta cgtgtcctgg tatcagcagc tgccggcac cgccctaag	1980
ctgctgatct acgacaacaa caagccccc agccgcattc ccgaccgggt tagccgcagc	2040
aagagccgga cttctgtac actggccatc acaggcctgc agaccggcga cgaggccgac	2100
tactactgcg gcacctggga cagcagccctg agcgcttggg tggccgtatc cggcaccaag	2160
ctgacagtgc tg	2172

<210> 24

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 24

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ser
1															
															15

Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Gly	Thr	Phe	Trp	Phe	Gly
															30
20															25

Ala	Phe	Thr	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met
															45
35															40

Gly	Gly	Ile	Ile	Pro	Ile	Phe	Gly	Leu	Thr	Asn	Leu	Ala	Gln	Asn	Phe
															60
50															55

Gln	Gly	Arg	Val	Thr	Ile	Thr	Ala	Asp	Glu	Ser	Thr	Ser	Thr	Val	Tyr
															80
65															70

Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
															95
85															90

Ala	Arg	Ser	Ser	Arg	Ile	Tyr	Asp	Leu	Asn	Pro	Ser	Leu	Thr	Ala	Tyr
															110
100															105

Tyr	Asp	Met	Asp	Val	Trp	Gly	Gln	Gly	Thr	Met	Val	Thr	Val	Ser	Ser
															125
115															120

<210> 25

<211> 384

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 25

caggtgcagc	tggtgcaagtc	tggggctgag	gtgaagaagc	ctgggtcctc	ggtgaaggtc	60
------------	-------------	------------	------------	------------	------------	----

tcctgcagg	cctctggagg	caccttctgg	ttcggcgagt	tcacctgggt	gcgacaggcc	120
-----------	------------	------------	------------	------------	------------	-----

cctggacaag	gacttgagtg	gatgggaggg	attattccta	tcttcgggtt	gacgaacttg	180
------------	------------	------------	------------	------------	------------	-----

gcacagaact	tccagggcag	agtacgatt	accgcggacg	aatccacgag	cacagtctac	240
------------	------------	-----------	------------	------------	------------	-----

atggagctga	gcagcttgag	atctgaagac	acggccgtat	attattgtgc	acgttcaagt	300
------------	------------	------------	------------	------------	------------	-----

cgtatctacg	atctgaaccc	gtccctgacc	gcctactacg	atatggatgt	ctggggccag	360
------------	------------	------------	------------	------------	------------	-----

gggacaatgg	tcaccgtctc	gagt				384
------------	------------	------	--	--	--	-----

<210> 26
 <211> 110
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 26
 Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asp Ile Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 27
 <211> 330
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 27
 cagtctgtgc tgactcagcc gccatcagtg tctgcggccc caggacagaa ggtcaccatc 60
 taatgtcttg gaagcagctc cgacattggg aataattatg tatcgtggta ccagcagctc 120
 ccaggaacag ccccaaact cctcatttat gacaataata agcgaccctc agggattcct 180
 gaccgattct ctggctccaa gtctggcacg ttagccaccc tgggcatacg cggactccag 240
 actggggacg aggccgatta ttactgcgga acatggata gcagcctgag tgcttgggtg 300
 ttccggcggag ggaccaagct gaccgtccta 330

<210> 28
 <211> 126

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 28

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ile Phe Ser Ser Tyr
20 25 30

Ala Met His Trp Val Arg Gln Ala Pro Gly Asn Gly Leu Glu Trp Val
35 40 45

Ala Phe Met Ser Tyr Asp Gly Ser Asn Lys Lys Tyr Ala Asp Ser Val
50 55 60

Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr
65					70					75					80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Gly Ile Ser Ala Gly Gly Asn Tyr Tyr Tyr Tyr Gly
100 105 110

Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

<210> 29

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 29

Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Tyr Ser Tyr
20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
35 40 45

Tyr Asp Ala Ser Asn Arg Ala Ile Gly Ile Pro Ala Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro
65 70 75 80

Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser Asn Trp Pro Pro
85 90 95

Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
100 105

<210> 30

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 30

Glu Val Gln Leu Val Gln Thr Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Ala Asn Arg Gln Ala Val Pro Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 31

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 31

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Met Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asp Ile Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 32

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 32

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Phe Thr Ser Gly Leu Ala Pro Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 33
 <211> 110
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 33
 Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Pro Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Thr Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 34
 <211> 128
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 34
 Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Ala Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala His
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp His His Ile Gln Lys Gly Gly Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 35

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 35

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 36

<211> 112

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 36

Glu Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ser

1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Tyr His Thr Ile Ala Tyr Tyr Asp
100 105 110

<210> 37

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 37

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu

100 105 110

<210> 38

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 38

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Lys Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Tyr Ile Pro Gly Met Arg Pro Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 39

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 39

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Asn Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Arg Ser Gly Thr Leu Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 40

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 40

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Phe Asn Ser Ser Leu Ile Ala Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 41

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 41

Gln	Ala	Val	Leu	Thr	Gln	Pro	Ser	Ser	Val	Ser	Thr	Pro	Pro	Gly	Gln
1					5				10				15		

Lys	Val	Thr	Ile	Ser	Cys	Ser	Gly	Ser	Ser	Ser	Asn	Ile	Gly	Asn	Asn
					20			25				30			

Tyr	Val	Ser	Trp	Tyr	Gln	Gln	Leu	Pro	Gly	Thr	Ala	Pro	Lys	Leu	Leu
					35			40			45				

Ile	Tyr	Asp	Asn	Asn	Lys	Arg	Pro	Ser	Gly	Ile	Pro	Asp	Arg	Phe	Ser
					50			55			60				

Gly	Ser	Lys	Ser	Gly	Thr	Ser	Ala	Thr	Leu	Gly	Ile	Thr	Gly	Leu	Gln
					65			70			75			80	

Thr	Gly	Asp	Glu	Thr	Asp	Tyr	Tyr	Cys	Gly	Thr	Trp	Asp	Ser	Ser	Leu
					85			90			95				

Ser	Ala	Trp	Val	Phe	Ser	Gly	Gly	Thr	Lys	Leu	Thr	Val	Leu	
					100			105			110			

<210> 42

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 42

Glu	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ser
1					5			10			15				

Thr	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Gly	Thr	Phe	Ser	Thr	Tyr
					20			25			30				

Gly	Ile	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Ile
					35			40			45				

Gly	Gly	Ile	Ile	Pro	Ile	Phe	Asp	Thr	Gly	Asn	Ser	Ala	Gln	Ser	Phe
					50			55			60				

Gln	Gly	Arg	Val	Thr	Ile	Thr	Ala	Asp	Glu	Ser	Thr	Ser	Thr	Ala	Tyr
					65			70			75			80	

Met	Glu	Val	Ser	Ser	Leu	Arg	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					85			90			95				

Ala	Ser	Ser	Ser	Arg	Ile	Tyr	Asp	Leu	Asn	Pro	Ser	Leu	Thr	Ala	Tyr
					100			105			110				

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 43

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 43

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Thr Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 44

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 44

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Phe Glu Pro Ser Leu Ile Tyr Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 45

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 45

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 46

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 46

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 47

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 47

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asp Ile Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Thr Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 48

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 48

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr

65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 49

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 49

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Asn Ile Gly Asn Asn
 20 25 30

 Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 50

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 50

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Ala Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 51

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 51

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Gly Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 52

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 52

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Ser Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys

85

90

95

Ala Ser Ser Ser Arg Ile Tyr Asp Phe Arg Thr Leu Tyr Ser Thr Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 53

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 53

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Ser Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Ala Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 54

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 54

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

20 20 20

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 55

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 55

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Glu Val Thr Ile Ser Cys Ser Gly Ser Ser Thr Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 56

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 56

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Arg Ile Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Val Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 57

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 57

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln

65

70

75

80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 58

<211> 126

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 58

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ala Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Asn Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val
 115 120 125

<210> 59

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 59

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Val Ser Cys Ser Ser Ser Asn Ile Gly Asn Asn

20

25

30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 60

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 60

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Asp Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Gly Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly His Gly Thr Met Val Thr Val Ser Ser

<210>

<210>

<210>

<210> 61

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 61

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Asn Ile Gly Asn Asn
20 25 30Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 62

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 62

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Val Trp Ile
35 40 45Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Met Ile Ser Ser Leu Gln Pro Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 63

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 63

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Ala Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 64

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 64

Glu	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ser
1					5				10				15		

Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Gly	Thr	Phe	Ser	Thr	Tyr
					20			25				30			

Gly	Ile	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Ile
					35			40			45				

Gly	Gly	Ile	Ile	Pro	Ile	Phe	Asp	Thr	Gly	Asn	Ser	Ala	Gln	Ser	Phe
					50			55			60				

Gln	Gly	Arg	Val	Thr	Ile	Thr	Ala	Asp	Glu	Ser	Thr	Ser	Thr	Ala	Tyr
					65			70			75			80	

Met	Glu	Val	Ser	Ser	Leu	Arg	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					85			90			95				

Ala	Ser	Ser	Ser	Arg	Ile	Tyr	Asp	Phe	His	Leu	Ala	Asn	Lys	Gly	Tyr
					100			105			110				

Tyr	Asp	Met	Asp	Val	Trp	Gly	Gln	Gly	Thr	Met	Val	Thr	Val	Ser	Ser
					115			120			125				

<210> 65

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 65

Gln	Ala	Val	Leu	Thr	Gln	Pro	Ser	Ser	Val	Ser	Thr	Pro	Pro	Gly	Gln
1					5				10			15			

Lys	Ala	Thr	Ile	Ser	Cys	Ser	Gly	Ser	Ser	Asn	Ile	Gly	Asn	Asn
					20			25			30			

Tyr	Val	Ser	Trp	Tyr	Gln	Gln	Leu	Pro	Gly	Thr	Ala	Pro	Lys	Leu	Leu
					35			40			45				

Ile	Tyr	Asp	Asn	Asn	Lys	Arg	Pro	Ser	Gly	Ile	Pro	Asp	Arg	Phe	Ser
					50			55			60				

Gly	Ser	Lys	Ser	Gly	Thr	Ser	Ala	Thr	Leu	Asp	Ile	Thr	Gly	Leu	Gln
					65			70			75			80	

