Title: AAV-DIRECTED PERSISTENT EXPRESSION OF AN ANTI-NICOTINE ANTIBODY GENE FOR SMOKING CESSATION

Abstract: The invention is directed to an adeno-associated virus (AAV) vector which comprises a nucleic acid sequence encoding an antibody that binds to nicotine or a nicotine analog, or an antigen-binding fragment thereof. The invention also is directed to a composition comprising the AAV vector and methods of using the AAV vector to induce an immune response against nicotine in a mammal.
AAV-DIRECTED PERSISTENT EXPRESSION OF AN ANTI-NICOTINE ANTIBODY GENE FOR SMOKING CESSATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This patent application claims the benefit of U.S. Provisional Patent Application No. 61/604,203 filed February 28, 2012, which is incorporated by reference in its entirety herein.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

[0002] This invention was made with Government support under Grant Number DA025305 awarded by the National Institute on Drug Abuse. The Government has certain rights in this invention.

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ELECTRONICALLY

[0003] Incorporated by reference in its entirety herein is a computer-readable nucleotide/amino acid sequence listing submitted concurrently herewith and identified as follows: One 9,457 Byte ASCII (Text) file named "712129_ST25.TXT," created on February 25, 2013.

BACKGROUND OF THE INVENTION

[0004] The most widely used addictive drug in the world is tobacco, of which the principal addictive component is nicotine. Approximately 20.6% of adults in the U.S. smoke cigarettes, and cigarette smoking accounts for one of every five deaths in the USA (Center for Disease Control and Prevention, Morbidity and Mortality Weekly Report. Centers for Disease Control 10 A.D. Sep; vol. 59 (2012)). In the lung, cigarette smoke causes chronic obstructive pulmonary disease (COPD) and lung cancer, and smoking is associated with an increased risk of cardiovascular disease and a variety of other neoplasms (see, e.g., Alberg et al, J. Clin. Oncol., 23: 3175-3185 (2005); Blanco-Cedres et al, Am. J. Epidemiol., 155: 354-360 (2002); Hylkema et al, Eur. Respir. J , 29: 438-445 (2007); and Sebelius K, How Tobacco Smoke Causes Disease: the Biology and Behavioral Basis for Smoking-Attributable Disease: a Report of the Surgeon
Despite the devastating effects of nicotine addiction, the combined current strategies with drugs and counseling to help smokers quit are mostly ineffective, with a 70 to 80% recidivism rate within 6 months (see, e.g., Fiore, M. C., et al., *Treating Tobacco Use and Dependence: 2008 Update*, U.S. Dept. of Health and Human Services). One approach to treating nicotine addiction has been to develop an anti-nicotine vaccine. Anti-nicotine vaccines attempt to generate a host immune response to evoke humoral immunity against nicotine. The challenge of this approach is that nicotine is a small molecule not seen by the immune system, and thus nicotine (or a nicotine analog) must be coupled to a larger molecule to induce an anti-nicotine immune response (Lesage et al, *AAPS J.*, 8: E65-E75 (2006); Moreno et al, *Pharmacol. Biochem. Behav.*, 92: 199-205 (2009); and Maurer et al, *Eur. J. Immunol.*, 35: 2031-2040 (2005)). For example, AMI, a trans-3′-(hydroxymethyl) nicotine-derived nicotine hapten with a linker containing an ether moiety and a free carboxyl group for conjugation, has been attached to carriers such as tetanus toxin to create an anti-nicotine vaccine. In a rodent self-administration model, this vaccine shifted preference for nicotine self-administration (see Moreno et al., *Mol. Gen. U.S. Dept. of Health and Human Services (2010)). Smoking-related health care and loss of productivity cost in excess of $193 billion annually in the U.S. (Sebelius, *supra*).
Three active immunotherapy vaccines have been tested in clinical trials, including TA-NIC (a nicotine analog linked to cholera toxin B, Xenova), NicVAX (a nicotine analog linked to *Pseudomonas aeruginosa* exoprotein A, Nabi Pharmaceuticals), and NicQb (a nicotine analog linked to particles of the bacteriophage QP, Cytos Biotechnology) (see Polosa et al, *Trends Pharmacol. Sci.*, 32: 281-289 (2011); and Hatsukami et al, *Clin. Pharmacol. Ther.*, 89: 392-399 (2011)). These vaccines are well tolerated, and the individuals with the highest levels of antibodies were more likely to abstain from smoking (see Polosa et al., *supra*). However, all trials showed large variation among trial participants in the amount of antibody generated, and only a relatively small percentage of the participants have abstained from smoking (see Polosa et al, *supra*, Hatsukami et al, *supra*; Maurer et al, *Expert. Opin. Investig. Drugs*, 16: 1775-1783 (2007); and Pollack, A, "Antismoking Vaccine Fails in Late Trial," *The New York Times* (July 18, 2011)).

Thus, there is a need for alternative compositions and methods to prevent or treat nicotine addiction. This invention provides such compositions and methods. This and other advantages of the invention will become apparent from the detailed description provided herein.

BRIEF SUMMARY OF THE INVENTION

The invention provides an adeno-associated virus (AAV) vector comprising a nucleic acid sequence which encodes an antibody that binds to nicotine or a nicotine analog, or an antigen-binding fragment thereof. The invention also provides a composition comprising the AAV vector and methods of using the AAV vector to induce an immune response against nicotine in a mammal.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

Figure 1A is a schematic of the AAVantiNic vector, which depicts the CMV enhancer/chicken β-actin promoter (CAG promoter), nucleic acid sequences encoding the heavy and light chain polypeptides of the anti-nicotine monoclonal antibody NIC9D9, furin-2a polypeptide cleavage site, and poly A signal. Figures 1B and 1C are images which depict expression of the anti-nicotine antibody encoded by the AAVantiNic vector in HEK 293 cells under
reducing conditions, as analyzed by coomassie blue staining (Fig. 1B) and Western blot using a sheep anti-mouse IgG antibody (Fig. 1C).

