发明名称
整联蛋白 α 4 亚单位的拮抗剂在制备治疗纤维变性的药物中的用途

摘要
本发明公开了用动物受试者中纤维变性的治疗方法，该方法包括给受试者给药有效量的 VLA-4 整联蛋白或其片段的拮抗剂。
1. 包含抗 VLA-1 抗体的组合物在制备治疗受试者肺纤维变性的药物组合物中的用途。

2. 权利要求 1 的用途，其中所述抗体选自人抗体，嵌合抗体，人源化抗体及其片段组成的组。

3. 上述权利要求任一的用途，其中所述受试者是人。
整联蛋白α4亚单位的拮抗剂在制备治疗
纤维变性的药物中的用途

本申请是 2001 年 12 月 14 日向中国专利局提交的 00808454.8 号中国申请的分案申请。

相关申请
本申请要求先前于 1999 年 4 月 22 日提交的美国临时申请 60/130847 和 1999 年 6 月 1 日提交的美国临时申请 60/137214 的优先权。

发明背景
纤维蛋白和胶原蛋白是维持结缔组织中细胞外基质完整性所必须的蛋白质。这些蛋白的产生是受到高度调节的过程，它的失调可导致组织纤维病性的发展。虽然纤维组织的形成是创伤后正常的有益的治愈过程之一，但在一些情况下，纤维基质的异常积聚可最终导致器官衰竭(Border 等，1994年新英格兰医学杂志，331: 1286-1292)。任何器官的创伤均可导致固有的生理反应：血小板诱导的出血，随后是炎症细胞和激活的成纤维细胞的进入。源自这些细胞的细胞因子驱使新的细胞外基质和血管(肉芽组织)的形成。肉芽组织的产生是一个精细协调的过程，其中蛋白酶抑制剂和细胞外基质蛋白的表达上调，而蛋白酶的表达下调，导致细胞外基质的积聚。

纤维变性(诱导的或自发的)进展的关键是成纤维细胞活性的激活。炎症细胞和激活的成纤维细胞向创伤器官的流入，依赖于这些细胞与主要由纤维蛋白和胶原蛋白构成的间质的相互作用。这些细胞-细胞或细胞-细胞外基质的相互作用由细胞粘附分子的多个家族介导，其中一种这样的家族包括整联蛋白。整联蛋白在结构上和功能上与糖蛋白相关，这些糖蛋白由在几乎每种类型的哺乳动物细胞中以各种组合存在的各种 α(α1, α2 直到目前发现的 α11)和 β(β1 和 β7)异二聚体跨膜受体结构域组成(见综述: E.C. Butcher, 细胞, 67, 1033(1033); D.Cox 等, “整联蛋白的药理学” 医学研究综述，第 195 卷(1994)和 V.W.Englemen 等，“以细胞粘附整联蛋白作为药

间质性肺纤维变性(IPF)是许多导致降低肺顺应性和损害有效气体交换功能的间质性肺疾病的最终途径。不管病因如何，IPF 是以肺的炎症和纤维增生以及间质中胶原蛋白的过度积聚为特点。IPF 患者在活跃的肺纤维变性期间，通常出现募集(recruited)的免疫细胞和炎症细胞，这表明肺纤维变性是在最初炎症损伤之后异常修复的结果。在很多情况下，募集的炎症细胞可能参与最初的损伤。另外，在调节该修复过程时，这些细胞可起复杂的作用。在各种情况下，肺中免疫和炎症细胞的聚集在纤维变性反应的判定中起重要作用。炎症细胞和激活的成纤维细胞进入损伤的肺依赖于这些细胞与 ECM 组分的相互作用。白细胞的输送和激活状态由各种整联蛋白进行调节。在随后的反应中(包括纤维变性反应)，阻止炎症细胞进入肺可能是关键。

发明概述

本发明提供了治疗受试者的纤维变性的方法。我们通过给患肺纤维变性的小鼠施用含 α1 或 α4 亚单位的整联蛋白的拮抗剂，研究了含 α1 和 α4 亚单位的整联蛋白的拮抗剂在纤维变性发病机制中的可能作用。这些拮抗剂对胶原蛋白积累和肺纤维变性损伤范围的有益作用，如本文所示，表明含 α1 和/或 α4 亚单位的整联蛋白可能是抗纤维变性治疗的合理靶点。本发明的一个方面涉及方法，其包括向有纤维变性的受试者施用有效量的组合物，所述组合物包括拮抗α4 亚单位的整联蛋白与其配体之间相互作用的拮抗剂。所述拮抗剂是 α4 整联蛋白结合剂或 α4 整联蛋白配体结合剂。优选的 α4 整联蛋白结合剂选自：a) 对 VLA-4 和 α4β7 与各自 α4 配体的相互作用均有拮抗作用的抗体同系物；b)拮抗 VLA-4 与其 α4 配体相互作用的抗体同系物；c)拮抗 α4β7 与其 α4 配体相互作用的抗体同系物。在其它实施方案
中，抗体制物选自人的抗体、嵌合抗体、人源化抗体及其片段。

本发明的另一个方面涉及减少支气管肺泡灌洗液样品中由纤维变性诱导的白细胞增加的方法，包括给有纤维变性的受试者给药有效量拮抗剂的步骤，所述拮抗剂为拮抗含 α4 亚单位的整联蛋白与其配体之间相互作用的拮抗剂。在本发明的某些实施案中，α4 亚单位的整联蛋白的结合剂的编码核酸序列包括在几种严谨条件下与选自美国专利 5840299 的表 6 中核酸序列或其互补序列杂交的核酸序列。在本方法的其它方面，所述 α4 亚单位的整联蛋白的结合剂的编码核酸序列包括在指定的严谨条件下与选自美国专利 5932214 中发现的或由细胞系 ATCC CRL 11175 产生的特定多肽的编码核酸序列杂交的核酸。

更具体地，本发明涉及以下方面：

1. 一种方法，其包括向患有纤维变性的受试者给药有效量的含抗体同系物的组合物，所述抗体同系物可拮抗 VLA-4 和 α4β7 与各自 α4 配体的相互作用，或者所述抗体同系物拮抗 VLA-4 与其配体的相互作用，或者所述抗体同系物拮抗 α4β7 与其配体的相互作用。

2. 项 1 的方法，其中抗体同系物选自人的抗体、嵌合抗体、人源化抗体及其片段。

3. 项 1 的方法，其中所述组合物的给药量为约 0.1-20mg/kg 体重。

4. 用于降低支气管肺泡灌洗液中由纤维变性诱导的白细胞增多的方法，包括向患有纤维变性的受试者给药有效量的抗体同系物的步骤，该抗体同系物拮抗含 α4 亚单位的整联蛋白与针对含 α4 亚单位的整联蛋白的配体之间的相互作用。

5. 项 4 的方法，其中所述抗体同系物可拮抗 VLA-4 和 α4β7 与其各自配体之间的相互作用，或者拮抗 VLA-4 与其配体之间的相互作用，或者拮抗 α4β7 与其配体之间的相互作用。

6. 项 4 的方法，其中抗体同系物选自人的抗体、嵌合抗体、人源化抗体及其片段。

7. 项 4 的方法，其中抗体同系物的给药量为约 0.1-20mg/kg 体重。

8. 项 7 的方法，其中所述抗体同系物以有效量给予使得能提供大约 0.1-30mg/kg 体重的小分子剂量。

9. 项 1 或 4 的方法，其中所述抗体同系物是一种人源化抗体，编码该
抗体的一部分的核酸序列包含能在高严谨条件下与选自美国专利5840299中表6的核酸序列或其互补序列杂交的核酸。

10. 项1或4的方法，其中所述抗体同系物是一种人源化抗体，编码该抗体的一部分的核酸序列包含能在低严谨条件下与选自美国专利5840200中表6的核酸序列或其互补序列杂交的核酸。

11. 项1或4的方法，其中所述抗体同系物是一种人源化抗体，编码该抗体的一部分的核酸序列包含能在低严谨条件下与编码下述多肽的核酸序列杂交的核酸，所述多肽选自：a)美国专利5932214中的SEQ ID NO: 2；b)美国专利5932214中的SEQ ID NO: 4；和c)由细胞系ATCC CRL 11175所产生的抗体的可变区。

12. 项1或4的方法，其中所述抗体同系物是一种人源化抗体，编码该抗体的一部分的核酸序列包含能在高度严谨条件下与编码下述多肽的核酸序列杂交的核酸，所述多肽选自：a)美国专利5932214中的SEQ ID NO: 2；b)美国专利5932214中的SEQ ID NO: 4；和c)由细胞系ATCC CRL 11175所产生的抗体的可变区。

所有在前文中引用的文献，以及在下文中引用的文献和公布的专利，在此引入作为参考。

发明详述
I. 定义：
为了更清晰和简洁的指出本发明的主题内容，为在下文叙述和附加的权利要求中应用的特定术语给出下述定义。

现在详述本发明，其中包括如下定义：

α4β1整联蛋白是VCAM-1、纤连蛋白以及其它可能配体(后者统称为“α4配体”)的细胞表面受体。尽管本领域普通的技术人员意识到存在VLA-4的其它配体并且能够用传统的方法进行分析，术语α4β1整联蛋白 (“VLA-4”或“a4b1”或“α4β1整联蛋白”，可互换应用)在此是指能够与VCAM-1和细胞外基质蛋白(尤其是纤连蛋白)成员或其同系物或片段结合的多肽。然而，已经知道α4亚单位可以与除了β1之外的其它β亚单位结合，故我们将术语“α4整联蛋白”或“含α4亚单位的整联蛋白”定义为其α4亚单位与一个或另一个β亚单位结合的整联蛋白。除了VLA4之外的另一个“α4”整联蛋白的实例是α4β7(见上述Lobb和Adams)。同样，“α1整联蛋白”或“含α1亚单位的整联蛋白”是指那些α1亚单位与一个或另一个β亚单位结合的整联蛋白。

整联蛋白“拮抗剂”包括任何抑制含α1和/或α4亚单位的整联蛋白与整联蛋白配体和/或受体结合的化合物，抗整联蛋白抗体或含抗体同系物的蛋白(见下述)以及可溶型整联蛋白配体蛋白等其它分子都可使用。含α4亚单位的整联蛋白的可溶型配体蛋白包括可溶性VCAM-1、VCAM-1融合蛋白或双功能VCAM-1/Ig融合蛋白。例如，可以给药整联蛋白配体的可溶型或其片段，来结合整联蛋白，并且优先竞争细胞上的整联蛋白结合位点，从而导致产生与施用抗整联蛋白(例如VLA-1、VAL-4)抗体相类似的作用。本发明特别包括能结合配体但不能激发整联蛋白依赖性信号传递的可溶性整联蛋白突变体。此整联蛋白突变体可作为野生型整联蛋白蛋白的竞争性抑制剂，并被视为“拮抗剂”。在本发明方法中应用的其它拮抗剂是下述的“小分子”。