Thr	Gly	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	Thr	Trp	Asp	Ser	Ser	Leu
					85			90			95				

Ser	Ala	Trp	Val	Phe	Gly	Gly	Thr	Lys	Leu	Thr	Val	Leu		
					100			105			110			

<210> 66
<211> 128
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 66
Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp His His Asn His Val Gly Gly Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 67
<211> 110
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 67
Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Ala Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Gly Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 68

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 68

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Ala Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 69

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 69

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Asn Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val
100 105

<210> 70

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 70

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 71

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 71

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Glu Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln

65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 72

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 72

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Arg Leu Glu Trp Ile
 11 12

35

40

45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Ala Thr Thr Gly Leu Thr Pro Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 73

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 73

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Arg
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 74

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 74

Glu	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Arg	Lys	Pro	Gly	Ser
1				5				10			15				

Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Tyr	Gly	Gly	Thr	Phe	Ser	Thr	Tyr
	20				25						30				

Gly	Ile	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Val
	35				40						45				

Gly	Gly	Ile	Ile	Pro	Ile	Phe	Asp	Thr	Arg	Asn	Ser	Ala	Gln	Ser	Phe
	50				55					60					

Gln	Gly	Arg	Val	Thr	Ile	Thr	Ala	Asp	Glu	Ser	Thr	Ser	Thr	Ala	Tyr
	65				70			75						80	

Met	Glu	Val	Ser	Ser	Leu	Arg	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
		85				90					95				

Ala	Ser	Ser	Ser	Arg	Ile	Tyr	Asp	Met	Val	Ser	Thr	Leu	Ile	Pro	Tyr
	100					105					110				

Tyr	Asp	Met	Asp	Val	Trp	Gly	Gln	Gly	Thr	Met	Val	Thr	Val	Ser	Ser
	115				120					125					

<210> 75

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 75

Gln	Ala	Val	Leu	Thr	Gln	Pro	Ser	Ser	Val	Ser	Thr	Pro	Pro	Gly	Gln
1				5				10			15				

Lys	Val	Thr	Ile	Ser	Cys	Ser	Gly	Ser	Ser	Asn	Ile	Gly	Asn	Asn
	20				25					30				

Tyr	Val	Ser	Trp	Tyr	Gln	Gln	Leu	Pro	Gly	Thr	Ala	Pro	Lys	Leu	Leu
	35				40					45					

Ile	Tyr	Asp	Asn	Asn	Lys	Arg	Pro	Ser	Gly	Ile	Pro	Asp	Arg	Phe	Ser
	50				55					60					

Gly	Ser	Lys	Ser	Gly	Thr	Ser	Ala	Thr	Leu	Gly	Ile	Thr	Gly	Leu	Gln
	65				70			75			80				

Thr	Gly	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	Thr	Trp	Asp	Ser	Ser	Leu
		~				~					~				

85

90

95

Ser Ala Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 76

<211> 126

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 76

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Arg Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Ala His Leu Gln Ala Tyr Tyr Asp
 100 105 110

Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 77

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 77

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Pro Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Arg Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 78

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 78

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Ala Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Ile
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
 50 55 60

Gln Gly Arg Val Ala Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Ala His Leu Asn His His Gly Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 79

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 79

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
20 25 30Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80Ala Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 80

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 80

Glu Val Gln Leu Val Gln Ser Gly Ala Val Val Lys Lys Pro Gly Ser
1 5 10 15Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Ser Ser Ala Gln Ser Phe
50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
 100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 81

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 81

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Thr Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Ser Gly Thr Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 82

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 82

Glu Met Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
 20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile

35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Val Ser Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ser Ser Arg Ile Tyr Asp Phe Asn Ser Ala Leu Ile Ser Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 83

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 83

Gln Ala Val Leu Thr Gln Pro Ser Ser Val Ser Thr Pro Pro Gly Gln
1 5 10 15

Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45

Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
85 90 95

Ser Ala Trp Val Phe Gly Gly Thr Lys Leu Thr Val
100 105

<210> 84

<211> 125

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 84

Gln Met Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Thr Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ala Tyr His
20 25 30

Tyr Leu His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Thr Asn Tyr Ala Gln Arg Phe
50 55 60

Gln Asp Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ala Asp Tyr Val Trp Gly Ser Tyr Arg Pro Asp Trp Tyr Phe
100 105 110

Asp Leu Trp Gly Arg Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 85

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 85

Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln
1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
20 25 30

Thr Val Asn Trp Tyr Gln Arg Leu Pro Gly Ala Ala Pro Gln Leu Leu
35 40 45

Ile Tyr Asn Asn Asp Gln Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Gly Ser Leu Val Ile Ser Gly Leu Gln

65

70

75

80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ser Trp Asp Asp Ser Leu
85 90 95

Asn Gly Arg Val Phe Gly Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 86

<211> 125

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 86

Gln Met Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Thr Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly His Thr Phe Ala Tyr His
20 25 30

Tyr Leu His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Thr Asn Tyr Ala Gln Arg Phe
50 55 60

Gln Asp Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ser Ala Asp Tyr Ala Trp Glu Ser Tyr Gln Pro Pro Gln Ile Asn
100 105 110

Gly Val Trp Gly Arg Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 87

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 87

Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln
1 5 10 15

- - - - -
Lys Val Thr Ile Thr Cys Ser Gly Ser Thr Ser Asn Ile Gly Asn Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu Met
35 40 45

Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Asn Ser Ala Ser Leu Asp Ile Ser Gly Leu Gln
65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu
85 90 95

Ser Glu Phe Phe Phe Gly Thr Gly Thr Lys Leu Thr Val Leu
100 105 110

<210> 88

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 88

Phe Gly Ala Phe Thr
1 5

<210> 89

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 89

Gly Ile Ile Pro Ile Phe Gly Leu Thr Asn Leu Ala Gln Asn Phe Gln
1 5 10 15

Gly

<210> 90

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 90

Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr Tyr Asp
1 5 10 15

Met Asp Val

<210> 91

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 91

Ser Gly Ser Ser Ser Asp Ile Gly Asn Asn Tyr Val Ser
1 5 10

<210> 92

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 92

Asp Asn Asn Lys Arg Pro Ser
1 5

<210> 93

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 93

Gly Thr Trp Asp Ser Ser Leu Ser Ala Trp Val
1 5 10

<210> 94

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 94

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Cys Leu Glu Trp Met
35 40 45

Gly Gly Ile Ile Pro Ile Phe Asp Thr Gly Asn Ser Ala Gln Ser Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Ser Ser Arg Ile Tyr Asp Leu Asn Pro Ser Leu Thr Ala Tyr
100 105 110

Tyr Asp Met Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 95

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 95

Gln Ser Val

20 25 30

35 40 45

50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
 65 70 75 80

Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu
 85 90 95

Ser Ala Trp Val Phe Gly Cys Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 96

<211> 125

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 96

Gln Met Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Thr Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Pro Tyr His
 20 25 30

Tyr Leu His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Thr Asn Tyr Ala Gln Arg Phe
 50 55 60

Gln Asp Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Phe Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ala Asp Tyr Val Trp Glu Ser Tyr His Pro Ala Thr Ser Leu
 100 105 110

Ser Leu Trp Gly Arg Gly Thr Met Val Thr Val Ser Ser
 115 120 125

<210> 97

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 97

Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln
 1 5 10 15

Lys Val Thr Ile Ser Cys Pro Gly Ser Thr Ser Asn Ile Gly Asn Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Arg Pro Gly Lys Ala Pro Lys Leu Met
 35 40 45

Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
 50 55 60

Gly Ser Lys Ser Gly Asn Ser Ala Ser Leu Asp Ile Ser Glu Leu Gln
 65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu
 85 90 95