Figures 2A-2D are graphs which depict experimental data illustrating AAVantiNic-directed expression of an anti-nicotine antibody in mice, as described in Example 2. Fig. 2A depicts anti-nicotine IgG antibody titers as a function of increasing dosage of AAVantiNic. Antibody titers were assessed by ELISA against bovine-serum-albumin (BSA) conjugated-nicotine hapten AMI (*p<0.005, **p<0.0003). Fig. 2B depicts the persistence of expression of the anti-nicotine antibody following administration of AAVantiNic over 18 weeks. For Figs. 2A and 2B, antibody titers were determined compared to a NIC9D9 antibody standard. Fig. 2C depicts the specificity of the anti-nicotine antibody generated by AAVantiNic in vitro. Inhibition of binding of immune sera to BSA-AMI by ELISA was performed in the presence of increasing concentrations of nicotine, nornicotine, or cotinine. Fig. 2D depicts the serum anti-nicotine antibody affinity (Kd) generated by AAVantiNic. Serum used in Fig. 2C was used to determine the Kd by inhibition of tracer (3H-nicotine) binding via a cold competitor radioimmunoassay.

Figures 3A and 3B are graphs which depict experimental data illustrating the levels of nicotine in serum (Fig. 3A) and brain (Fig. 3B) of C57B1/6 mice challenged with nicotine, as described in Example 3. Shown are nicotine levels in the serum (ng/ml serum) (Fig. 3A) and brain (ng/g brain) (Fig. 3B) of non-immunized and AAVantiNic-immunized mice 15 weeks post-administration with AAVantiNic. Blood nicotine levels are depicted in Fig. 3A, and the data includes: total serum nicotine, unbound nicotine, and IgG bound nicotine (*p<10^{-3}, **p<0.005). Brain nicotine levels are depicted in Fig. 3B, which shows data for non-immunized and AAVantiNic immunized mice (**p<10^{-4}). Comparisons between groups were conducted by a two-tailed unpaired t-test.

Figures 4A and 4B are graphs which depict experimental data illustrating the prevention of nicotine-induced cardiovascular effects by AAVantiNic, as described in Example 4. Fig. 4A depicts base-line mean arterial blood pressure (MAP), and Fig. 4B depicts heart rate (HR) of AAVantiNic-immunized or AAVcontrol treated-mice. AAVantiNic abolished nicotine-induced MAP depressor and HR bradycardic responses during the first 25 minutes (* p<10^{-3}) following injection. Comparisons between groups were conducted by two-way repeated measures ANOVA. For both Figs. 4A and 4B, data is shown for AAVantiNic-immunized mice.
administered nicotine (·), AAVantiNic-immunized mice administered PBS (Δ), and control mice administered nicotine (■).

[0013] Figures 5A-5C are graphs which depict experimental data illustrating AAVantiNic-mediated prevention of nicotine-induced hypolocomotor activity, as described in Example 5. Fig. 5A shows the total distance traveled of non-immunized mice compared to AAVantiNic-immunized mice over time with frequent challenge with nicotine or PBS as indicated by the arrows (AAVantiNic-immunized mice + nicotine (·); non-immunized mice + nicotine (■); and non-immunized mice + PBS (Δ) (NS p=0.15, *p<10⁻³)). Fig. 5B shows examples of cumulative distance traveled assessed as a function of time post-administration of PBS or nicotine (7 week post-single administration of the AAVantiNic (NS p>0.7, *p<10⁻³). Fig. 5C shows cumulative vertical activity assessed as a function of time post-administration of PBS or nicotine in the same mice as in Fig. 5B (NS p=0.91, *p<10⁻²).

DETAILED DESCRIPTION OF THE INVENTION

[0014] The invention is predicated, at least in part, on the ability of adeno-associated virus (AAV) vectors to be safely administered to humans and to provide persistent expression of a therapeutic transgene. The invention provides an adeno-associated virus (AAV) vector which comprises, consists essentially of, or consists of a nucleic acid sequence encoding an antibody that binds to nicotine or a nicotine analog, or an antigen-binding fragment thereof. When the inventive AAV vector consists essentially of a nucleic acid sequence encoding an antibody that binds to nicotine or a nicotine analog, or an antigen-binding fragment thereof, additional components can be included that do not materially affect the AAV vector (e.g., genetic elements such as poly(A) sequences or restriction enzyme sites that facilitate manipulation of the vector in vitro). When the AAV vector consists of a nucleic acid sequence encoding an antibody that binds to nicotine or a nicotine analog, or an antigen-binding fragment thereof, the AAV vector does not comprise any additional components (i.e., components that are not endogenous to AAV and are not required to effect expression of the nucleic acid sequence to thereby provide the antibody).

[0015] Adeno-associated virus is a member of the Paroviridae family and comprises a linear, single-stranded DNA genome of less than about 5,000 nucleotides. AAV requires co-
infection with a helper virus (i.e., an adenovirus or a herpes virus), or expression of helper genes, for efficient replication. AAV vectors used for administration of therapeutic nucleic acids typically have approximately 96% of the parental genome deleted, such that only the terminal repeats (ITRs), which contain recognition signals for DNA replication and packaging, remain. This eliminates immunologic or toxic side effects due to expression of viral genes. In addition, delivering specific AAV proteins to producing cells enables integration of the AAV vector comprising AAV ITRs into a specific region of the cellular genome, if desired (see, e.g., U.S. Patents 6,342,390 and 6,821,511). Host cells comprising an integrated AAV genome show no change in cell growth or morphology (see, for example, U.S. Patent 4,797,368).

[0016] The AAV ITRs flank the unique coding nucleotide sequences for the non-structural replication (Rep) proteins and the structural capsid (Cap) proteins (also known as virion proteins (VPs)). The terminal 145 nucleotides are self-complementary and are organized so that an energetically stable intramolecular duplex forming a T-shaped hairpin may be formed. These hairpin structures function as an origin for viral DNA replication by serving as primers for the cellular DNA polymerase complex. The Rep genes encode the Rep proteins Rep78, Rep68, Rep52, and Rep40. Rep78 and Rep68 are transcribed from the p5 promoter, and Rep 52 and Rep40 are transcribed from the pl9 promoter. The Rep78 and Rep68 proteins are multifunctional DNA binding proteins that perform helicase and nickase functions during productive replication to allow for the resolution of AAV termini (see, e.g., Im et al, *Cell*, 61: 447-57 (1990)). These proteins also regulate transcription from endogenous AAV promoters and promoters within helper viruses (see, e.g., Pereira et al, *J. Virol.*, 71: 1079-1088 (1997)). The other Rep proteins modify the function of Rep78 and Rep68. The cap genes encode the capsid proteins VP1, VP2, and VP3. The cap genes are transcribed from the p40 promoter.