本发明还包括应用拮抗一种以上含α4亚单位的整联蛋白作用的分子的方法，例如小分子或同时拮抗VLA-4和α4β7或含α4亚单位的整联蛋白的其它组合的抗体同系物。本发明还包括应用拮抗一种以上含α1亚单位的整联蛋白作用的分子的方法。本发明还包括利用分子的组合以拮抗一种以上整联蛋白之作用的方法，例如应用几种小分子或抗体同系物的方法，其中所述小分子或同系物的组合可拮抗VAL-4和α4β7或含α4亚单位的整联蛋白的其它组合。

如本文所述，特定的整联蛋白拮抗剂可与例如抗体蛋白或其片段等抗体同系物融合或结合，并且不限定于整联蛋白或配体或其它分子的特定类型。
或结构。因此，根据本发明，能够形成嵌合蛋白(见下述)和能够结合整联蛋白配体并且有效阻断或包被含\(\alpha_4\)和/或\(\alpha_1\)亚单位的整联蛋白的任何制剂，
均被认为在本文实施例中应用的拮抗剂的等价物。

“抗体同系物”包括由二硫键连接的免疫球蛋白轻链和重链组成的完整抗体。术语“抗体同系物”还包括由一个或多个多肽组成的蛋白，所述多肽
选自免疫球蛋白轻链、免疫球蛋白重链及其能够结合一个或多个抗原(即整联蛋白或整联蛋白配体)的抗原结合片段。由一种以上多肽组成的抗体同系
物的组成多肽可任选被二硫键或共价键交联，因此“抗体同系物”包括完整的
IgA、IgG、IgE、IgD、IgM型免疫球蛋白(及其亚型)，其中免疫球蛋白的
轻链可以是\(\kappa\)型或\(\lambda\)型。“抗体同系物”还包括完整抗体的保留了抗体结合
特异性的一部分，例如Fab片段、Fab'片段、F(ab')2片段、F(v)片段、重链
和轻链的单体或二聚体或其混合物。

“人源化抗体同系物”是通过重组DNA技术制备的抗体同系物，其中
在人免疫球蛋白轻链或重链的抗原结合中不需要的部分或全部氨基酸序列
已被来源于非人哺乳动物免疫球蛋白轻链或重链的相应氨基酸取代。“人抗
体同系物”是以下抗体同系物，其中免疫球蛋白轻链和重链的所有氨基酸(不
管它们对抗原结合是否需要)均来源于人。

如本文中所用，“人抗体同系物”是由重组DNA技术制备的抗体同系
物，其中免疫球蛋白轻链或重链的所有氨基酸均来源于人。

整联蛋白“激动剂”包括可激活整联蛋白配体的任何化合物。

“氨基酸”是肽、多肽或蛋白的单体单位。在天然的肽、多肽和蛋白中
发现了20种氨基酸，它们均为L-异构体。该术语还包括氨基酸的类似物和
蛋白氨基酸的D-异构体和它们的类似物。

“共价连接”是指本发明指定的部分(例如PEG化的\(\alpha_4\)和/or\(\alpha_1\)整联
蛋白拮抗剂，免疫球蛋白片段/\(\alpha_4\)或\(\alpha_1\)整联蛋白拮抗剂)相互间直接共价结
合，或者通过一个间插组分或多个组分，例如一个或多个间隔组分，间接共
价连接。所述间插组分称为“连接集团”。术语“偶联”与“共价连接”可
以互换应用。关于“间隔子(spacer)”是指可以插入到整联蛋白拮抗剂或片段
的氨基酸或其它成分与该分子的剩余部分之间的组分。间隔子可以使氨基
酸或其它成分与该分子的剩余部分分离，以防止所进行的修饰干扰蛋白的功
能和/or使氨基酸或其它成分与另一组分的连接更容易。
“表达调控序列”-当与基因可操作地连接时能调控这些基因的表达的多核苷酸序列。

“表达载体”-当导入宿主细胞时，允许至少一种基因表达的多核苷酸，例如 DNA 质粒或噬菌体(其它通常的实例之中)。所述载体可以或不可以在细胞中复制。

本发明制剂的“有效量”是对所要治疗的特定状态产生结果或影响的总量。

氨基酸残基的“功能等效物”是(i)与被功能等效物替代的氨基酸的反应特性的氨基酸; (ii)本发明拮抗剂的氨基酸，所述氨基酸具有与被功能等效物替代的氨基酸相似的特性; (iii)与被功能等效物替代之氨基酸的特性相似的非氨基酸分子。

编码本发明的蛋白性拮抗剂的第一个多核苷酸如果满足至少一个下述条件，则是编码该拮抗剂蛋白质的第二个多核苷酸的“功能等效物”:

(a): 所述“功能等效物”是在标准杂交条件下与第二个多核苷酸杂交的第一个多核苷酸，和/或是与第一个多核苷酸序列简并的多核苷酸。优选其编码具有具联蛋白拮抗剂蛋白活性的突变蛋白;

(b)所述“功能等效物”是第一个多核苷酸，其控制第二个多核苷酸编码的氨基酸序列的表达。

本发明中应用的具联蛋白拮抗剂包括但不限于在此所列举的试剂及其功能等效物。因而在本文中，术语“功能等效物”是指具联蛋白拮抗剂或编码具联蛋白拮抗剂的多核苷酸，所述具联蛋白拮抗剂对受体的作用与被认为是功能等效物的具联蛋白拮抗剂相同或其作用更有效。本领域普通技术人员可能会意识到可以通过重组技术制备功能等效蛋白，例如通过表达“功能等效 DNA”。因而，本发明包括由天然 DNAs 以及非天然 DNAs 编码的具联蛋白蛋白，该非天然 DNAs 编码的蛋白与天然 DNA 所编码的蛋白相同。由于核苷酸编码序列的简并性，其它多核苷酸可以被用来编码具联蛋白蛋白。这包括通过用编码相同氨基酸残基的不同密码子进行替换而产生沉默(silent)改变的上述序列的全部或部分。这种改变的序列被视为这些序列的等效序列。例如，Phe(F)由两个密码子 TTC 或 TTT 编码，Tyr(Y)由 TAC 或 TAT 编码，His(H)由 CAC 或 CAT 编码。另一方面，Trp(W)是由一个密码子 TGG 编码。因此，应该明白对于一个编码特殊具联蛋白的特定 DNA，有编码它
的多种 DNA 简并序列。这些简并 DNA 序列也属于本发明。

当指本发明的拮抗剂时，术语“嵌合”意思是拮抗剂包括两种或更多具有不同结构和/或来源的蛋白的结合(化学交联或共价连接或其它)。因而，嵌合 α 4 整联蛋白拮抗剂包括 α 4 整联蛋白拮抗剂部分或其片段；和非 α 4 整联蛋白拮抗剂。嵌合 α 1 整联蛋白拮抗剂包括 α 1 整联蛋白拮抗剂部分或其片段；和非 α 1 整联蛋白拮抗剂。

一种“嵌合”蛋白是“融合体”或“融合蛋白”，其意指两个或多蛋白或其片段通过它们各自的肽骨架共线并共价连接，最优选通过编码那些蛋白的多核苷酸的遗传表达进行连接。因此，优选的融合蛋白是包括与非 α 4(α 1)整联蛋白拮抗剂的第二部分共价连接的 α 4(α 1)整联蛋白拮抗剂或其片段的嵌合蛋白。本发明的优选融合蛋白可以包括完整抗体中保持抗原结合特异性的一部分，例如 Fab 段，Fab’段，F(ab’)2 段，F(v)段，重链单体或二聚体，轻链单体或聚体，由一条重链和一条轻链组成的二聚体等等。

最优选的融合蛋白是嵌合蛋白，并且包括整联蛋白拮抗剂部分，其与全部或部分免疫球蛋白轻链、重链或二者的铰链区和恒定区融合或连接。因此，本发明的分子的特点是其包括：(1) 整联蛋白拮抗剂部分，(2) 第二个肽，例如增加整联蛋白拮抗剂部分的稳定性或增加其体内生存期的肽，例如免疫球蛋白超家族的成员或其片段或其一部分，如 IgG 的一部分或片段，如 CH2、CH3 和铰链区等 IgGl 重链恒定区。“整联蛋白拮抗剂/Ig 融合蛋白”特指包括与免疫球蛋白链 N 末端结合的本发明之具有生物活性的整联蛋白拮抗剂分子(例如可溶性 VLA-4 或 VLA1 配体或其生物活性片段)的蛋白，其中免疫球蛋白 N 末端的一部分由整联蛋白拮抗剂所取代。一种整联蛋白拮抗剂/Ig 融合蛋白为“整联蛋白/Fc 融合蛋白”，其包括与至少一部分免疫球蛋白恒定区连接的本发明的整联蛋白拮抗剂。优选的 Fc 融合蛋白包括与含免疫球蛋白重链 C 末端结构域的抗体片段相连接的本发明之整联蛋白拮抗剂。

术语“融合蛋白”还指通过单功能或不同功能的分子与第二部分进行化学连接并如下述从纯化的蛋白中重新制备的整联蛋白拮抗剂；所述第二部分为非整联蛋白拮抗剂(导致“嵌合”分子)。并非重组连接，而是化学连接的嵌合分子(融合蛋白)的实例包括：(1) α 4 整联蛋白亚单位靶向部分，例如能与携有 VLA-4 的细胞表面的 VLA-4 结合的 VCAM-1 部分；(2) 增加靶向部分稳定性和其体内生存期的第二分子，例如聚乙二醇(PEG)等聚亚烷基二醇
聚合物。α4 颖向部分可以是任何自然产生的 α4 配体或其片段，例如 VCAM-1 肽或相似的经保守替代的氨基酸序列。

本文中“异源启动子”是指并非与基因或纯化的核酸天然相关联的启动子。

本文中“同源”与“相同”同义，指两个多肽、分子或两个核酸之间的序列相似性。当两个相比较的序列在同一位置上的碱基或氨基酸体单体亚单位相同（例如，在两个 DNA 分子的某一位点上均为腺苷酸，或者在两个多肽的某一位点上均为赖氨酸），那么在这个位点上这两个分子同源。两个序列间的同源百分率等于两个序列间相匹配或同源的位点个数除以被比较的位点总数再乘 100。例如，在两个序列中，如果 10 个位点中的 6 个位点相匹配或同源，那么这两条序列的同源性为 50%。例如，DNA 序列 CTGACT 和 CAGGTT 的同源性为 50%（在总共 6 个位点中有 3 个位点相匹配）。通常，将两个序列排列，对其进行比较以给出最大同源性。可以应用如下细述的 Karlin 和 Altschul 法进行这样排列。

在本文中“同源性”和“同一性”可互换应用，二者均指两个多肽序列间的序列相似性。可以通过比较为了对比而排列的各个序列中的位点来确定同源性和同一性。当在被对比的序列中某一位点上为相同的氨基酸时，那么这些多肽可被认为在那个位点上相同。当在等位位点上为同源的氨基酸（例如相同（identical））或相似的氨基酸（例如相似的立体性和/或电性）时，那么可以认为这些分子在那个位点上同源。序列间同源性或同一性的百分率是这些序列中相匹配或同源的位点个数的函数。"非相关"或"非同源"序列与发明序列的同一性低于 40%，优选同一性低于 25%。