Ser Glu Phe Leu Phe Gly Thr Gly Thr Lys Leu Thr Val Leu
 100 105 110

<210> 98

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 98

Gly Gly Gly Gly Ser Gly Gly Gly Ser
 1 5 10

<210> 99

<211> 2205

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 99

ctggccggccc aggtggcctt tacccttat gctcctgagc ccggctctac ctgccggctg 60

agagagtaact acgaccagac cgcccaagatg tgctgctcca agtgctctcc tggccagcac 120

gccaagggtgt tctgcaccaa gacctccgat accgtgtgcg actcctgcga ggactccacc 180

tacaccccagc tgtggaactg ggtggccgag tgcctgtcct gcggctccag atttccctcc 240

gaccaggtgg aaacccaggc ctgcaccaga gagcagaacc ggatctgcac ctgtcggcct 300

ggctggtaact ggcgcctgtc taagcaggaa ggctgcagac tgtgcgcccc tctgcggaag 360

----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 420

tgttagacctg	gttttggcgt	ggccagaccc	ggcaccgaga	catctgatgt	cgtgtgcacag	420
ccttgcgccc	ctggcacctt	ctccaaacacc	acctcctcca	ccgacatctg	ccggcctcac	480
cagatctgca	acgtggtggc	catccctggc	aacgcctcta	tggacggcgt	gtgcacctct	540
acctccccc	ccagaagtat	ggccctggc	gctgtcata	tgccccagcc	tgtgtctacc	600
agatcccage	acacccagcc	cacccctgag	ccttctaccg	cccttctac	cagttcctg	660
ctgcctatgg	gccctagccc	tcctgctgag	ggatctacag	gcgacgagcc	caagtccctgc	720
gacaagaccc	acacctgtcc	cccttgcct	gcccctgaac	tgctggcgg	accttccgtg	780
ttccctgttcc	ccccaaagcc	caaggacacc	ctgatgatca	gccggacccc	tgaagtgacc	840
tgcggtgg	tggatgtgtc	ccacgaggat	cccgaaatgt	agttcaattt	gtacgtggac	841
ggcgtgaaag	tgcacaacgc	caagaccaag	cccagagagg	aacagtacaa	ctccacactac	960
cgggtggtgt	ccgtgctgac	cgtgctgac	caggattggc	tgaacggcaa	agagtacaag	1020
tgcaagggtgt	ccaacaaggc	cctgcctgccc	cccatcgaaa	agaccatctc	caaggccaag	1080
ggccagccccc	ggaaacccca	ggtgtacaca	ctgcccccta	gccggaaaga	gatgaccaag	1140
aaccagggtgt	ccctgacctg	tctcgtgaag	ggcttctacc	cctccgatat	cgcgtggaa	1200
tgggagtcca	acggccagcc	tgagaacaac	tacaagacca	ccccccctgt	gctggactcc	1260
gacggctcat	tcttcctgta	ctccaagctg	acagtggaca	agtcccggtg	gcagcagggc	1320
aacgtgttct	cctgctccgt	gatgcacgag	gccctgcaca	accactacac	ccagaagtcc	1380
ctgtccctga	gccctggaaa	aggcggcgg	ggatctggcg	gaggcggatc	tcaggtgcag	1440
ctgggtcagt	ctggcgctga	agtgaagaaa	cccggtctct	ccgtgaaggt	gtcctgcaag	1500
gcttctggcg	gcaccttctc	tacctacggc	atctcctggg	tgcgacagggc	ccctggccag	1560
tgcctggaat	ggatggcgg	catcatcccc	atcttcgaca	ccggcaactc	cgcggcagagc	1620
ttccaggggca	gagtgaccat	caccggcgc	gagtctaccc	ccaccgccta	catggaaactg	1680
taactccctgc	ggagcgagga	caccggcgt	tactactgcg	cccggtctct	tcggatctac	1740
gacctgaacc	cttccctgac	cgcctactac	gacatggacg	tgtggggcca	gggcacaatg	1800
gtcaccgtgt	catctggtgg	tggcgctct	ggtggcggag	gaagtggggg	agggggttct	1860
ggggggggag	gatctcgtgc	tgtgtgacc	cagcctcctt	ccgtgtctgc	tgccccaggc	1920
cagaaagtga	caatctcctg	cagcggtcc	agctccaaca	tggcaacaa	ctacgtgtcc	1980
tgttatcago	agctgcccgg	caccgctccc	aaactgctga	tctacgataa	caacaagcgg	2040
ccctccggca	tccccgacag	attctccggc	tctaaatccg	gcacctctgc	caccctgggc	2100
atcacccggac	tgcagacagg	cgacgaggcc	gactactact	gtggcacctg	ggactcttcc	2160
ctgtcccgctt	gggtgttccgg	ctggggcacc	aaactgactg	tgctg		2205

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not

form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- [WO2006077441A \[0007\]](#)
- [WO2010006060A \[0011\]](#)
- [US2011250130A \[0011\]](#)
- [WO2007146968A \[0011\]](#)
- [WO2011047262A \[0011\]](#)
- [WO2096458A \[0042\]](#)
- [WO04032870A \[0042\]](#)
- [GB2006000238W \[0043\]](#)
- [US20080107658A1 \[0043\]](#)
- [US5731168A \[0050\]](#)
- [US5225539A \[0055\]](#)
- [US5639641A \[0055\]](#)
- [US20080107658 \[0072\] \[0073\]](#)
- [WO2013070565A \[0089\] \[0170\] \[0183\]](#)
- [US20080187954A \[0126\]](#)
- [US6413746B \[0126\]](#)
- [US6660501B \[0126\]](#)
- [WO04009823A \[0126\]](#)
- [US20080312425A \[0141\]](#)
- [US20080177048A \[0141\]](#)
- [US20090187005A \[0141\]](#)
- [WO61934828A \[0214\]](#)

Non-patent literature cited in the description

- HUANGREICHARDTAnn. Rev. Neurosci., 2001, vol. 24, 677-736 [\[0002\]](#)
- PRIESTLEY et al.Can. J. Physiol. Pharmacol., 2002, vol. 80, 495-505 [\[0002\]](#) [\[0004\]](#)
- BENNETTNeuroscientist, 2001, vol. 7, 13-17 [\[0002\]](#)
- PETTY et al.Ann. Neurol., 1994, vol. 36, 244-46 [\[0003\]](#)
- MCARTHUR et al.Neurology, 2000, vol. 54, 1080-88 [\[0003\]](#)
- MENDELLARVANIANBrain Res. Rev., 2002, vol. 40, 230-39 [\[0003\]](#)
- MAWOOLFNeuroreport., 1997, vol. 8, 807-10 [\[0003\]](#) [\[0004\]](#)

- AMANNSCHULIGOINeurosci. Lett., 2000, vol. 278, 173-78 [0004]
- ALOETUVERIClin. Exp. Rheumatol., 1997, vol. 15, 433-38 [0004]
- LOWE et al.Br. J. Urol., 1997, vol. 79, 572-77 [0004]
- HEUMANN et al.J. Cell Biol., 1987, vol. 104, 1623-31 [0004]
- RAMER et al.Pain, Supp., 1998, vol. 6, 111-20 [0004]
- SAH et al.Nat. Rev. Drug Disc., 2003, vol. 2, 460-72 [0004] [0005]
- MAMET et al.J. Biol. Chem., 1999, vol. 278, 48907-13 [0004]
- FJELL et al.J. Neurosci. Res., 1999, vol. 57, 39-47 [0004]
- INDOClin. Auton. Res., 2002, vol. 12, 1120-132 [0005]
- DE CASTRO et al.Eur. J. Neurosci., 1998, vol. 10, [0005]
- POZZA et al.J. Rheumatol., 2000, vol. 27, 1121-27 [0005]
- QIAOVIZZARDJ. Comp. Neurol., 2002, vol. 454, 200-11 [0005]
- CHO et al.Brain Res., 1996, vol. 716, 197-201 [0005]
- ZHANGNICONeurosci. Lett., 2004, vol. 366, 187-92 [0006]
- BERGMANN et al.Neurosci. Lett., 1998, vol. 255, 87-90 [0006]
- KIM et al.J. Mol. Biol., 2007, vol. 374, 1374- [0008]
- WALLISLancet Infect. Dis., 2008, vol. 8, 10601- [0008]
- LEUNG, L.CAHILL, CM.J. Neuroinflammation, 2010, vol. 7, 27 [0009] [0045]
- SOMMER C et al.J. Peripher. Nerv. Syst., 2001, vol. 6, 67-72 [0009]
- COHEN et al.A&A, 2013, vol. 116, 2455-462 [0009]
- GENEVAY et al.Ann Rheum Dis, 2004, vol. 63, 1120-1123 [0009]
- JUO, PEI-SHOWConcise Dictionary of Biomedicine and Molecular BiologyCRC Press20020000 [0035]
- The Dictionary of Cell and Molecular BiologyAcademic Press19990000 [0035]
- Oxford Dictionary Of Biochemistry And Molecular Biology, RevisedOxford University Press20000000 [0035]
- KOIDE et al.J Mol Biol, 2012, vol. 415, 2393-405 [0037]
- BOERSMAPLUCKTHUNCurr Opin Biotechnol., 2011, vol. 22, 6849-57 [0037]
- GEBAUERSKERRAMethods Enzymol., 2012, vol. 503, 157-88 [0037]
- BENNETT, D. L. et al.Eur J Neurosci, 1998, vol. 10, 1282-91 [0041]
- DIMASI, N. et al.J Mol Biol., 2009, vol. 393, 672-92 [0050] [0089] [0170] [0183] [0186]
- MILSTEIN et al.Nature, 1983, vol. 305, 537-539 [0050]
- BRENNAN et al.Science, 1985, vol. 229, 81- [0050]
- SURESH et al.Methods in Enzymol., 1986, vol. 121, 120- [0050]
- TRAUNECKER et al.EMBO J., 1991, vol. 10, 3655-3659 [0050]
- SHALABY et al.J. Exp. Med., 1992, vol. 175, 217-225 [0050]
- KOSTELNY et al.J. Immunol., 1992, vol. 148, 1547-1553 [0050]
- GRUBER et al.J. Immunol., 1994, vol. 152, 5368- [0050]
- TUTT et al.J. Immunol., 1991, vol. 147, 60- [0050]
- JONES et al.Nature, 1986, vol. 321, 522-525 [0055]
- RIECHMANN et al.Nature, 1988, vol. 332, 323-327 [0055]
- VERHOEYEN et al.Science, 1988, vol. 239, 1534-1536 [0055]
- KABAT et al.Sequences of Proteins of Immunological InterestNational Institutes of Health19910000 [0056]

- AL-LAZIKANI et al.J. Molec. Biol., 1997, vol. 273, 927-948 [0056]
- KABAT et al.Sequences of Immunological InterestPublic Health Service, National Institutes of Health19910000 [0057]
- KABAT et al.Sequences of Proteins of Immunological InterestPublic Health Service, National Institutes of Health19910000 [0058]
- CHOTHIALESKJ. Mol. Biol., 1987, vol. 196, 901-917 [0058]
- OGANESYAN V et al.Acta Crystallogr D Biol Crystallogr., 2008, vol. 64, 700-4 [0060]
- OGANESYAN V et al.Mol Immunol., vol. 46, 1750-5 [0060]
- DALL'ACQUA, W.F. et al.J. Biol. Chem., 2006, vol. 281, 23514-23524 [0060]
- DALL'ACQUA et al.J. Immunol., 2002, vol. 169, 5171-5180 [0060]
- BRUMMELL et al.Biochem., 1993, vol. 32, 1180-1 187 [0069]
- KOBAYASHI et al.Protein Eng., 1999, vol. 12, 879-884 [0069]
- BURKS et al.Proc. Natl. Acad. Sci. USA, 1997, vol. 94, 412-417 [0069]
- KIVITZ et al.PAIN, 2013, vol. 154, 91603-161 [0073]
- SANGA et al.PAIN, 2013, vol. 154, 101910-1919 [0073]
- MICHAELSON, J. S. et al.MAbs, 2009, vol. 1, 128-41 [0096]
- BRINKMANN, U. et al.Proc Natl Acad Sci U S A, 1993, vol. 90, 7538-42 [0096]
- YOUNG, N. M. et al.FEBS Lett, 1995, vol. 377, 135-9 [0096]
- REMINGTON'S PHARMACEUTICAL SCIENCESMack Publishing Co.20000000 [0115]
- SKERRACurr. Opin. Biotechnol., 2007, vol. 18, 295-304 [0116]
- HOSSE et al.Protein Science, 2006, vol. 15, 14-27 [0116]
- GILL et al.Curr. Opin. Biotechnol., 2006, vol. 17, 653-658 [0116]
- NYGRENFEBS J., 2008, vol. 275, 2668-76 [0116]
- SKERRAFEBS J., 2008, vol. 275, 2677-83 [0116]
- POUWELS et al.Cloning Vectors: A Laboratory ManualElsevier19850000 [0126]
- GLUZMANCell, 1981, vol. 23, 175- [0127]
- LUCKOWSUMMERSBio/Technology, 1988, vol. 6, 47- [0127]
- REMINGTONThe Science and Practice of PharmacyMack Publishing20000000 [0154]
- UK Home Office AnimalsScientific Procedures) Act, 1986, [0192]
- RANDALL LOSELITTO JJArch Int Pharmacodyn Ther., 1957, vol. 111, 409-19 [0193]
- WEN YR et al.Anesthesiology, 2007, vol. 107, 312-321 [0206]
- MILLIGAN ED et al.J Neurosci, 2003, vol. 23, 1026-1040 [0206]
- ZHUANG ZY et al.Pain, 2005, vol. 114, 149-159 [0209]