[0017] The inventive AAV vector can be generated using any AAV serotype known in the art. Several AAV serotypes and over 100 AAV variants have been isolated from adenovirus stocks or from human or nonhuman primate tissues (reviewed in, e.g., Wu et al, *Molecular Therapy*, 14(3): 316-327 (2006)). Generally, the AAV serotypes have genomic sequences of significant homology at the nucleic acid sequence and amino acid sequence levels, such that different serotypes have an identical set of genetic functions, produce virions which are essentially physically and functionally equivalent, and replicate and assemble by practically
identical mechanisms. AAV serotypes 1-6 and 7-9 are defined as "true" serotypes, in that they
do not efficiently cross-react with neutralizing sera specific for all other existing and
characterized serotypes. In contrast, AAV serotypes 6, 10 (also referred to as RhLO), and 11 are
considered "variant" serotypes as they do not adhere to the definition of a "true" serotype. AAV
serotype 2 (AAV2) has been used extensively for gene therapy applications due to its lack of
pathogenicity, wide range of infectivity, and ability to establish long-term transgene expression
(see, e.g., Carter, B.J., Hum. Gene Ther., 16: 541-550 (2005); and Wu et al, supra). Genome
sequences of various AAV serotypes and comparisons thereof are disclosed in, for example,
GenBank Accession numbers U89790, J01901, AF043303, and AF085716; Chiorini et al, J.

[0018] AAV rep and ITR sequences are particularly conserved across most AAV serotypes.
For example, the Rep78 proteins of AAV2, AAV3A, AAV3B, AAV4, and AAV6 are reportedly
about 89-93% identical (see Bantel-Schaal et al, J. Virol., 73(2): 939-947 (1999)). It has been
reported that AAV serotypes 2, 3A, 3B, and 6 share about 82% total nucleotide sequence identity
at the genome level (Bantel-Schaal et al, supra). Moreover, the rep sequences and ITRs of
many AAV serotypes are known to efficiently cross-complement (i.e., functionally substitute)
corresponding sequences from other serotypes during production of AAV particles in
mammalian cells.

[0019] Generally, the cap proteins, which determine the cellular tropicity of the AAV
particle, and related cap protein-encoding sequences, are significantly less conserved than Rep
genes across different AAV serotypes. In view of the ability Rep and ITR sequences to cross-
complement corresponding sequences of other serotypes, the AAV vector can comprise a
mixture of serotypes and thereby be a "chimeric" or "pseudotyped" AAV vector. A chimeric
AAV vector typically comprises AAV capsid proteins derived from two or more (e.g., 2, 3, 4,
etc.) different AAV serotypes. In contrast, a pseudotyped AAV vector comprises one or more
ITRs of one AAV serotype packaged into a capsid of another AAV serotype. Chimeric and
pseudotyped AAV vectors are further described in, for example, U.S. Patent 6,723,551; Flotte,

In one embodiment, the AAV vector is generated using an AAV that infects humans (e.g., AAV2). Alternatively, the AAV vector is generated using an AAV that infects non-human primates, such as, for example, the great apes (e.g., chimpanzees), Old World monkeys (e.g., macaques), and New World monkeys (e.g., marmosets). Preferably, the AAV vector is generated using an AAV that infects a non-human primate pseudotyped with an AAV that infects humans. Examples of such pseudotyped AAV vectors are disclosed in, e.g., Cearley et al, Molecular Therapy, 13: 528-537 (2006). In one embodiment, an AAV vector can be generated which comprises a capsid protein from an AAV that infects rhesus macaques pseudotyped with AAV2 inverted terminal repeats (ITRs). In a particularly preferred embodiment, the inventive AAV vector comprises a capsid protein from AAV 10 (also referred to as "AAVrh.10"), which infects rhesus macaques pseudotyped with AAV2 ITRs (see, e.g., Watanabe et al, Gene Ther., 77(8): 1042-1051 (2010); and Mao et al., Hum. Gene Therapy, 22: 1525-1535 (2011)).

The inventive AAV vector comprises a nucleic acid sequence encoding an antibody that binds to nicotine or a nicotine analog, or an antigen-binding fragment thereof (also referred to herein as an "anti-nicotine antibody"). "Nucleic acid sequence" is intended to encompass a polymer of DNA or RNA, i.e., a polynucleotide, which can be single-stranded or double-stranded and which can contain non-natural or altered nucleotides. The terms "nucleic acid" and "polynucleotide" as used herein refer to a polymeric form of nucleotides of any length, either ribonucleotides (RNA) or deoxyribonucleotides (DNA). These terms refer to the primary structure of the molecule, and thus include double- and single-stranded DNA, and double- and single-stranded RNA. The terms include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs and modified polynucleotides such as, though not limited to, methylated and/or capped polynucleotides.

One of ordinary skill in the art will appreciate that an antibody consists of four polypeptides: two identical copies of a heavy (H) chain polypeptide and two copies of a light (L) chain polypeptide. Each of the heavy chains contains one N-terminal variable (V\textsubscript{H}1) region and three C-terminal constant (C\textsubscript{H}1, C\textsubscript{H}2 and C\textsubscript{H}3) regions, and each light chain contains one N-terminal variable (V\textsubscript{L}) region and one C-terminal constant (C\textsubscript{L}) region. The variable regions of
each pair of light and heavy chains form the antigen binding site of an antibody. The inventive AAV vector can comprise one or more nucleic acid sequences, each of which encodes one or more of the heavy and/or light chain polypeptides of an anti-nicotine antibody. In this respect, the inventive AAV vector can comprise a single nucleic acid sequence that encodes the two heavy chain polypeptides and the two light chain polypeptides of an anti-nicotine antibody. Alternatively, the inventive AAV vector can comprise a first nucleic acid sequence that encodes both heavy chain polypeptides of an anti-nicotine antibody, and a second nucleic acid sequence that encodes both light chain polypeptides of an anti-nicotine antibody. In yet another embodiment, the inventive AAV vector can comprise a first nucleic acid sequence encoding a first heavy chain polypeptide of an anti-nicotine antibody, a second nucleic acid sequence encoding a second heavy chain polypeptide of an anti-nicotine antibody, a third nucleic acid sequence encoding a first light chain polypeptide of an anti-nicotine antibody, and a fourth nucleic acid sequence encoding a second light chain polypeptide of an anti-nicotine antibody.