利用 Karlin 和 Altschul（美国国家科学院院刊，87：2264（1990））的排列算法（在 Karlin 和 Altschul（美国国家科学院院刊，90：5873（1993））中进行了修

“分离的(isolated)”(与“基本上纯的”可互换应用)在用于核酸时，即用于编码整联蛋白拮抗剂的多核苷酸序列时，是指\textit{RNA}或\textit{DNA}多核苷酸、基因组多核苷酸的一部分、\textit{cDNA}或合成多核苷酸，依其来源或操作方法，这些多核苷酸：(i)不与其天然相关联的多核苷酸100％相关联(例如，在宿主细胞中作为表达载体或其一部分而存在)；或(ii)与其天然连接的核酸或其它化学组分之外的核酸或其它化学组分连接；或(iii)非天然产生。“分离的”多核苷酸进一步指如下多核苷酸序列：(i)在体外通过例如聚合酶链式反应(PCR)扩增的多核苷酸；(ii)化学合成的多核苷酸；(iii)通过克隆而重组制备的多核苷酸；或(iv)通过切割并经胶分离纯化的多核苷酸。因此，“基本上纯的核酸”是不与两个编码序列之一或全部直接相邻的核酸，而在正常情况下，所述编码序列在该核酸的来源生物的天然基因组中与其相邻。基本上纯的\textit{DNA}还包括重组\textit{DNA}，其为编码附加整联蛋白序列的杂合基因的一部分。

“分离的”(与“基本上纯的”可互换应用)在用于多肽时，依其来源和操作方法，这些多肽是指：(i)在宿主细胞中作为表达载体的一部分表达产物而存在；或(ii)与其天然连接的蛋白或其它化学组分之外的蛋白或其它化学组分连接；或(iii)非天然产生，例如经化学处理的蛋白，通过附加或增加至少一个疏水基团，使所述蛋白形成非天然形态。“分离的”蛋白进一步指如下蛋白：(i)化学合成的蛋白；或(ii)在宿主细胞中表达并从相关蛋白和杂交蛋白中纯化的蛋白。该术语通常指从其它蛋白及其天然核酸中分离的多肽。优选从用于纯化的抗体或胶基质(聚丙烯酰胺)等物质中分离的所述多肽。

“多价蛋白复合物”指多价整联蛋白拮抗剂(即一个或多个)。抗整联蛋白抗体同系物或片段可以与另一抗体同系物或片段进行交联或结合。各个蛋白可以相同或不同，而且各个抗体同系物或片段也可以相同或不同。
“突变体”-生物体遗传物质的任何改变，尤其是野生型多核苷酸序列的任何改变(即缺失、替代、插入或变更)或野生型蛋白的任何改变。术语“突变蛋白”与“突变体”可互换应用。

“可操作地相连”-在表达调控序列调控多核苷酸序列的转录和翻译时，多核苷酸序列与表达调控序列可操作地相连。术语“可操作地相连”包括要在表达的多核苷酸序列的前面具有适当的起始信号(例如ATG)，并且维持正确的阅读框，以允许多核苷酸序列于表达调控序列控制下表达，产生该多核苷酸序列编码的所需多肽。

“药物制备”-为给受试者施用的一种或多种影响拮抗剂作用的化合物或分子或其它化学实体(除了本发明拮抗剂之外)。在此应用的术语“药物制备”指在“联合治疗”期间给药的试剂，此时本发明的拮抗剂在一或多种药物制备给药之前、之后或同时给药。

“蛋白”-基本上由20种氨基酸中任何氨基酸组成的任何聚合体。虽然“多肽”常用来指相对短的多肽，而“肽”常用来指小的多肽，但在本领域中，这些术语的使用是重叠并变化的，除非注明。在此应用的术语“蛋白”指肽、蛋白和多肽。

术语“肽”、“蛋白”和“多肽”在本文中可互换使用。术语“多核苷酸序列”和“核苷酸序列”在本文中也可互换使用。

本文中应用的“重组体”是指蛋白来源于重组的哺乳动物表达体系。因为重组蛋白即为脱氧核基化又不含二硫键，所以它可以在大多数原核和真核表达系统中表达。

“小分子”-见A2章节的定义。

短语“表面氨基酸”指当蛋白进行天然折叠时，暴露于溶剂的任何氨基酸。

“杂交条件”通常指杂交和洗涤的盐和温度条件，盐的条件基本上等于0.5 X SSC到5 X SSC，温度条件为65℃。因此，在本文中使用的术语“标准杂交条件”是操作上的定义，其包括杂交条件的范围。然而，“高度严谨”条件包括与噬菌斑筛选缓冲液(0.2%聚乙二醇吡啶烷酮，0.2%Ficoll 400，0.2%牛血清白蛋白，50mM Tris-HCl(pH7.5)；1M NaCl；1%焦磷酸钠；1%SDS)，10%硫酸葡聚糖和100 μg/ml变性并超声降解的鲑精DNA在65℃杂交12-20小时，并用75 mM NaCl/7.5mM 柠檬酸钠(0.5 X SSC)/1% SDS在65℃
洗涤。“低严谨度”条件包括与噬菌斑筛选缓冲液, 10%硫酸葡聚糖和 110 μg/ml 变性并经超声降解的鲑精 DNA 在 55°C 杂交 12-20 小时, 并用 300mM NaCl/30mM 柠檬酸钠(2.0 X SSC)/1% SDS 在 55°C 洗涤。见现代分子生物学方法, John Wiley 和 Sons, Inc. New York, 6.3.1-6.3.6 章节(1989)。

在本文中应用的 “治疗组合物” 定义为包括本发明的拮抗剂和其它生物学上可相容的成分。治疗组合物可以包括水、矿物质和蛋白等载体。

“患有纤维变性的受试者”是指但不限定于患有内脏器官纤维变性的受试者，患有皮肤纤维变性疾病的受试者，和患有眼睛纤维变性的受试者。内脏器官 (例如肝脏、肺、肾、心血管、胃肠道) 的纤维变性发生在肺纤维变性、骨髓纤维变性、肝硬化、系膜增生性肾小球肾炎、新月体性肾小球肾炎、糖尿病性肾病、间质性纤维变性、环孢菌素治疗所致肾纤维变性和 HIV 相关的肾病等疾病中。皮肤纤维变性疾病包括但不限于硬皮病、局限性硬皮病、瘢痕疙瘩、肥厚性瘢痕、家族性皮肤胶原病和结缔组织胶原病。眼的纤维变性包括糖尿病视网膜病、手术后结膜(例如，青光眼滤光手术和内斜视手术之后)和增生性玻璃体视网膜病变等。可以用本发明方法治疗的其他纤维变性包括：类风湿关节炎、与长期关节痛和关节退化相关的疾病；进行性系统性硬化病、多肌炎、皮肌炎、嗜酸细胞性筋膜炎、局限性硬皮病、Raynaud's 综合症和鼻息肉病。另外，可以用本发明方法治疗的纤维变性状态还包括在已知形成瘢痕癌或肥厚性瘢痕的患者中抑制瘢痕的过度增生，在各种类型伤口 (包括骨科切口、外科腹股伤口和创伤性撕裂) 愈合期间抑制或预防瘢痕形成或瘢痕的过度增生，在冠状动脉血管成形术前预防或抑制动脉的瘢痕形成和再闭合，在梗死形成之后和过敏性血管病中抑制或预防与心脏纤维变性相关的过量瘢痕或与纤维组织形成。

“有效量”是足以产生有利效应或所需结果的量。有效量可以一次或分多次给与。就治疗而言，根据所治疗疾病的可接受标准，在本发明中所使用的拮抗剂的有效量是足以减轻、改善、稳定、逆转、减缓或推迟纤维变性进程的量。功效指征的检测和测定可以通过多种有效诊断工具进行，这些诊断工具包括例如验血、肺功能检测和胸部 X 射线检测等体检；CT 扫描；支气管镜检；支气管肺泡灌洗；肺活检和 CT 扫描。

除非特别指出，本发明的实施将使用细胞生物学、细胞培养、分子生物学、微生物学、重组 DNA、蛋白质化学、药理学和免疫学的传统技术，这
些技术属于本领域的技术。这些技术已在文献中被叙述，除非特殊规定，在详述部分引用的参考文献在此引入作为参考。

II 优选实施方案的叙述

本申请涉及含 α1 和或 α4 亚单位的整联蛋白的拮抗剂及其片段可用于肺纤维化性治疗的发现。

A. 整联蛋白拮抗剂

为了本发明的目的，整联蛋白拮抗剂可以是整联蛋白与其同源配体或受体之间任何相互作用的拮抗剂，使得配体-受体相互作用所诱导的正常功能发生变化(即阻止或减慢或其它改变)。整联蛋白拮抗剂的一个优选实施方案是 α4 整联蛋白与其配体，如 VCAM-1/VLA-4 相互作用的拮抗剂。这是一种能够抑制或阻断 VCAM 和或 VLA-4 介导的结合，或者能够调节 VCAM-1 和或 VLA-4 功能的试剂，例如多肽或其它分子，它们通过例如抑制或阻断 VLA-4-配体介导的 VLA-4 信号传递或 VCAM-1-配体介导的 VCAM-1 信号传递，并且在急性脑损伤的治疗中有效，优选用与抗 VLA-4 抗体治疗相同的方式。

VCAM-1/VLA-4 相互作用的拮抗剂是具有一个或多个下述特性的试剂：(1)它以足够的特异性包被或结合 VLA-4 负载细胞(例如内皮细胞)表面上的 VLA-4，来抑制 VLA-4-配体/VLA-4 相互作用，例如 VCAM/VLA-4 相互作用；(2)它以足够的特异性包被或结合 VLA-4 负载细胞(即淋巴细胞)表面上的 VLA-4，来改变(优选抑制)VLA-4-介导的信号传导，例如 VCAM-1/VLA-4 介导的信号传导；(3)它以足够的特异性包被或结合内皮细胞上的 VLA-4-配体(例如 VCAM-1)，来抑制 VLA-4/VCAM-1 相互作用；(4)它以足够的特异性包被或结合 VLA-4-配体(例如 VCAM-1)，来改变(优选抑制)VLA-4-配体介导的 VLA-4 信号传导，例如 VCAM-1 介导的 VLA-4 信号传导。在优选的实施方案中，所述拮抗剂拥有特性 1 和或 2。在另一个优选实施方案中，所述拮抗剂拥有特性 3 和或 4。而且，可以应用一个以上的拮抗剂，例如可以将结合 VLA-4 的试剂与结合 VCAM-1 的试剂联合应用。