Patentkrav

1. Bindingsmolekyle, der omfatter et NGF-antagonistdomæne og et TNF α -antagonistdomæne, hvor NGF-antagonistdomænet er et anti-
5 NGF-scFv-fragment, og TNF α -antagonistdomænet omfatter et opløseligt TNF α -bindingsfragment af TNFR-2; hvor TNF α -antagonistdomænet omfatter en aminosyresekvens, der er mindst 90 % identisk med aminosyrerne 1 til 235 af SEQ ID NO: 13; hvor anti-NGF-scFv-fragmentet omfatter et antistof-VH-domæne, der
10 omfatter aminosyresekvensen ifølge SEQ ID NO: 94, og et antistof-VL-domæne, der omfatter aminosyresekvensen ifølge SEQ ID NO: 95, og hvor anti-NGF-scFv-fragmentet er stabiliseret ved indførelse af interkæde-disulfidbinding (SS-stabiliseret).
- 15 2. Bindingsmolekyle ifølge krav 1, hvor anti-NGF-scFv-fragmentet fra N-terminal mod C-terminal omfatter en VH, der omfatter aminosyresekvensen ifølge SEQ ID NO: 94, en 20 aminosyrer lang linkersekvens (GGGGS)₄ (SEQ ID NO: 19) og en VL, der omfatter aminosyresekvensen ifølge SEQ ID NO: 95.
- 20 3. Bindingsmolekyle ifølge et hvilket som helst af kravene 1-2, hvor TNF α -antagonisten omfatter et opløseligt TNF α -bindingsfragment af TNFR-2, der er fusioneret til et immunoglobulin-Fc-domæne.
- 25 4. Bindingsmolekyle ifølge krav 3, hvor immunoglobulin-Fc-domænet er et humant IgG1-Fc-domæne.
- 30 5. Bindingsmolekyle ifølge krav 4, hvor immunoglobulin-Fc-domænet omfatter en aminosyresekvens, der er mindst 90 % identisk med aminosyrerne 236 til 467 af SEQ ID NO: 13.
- 35 6. Bindingsmolekyle ifølge krav 1, hvor TNF α -antagonisten omfatter en aminosyresekvens, der er mindst 90 % identisk med SEQ ID NO: 13.
7. Bindingsmolekyle ifølge krav 1, hvor bindingsmolekylet omfatter et fusionsprotein, der omfatter NGF-antagonisten, der

er fusioneret til TNF α -antagonisten via en linker.

8. Bindingsmolekyle ifølge krav 7, hvor bindingsmolekylet omfatter en homodimer af fusionsproteinet.

5

9. Bindingsmolekyle ifølge krav 8, hvor NGF-antagonisten er et anti-NGF-scFv-domæne, og TNF α -antagonisten er et opløseligt TNF α -bindingsfragment af TNFR-2, der er fusioneret i dets carboxyterminal til et immunoglobulin-Fc-domæne via en linker.

10

10. Bindingsmolekyle ifølge et hvilket som helst af kravene 1-9, hvor bindingsmolekylet omfatter en homodimer af et fusionspolypeptid, der fra N-terminal mod C-terminal omfatter et TNF α -bindingsfragment af TNFR-2, der omfatter en aminosyresekvens, der er identisk med en sekvens, der svarer til aminosyrerne 1-235 af SEQ ID NO: 13, et humant IgG1-Fc-domæne, en 10 aminosyrer lang linkersekvens (GGGGS)₂ (SEQ ID NO: 98), en VH, der omfatter aminosyresekvensen ifølge SEQ ID NO: 94, en 20 aminosyrer lang linkersekvens (GGGGS)₄ (SEQ ID NO: 19) og en VL, der omfatter aminosyresekvensen ifølge SEQ ID NO: 95.

15

11. Bindingsmolekyle ifølge et hvilket som helst af kravene 1-9, hvor bindingsmolekylet omfatter en homodimer af et fusionspolypeptid, der fra N-terminal mod C-terminal omfatter et TNF α -bindingsfragment af TNFR-2, der omfatter aminosyresekvensen ifølge SEQ ID NO: 13, et humant IgG1-Fc-domæne, en 10 aminosyrer lang linkersekvens (GGGGS)₂ (SEQ ID NO: 98), en VH, der omfatter aminosyresekvensen ifølge SEQ ID NO: 94, en 20 aminosyrer lang linkersekvens (GGGGS)₄ (SEQ ID NO: 19) og en VL, der omfatter aminosyresekvensen ifølge SEQ ID NO: 95.

20

12. Bindingsmolekyle ifølge et hvilket som helst af kravene 1-11, hvor bindingsmolekylet omfatter en homodimer af et fusionspolypeptid, der omfatter aminosyresekvensen ifølge SEQ ID NO: 17.

25

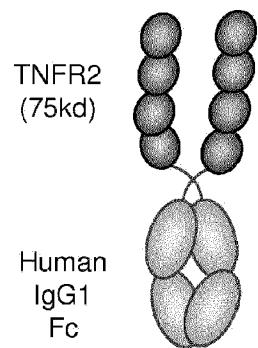
13. Bindingsmolekyle ifølge et hvilket som helst af kravene 1-

11, hvor bindingsmolekylet omfatter en homodimer af et fusionspolypeptid, der omfatter en aminosyresekvens, der er mindst 95 % identisk med aminosyresekvensen ifølge SEQ ID NO: 17.

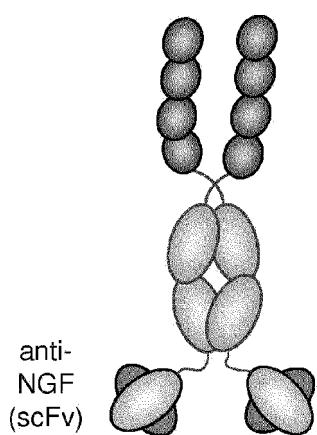
5

14. Isoleret polynukleotid, der koder for bindingsmolekylet ifølge et hvilket som helst af kravene 1-13.

15. Vektor, der omfatter polynukleotidet ifølge krav 14, der
10 er operabelt forbundet med en promotor.


16. Værtscelle, der omfatter vektoren ifølge krav 15.

17. Sammensætning, der omfatter bindingsmolekylet ifølge et
15 hvilket som helst af kravene 1-13 og et farmaceutisk acceptabelt excipiens.


18. Sammensætning ifølge krav 17 til anvendelse til behandling af smærter hos et individ.

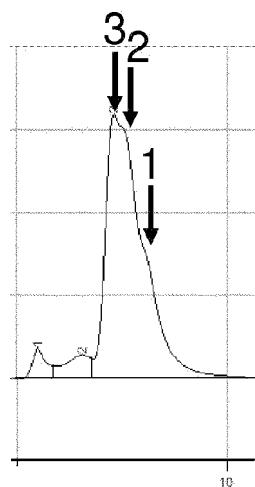
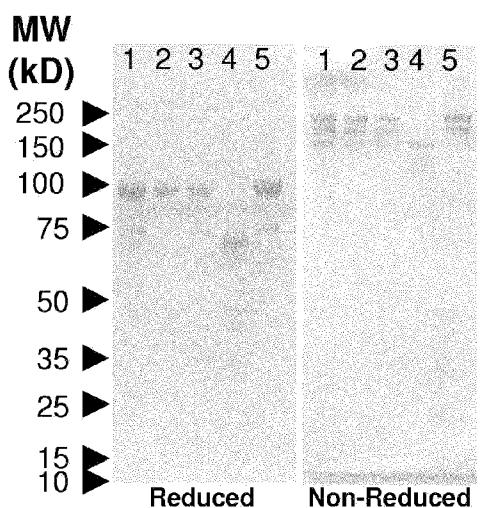