In another embodiment, the AAV vector can comprise a nucleic acid sequence that encodes an antigen-binding fragment (also referred to as an "antibody fragment") of an anti-nicotine antibody. The term "antigen-binding fragment" refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., nicotine or a nicotine analog) (see, generally, Holliger et al, Nat. Biotech., 23(9):1126-1129 (2005)). Examples of antigen-binding fragments include but are not limited to (i) a Fab fragment, which is a monovalent fragment consisting of the \(V_L, V_H, C_L \), and \(C_H I \) domains; (ii) a \(F(ab')_2 \) fragment, which is a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; and (iii) a Fv fragment consisting of the \(V_L \) and \(V_H \) domains of a single arm of an antibody. In one embodiment, the AAV vector can comprise a nucleic acid sequence encoding a Fab fragment of an anti-nicotine antibody.

The nucleic acid sequence can encode an antibody that binds to nicotine itself or to any nicotine analog known in the art. Suitable nicotine analogs include any nicotine analog that induces an immune response in a mammal (humoral or cell-mediated). Nicotine analogs are known in the art (see, e.g., Cerny et al, Onkologie, 25:406-411 (2002); Lindblom et al, Respiration, 69:254-260 (2002); de Villiers et al, Respiration, 69:247-253 (2002); Tuncok et al., Exp. Clin. Psychopharmacol., 9:228-234 (2001); Hieda et al., Int. J. Immunopharmacol., 22:

[0025] In one embodiment, the nucleic acid sequence can encode the high-affinity, nicotine-binding monoclonal antibody NIC9D9 (see, e.g., Carrera et al, Bioorg. Med. Chem., 12: 563-570 (2004) and Isomura et al, J. Org. Chem., 66: 4115-4121 (2001)). In this respect, the inventive AAV vector can comprise a nucleic acid sequence encoding full-length heavy and light chain polypeptides of NIC9D9. Amino acid sequences of the heavy and light chain polypeptides of NIC9D9 are known in the art and comprise the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 3, respectively. In a preferred embodiment, the inventive AAV vector comprises a nucleic acid sequence encoding a Fab fragment of the NIC9D9 monoclonal antibody. For example, the inventive AAV vector can comprise the nucleic acid sequence of SEQ ID NO: 1.

[0026] An antibody, or antigen-binding fragment thereof, can be obtained by any means, including via in vitro sources (e.g., a hybridoma or a cell line producing an antibody recombinantly) and in vivo sources (e.g., rodents). Methods for generating antibodies are known in the art and are described in, for example, Kohler and Milstein, Eur. J. Immunol., 5: 511-519 (1976); Harlow and Lane (eds.), Antibodies: A Laboratory Manual, CSH Press (1988); and C.A. Janeway et al. (eds.), Immunobiology, 5th Ed., Garland Publishing, New York, NY (2001)). In certain embodiments, a human antibody or a chimeric antibody can be generated using a transgenic animal (e.g., a mouse) wherein one or more endogenous immunoglobulin genes are replaced with one or more human immunoglobulin genes. Examples of transgenic mice wherein endogenous antibody genes are effectively replaced with human antibody genes include, but are not limited to, the HUMAB-MOUSE™, the Kirin TC MOUSE™, and the KM-MOUSE™ (see,

[0027] The nucleic acid sequence encoding the nicotine-binding antibody, or an antigen-binding fragment thereof, can be generated using methods known in the art. For example, nucleic acid sequences, polypeptides, and proteins can be recombinantly produced using standard recombinant DNA methodology (see, e.g., Sambrook et al, Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Press, Cold Spring Harbor, NY, 2001; and Ausubel et al, Current Protocols in Molecular Biology, Greene Publishing Associates and John Wiley & Sons, NY, 1994). Further, a synthetically produced nucleic acid sequence encoding an anti-nicotine antibody, or an antigen-binding fragment thereof, can be isolated and/or purified from a source, such as a bacterium, an insect, or a mammal, e.g., a rat, a human, etc. Methods of isolation and purification are well-known in the art. Alternatively, the nucleic acid sequences described herein can be commercially synthesized. In this respect, the nucleic acid sequence can be synthetic, recombinant, isolated, and/or purified.

[0028] In addition to the nucleic acid sequence encoding an anti-nicotine antibody, or an antigen-binding fragment thereof, the AAV vector preferably comprises expression control sequences, such as promoters, enhancers, polyadenylation signals, transcription terminators, internal ribosome entry sites (IRES), and the like, that provide for the expression of the nucleic acid sequence in a host cell. Exemplary expression control sequences are known in the art and described in, for example, Goeddel, Gene Expression Technology: Methods in Enzymology, Vol. 185, Academic Press, San Diego, CA. (1990).

[0029] A large number of promoters, including constitutive, inducible, and repressible promoters, from a variety of different sources are well known in the art. Representative sources of promoters include for example, virus, mammal, insect, plant, yeast, and bacteria, and suitable promoters from these sources are readily available, or can be made synthetically, based on sequences publicly available, for example, from depositories such as the ATCC as well as other commercial or individual sources. Promoters can be unidirectional (i.e., initiate transcription in one direction) or bi-directional (i.e., initiate transcription in either a 3' or 5' direction). Non-limiting examples of promoters include, for example, the T7 bacterial expression system, pBAD (araA) bacterial expression system, the cytomegalovirus (CMV) promoter, the SV40 promoter,

[0030] The term "enhancer" as used herein, refers to a DNA sequence that increases transcription of, for example, a nucleic acid sequence to which it is operably linked. Enhancers can be located many kilobases away from the coding region of the nucleic acid sequence and can mediate the binding of regulatory factors, patterns of DNA methylation, or changes in DNA structure. A large number of enhancers from a variety of different sources are well known in the art and are available as or within cloned polynucleotides (from, e.g., depositories such as the ATCC as well as other commercial or individual sources). A number of polynucleotides comprising promoters (such as the commonly-used CMV promoter) also comprise enhancer sequences. Enhancers can be located upstream, within, or downstream of coding sequences. Preferably, the nucleic acid sequence encoding the anti-nicotine antibody, or an antigen-binding fragment thereof, is operably linked to a CMV enhancer/chicken β-actin promoter (also referred to as a "CAG promoter") (see, e.g., Niwa et al, Gene, 108: 193-199 (1991); Daly et al, Proc. Natl. Acad. Sci. U.S.A., 96: 2296-2300 (1999); and Sondhi et al, Mol. Ther., 15: 481-491 (2007)).