整联蛋白拮抗剂的另一个实施方案是 α1 整联蛋白与其配体相互作用例如胶原蛋白/VLA-1 相互作用的拮抗剂。它是一种能够抑制或阻断胶原蛋白和或 VLA-1 介导的结合，或者能够调节胶原蛋白和或 VLA-1 的功能的试剂，例如多肽或其它分子，它们例如通过抑制或阻断 VLA-1-配体介导的
VLA-1 信号传导或胶原蛋白介导的胶原蛋白信号传导。胶原蛋白/VLA-1 相互作用的拮抗剂是具有一个或多个下述特性的试剂：(1)它以足够的特异性被或结合 VLA-1 负载细胞表面上的 VLA-1(例如胶原蛋白)，来抑制 VLA-1 配体/VLA-1 相互作用，例如胶原蛋白/VLA-1 相互作用；(2)它以足够的特异性被或结合 VLA-1 负载细胞表面上的 VLA-1，来改变(优选抑制)VLA-1 介导的信号传导，例如 VLA-1/胶原蛋白介导的信号传导；(3)它以足够的特异性被或结合 VLA-1-配体(例如胶原蛋白)，来抑制 VLA-1/胶原蛋白相互作用；(4)它以足够的特异性被或结合 VLA-1-配体，来改变并优选抑制 VLA-1-配体介导的 VLA-1 信号传导，例如胶原蛋白介导的 VLA-1 信号传导。

在优选的实施方案中，所述 α1 拮抗剂拥有特性 1 和/或 2。在另一个优选实施方案中，所述拮抗剂拥有特性 3 和/或 4。而且，可以向患者给药一种以上的拮抗剂，例如可以将结合 VLA-1 的试剂与结合胶原蛋白的试剂联合应用。

如本文所讨论，用于本发明方法的拮抗剂不限于特定类型或结构的分子，所以对本发明来说，并且仅作为实例，能够结合细胞表面的 α4 整联蛋白(例如 VLA-4)或 α4 配体(例如 α4 配体负载细胞表面上的 VCAM-1)并有效阻断或包被 α4 整联蛋白(例如 VLA-4)或 α4 配体(例如 VCAM-1)(分别称为 “α4 整联蛋白结合剂”和 “α4 整联蛋白配体结合剂”)的任何试剂均被视为在本文实施例中应用的拮抗剂的等效物。

例如，可使用抗体或抗体同系物(见下述)以及 VLA-4 和 VCAM-1 的可溶型天然结合蛋白。VLA-4 的可溶型天然结合蛋白包括可溶型 VCAM-1 胺，VCAM-1 融合蛋白，双功能 VCAM-1/Ig 融合蛋白(例如上述 “嵌合” 分子)，纤连蛋白，具有经选择性剪接的非 III 型连接片段的纤连蛋白，和包含氨基酸序列 EILDV 或类似的保守替代型氨基酸序列的纤连蛋白。VCAM-1 的可溶型天然结合蛋白包括可溶型 VLA-4 胺，VLA-4 融合蛋白，双功能 VLA-4/Ig 融合蛋白等等。如本文中所用，“可溶型 VLA-4 胺”或 “可溶型 VCAM-1 胺”是不能将其本身固定在膜上的 VLA-4 或 VCAM-1 多胺。例如，这样的可溶型多胺包括缺少足以使其固定的跨膜结构域部分的 VLA-4 和 VCAM 多胺，或者被修饰而使其跨膜结构域功能丧失的 VLA-4 和 VCAM 多胺。这些结合试剂可以通过与 VLA-4 的细胞表面结合蛋白竞争或者通过改变 VLA-4 的功能而起作用。例如，可以给药可溶型 VCAM-1(例如见 Osborn 等，1989，细胞，59: 1203-1211)或其片段来结合 VLA-4，优选竞争 VCAM-1 负载细胞
上的 VLA-4 结合位点，从而导致产生与小分子或抗 VLA-4 抗体等拮抗剂给药相似的效果。

1. 抗整联蛋白抗体同系物

在其它优选实施方案中，本发明方法中用于结合(包括阻断或包被)细胞表面 \(\alpha 1 \) 和/或 \(\alpha 4 \) 整联蛋白(例如 VLA-1, VLA-4 或 \(\alpha 4 \beta 7 \))和/或 \(\alpha 1 \) 和/或 \(\alpha 4 \) 整联蛋白的细胞表面配体(例如分别为胶原蛋白或 VCAM-1)的拮抗剂，是上述的抗-VLA-1 或抗 VLA-4 和/或抗胶原蛋白和/或抗 VCAM-1 单克隆抗体或抗体同系物。用于治疗的尤其是用于人类治疗的优选抗体和同系物，包括人抗体同系物，人源化抗体同系物，嵌合抗体同系物，Fab, Fab’, F(ab’)_2 和 F(v)抗体片段，和抗体重链或轻链的单体或二聚体或其混合物。在本发明方法中，抗 VLA-4 单克隆抗体是优选的结合试剂。

2. 小分子整联蛋白拮抗剂

术语“小分子”整联蛋白拮抗剂指能够干扰整联蛋白/整联蛋白配体相互作用的化学试剂(即有机分子)，例如其通过结合细胞表面的 VLA-4 或结合细胞表面的 VCAM-1 而阻断 VLA-4/VCAM 相互作用。这样的小分子还可以分别结合 VLA-4 和 VCAM-1 受体。VLA-4 和 VCAM-1 小分子抑制剂本身可以是肽，半肽化合物或非肽化合物，例如针对 VCAM-1/VLA-4 相互作用的拮抗剂的有机小分子。本文所定义的“小分子”不包括抗体或抗体同系物。小分子实例的分子量通常小于 1000。

在本发明中有用的其它小分子可以参见 Komoriya 等的文献(“在选择性剪接的纤连蛋白 III 型连接段结构域之内，主要细胞类型特异性粘附位点 (CS1) 的最小基本序列是亮氨酸-天冬氨酸-缬氨酸”，生物学化学杂志, 266(23), 15075-79(1991))。他们鉴定了结合 VLA-4 所必须的最小有效氨基酸序列，并根据特定纤连蛋白 CS-1 区(VLA-4 结合结构域)的氨基酸序列，合成了多种重叠肽。他们鉴定了一个 8 氨基酸肽，Glu-Ile-Leu-Asp-Val-Pro-Ser-Thr，以及两个较小的重叠的 5 肽，

通过合成大量的肽(例如长度为 5-20 个氨基酸)、肽类化合物或非肽有机化合物，然后筛选这些化合物对相应 VLA-1/胶原蛋白或 VLA-4/VCAM-1 之间相互作用的抑制能力，可以制备这样的小分子试剂。通常见美国专利号 4833092，Scott 和 Smith，“在表位文库中寻找肽配体”，科学，249, 386-90(1990)，和 Devlin 等，“随机肽文库：特异性蛋白结合分子的来源”，科学，249, 40407(1990)。

B. 制备抗整联蛋白抗体同系物的方法

制备单克隆抗体(例如包括抗整联蛋白单克隆抗体)的技术众所周知。例

本文中考虑的优选整联蛋白拮抗剂可以由完整或截取的基因组或cDNA或者合成的DNAs在原核或真核宿主细胞中表达。可以将二聚体蛋白从培养基中分离，和/或使其在体外再折叠或二聚体化以形成具有生物活性的组合物。通过将独立的且不同的多肽链结合，可在体外形成二聚体。或者，通过将编码独立的且不相同的多肽链的核酸在单一细胞中进行共表达，也可以形成异二聚体。例如，见WO93/09229，或美国专利5411941中几个重组异二聚体蛋白制备方案的实例。目前优选的宿主细胞包括但不限于大肠杆菌等原核生物或者真核生物，所述真核生物包括酵母，糖酵母属（Saccharomyces），昆虫细胞或CHO、COS或BSC细胞等哺乳动物细胞。本领域的普通技术人员会意识到可以利用其它宿主细胞。

永生化细胞系（如骨髓瘤细胞系）通常来源于与淋巴细胞来源相同的哺乳动物物种。优选的永生化细胞系是小鼠骨髓瘤细胞系，其对含次黄嘌呤、氨基蝶呤和胸腺嘧啶脱氧核苷的培养基（“HAT 培养基”）敏感。典型的方法是利用 1500 分子量的聚乙二醇（“PEG1500”）将 HAT 敏感的小鼠骨髓瘤细胞与小鼠脾细胞融合。然后用 HAT 培养基筛选融合所得杂交瘤细胞，未融合的和无效融合的骨髓瘤细胞在 HAT 培养基中被杀死（由于未融合的淋巴细胞没有被转化，几天之后它们将死亡）。通过筛选该杂交瘤培养上清，检测产生所需抗体的杂交瘤。例如，通过检测杂交瘤培养上清中能够与重组 α4-亚单位-表达细胞系结合的分泌抗体，可以筛选用来产生抗 VLA-4 抗体的杂交瘤（见上述 Elices 等）。

为了产生完整免疫球蛋白形式的抗-VLA-4 抗体同系物，在足以使杂交瘤细胞将单克隆抗体分泌到培养基中的条件下和时间中，将在所述筛选试验中检测为阳性的杂交瘤细胞在营养培养基中培养。适合于杂交瘤细胞的组织培养技术和培养基众所周知。用众所周知的方法收益经调整的杂交瘤培养上清并任选进一步纯化抗 VLA-4 抗体。

或者，通过将杂交瘤细胞注射到未经免疫的小鼠腹腔中而制备所需抗体。杂交瘤细胞在腹腔中增殖，分泌积聚为腹水形式的抗体。可以通过用注射器从腹腔中抽出腹水的方法，收获所述抗体。

抗 VLA-4 抗体，所述表位涉及 VCAM-1 与纤连蛋白配体的结合(即在涉及配体结合的位点上能与 VLA-4 结合并阻断 VCAM-1 与纤连蛋白结合的抗体)。这类抗体已经被定义为 B 表位特异的抗体(B1 或 B2)(上述 Pulido 等，1991)。它也是本发明抗-VLA-4 抗体。

在另一个用于制备纯人類抗体的方法中，美国专利 5789650(1998 年 8 月 4 日，“用于制备异源性抗体的非人類转基因动物”)中叙述了能够制备异源性抗体的非人類转基因动物和具有灭活的内源性免疫球蛋白基因的非人類转基因动物。内源性免疫球蛋白基因被反义多核苷酸抑制，和/或被抗内源性免疫球蛋白的抗血清抑制。异源性抗体由并非在该非人類动物基因组中正常存在的免疫球蛋白基因编码。将包括未重排的异源性人免疫球蛋白重链序列的一个或多个转基因导入非人類动物，形成能重排出有功能的转基因免疫球蛋白序列，并产生一整套由人免疫球蛋白基因编码的各种同种型抗体的转基因动物。所述异源性人抗体在 B 细胞中产生，这些 B 细胞然后通过例如与骨髓瘤等永生化细胞系融合而永生化，或者通过用其它技术处理该 B 细胞使能够产生单克隆异源性纯人抗体同系物的细胞系永生化。