DRAWINGS

FIG. 1A

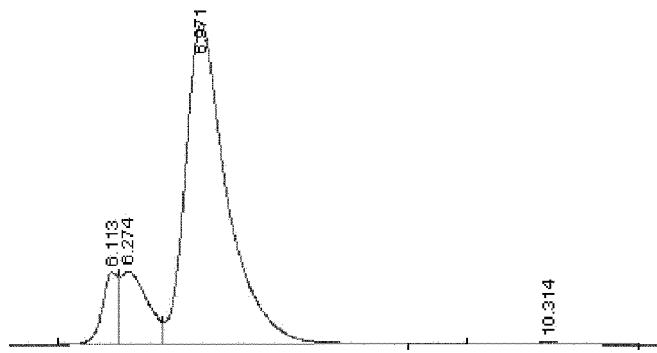


FIG. 1B

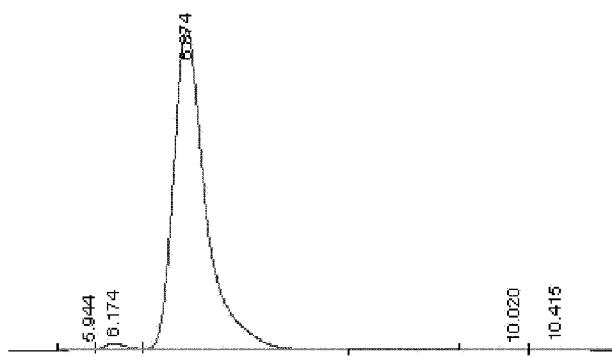


FIG. 2A**FIG. 2B**

FIG. 3A

FIG. 3B

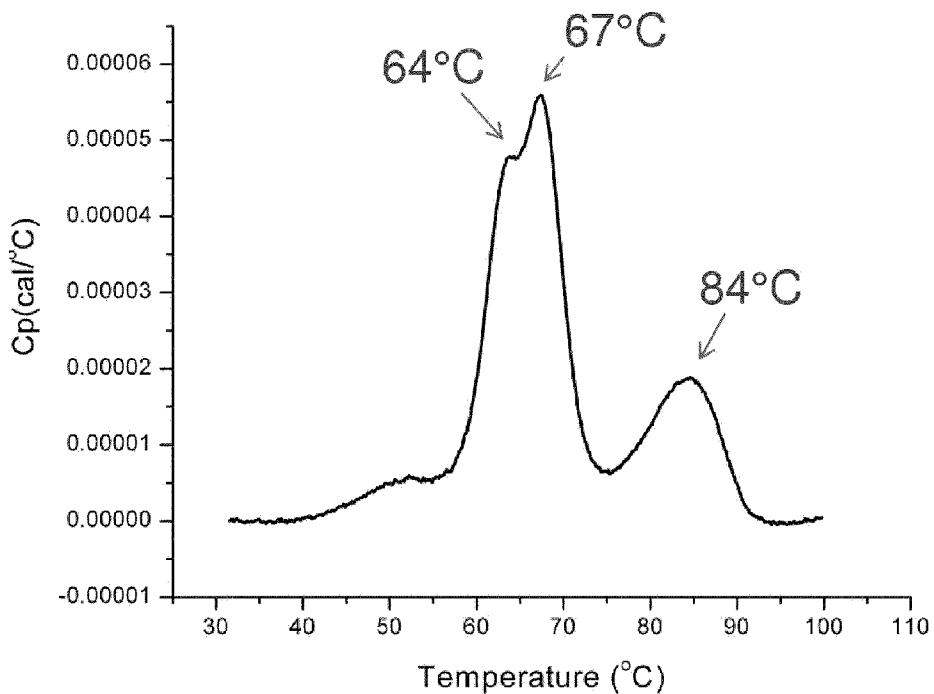

FIG. 4

Fig. 5A

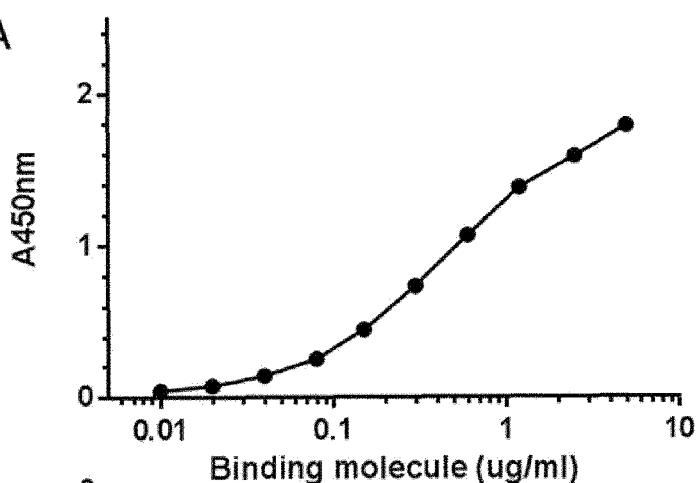


Fig. 5B

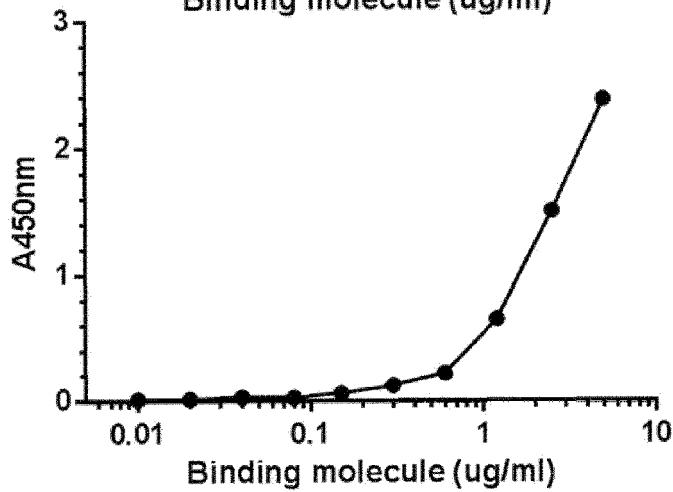
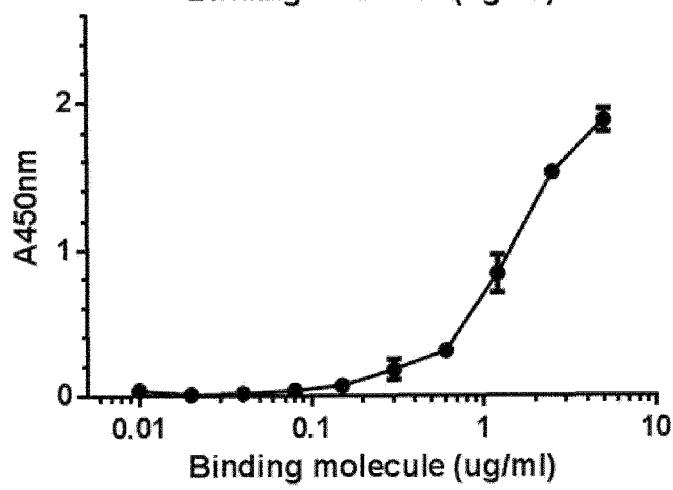
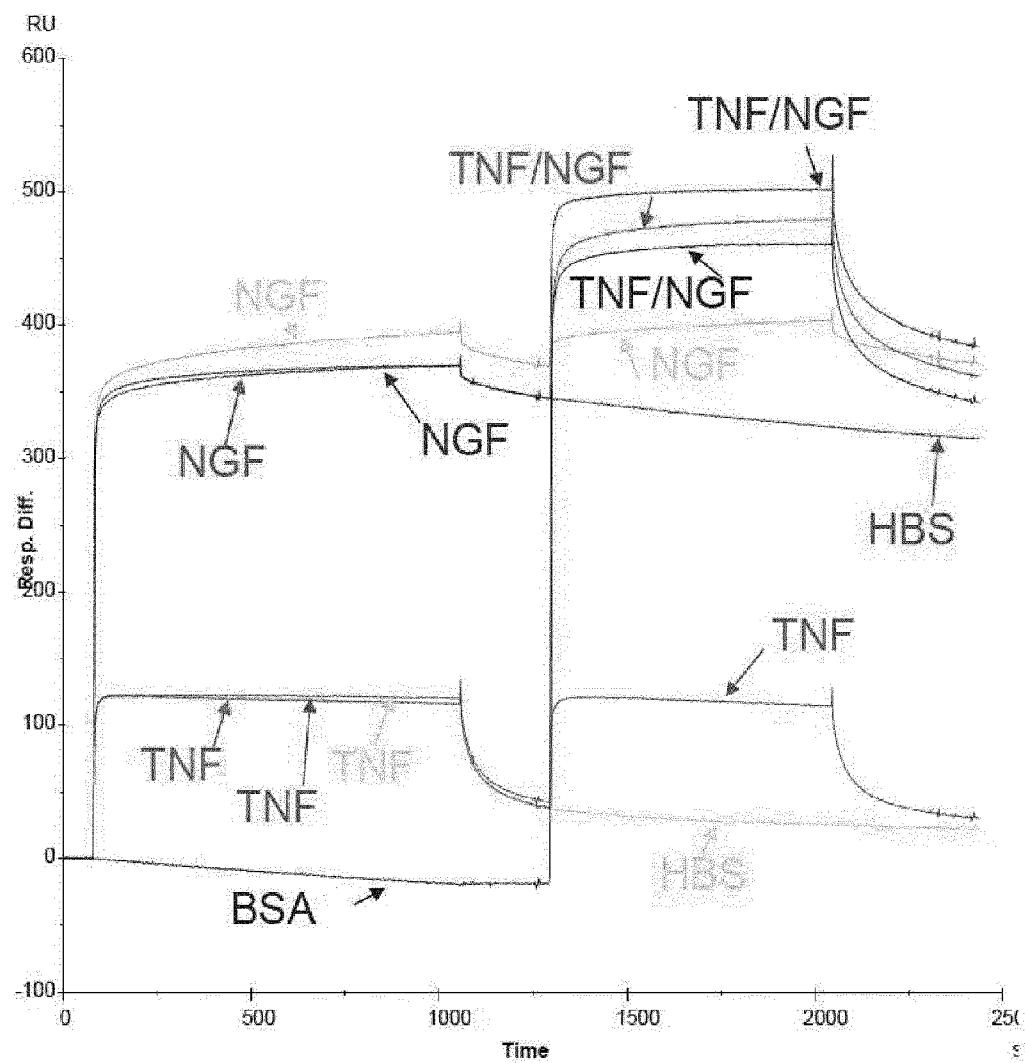
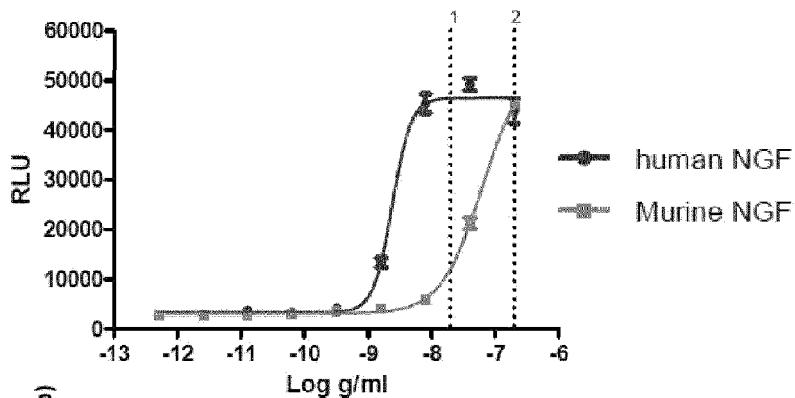
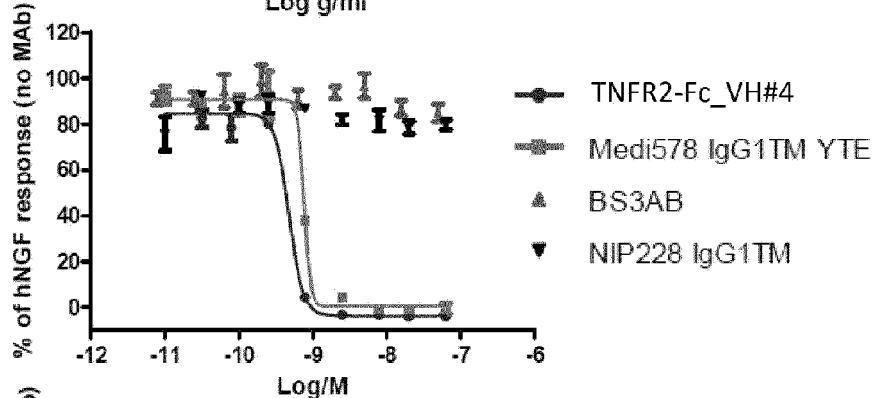
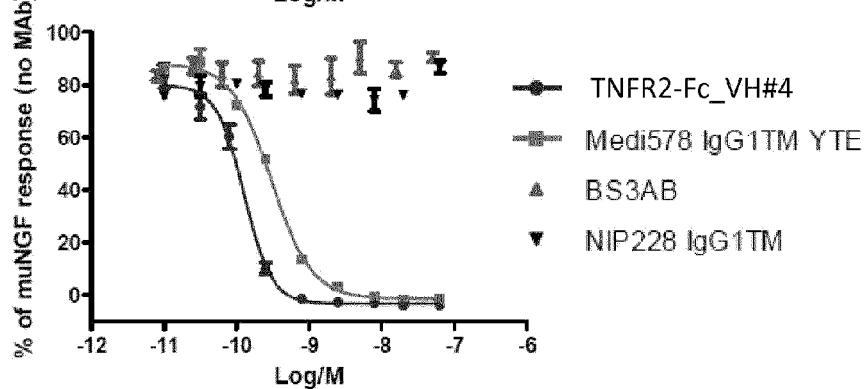
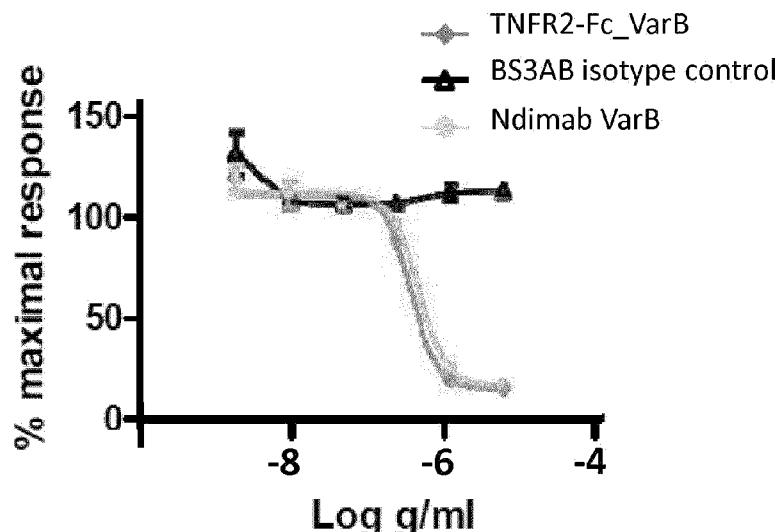
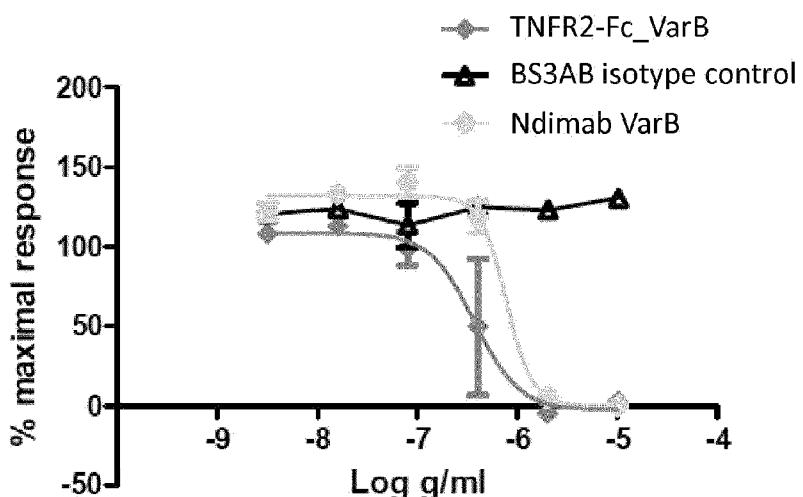