[0031] The invention provides a composition comprising, consisting essentially of, or consisting of the above-described AAV vector and a pharmaceutically acceptable (e.g. physiologically acceptable) carrier. When the composition consists essentially of the inventive AAV vector and a pharmaceutically acceptable carrier, additional components can be included that do not materially affect the composition (e.g., adjuvants, buffers, stabilizers, anti-inflammatory agents, solubilizers, preservatives, etc.). When the composition consists of the inventive AAV vector and the pharmaceutically acceptable carrier, the composition does not comprise any additional components. Any suitable carrier can be used within the context of the invention, and such carriers are well known in the art. The choice of carrier will be determined, in part, by the particular site to which the composition may be administered and the particular
method used to administer the composition. The composition optionally can be sterile with the exception of the AAV vector described herein. The composition can be frozen or lyophilized for storage and reconstituted in a suitable sterile carrier prior to use. The compositions can be generated in accordance with conventional techniques described in, e.g., *Remington: The Science and Practice of Pharmacy, 21st Edition*, Lippincott Williams & Wilkins, Philadelphia, PA (2001).

[0032] Suitable formulations for the composition include aqueous and non-aqueous solutions, isotonic sterile solutions, which can contain anti-oxidants, buffers, and bacteriostats, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. The formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, water, immediately prior to use. Extemporaneous solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. Preferably, the carrier is a buffered saline solution. More preferably, the inventive AAV vector is administered in a composition formulated to protect the inventive AAV vector from damage prior to administration. For example, the composition can be formulated to reduce loss of the AAV vector on devices used to prepare, store, or administer the AAV vector, such as glassware, syringes, or needles. The composition can be formulated to decrease the light sensitivity and/or temperature sensitivity of the AAV vector. To this end, the composition preferably comprises a pharmaceutically acceptable liquid carrier, such as, for example, those described above, and a stabilizing agent selected from the group consisting of polysorbate 80, L-arginine, polyvinylpyrrolidone, trehalose, and combinations thereof. Use of such a composition will extend the shelf life of the AAV vector, facilitate administration, and increase the efficiency of the inventive method. Formulations for AAV vector-containing compositions are further described in, for example, Wright et al, *Curr. Opin. Drug Discov. Devel.*, 6(2): 174-178 (2003) and Wright et al, *Molecular Therapy, 12*: 171-178 (2005))

[0033] The composition also can be formulated to enhance transduction efficiency. In addition, one of ordinary skill in the art will appreciate that the inventive AAV vector can be present in a composition with other therapeutic or biologically-active agents. For example,
factors that control inflammation, such as ibuprofen or steroids, can be part of the composition to reduce swelling and inflammation associated with \textit{in vivo} administration of the AAV vector. Immune system stimulators or adjuvants, e.g., interleukins, lipopolysaccharide, and double-stranded RNA, can be administered to enhance or modify the anti-nicotine immune response. Antibiotics, i.e., microbicides and fungicides, can be present to treat existing infection and/or reduce the risk of future infection, such as infection associated with gene transfer procedures.

The invention provides a method of inducing an immune response against nicotine in a mammal, which comprises administering the composition comprising the inventive AAV vector to the mammal, whereupon the nucleic acid is expressed to produce the antibody that binds to nicotine or a nicotine analog and induce an immune response against nicotine in the mammal. In a preferred embodiment, the mammal is a human that currently smokes (i.e., a smoker), a human that has previously smoked but is no longer smoking, or a human that has never smoked. The AAV vector preferably is administered to a mammal, whereupon an immune response against nicotine is induced. Since the inventive AAV vector comprises a nucleic acid sequence encoding an antibody, the immune response desirably is a humoral immune response. Ideally, the immune response provides a clinical benefit upon exposure to the antigen. A "clinical benefit" can be, for example, a reduction in the physiological effects of nicotine, a reduction in the reward or pleasure associated with use of nicotine, a reduction in the likelihood of regaining an addiction to nicotine, or a prophylactic effect (i.e., smoking prevention).

However, a clinical benefit is not required in the context of the invention. The inventive method further can be used for antibody production and harvesting. For example, the inventive method can be used to produce antibodies for diagnostic purposes (e.g., to detect the presence of nicotine or a nicotine analog in blood).

Any route of administration can be used to deliver the composition to the mammal. Indeed, although more than one route can be used to administer the composition, a particular route can provide a more immediate and more effective reaction than another route. Preferably, the composition is administered via intramuscular injection. A dose of composition also can be applied or instilled into body cavities, absorbed through the skin (e.g., via a transdermal patch), inhaled, ingested, topically applied to tissue, or administered parenterally via, for instance, intravenous, peritoneal, or intraarterial administration.
The composition can be administered in or on a device that allows controlled or sustained release, such as a sponge, biocompatible meshwork, mechanical reservoir, or mechanical implant. Implants (see, e.g., U.S. Patent 5,443,505), devices (see, e.g., U.S. Patent 4,863,457), such as an implantable device, e.g., a mechanical reservoir or an implant or a device comprised of a polymeric composition, are particularly useful for administration of the AAV vector. The composition also can be administered in the form of sustained-release formulations (see, e.g., U.S. Patent 5,378,475) comprising, for example, gel foam, hyaluronic acid, gelatin, chondroitin sulfate, a polyphosphoester, such as bis-2-hydroxyethyl-terephthalate (BHET), and/or a polylactic-glycolic acid.