可应用标准的噬菌体技术以大的未免疫的人噬菌体展示文库来分离高亲和力的可以发展成人类治疗药物的抗体(Vaughan 等，1996)。

可以阻断或包被本发明的方法中所用整合蛋白配体的另一优选结合试剂是具有抗整合蛋白特异性的人源化重组抗体。在制备嵌合抗体的早期方法之后，EP 0239400 (Winter 等)描述了一种新方法，其中通过将一种抗体的互补决定区(CDR)用另一种的相应区代替而改变抗体。该方法可用于，例如将
人类重链和轻链 Ig 可变区结构域的 CDR 用来自鼠的可变区结构域的另一种 CDR 取代。随后使这些已改变的 Ig 可变区与人的 Ig 恒定区组合，产生除取代的鼠 CDR 以外，完全由人的成分组成的抗体。预计这些 CDR-取代型抗体相对于真正的嵌合抗体较不易于激发人类的免疫应答，因为 CDR-取代型抗体只含有很少量的非人类成分。经由 CDR ‘移植’ 而产生人源化单克隆抗体的方法被称为 “整形 (reshaping)” （Riechmann 等，1988，自然 332：323-327； Verhoeyen 等，1988，科学 239：1534-1536）。

通常，将鼠的抗体的互补决定区 (CDR) 移植在人类抗体中相应区上，因为所述 CDR (抗体重链上 3 个，轻链上 3 个) 是小鼠抗体上的特异性抗原结合区。可通过基因工程移植 CDR，其中 CDR DNA 序列通过克隆鼠重链和轻链可变区 (V 区) 基因片段来测定，然后通过定点诱变转移至相应人的恒定区。在该方法的最后阶段，添加具有所需同种型的人类恒定区基因片段 (通常为 CH 的 γ1 型和 CL 的 κ 型)，使人源化重链和轻链基因在哺乳动物细胞中共表达，以产生可溶性人源化抗体。

尽管如此，框架区中某些氨基酸被认为可与 CDR 反应并影响整个抗原结合亲和力。直接从鼠抗体转移 CDR 来产生人源化抗体，而不对人的 V 区框架作任何修饰，常常导致结合亲和力的部分或完全丧失。在多个例子中，改变受体抗体的框架区中的残基对获得结合活性似乎是关键的。

Queen 等，1989(如上述) 和 WO90/07861 (Protein Design Labs Inc.) 已描述，通过使鼠 mAb (抗-Tac) 的 CDR 与人的免疫球蛋白框架区及恒定区组合可制备在受体抗体的框架区中包含修饰的残基的人源化抗体。他们已证实了不修饰人的 V 区框架残基而直接转移 CDR 常导致的亲和力丢失问题的一种解决方法；其包括两个关键步骤。第一，用计算机分析与来源鼠抗体 (此例中为抗-Tac MAb) V 区框架具有最佳同源性的蛋白序列，由此选择人的 V 框架
区。第二步，利用计算机作出该鼠 V 区的三级结构模型，以便观察框架中最可能与鼠 CDR 作用的氨基酸残基，然后将这些氨基酸残基重叠在人的同源框架上。另参美国专利 5693762；5693761；5585089 和 5530101(Protein Design Labs)。

不管采用什么方法，迄今为止制备的最初的人源化抗体同系物的实例已经表明它不是直线了当的过程。然而，尽管如此这样的框架改变是必须的，但根据可采用的现有技术，不可能预测哪些框架残基(如果有)需要改变以获得具有所需特异性的功能性人源化重组抗体。迄今的结果表明保持特异性和/或亲和力所必须的变化大部分是对指定的抗体特定的，而且不能根据不同抗体的人源化进行预测。

在本发明中有效的某些含 α4 亚单位的整联蛋白拮抗剂包括具有 B 表位特异性的嵌合和人源化重组抗体同系物(即完整免疫球蛋白及其部分)，该抗体已经被制备，并且在美国专利 5932214(mab HP1/2)中被叙述。制备嵌合(小鼠可变区 - 人恒定区)和人源化的抗整联蛋白抗体同系物的起始材料可以是先前所述的鼠抗整联蛋白单克隆抗体，市售的抗整联蛋白单克隆抗体(例如 HP2/1, Amae Internation Inc, Westbrook, Maine), 或者是根据本文所述方法制备的抗整联蛋白单克隆抗体。其它优选的人源化抗 VLA-4 抗体同系物见 Athena Neurosciences Inc 在 PCT/US95/01219(1995 年 7 月 27 日)和美国专利 5840299(在此引入作为参考)中所述。

这些人源化抗 VLA-4 抗体包括人源化轻链和人源化重链。所述人源化轻链包括三个互补决定区(CDR1，CDR2 和 CDR3)和可变区框架，所述三个互补决定区中具有来自小鼠 21-6 免疫球蛋白轻链相应互补决定区的氨基酸序列，所述可变区框架来自人 κ 轻链可变区框架序列，其中在最少的位点上的氨基酸被小鼠 21-6 免疫球蛋白轻链可变区框架中等价位置的相同氨基酸占据。所述人源化重链包括三个互补决定区(CDR1，CDR2 和 CDR3)和可变
区框架，所述互补决定区具有来自小鼠 21-6 免疫球蛋白重链相应互补决定区的氨基酸序列，所述可变区框架来自人重链可变区框架序列，其中至少一个位点上的氨基酸被小鼠 21-6 免疫球蛋白重链可变区框架中等价位置的相同氨基酸占据。

本发明方法可以利用由下述核酸序列编码的拮抗剂，该核酸在严谨条件下与编码针对含α4亚单位的整联蛋白的抗体的核酸杂交。例如，本发明的拮抗剂可以是其核酸在高度严谨条件下与美国专利 5840299 的表 6 中一个或多个核酸序列或其互补序列杂交的蛋白。拮抗剂还可以是其核酸在高度严谨条件下与美国专利 5932214 中发现的编码 SEQ ID NO: 2 或 SEQ ID NO: 4 的核酸杂交的蛋白。此外，拮抗剂还可以是其核酸在高度严谨条件下与编码由细胞系 ATCC CRL 11175 产生的抗体的可变区的核酸杂交的蛋白。

或者，本发明的拮抗剂可以是其核酸在低严谨条件下与美国专利 5840299 的表 6 中一个或多个核酸序列或其互补序列杂交的蛋白。拮抗剂还可以是其核酸在低严谨条件下与美国专利 5932214 中发现的编码 SEQ ID NO: 2 或 SEQ ID NO: 4 的核酸杂交的蛋白。此外，拮抗剂还可以是其核酸在低严谨条件下与编码由细胞系 ATCC CRL 11175 产生的抗体的可变区的核酸杂交的蛋白。

C. 片段和类似物的制备

也可以通过利用本领域技术人员知道的重组方法、蛋白消化或化学合成的方法，有效地制备分离的 α4 整联蛋白拮抗剂的片段(例如本文所述抗体同系物的片段)。在重组方法中，可以通过从编码分离的刺猬状(hedgehog)肽的 DNA 序列两端(对于末端片段)或两端(对于内部片段)去除一个或多个核苷酸，制备该多肽的内部或末端片段。诱变 DNA 的表达可产生多肽片段。用“末端逐段(end nibbling)”内切酶消化，也能产生编码一系列片段的 DNA。通过随机剪切、限制性消化或者二者联合，也可以产生编码蛋白片段的 DNA。可以从完整的蛋白中直接制备蛋白片段。肽可以被蛋白酶特异性剪切，这些蛋白酶包括但不限于纤溶酶、凝血酶、胰蛋白酶、胰凝乳蛋白酶或胃蛋白酶。这些酶均对其所作用的肽键类型具有特异性。胰蛋白酶催化碱性氨基酸(通常为精氨酸或赖氨酸)上羰基参与形成的肽键的水解反应。胃蛋白酶和胰凝乳蛋白酶催化色氨酸、酪氨酸和苯丙氨酸等芳香族氨基酸的肽键的水解反应，通过阻止在蛋白酶易感位点上的切割，可以产生另一套切割的蛋白片段。
例如，赖氨酸的ε氨基基团与乙基三氟甲烷乙酸(ethyltrifluorothioacetate)在弱碱性溶液中的反应产生封闭的氨基酸残基，其邻近的肽键不再对胰蛋白酶的裂解敏感。蛋白质可以被修饰，产生对蛋白酶敏感的肽连接。例如，半胱氨酸残基与β卤乙胺的烷基化可产生能被胰蛋白酶水解的肽连接(Lindley(1956)自然178，647)。此外，可以应用在特异性残基上切割肽链的化学试剂。例如，溴化氢在甲硫氨酸残基处切割肽(Gross和Witkup，(1961)J.Am.Chem.Soc.83，1510)。因此，通过用修饰剂、蛋白裂解性酶和/或化学试剂的各种组合处理蛋白，可以将蛋白分割成所需长度且不含重叠片段，或者分割成所需长度的重叠片段。

还利用Merrifield固相Fmoc或t-Boc化学法等本领域中已知的技术，化学合成蛋白片段。Merrifield，激素研究的新进展，23：451(1967)。

在下面讨论了能产生和检测片段和类似物的现有方法的实例。这些方法或类似方法可以用来制备并筛选具有生物活性的分离的α4整联蛋白拮抗剂的片段和类似物。检测含α4亚单位的整联蛋白的拮抗剂其片段及类似物是否具有生物活性的方法实例见章节VI和实施例。

D. 制备已改变的DNA和肽序列：随机方法

通过使编码蛋白或其特定部位的DNA随机诱变，可以产生该蛋白的氨基酸序列变体。有效的方法包括PCR诱变和饱和诱变。也可以通过合成一套简并的寡核苷酸序列来制备随机氨基酸序列变体文库。利用已改变的DNA和肽制备指定蛋白的氨基酸序列的方法在本领域众所周知。下述这些方法的实例不限制本发明的范围，只是举例说明代表性技术。本领域普通技术人员会意识到在这点上其它方法也是有效的。

PCR诱变：例如见Leung等，(1989)技术1，11-15。

饱和诱变：方法之一Mayers等，(1989)科学，229，242。

E. 制备已改变的DNA和肽序列：直接方法

非随机诱变或直接诱变可在编码分离的肽的多核苷酸序列中特定部位引入特异的序列或突变，从而提供变体，该突变包括在所述分离的多肽中
已知氨基酸序列的残基缺失、插入或替代。突变位点可以被分别修饰或逐次修饰，例如通过：(1)首先用保守氨基酸替代，然后根据所得结果用更基本的选择进行替代；(2)使靶残基缺失；或(3)将相同或不同类型的氨基酸插入到定点位点附近，或者选项 1-3 的组合。

很明显，此类定点方法是将 N 末端半胱氨酸(或功能等效物)引入指定多肽序列来提供疏水部分的结合位点。

丙氨酸扫描诱变：见 Cunningham 和 Wells，(1989)科学 244，1081-1085。
寡核苷酸介导的诱变：例如见 Adelman 等，(1983)DNA 2，183。
盒式诱变：见 Wells 等，(1985)基因 34，315。
组合诱变：例如见 Ladner 等，WO 88/06630。
噬菌体展示策略：例如见 Marks 等的综述，生物学化学杂志，267，16007-16010(1992)。