Fig. 5C


FIG. 6

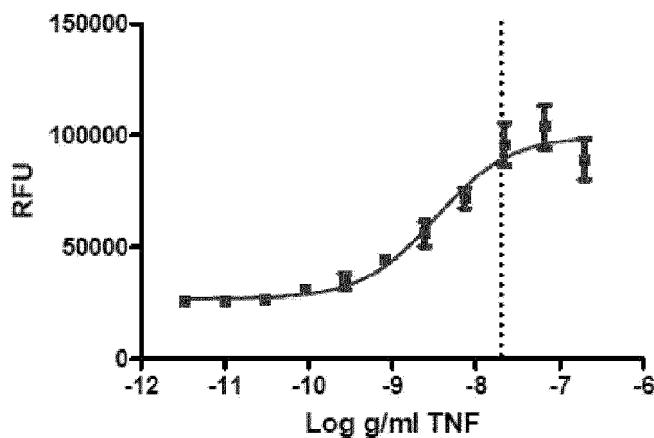
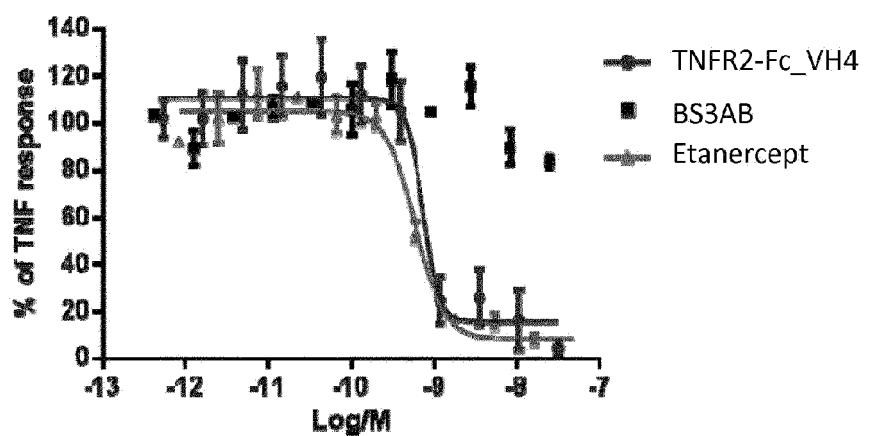


FIG. 7A**FIG. 7B****FIG. 7C**

FIG. 7D

	TNFR2-Fc_VarB	Ndimab VarB
IC50	3.134e-007	3.934e-007

FIG. 7E

	TNFR2-Fc_VarB	Ndimab VarB
IC50	3.642e-007	7.602e-007

FIG. 8A**FIG. 8B**

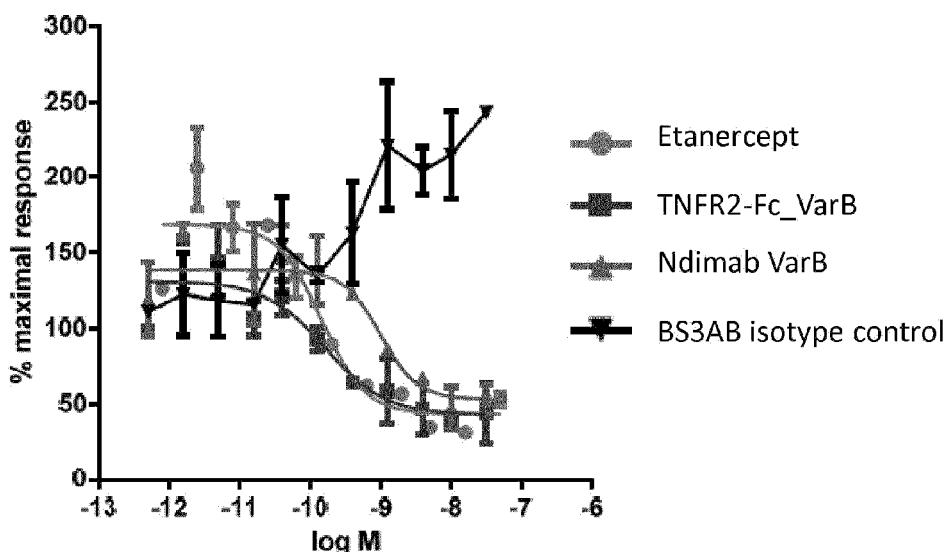
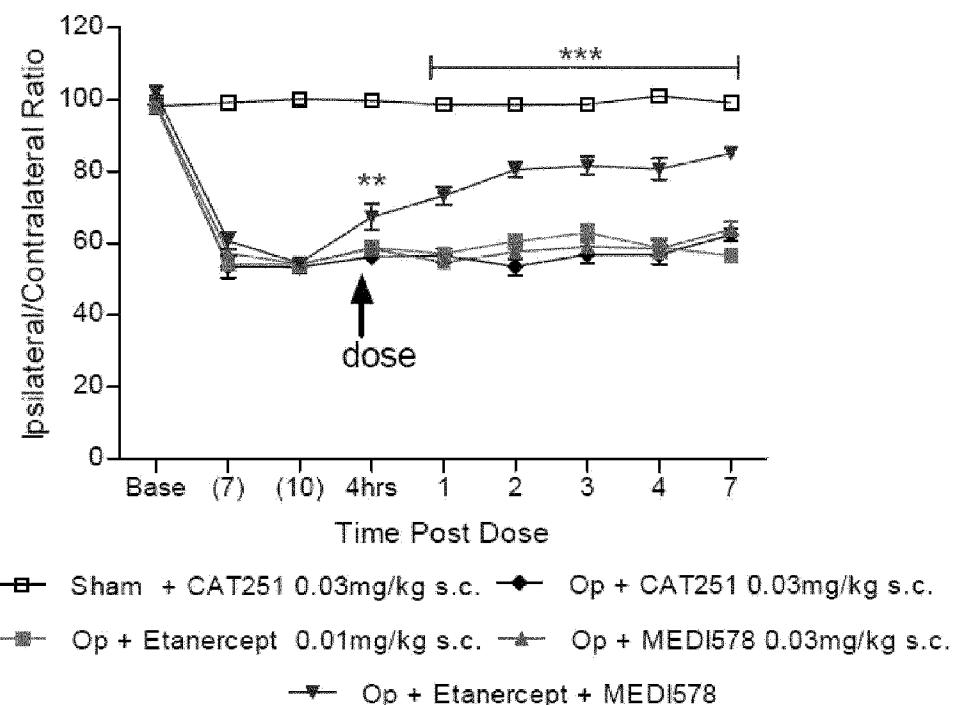