The dose of the AAV vector in the composition administered to the mammal will depend on a number of factors, including the size (mass) of the mammal, the extent of any side-effects, the particular route of administration, and the like. Preferably, the inventive method comprises administering a "therapeutically effective amount" of the composition comprising the inventive AAV vector described herein. A "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result. The therapeutically effective amount may vary according to factors such as the degree of nicotine addiction, age, sex, and weight of the individual, and the ability of the AAV vector to elicit a desired response in the individual. In another embodiment, the inventive method can comprise administering a "prophylactically effective amount" of the composition comprising the inventive AAV vector. A "prophylactically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired prophylactic result (e.g., prevention of nicotine addiction). The dose of AAV vector in the composition required to achieve a particular therapeutic or prophylactic effect (i.e., prevention or treatment of nicotine addiction) typically is administered in units of vector genome copies per cell (gc/cell) or vector genome copies/per kilogram of body weight (gc/kg). One of ordinary skill in the art can readily determine an appropriate AAV vector dose range to treat a patient having a particular disease or disorder, such as nicotine addiction, based on these and other factors that are well known in the art.

In a preferred embodiment of the invention, the composition is administered once to the mammal. It is believed that a single administration of the composition will result in
persistent expression of the anti-nicotine antibody in the mammal with minimal side effects. However, in certain cases, it may be appropriate to administer the composition multiple times during a therapeutic period and/or employ multiple administration routes, e.g., intramuscular and subcutaneous, to ensure sufficient exposure of cells to the composition. For example, the composition may be administered to the mammal two or more times (e.g., 2, 3, 4, 5, 6, 6, 8, 9, or 10 or more times) during a therapeutic period.

[0039] The composition can be administered in conjunction with counseling and/or one or more additional agents that prevent or treat nicotine addiction. For example, the additional agent can be, for example, an anti-depressant, a nicotine receptor modulator, a cannabinoid receptor antagonist, an opioid receptor antagonist, a monoamine oxidase inhibitor, an anxiolytic, or any combination of these agents. Preferably, the additional agent is an anti-depressant selected from the group consisting of bupropion, doxepin, desipramine, clomipramine, imipramine, nortriptyline, amitriptyline, protriptyline, trimipramine, fluoxetine, fluvoxamine, paroxetine, sertraline, phenelzine, tranylcypromine, amoxapine, maprotiline, trazodone, venlafaxine, mirtazapine, and pharmaceutically active salts or optical isomers thereof.

[0040] The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.

EXAMPLE 1

[0041] This example demonstrates the generation of an AAV vector comprising a nucleic acid sequence encoding an anti-nicotine antibody fragment.

[0042] AAVrh. 1OantiNic.Mab vector (also referred to herein as "AAVantiNic") is an AAV vector based on the non-human primate-derived rh1O capsid pseudotyped with AAV2 inverted terminal repeats surrounding the anti-nicotine antibody expression cassette (see Figure 1A). The expression cassette contains a cytomegalovirus (CMV) enhancer-chicken \(-P\) -actin promoter, a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 2, corresponding to the heavy chain polypeptide of the anti-nicotine monoclonal antibody NIC9D9, a 4-amino-acid furin cleavage site and the 24-amino-acid self-cleaving 2A peptide, a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 3, which corresponds to the NIC9D9 light chain polypeptide, and the rabbit \(\beta \)-globin polyadenylation signal (see, e.g., Isomura et al, supra; Fang

AAVantiNic was produced by PolyFect-mediated (Qiagen, Germantown, MD) cotransfection into HEK 293 cells (American Type Culture Collection) of three plasmids: pAAVaNIC9D9 (600 mg), pAAV442 (600 mg), and pAdDF6 (1.2 mg). pAAVNIC9D9 is an expression plasmid containing (5' to 3') the AAV2 5' ITR including packaging signal (ψ), the anti-mouse NIC9D9 antibody expression cassette described above, and the AAV2 3' ITR. pAAV44.2 is a packaging plasmid that provides the AAV Rep proteins derived from AAV2 needed for vector replication and the AAVrh.10 viral structural (Cap) proteins VP1, 2, and 3, which define the serotype of the AAV vector. pAdDF6 is an adenovirus helper plasmid that provides adenovirus helper functions of E2, E4, and VA RNA (Xiao et al, *J. Virol.*, 72, 2224-2232 (1998)). At 72 hours after transfection, the cells were harvested, and a crude viral lysate was prepared by four cycles of freeze/thaw and clarified by centrifugation. AAVantiNic was purified by iodixanol gradient and QHP anion exchange chromatography. The purified AAVantiNic was concentrated with an Amicon Ultra-15 100K centrifugal filter device (Millipore, Billerica, MA) and stored in PBS (pH 7.4) at -80° C. The control vector was produced using the same method but substituting pAAVantiPA.Mab for pAAVantiNic.

Vector genome titers were determined by quantitative TaqMan real-time PCR analysis using a cytomegalovirus promoter-specific primer-probe set (Applied Biosystems, Foster City, CA).

To assess AAVantiNic-directed expression of the monoclonal antibody in vitro, HEK 293 cells were infected with AAVantiNic at 2 x 10^5 genome copies (gc) per cell (or mock infected), harvested at 72 hours post-infection, and purified using protein G sepharose. All media were evaluated for the expression of the anti-nicotine antibody by coomassie blue stain and Western analysis (Mao et al, supra) using a sheep anti-mouse IgG heavy chain and light
chain secondary antibody (Sigma, Saint Louis, MO) and enhanced chemiluminescence reagent (Amersham, Piscataway, NJ).

The results of these experiments are set forth in Figures 1B and 1C. HEK 293 cells infected with the AAVantiNic secreted IgG antibody as demonstrated by coomassie blue stain SDS-PAGE and Western analysis. Mock-infected cells showed no IgG-related bands.

The results of this example demonstrate the production of the inventive AAV vector and that the encoded anti-nicotine antibody is expressed and secreted from cells in vitro.

EXAMPLE 2

This example demonstrates a method of inducing an anti-nicotine immune response in a mammal using the inventive AAV vector.

To assess the ability of AAVantiNic to express and maintain high levels of anti-nicotine antibody in serum, C57B1/6 mice were administered AAVantiNic at 10^9, 10^{10} or 10^{11} genome copies (gc) by intravenous route. All animal studies were conducted under protocols reviewed and approved by the Weill Cornell Institutional Animal Care and Use Committee. Male C57B1/6 mice, 4 to 6 weeks old (Taconic, Germantown, NY) were housed under pathogen-free conditions. Experiments were initiated at 7 to 9 weeks of age. Blood was collected from the transected tail vein, allowed to clot, centrifuged at 10,000 g for 20 minutes, and serum was stored at -20°C.