F. 整联蛋白拮抗剂的其它变体

在氨基酸序列方面或在不涉及到序列的方面，或在这两个方面，变体可以与本文所述其它整联蛋白拮抗剂不同。本发明最优选的多肽具备优选的非序列修饰，包括在体内或体外的化学衍生化(例如在其 N 末端)，以及乙酰化、甲基化、磷酸化、酰胺化、羧化或糖基化等可能变化。

其它类似物包括蛋白或其生物活性片段，它们的序列与在美国专利 5840299 或美国专利 5888507、美国专利 5932214(均在此引用作为参考)或者 PCT US/94/00266 中发现的序列不同在于一个或多个保守氨基酸替代或一个或多个非保守氨基酸替代，或者有不消除该分离的蛋白之生物活性的缺失或插入。保守替代通常包括具有相似特性的氨基酸之间的替代，例如下述各组中各氨基酸之间的替代：缬氨酸、丙氨酸和甘氨酸；亮氨酸和异亮氨酸；天冬氨酸和谷氨酸；天冬酰胺和谷氨酰胺；丝氨酸和苏氨酸；赖氨酸和精氨酸；以及苯丙氨酸和酪氨酸。非极性疏水性氨基酸包括丙氨酸、亮氨酸、异亮氨酸、缬氨酸、脯氨酸、苯丙氨酸、色氨酸和甲硫氨酸。极性中性氨基酸包括甘氨酸、丝氨酸、苏氨酸、半胱氨酸、酪氨酸、天冬酰胺和谷氨酰胺。带正电荷(碱性)的氨基酸包括精氨酸、赖氨酸和组氨酸。带负电荷的(酸性)氨基酸包括天冬氨酸和谷氨酸。本领域普通技术人员可以容易的知道其它保守替代。例如，对于丙氨酸，保守替代的氨基酸可以是选自 D-丙氨酸、甘氨酸、β-丙氨酸、L-半胱氨酸和 D-半胱氨酸中的任何一个氨基酸。对于赖氨酸，
替代氨基酸可以是 D-赖氨酸、精氨酸、D-精氨酸、同型精氨酸、甲硫氨酸、
D-甲硫氨酸、鸟氨酸或 D-鸟氨酸中的任何一个氨基酸。

在本发明中应用的其它类似物包括具有增加肽稳定性的修饰的类似物。例如，这样的类似物在其肽序列中可以包含一个或多个非肽键(其替代了肽
键)。本发明的类似物还包括：含天然 L-氨基酸之外的残基如 D-氨基酸或非
天然或合成的氨基酸如 β 或 γ 氨基酸的类似物以及环状类似物。将 D-氨基酸
代替 L-氨基酸引入分离的刺猬状多肽，可以增加其对蛋白酶的抵抗力。见
上述美国专利 5219990。

优选的抗体同系物包括与 PS/2 抗体(见实施例)的氨基酸序列至少有
60%、80%、90%、95%、98%、或 99%同源性的氨基酸序列，或者包括与下
述专利中所述氨基酸序列至少有：60%、80%、90%、95%、98%、或 99%同
源性的氨基酸序列，这些专利为美国专利 5840299(SEQ IN NO 15-轻链可变
区或 SEQ ID NO: 17-重链可变区)或美国专利 5932214(SEQ ID NOS: 2 或
4); 已公布的专利申请 WO 94/16094(在已保藏的细胞系 ATCC CRL 11175 产
生的抗 VLA4 抗体中发现的那些序列)

G. 聚合物偶联形式

在本发明范畴之内，可以将单个聚合物分子与 α1 或 α4 整联蛋白拮抗
剂偶联，尽管也考虑到多个聚合物分子也可偶联。本发明的偶联的 α4 整联
蛋白拮抗剂组合物具有体内和体外应用。另外，应理解偶联聚合物可以利用
任何其它基团、组分或其它偶联形式，只要它们适于最终的应用。如在一些
应用中，使聚合物与赋予其以 UV-降解抗性或抗氧化能力或其它特性或特点
的功能组分共价连接是有用的。又如，在一些应用中活化聚合物而使其具有
反应性并使其能够与药物分子交联以提高整个偶联物的各种特性或特点也
是有益的。因此，聚合物可以包括任何功能、重复基团、连接或不妨碍所偶
联的 α4 整联蛋白拮抗剂组合物发挥其预定功效的其它结构。本发明的其它
目的和优点将在接下来的叙述和附加的权利要求中更完整的表现出来。

在下文的反应方案中描述了可用于有效获得上述所需特点的聚合物实
例。在共价结合的拮抗剂/聚合物偶联物中，聚合物可以被活化，然后与拮抗
剂中游离的氨基酸偶联，形成不稳定的键。

最优选含有 α4 或 α1 亚单位的整联蛋白的拮抗剂通过末端反应基团连
接在聚合物上，尽管也使偶联从非末端反应基团形成分支。具有反应基团
的聚合物在此定义为“活化的聚合物”。该反应基团选择性地与拮抗剂分子上的游离氨基或其它反应基团反应。所述活化的聚合物通过反应使结合可以在赖氨酸的α氨基或ε氨基等任何有效的α4整联蛋白拮抗剂氨基上发生。α4整联蛋白拮抗剂的游离羧基基团、适宜激活的羰基基团、羟基、氨基、氧化的碳水化合物部分和氨基基团(如果存在)也可以用来作为结合位点。

虽然所述聚合物可以被结合在整联蛋白拮抗剂分子的任何部位，优选聚合物与整联蛋白拮抗剂(尤其是那些蛋白性质的拮抗剂)偶联的位点是整联蛋白拮抗剂的N末端，次级位点是C末端或者在其附近，并且通过糖的部分(如果有)进行偶联。因此，本发明考虑：(i) α1和α4整联蛋白拮抗剂的N末端偶联型聚合物偶联物；(ii) α1和α4整联蛋白拮抗剂的C末端偶联型聚合物偶联物；(iii)糖偶联型偶联物；(iv)以及α1和α4整联蛋白拮抗剂的N-、C-和糖偶联型聚合物偶联物。

通常使用每摩尔拮抗剂约1.0到约10摩尔的活化型聚合物，这取决于拮抗剂浓度。最终量使得在获得最大反应程度与对产物的最小非特异性修饰之间达到平衡。且同时限定维持了最佳活性的化学物质，又同时使拮抗剂的半衰期最佳化(如果可能)。优选拮抗剂的生物活性保留至少大约50%，最优选保留100%。

可以将任何适当的本领域认可的用于生物活性物质与惰性聚合物进行反应的方法进行所述的反应。通常所述方法包括制备活化的聚合物(其至少具有一个末端羧基基团)，然后将拮抗剂与该活化的聚合物进行反应，产生适合于配制(formulation)的可溶型蛋白。可以通过几种包括一个或多个步骤的方法，进行上述修饰反应。

如上所述，本发明的某些实施方案中利用整联蛋白拮抗剂的N末端与聚合物结合。可以用适当的传统方法来选择性的获得N末端已修饰的α1或α4整联蛋白拮抗剂。一些方法是还原性烷基化方法，其探讨了可用于在适当整联蛋白拮抗剂上衍生的不同类伯氨基(赖氨酸上的ε氨基对N末端甲硫氨酸上的氨基)的不同反应性。在适当的筛选条件下，可以用含有胺基的聚合物使适当的整联蛋白拮抗剂在其N末端上进行实质上选择性的衍生。所述反应在一定的pH值条件下进行，此pH值允许利用赖氨酸残基的ε氨基和整联蛋白拮抗剂N末端残基的α氨基之间的pKa差异。此类化学过程为本领域的普通技术人员众所周知。
将 PEG 等聚亚烷基二醇靶向 α1 或 α4 整联蛋白拮抗剂，如作为蛋白质 C 末端的策略是化学连接或对能够用于靶向聚合物部分的位点进行遗传改造。例如，在蛋白的 C 末端或其附近的位点上引入 Cys，将允许利用本领域认可的经马尼酰亚氨酸、乙酰基化或卤代乙酸活化的聚亚烷基二醇（如 PEG)衍生物进行特异性修饰。这些衍生物可特别用于修饰经基因工程改造的半胱氨酸，因为这些试剂对 Cys 具有高度选择性。修饰本发明整联蛋白拮抗剂的 C 末端的其它方法有，在蛋白上引入可被靶向的组氨酸标签 (Fancy 等，(1996)Chem & Biol. 3:551) 或引人一个额外的糖基化位点等。

针对糖基团进行化学修饰的方法也是众所周的，因此聚亚烷基二醇聚合物可能直接并特异性地加到已通过氧化作用而激活的整联蛋白拮抗剂的糖基（如果有）上。例如，可以制备聚亚烷基二醇-酰肼，其通过使酰肼酰酸，形成相对稳定的螺连接。这个特性也被用于通过氧化型寡糖连接来修饰蛋白。见 Andresz, H 等，(1978)，Makromol.Chem. 179: 301。尤其是用亚硝酸盐处理 PEG-羧甲基酰肼可产生 PEG-羧甲基氨化物，它是可与氨基反应的亲电子活性基团。此反应也可以用来制备经聚亚烷基二醇修饰的蛋白。见美国专利 4101380 和 4179337。

可以用本领域认可的硫基(thiol)接头介导的化学过程进一步促进蛋白交联，形成多价 α1 或 α4 整联蛋白拮抗剂组合物。特别是可以用高磷酸钠在碳水化合物部分上产生活性醛，通过所述醛形成脱胺偶联物并且通过脱胺上的硫基诱导交联反应。见 Pepinsky B，等，(1991)，生物学化学杂志，266: 18244-18249 和 Chen LL 等，(1991)生物学化学杂志，266: 18237-18243。因此，此种化学过程可能还适合于用于聚亚烷基二醇聚合物进行的修饰，其中将接头引入糖基并使该聚亚烷基二醇聚合物与接头连接。虽然含氨基硫醇或肼的接头允许添加单个聚合物基团，但接头的结构可以变化以便添加多个聚合物和/或改变聚合物相对于整联蛋白拮抗剂的空间定向。

在本发明的应用中，将 C1-C4 烷基聚亚烷基二醇的聚亚烷基二醇残基，优选聚乙二醇(PEG)或此二醇的聚(氧)亚烷基二醇残基引入目的聚合物系统较有利。因此，与蛋白连接的聚合物可以是聚乙二醇(PEG)的同型多聚体或者是聚氧乙烯化的多元醇，只要该聚合物在室温下溶于水。此类聚合物非限定性实例包括 PEG 或聚亚丙基二醇等聚亚烷基氧化物同型多聚物，聚氧亚乙基化二元醇，其共聚物及其嵌段(block)共聚物，只要能保持该嵌段共聚物
的水溶性。聚氧乙基化多元醇的实例包括例如聚氧乙基化甘油，聚氧乙基化山梨醇，聚氧乙基化葡萄糖等。聚氧乙基化甘油的甘油骨架与在动物和人中天然存在的单-、二-和三甘油酯的骨架相同。因此，在体内这些分支未必被视为外来试剂。