FIG. 8C

FIG. 9

N=9-10 per group. Data analysed using 2 way ANOVA with time and treatment as dependant factors. Subsequent statistical significance obtained using Bonferroni's Post Hoc test

*** p<0.001 to Op + CAT251 control

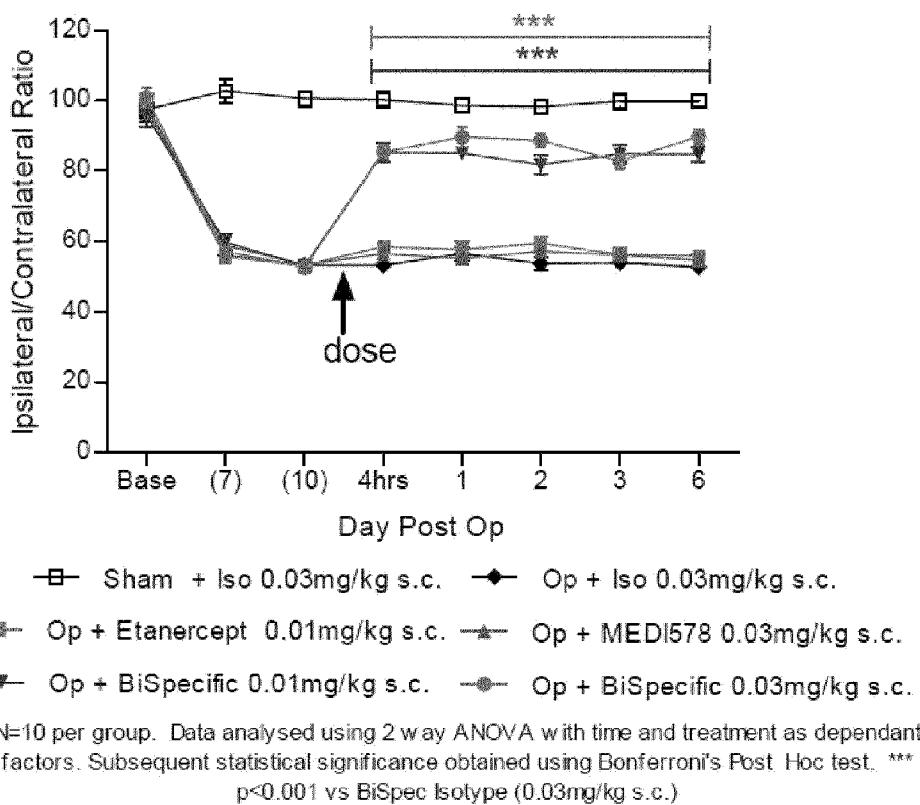

FIG. 10A

FIG. 10B

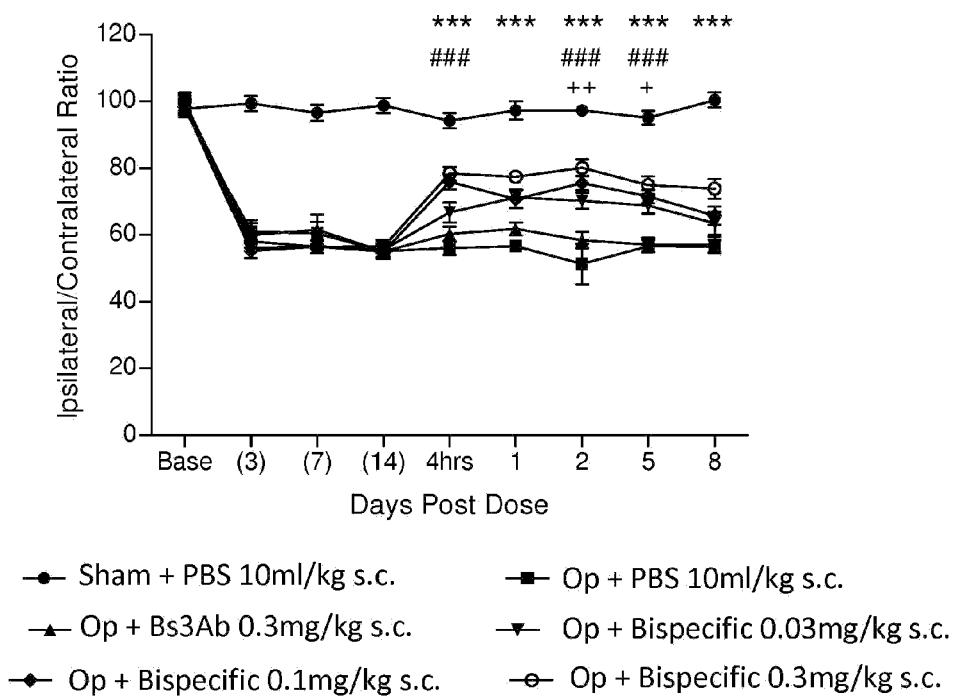


FIG. 11