Antibody levels in serum from treated mice were analyzed using an ELISA assay. Specifically, wells of flat bottomed 96-well EIA/RIA plates (Corning, New York, NY) were coated with 100 µl of 1 mg/ml bovine serum albumin conjugated with AMI, which is a trans-3′-(hydroxymethyl)nicotine-derived nicotine hapten (ratio of 2:1) (see Moreno et al., Mol. Pharm., 7: 431-441 (2010)) in carbonate-buffer overnight at 4°C, washed with 0.05% Tween 20 in PBS (PBS-Tween), and blocked with 5% dry milk in PBS for 30 minutes at 23°C. Serial dilutions of sera were incubated for 90 minutes at 23°C. The plates were washed four times with PBS-Tween and 100 ml of 1:2000 diluted goat anti-mouse IgG conjugated to horseradish peroxidase (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in 1% dry milk in PBS and incubated for 90 minutes at 23°C. After four wash steps, peroxidase substrate (100 ml per well; Bio-Rad, Hercules, CA) was added to each well and incubated for 15 minutes at 23°C, and the reaction
was stopped with the addition of 2% oxalic acid (100 ml per well). Absorbance was measured at 415 nm.

[0051] Anti-nicotine antibody titers were calculated by interpolation of the log(OD)-log(dilution) with a cutoff value equal to 2-fold the absorbance of background and converted to µg/ml based on the NIC9D9 antibody standard ELISA titer. NIC9D9 antibody was quantified by the bicinchoninic acid assay (Pierce Biotechnology, Rockford, IL). To demonstrate that the antibody expressed by AAVantiNic was nicotine-specific, inhibition of binding of sera from AAVantiNic-immunized mice to bovine serum albumin BSA-AM1 nicotine hapten by ELISA was performed in the presence of increasing concentrations of nicotine, and nicotine metabolites nornicotine or cotinine, from 0.1 nM to 0.1 mM. Affinity of the expressed antibody from sera from AAVantiNic-treated mice was evaluated by a radioimmunoassay, using [3H]nicotine (10 nm) with increasing concentrations of nonlabeled nicotine (1 to 300 nm) as the unlabeled competitor (see Muller, Methods Enzymol., 92: 589-601 (1983)).

[0052] The results of the ELISA analysis are set forth in Figures 2A-2C. The 10^{11} gc dose of AAVantiNic resulted in the highest level of anti-nicotine antibody expression, with a mean titer of 1.1 ± 0.2 mg/ml at week 9 (Figure 2A). Assessment of sera of AAVantiNic-vaccinated mice from 0 to 18 weeks showed high levels of expression of anti-nicotine antibody, reaching 0.9 ± 0.1 mg/ml by 4 weeks and remaining high at 1.3 ± 0.1 mg/ml at 18 weeks (Figure 2B). The expressed anti-nicotine antibody had a higher specificity for nicotine compared to its metabolites nornicotine and cotinine (Figure 2C). The Kd for nicotine was 43 ± 20 nmol/l (Figure 2D).

[0053] The results of this example demonstrate that high levels of anti-nicotine antibody can be produced and maintained by vaccinating mice with the inventive AAV vector.

EXAMPLE 3

[0054] This example describes the pharmacokinetics of nicotine in mice vaccinated with the inventive AAV vector.

[0055] To test if immunization with AAVantiNic results in sufficient levels of anti-nicotine antibodies to shield the brain from systemically administered nicotine, AAVantiNic-treated mice were challenged intravenously with radio-labeled nicotine (see, e.g., Benowitz et al, Clin. Pharmacol. Ther., 35: 499-504 (1984) and Hieda et al, J. Pharmacol. Exp. Ther., 283: 1076-
Untreated or AAVantiNic-administered mice were anesthetized by intraperitoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg) three minutes prior to intravenous administration of 0.8 µg nicotine (a dose equivalent to 2 cigarettes in a human) containing 1.0 µCi $[^3]$H nicotine (see Benowitz et al, supra, and Hieda et al, supra). One minute later, mice were sacrificed, and the brain and blood were collected separately. Brain tissue was homogenized in PBS, and 300 µl of brain homogenate and 50 µl of serum were separately added to 5 ml of liquid scintillant (ULTIMA GOLD™, PerkinElmer, Waltham, MA), which were assayed in triplicate for tritium and normalized with a standard quenching curve. For the blood compartment, nicotine was normalized to serum volume (ng/ml), and the brain was normalized to brain wet weight (ng/g).

The results of this experiment are shown in Figures 3A and 3B. At one minute post-nicotine administration, total serum nicotine levels in AAVantiNic-treated mice (516 ng/ml) were 7.1-fold higher compared to non-immunized mice (71.7 ng/ml) (p<10$^{-5}$). In the AAVantiNic-treated mice, 83% of the serum nicotine was IgG-bound. Conversely, nicotine levels in the brain of immunized mice (12.2 ng/g brain) were reduced by 85% compared to non-immunized mice (79.2 ng/g brain), demonstrating a 46-fold reduction in the ratio of brain to blood nicotine level in the passively immunized mice (p<10$^{-5}$).

The results of this example demonstrate that vaccination with the inventive AAV vector prevents nicotine from entering the brain of treated mice.

EXAMPLE 4

This example demonstrates that the inventive AAV vector suppresses the cardiovascular effects of nicotine.

AAVantiNic or control vector were administered to mice as described above. Seven weeks following vector administration, mice were implanted with radio-telemeters (Data Sciences International, St. Paul, MN, PA-C10 model) as described in Butz et al, *Physiol Genomics*, 5:89-97 (2001). One week following telemeter implantation, baseline measurements of mean arterial blood pressure (MAP) and heart rate (HR) were collected for 30 minutes in conscious mice. Subsequently, nicotine (25.0 µg, 1.0 mg/kg) or PBS was administered.
subcutaneously, and cardiovascular parameters were continuously recorded for the following 180 minutes using the DSI Dataquest A.R.T. system (Data Sciences International, St. Paul, MN).