作为聚亚烷基氧化物的替代品，也可以应用聚聚糖、聚乙烯吡咯烷酮、聚丙烯酰胺、聚乙烯醇、基于碳水化合物的聚合物等。本领域技术人员将意识到上述所列仅为举例说明，具有在此所述特性所有聚合物物质都将包括在内。

所述的聚合物不需要具有任何特殊的分子量，但优选约 300-100000，更优选 10000-40000。尤其，在阻止因肾脏过滤作用而导致的产物丢失方面，以 20000 或更高的分子量为最佳。

实施本发明时，聚亚烷基二醇衍生物作用在配制聚合物-整联蛋白拮抗剂偶联物时有多项有利特点，其与聚亚烷基二醇衍生物的以下特点相关：提高水溶性，同时不诱导抗原性或免疫原性应答；高度的生物相溶性；缺乏聚亚烷基二醇衍生物的体内生物降解；和容易被活生物体排泄。

而且，在本发明的另一个方面，可以利用与聚合物组分共价结合的α1或α4整联蛋白拮抗剂，该偶联涉及可切割型共价化学键。这使得能控制聚合物从整联蛋白拮抗剂中被切割下来所需的时间。整联蛋白拮抗剂与聚合物之间的此共价键可被化学裂解或经酶反应裂解。该聚合物-整联蛋白拮抗剂产物仍保留可接受量的活性。同时，该偶联型聚合物中聚乙二醇所占比例可使聚合物-整联蛋白拮抗剂偶联物具有较高水溶性和被延长的血液循环能力。由于这些改进的特点，本发明可用于将活性聚合物-α4 整联蛋白拮抗剂经胃肠道外、鼻内和口服途径给药至体内，然后经水解使整联蛋白拮抗剂本身具有生物活性。

应理解本文所述反应方案仅为举例说明，并非对修饰α1或α4整联蛋白拮抗剂以便例如获得适于胃肠道外给药和口服给药的水溶性、稳定性和细胞膜亲和力时所用的反应和结构进行限制。通过利用不同分子大小的聚合物，可以以多种方式使这些整联蛋白拮抗剂偶联物的活性和稳定性发生改变。通过改变掺入到聚合物组合物中的聚乙二醇片段的比例和大小，可以改变偶联物的溶解性。

III. 应用
可与载体物质组合以产生单个型的活性组分的量根据所治疗的受试者和给药的具体模式而不同。然而，应该明白针对任何具体受试者的特异性剂量和治疗方案将会依赖于各种因素，包括使用的特定化合物的活性，年龄，体重，一般健康状态，性别，饮食，给药时间，排泄率，药物组合，以及治疗医生的判断和所治疗的特定疾病的严重性。活性组分的量还依赖于与其共同给药的治疗性或预防性药物(如果有)。

本发明的治疗方法包括给受试者给药有效的量的本发明拮抗剂。本发明方法中的剂量是有效的无毒性的量。常规临床检测领域的熟练技术人员能够确定用于所治特殊疾病的最佳剂量。

制药

在本发明方法中，本发明的拮抗剂可以通过胃肠道外给药。在此应用的术语“胃肠道外”包括皮下、静脉内、肌肉内、动脉内、滑膜内、胸骨内、鞘内、肝内、病损内和颅内注射或输液技术。将所需剂量经静脉内、口、直肠、胃肠道外、鼻内、局部或经吸入给药，每天一次或多次。所需剂量也可以通过连续的静脉输液给药。

抗体同系物优选以含可药用载体的无菌药用组合物形式给药，其中所述的载体可以是任何已知的载体，例如水，盐水，磷酸盐缓冲液，葡萄糖，甘油，乙醇等等或它的组合物。本发明所用化合物可以是衍生自无机或有机酸和碱的盐类形式。所述酸的盐包括：乙酸盐，乙二酸盐，藻酸盐，天冬氨酸盐，苯甲酸盐，苯磺酸盐，磷酸氢盐，丁酸盐，柠檬酸盐，樟脑酸盐，樟脑磺酸盐，环戊烷丙酸盐，双羧酸盐，十二烷基硫酸盐，乙磺酸盐，富马酸盐，葡庚糖酸盐，甘油磷酸盐，半碳酸盐，庚酸盐，己酸盐，盐酸盐，氢溴酸盐，氢碘酸盐，2-羟基乙磺酸盐，乳酸盐，马来酸盐，甲磺酸盐，2-萘磺酸盐，烟酸盐，草酸盐，双萘茶酸盐(pamoate)，果胶酸盐，过硫酸盐，3-苯基丙酸盐，苦味酸盐，新戊酸盐，丙酸盐，琥珀酸盐，酒石酸盐，硫氯酸盐，甲苯磺酸盐和十一酸盐。碱的盐包括：铵盐、碱金属盐如钠盐和钾盐，碱土金属盐如钙盐和镁盐，与有机碱如二环己胺、N-甲基-D-葡萄糖胺、三(羟甲基)甲胺形成的盐，以及与氨基酸如精氨酸、赖氨酸等形成的盐，等等。此外，含碱性氮的基因可以用下述试剂季铵化，这些试剂包括甲基、乙基、丙基和丁基氯化物，溴化物和碘化物等低级烷基卤化物；二甲基、二乙基、二丁基和二戊基硫酸盐等二烷基硫酸盐；十烷基、十二烷基、十四烷基、十
八烷基氯化物、溴化物和碘化物等长链卤化物；苄基和苯乙基溴化物等芳烷基卤化物，等。从而得到水溶型或油溶型或可分散的产物。

本发明的医药组合物包括本发明的任何化合物或其可药用衍生物，以及任何可药用载体。本文中使用的术语“载体”包括合适的佐剂和赋形剂。可药用并可在本发明医药组合物中应用的载体包括但不限于离子交换剂，氧化铝，硬脂酸铝，卵磷脂，人血清白蛋白等血清蛋白，磷酸盐等缓冲物质，甘氨酸，山梨酸，山梨酸钾，饱和植物脂肪酸的部分甘油酯的混合物，水，硫酸鱼精蛋白，磷酸氢二钠，磷酸氢钾，氯化钠，锌盐等盐或电解质，胶体硅，三硅酸镁，聚乙烯吡咯烷酮，基于纤维的物质，聚乙二醇，羧甲基纤维素钠，聚丙烯酸酯，石蜡，聚亚乙基-聚氧代丙基-嵌段聚合物，聚乙二醇和羊毛脂。

根据本发明，所述医药组合物可以是无菌注射剂制，例如无菌可注射的水或油性悬浮液。可以根据本领域已知的技术，利用适当的分散剂或湿润剂和悬浮剂配制该悬浮液。所述无菌注射剂制还可以是溶于无毒的胃肠道外可接受的稀释剂或溶剂中的无菌注射溶液或悬浮液，例如溶于1,3-丁二醇的溶液。在可接受的赋形剂和溶剂中，可以使用水、Ringer’s溶液和等渗氯化钠溶液。另外，传统上以无菌固定油作为溶剂或悬浮介质。为了此目的，可以使用任何温和的固定油，包括合成的单-或二-甘油酯。脂肪酸如油酸甘油酯及其甘油酯衍生物等可用于制备注射剂，可药用的天然油如橄榄油或蓖麻油，尤其它们的聚氯乙基化形式也可使用。

本发明的医药组合物也可以口服给药。如果口服给药，它们可以以任何适合口服的剂型给药，包括但不限于胶囊，片剂，水性悬浮液或溶液。对于用于口服的片剂，常用的载体包括乳糖和玉米淀粉。通常还添加硬脂酸镁等润滑剂。对于胶囊形式的口服制剂，有效的稀释剂包括乳糖和干玉米淀粉。当需要口服水性悬浮液时，可将活性组分与乳化剂和悬浮剂混合。如果需要也可以添加甜味剂、调味剂或色素剂。

本发明方法中应用的具体组合物是那些将所述抗剂配制在小包泡中的组合物，例如含脂质体的组合物。脂质体是由极性脂质等两性分子形成的小泡，极性脂质包括例如磷脂酰胆碱，乙醇胺和丝氨酸，鞘磷脂，心磷脂，缩醛磷脂，磷脂酸和 cerebrosyde。脂质体如下形成：使适当的两性分子在水或水溶液中膨胀，形成通常为多层结构的液态晶体，其由多个双层相互以水性物质分隔而成(也称为粗脂质体)。另一种脂质体已知由囊内包含了水性物
质的单个双层结构组成，称为单层小泡。如果脂质膨胀期间水相中含有水溶性物质，它们就被捕获在脂质双层之间的含水层中。

制备本发明所抗剂脂质体制剂的特别方便的方法是在 EP-A-253619 中所述的方法，在此引用作为参考。在这个方案中，内含活性组分的单一双层脂质体通过如下方法制备，即将脂质组分溶于有机介质中，在压力作用下将脂质组分的有机溶液注射到含水组分中，同时用高速匀浆器或混合工具混合有机组分和含水组分，从而使脂质体自发形成。内含活性组分的单一双层脂质体可以直接使用，或者可在适于局部给药的适当可药用载体中使用。通过加入一种或多种适当的增稠剂如黄原胶，羟丙基纤维素，羟丙基甲基纤维素和它们的混合物，可以增加脂质体的粘性。水相组分可以仅由水组成，或者它也可以包括电解质、缓冲系统和防腐剂等其它组分。可以使用的方法包括电解质，例如碱金属盐和碱土金属盐。优选的金属盐是氯化钙，氯化钠和氯化钾。电解质的浓度可以在 0-260mM 之间，优选 5mM-160mM 之间。将水相组分放置在适当的容器中，此容器能适应在有机组分注射期间通过引起大涡流而进行的匀浆。两种组分的匀浆可以在该容器内完成，或者将水相组分和有机组分分别注射到位于该容器之外的混合工具中。在后一种情况下，脂质体在混合工具中生成，然后将其转移到另一个收集容器中。

有机组分由适当的无毒性可药用溶剂和溶于该溶剂的适当磷脂组成。所述溶剂包括例如乙醇，甘油，丙二醇和聚乙二醇等。可以使用的适当的磷脂包括例如卵磷脂，磷脂酰胆碱，磷脂酰丝氨酸，磷脂酰乙醇胺，磷脂酰肌醇，溶血磷脂酰胆碱，磷脂酰甘油等。为了选择性修饰脂质体的特性，可以使用其它亲脂性添加剂，例如亲脂性添加剂包括硬脂酰胺，磷脂酰胆碱，胆固醇和羊毛脂提取物。

另外，还可以在有机组分中添加阻止磷脂氧化的其它组分。这些组分的实例包括生育酚，丁基化香料，丁基化羟基甲苯，棕榈酸抗坏血酸酯和油酸抗坏血酸酯。还可以添加防腐剂如苯甲酸，甲基对羟基苯甲酸酯和丙基对羟基苯甲酸酯等。