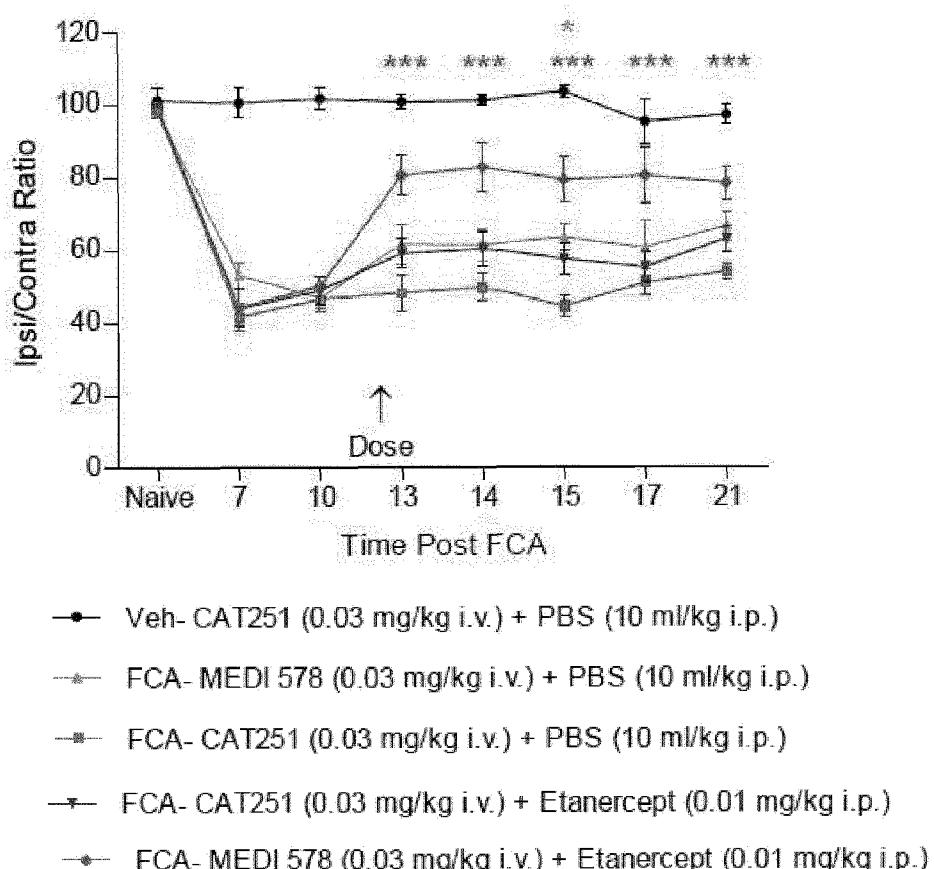


FIG. 12

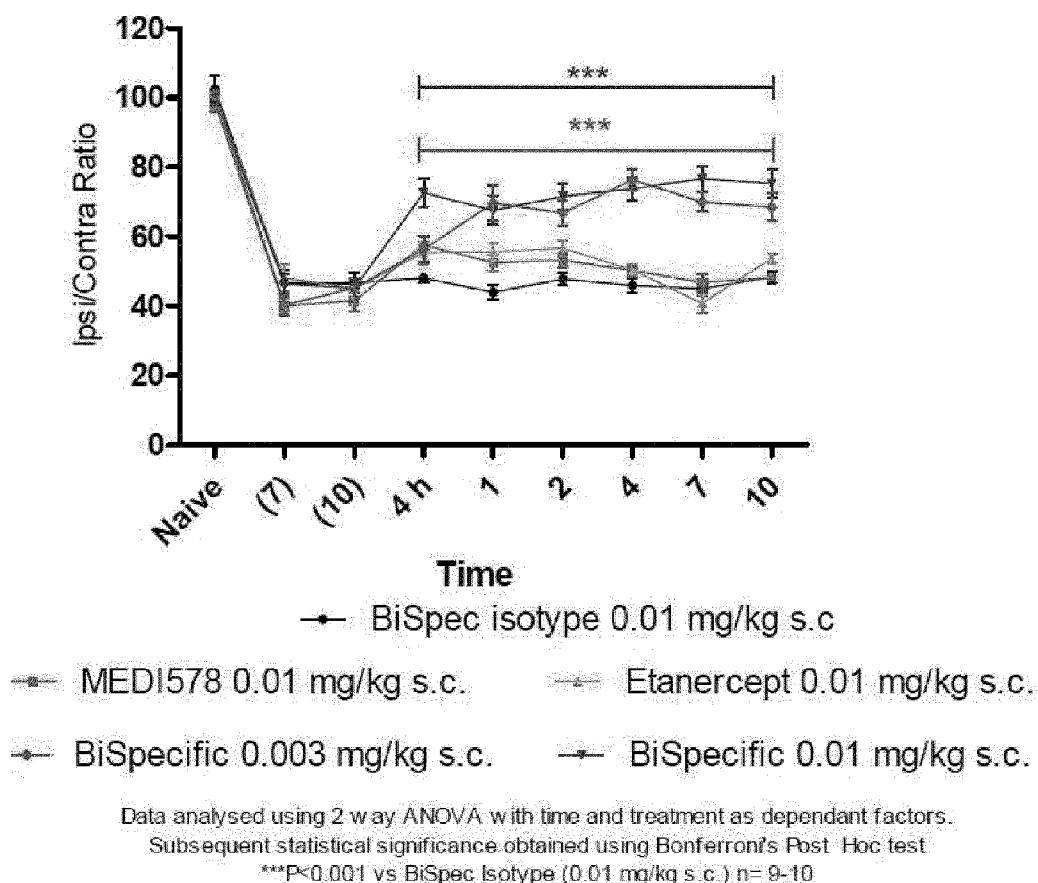


FIG. 13

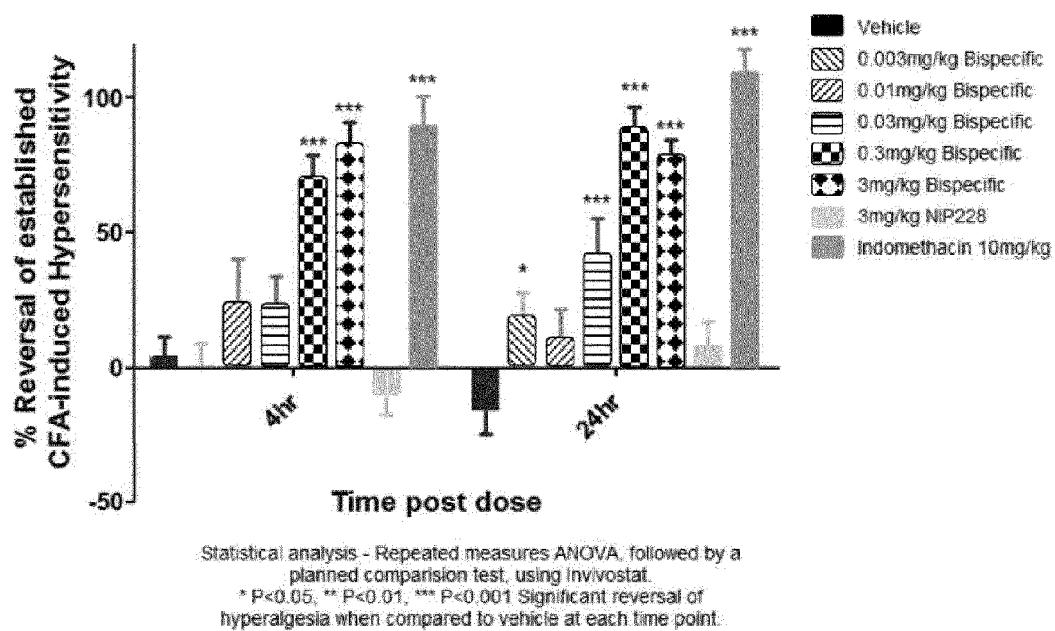


FIG. 14

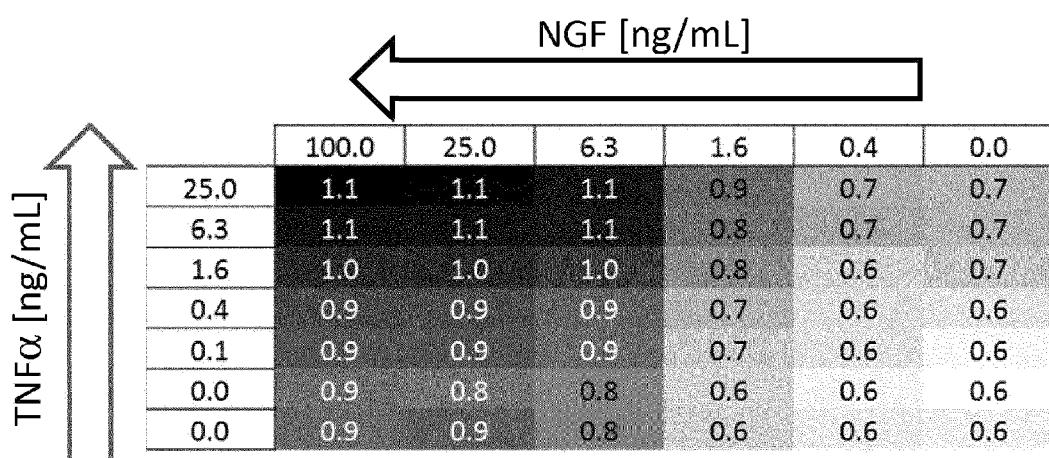


FIG. 15

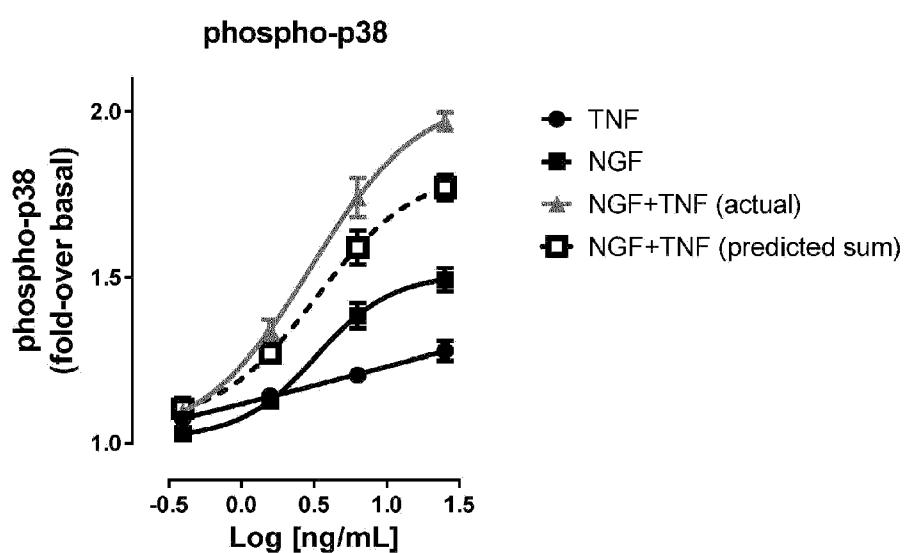


FIG. 16

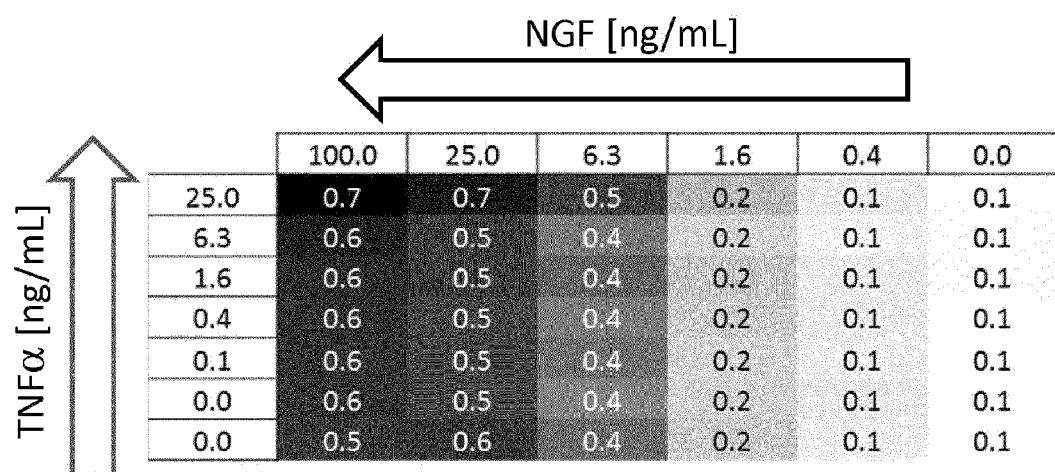
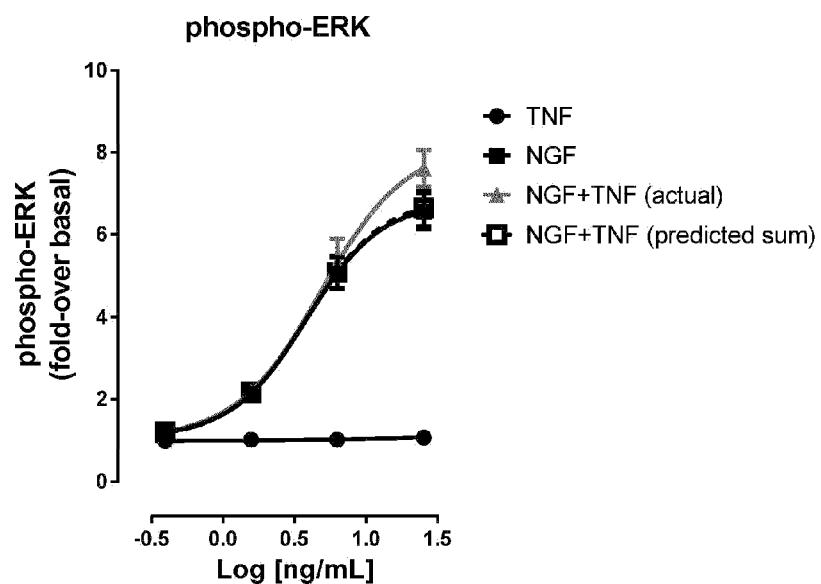



FIG. 17