Systemic administration of nicotine resulted in robust changes in cardiovascular parameters in mice immunized with the control vector, as shown in Figures 4A and 4B. In particular, nicotine caused a 37% reduction in MAP and a 46% reduction in HR in the control mice within 25 minutes. In contrast, these MAP and HR responses were abolished in AAVantiNic-immunized mice following nicotine challenge. There was no change in MAP or HR in immunized mice administered PBS as a control.

The results of this example demonstrate that vaccination with the inventive AAV vector inhibits adverse cardiovascular effects of nicotine.

EXAMPLE 5

This example demonstrates that the inventive AAV vector prevents nicotine-induced suppression of locomotion in animals.

AAVantiNic was administered to mice as described above, and naïve mice served as controls. Four weeks following vector administration, locomotor behavior was recorded using infrared beam-equipped activity chambers (20 x 20 cm chamber, AccuScan Instruments, Columbus, OH). Mice were allowed to habituate to the room for one hour prior to each test. Mice were placed in the chamber for 15 minutes to record pre-challenge behavior. Animals were then removed, injected with PBS or nicotine (12.5 µg, 0.5 mg/kg) subcutaneously, and returned to the chamber for 15 additional minutes. To test the efficacy of AAVantiNic, mice were repeatedly challenged with nicotine over a three-week period for a total of ten nicotine challenges. Locomotor activity was collected as ambulatory distance traveled and vertical movement.

The results of these tests are shown in Figures 5A-5C. Non-immunized mice showed a marked nicotine-dependent decrease in locomotor activity on all days tested, while AAVantiNic-vaccinated mice had the same ambulatory activity profile as non-immunized mice administered saline. At day 18 of the nicotine challenges (7 weeks post administration of AAVantiNic), assessment of the cumulative distance traveled demonstrated that non-immunized mice had a nicotine-induced suppression of ambulatory activity (2.15 ± 0.30 m over 15 minutes,
p<0.003) compared to saline-injected control mice, whereas AAVantiNic-treated mice did not show nicotine-induced hypolocomotion, traveling 6.38 ± 1.20 m, which is similar to mice administered saline which traveled 5.00 ± 0.75 m (p>0.6; Figure 5B). Assessment of the cumulative vertical activity profile showed the same differences, as control mice receiving nicotine displayed 16.8 ± 3.0 seconds of vertical activity (over 15 minutes) (p<10⁻³ compared to saline injected, non-immunized mice), and immunized mice receiving nicotine exhibited 180.2 ± 26.7 seconds of vertical activity (over 15 minutes), which was similar to mice administered saline instead of nicotine (200.6 ± 36.6 sec, p>0.9; Figure 5C).

[0065] The results of this example demonstrate that vaccination with the inventive AAV vector inhibits adverse locomotor effects of nicotine.

[0066] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

[0067] The use of the terms "a" and "an" and "the" and "at least one" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The use of the term "at least one" followed by a list of one or more items (for example, "at least one of A and B") is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (A and B), unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No
language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0068] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
CLAIMS:

1. An adeno-associated virus (AAV) vector comprising a nucleic acid sequence which encodes an antibody that binds nicotine or a nicotine analog, or an antigen-binding fragment thereof.

2. The AAV vector of claim 1, wherein the nucleic acid sequence encodes an antibody fragment.

3. The AAV vector of claim 2, wherein the antibody fragment is a F(ab')2, a Fab', a Fab, a Fv, a scFv, a dsFv, a dAb, or a single chain binding polypeptide.

4. The AAV vector of claim 3, wherein the antibody fragment is a Fab.

5. The AAV vector of claim 4, wherein the nucleic acid sequence encodes an antibody heavy chain polypeptide comprising the amino acid sequence of SEQ ID NO: 2.

6. The AAV vector of claim 4 or claim 5, wherein the nucleic acid sequence encodes an antibody light chain polypeptide comprising the amino acid sequence of SEQ ID NO: 3.

7. The AAV vector of any one of claims 1-6, wherein the nucleic acid sequence comprises SEQ ID NO: 1.

8. The AAV vector of any one of claims 1-7, which is generated using a non-human adeno-associated virus.

9. The AAV vector of any one of claims 1-8, which is generated using a rhesus macaque adeno-associated virus.

10. A composition comprising the AAV vector of any one of claims 1-9 and a pharmaceutically-acceptable carrier.

11. A method of inducing an immune response against nicotine in a mammal, which comprises administering the composition of claim 10 to the mammal, whereupon the nucleic acid
is expressed to product the antibody and induce an immune response against nicotine in the mammal.

12. The method of claim 11, wherein the composition is administered to the mammal once during a therapeutic period.

13. The method of claim 11, wherein the composition is administered to the mammal two or more times during a therapeutic period.

14. The method of any one of claims 11-13, wherein the mammal is a human.
Fig. 1A

AAVantiNic (AAVrh.10antiNic.Mab)

Fig. 1B
Coomassie blue

Fig. 1C
Western
Fig. 4A

Mean arterial blood pressure

- **Nicotine**

- AAVantiNic + nicotine
- AAVantiNic + PBS
- AAVcontrol + nicotine

Fig. 4B

Heart rate

- **Nicotine**

- AAVantiNic + nicotine
- AAVantiNic + PBS
- AAVcontrol + nicotine
Fig. 5A Distance traveled

- AAVantiNic + nicotine
- △ Non-immunized + PBS
- □ Non-immunized + nicotine

Distance traveled (m)

Nicotine challenges (days)
Fig. 5C Cumulative vertical activity over time (min)

- AAVantiNic + nicotine
- Δ Non-immunized + PBS
- □ Non-immunized + nicotine

Vertical activity (sec)

Time post-administration (min)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K 16/44 C12N 15/861 A61K 48/00

ADD.

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07K C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data, BIOSIS, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

[X] Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published e n o r after the international filing date

L document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search

2 May 2013

Date of mailing of the international search report

08/05/2013

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax. (+31-70) 340-3016

Authorized officer

Chapman, Rob

Form PCT/ISA/210 (second sheet) (April 2006)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category*</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>WO 2011116189 A1</td>
<td>22-09-2011</td>
<td>CN 102892429 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2547362 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013011432 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011116189 A1</td>
</tr>
<tr>
<td>US 2006034805 A1</td>
<td>16-02-2006</td>
<td>CA 2573656 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008506389 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006034805 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011065779 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006017325 A2</td>
</tr>
</tbody>
</table>