除了上述组合物外，还可使用含适量抗 VLA-抗体药物的覆盖物，例如石膏，绷带，敷料，纱布垫等等。在一些情况下，还可以应用已用含治疗制剂的局部制剂浸透过的石膏，绷带，敷料，纱布垫等等。

本发明的治疗组合物还可利用喷雾器、干粉吸入器或计量吸入器以鼻气
溶胶或吸入式给药。所述组合物可根据制药领域众所周知的技术制备，并可制备成盐水溶液，其中使用苄醇或其它适当的防腐剂，用来增加生物利用度的促吸收剂、碳氮化合物和/或其它传统的增溶剂或分散剂，将起。

本发明化合物产生所需效应的剂量和用药频率依赖于各种因素，例如拮抗剂的本性，受者的个体大小，治疗目的，所治疗病理状态的本质，所用的具体药用组合物和治疗医生的判断。

活性组分化合物的有效剂量水平为每天约 0.001-100mg/kg体重，优选每天约 0.1-50mg/kg体重。最优选 VLA-4 结合剂如果是抗体或抗体衍生物，给药的剂量范围是约 0.1mg/kg 体重/天-约 20mg/kg 体重/天，优选范围是约 0.1mg/kg 体重/天-约 10mg/kg 体重/天，并且每 1-14 天间隔给药。对于非抗体或小分子结合剂，优选抗体剂量范围的摩尔效应量范围。优选给药可有效提供至少 1mg/ml 抗体血浆水平的抗体组合物。通过在体内给药一定剂量所述结合剂后，在各时间点检测被结合剂包被的整联蛋白阳性细胞，可以确定最佳剂量。

所给试剂的存在可根据该个体的细胞与标记的(例如荧光染料标记的)相同试剂的结合能力下降或消失，在体外(或离体)检测。优选的剂量应使绝大部分整联蛋白阳性细胞产生可检测的包被。对于抗体同系物，优选使包被持续 1-14 天。

本领域普通技术人员可容易的检测本发明拮抗剂是否具有所需作用。熟练的技术人员将使用标准的临床恢复检测(例如检测抗体结合的测验和 FACS 扫描；forced vital lung capacity 的改善)来确定疗效。例如，利用可检测所给试剂的第二个试剂在体外(或离体)检测个体肺组织样品所含细胞中所给试剂的存在。例如，该试剂可以是荧光染料标记的对所给试剂特异的抗体，
然后用标准的 FACS(荧光激活细胞分拣术)进行检测。或者，根据该个体的细胞与标记的(例如荧光染料标记的)相同试剂的结合能力下降或消失，而体外(或离体)检测所给试剂的存在。优选的剂量应该使绝大部分细胞阳性细胞产生可检测的包被。对于抗体同系物，优选使包被持续1-14天。

下述实施例是用来自举说明本发明，而不是对其进行限制。

实施例1：肺纤维变性动物模型

实施例2：

用针对含 α 4 亚单位的整联蛋白的拮抗剂抑制纤维变性

材料和方法

应用了非特异性对照抗体(1E6)和针对含α 4 亚单位的整联蛋白的抗体(PS2)。1E6 是小鼠抗人 LFA3(结构域 1) IgG1 单克隆抗体。见 Miller, Hochman, Meier, Tizard, Bixler, Rosa 和 Wallner(1992)，实验医学杂志，178: 211-222。PS/2 按 Miyake 等(实验医学杂志，173: 599-607，1991)的方法制备。
无慢性呼吸系统疾病的体重为 25-30g 的雄性 C57BL/6 小鼠购自 Charles River 实验室。硫酸博来霉素(商品名 Blenoxane)由 Bristol 实验室(Syracuse, NY)惠赠。用于标记脯胺酰羟化酶原胶原底物的 L-[3,4-3H]脯氨酸来自 NEN Life Science Products(Boston, MA)。水性缓冲的锌福尔马林 Z-fix 购自 Anatech, LTD(Battle Creek, MI)。其他所有试剂均为试剂级或更高纯度的试剂，来自标准的商业化来源。

对动物的处理

根据 NIH 的动物福利标准将小鼠分笼饲养，每笼 4 只。在治疗前一周，使小鼠适应实验室环境。保持 12h/12h 的光亮/黑暗循环，并且随时进食水和 Rodent Laboratory 固型食物(Chow)。将动物随机分为四个实验组：1)SA+SA; 2)BL+IE6; 3)BL+SA 和 4)BL+PS2。在甲苯噻嗪和氯胺酮的麻醉下，给小鼠气管内(IT)注射单剂量的盐水或 BL 0.08 单位/100 微升/小鼠。在 IT 滴注后，给小鼠 IP 注射 IE6、SA 或 PS2(100μg/0.2ml/小鼠)，一周三次。BL 滴注的 21 天之后，在戊巴比妥麻醉下，处死小鼠，取支气管肺泡灌洗液(BALF)，进行生物化学和组织病理学分析。

BALF 和肺组织的制备

在麻醉之后，打开腹腔，随后经降腹主动脉放血。通过用与注射器相连的针头进行插管，制备用于灌洗的肺，用 3ml 冷等渗生理盐水进行肺灌洗，每次输注 1ml，取一等份 BALF 用于计数细胞总数。将剩下的 BALF 在 4℃下 1500g 离心 20 分钟，然后将得到的上清分装并在-70℃保存。在 BALF 之后，将肺叶快速解剖，去除非实质组织，并立即在液氮中冷冻，-70℃保存。

随后，将冷冻的肺组织解冻，并在 0.1M KCl、0.02M Tris(pH7.6)中用 Polytron 匀浆器(Brinkmann Instruments Inc. Westbury, NY)进行匀浆。通过反复翻转，充分混合匀浆物，记录最终的匀浆物体积(4-5ml)，将匀浆物分成几等份，在-70℃中保存，以备生化检测。

检测肺的丙二醛含量和羟脯氨酸含量

根据 Ohkawa 等(Okawa 等, Anal.Biochem, 95: 351(1979))的方法，从未分级匀浆物中硫代巴比土酸反应产物的总量估测肺丙二醛含量。对于肺羟脯氨酸的检测，将 1ml 匀浆物用 0.25ml 冰冷得的 50%(w/v)三氯醋酸沉淀并离心，将沉淀物在 110℃下于 2ml 6N HCl 中水解 18 小时。用

胸腺酰羟化酶 (EC 1.14.11.2) 活性的测定

胸腺酰羟化酶底物 (原胶原) 的制备方法和胸腺酰羟化酶的检测方法见 Giri, S.N. 等 (Giri, S.N., Exp. Mol. Pathol., 39: 317 (1983)) 所述。简言之，将从十日龄鸡胚中剔除的胫骨，用 [3H]-脯氨酸在无脯氨酸的培养基中 37 °C 标记 6 小时。在通过洗涤去除未掺入的标记物之后，将组织进行匀浆并 4 °C 3000g 离心 20 分钟。将所得上清充分透析，去除未掺入的标记物。将标记的原胶原底物分装并-70 °C 保存。用于酶检测的温育混合物总体积为 2ml，其中包括硫酸亚铁铵 (0.1mmol/l)，α-酮戊二酸 (0.1mmol/l)，[3H]-脯氨酸原胶原 (200,000 dpm)，肝匀浆物 (0.2ml)，抗坏血酸 (0.5mmol/l) 和 Tris-盐酸缓冲液 (0.1mol/l，pH 7.8)。在 Dubnow 复合酶器中 37 °C 反应 30 分钟之后，向反应中加入 0.2ml 50% 三氯醋酸。在反应期间，按与胸腺酰羟化酶作用成比例的化学计量释放氢气，将其用于测量酶活性。反应体系的氢气通过将全部反应混合物进行真空蒸馏而分离并计数其放射活性。酶活性用每份总飘每 30 分钟释放的氢气的 dpm 表示。

BALF 中细胞数的测定

BALF 蛋白检测

利用 Bio-Rad 蛋白检测仪 (Bio-Rad，Laboratories，Richmond，CA) 并以牛血清白蛋白作为标准，测定 BALF 上清中的蛋白。

组织病理学和免疫组化检验

在实验的最后，从每个治疗组中随机选出 3-4 个动物进行组织病理学和免疫组化检测。将动物的胸腔打开，随后经腹主动脉放血。紧接着按上述 Wang 等的上述方法立即制备用于组织学分析的肺组织。在用钝针头进行气管插管之后，打开胸腔，然后心脏和肺作为一个整体取出。在 30cm 水柱压力下，通过气管用 Z-fix 溶液固定肺组织。随后将右边头和尾部肺叶和左边肺叶封闭，包埋于石蜡，将其切成 7 微米切片，用苏木精和伊红进行染色。对于 α SMA 的免疫组化染色，将肺组织切片脱蜡，并用内源性过氧化
物样封闭。然后将待染色的切片用封闭羊血清处理 30 分钟，并与单克隆抗
\(\alpha \) SMA 第一抗体(Sigma Chemical Co., St Louis, MO)温育 16h。

数据的统计分析

动物数据以每个总肺为基础，表示为均数±标准误(SE)。在 4 组内用双侧方差分析(SIGMASTAT)和 Student-Newman-Keuls 方法进行数据比较。P ≤ 0.05 时具有显著意义。

结果

小鼠肺中的脂质过氧化作用

检测了各组小鼠作为脂质过氧化作用指标的肺丙二醛当量的含量，与
SA+SA 和 BL+PS2 组相比，在 BL+IE6 和 BL+SA 组中 BL 滴注可显著增加
肺丙二醛当量的含量(未显示数据)。用 PS2 治疗可有效阻断 BL 诱导的肺脂
质过氧化作用，因为 BL+PS2 组中肺丙二醛当量的水平与 SA+SA 组没有差
别。

小鼠肺中羟脯氨酸含量

检测了 4 组小鼠的肺羟脯氨酸，它是肺胶原蛋白水平的主要指标。BL
的 IT 滴注可显著提高 BL+IE6 和 BL+SA 组的肺羟脯氨酸水平，分别为
SA+SA 对照组的 185%和 205%。与 BL+SA 组相比，在 BL+PS2 组中通过
PS2 的治疗，BL 诱导的肺羟脯氨酸水平显著下降 35%。BL+TR 组中肺羟脯
氨酸水平并不显著高于 IT 滴注的 SA(SA+SA)对照组。

小鼠肺中脯氨酰羟化酶活性

各组小鼠的肺脯氨酰羟化酶活性表明，在 BL+SA 组中，单独给药 BL
可显著增加肺脯氨酰羟化酶活性，为 SA+SA 对照组的 207%。PS2 可显著降
低 BL+SA 组中由 BL 处理而提高的脯氨酰羟化酶活性。

小鼠肺总 BALF 细胞计数

在 IT 滴注生理盐水或 BL 之后 21 天，各组小鼠 BALF 中的总细胞数表
明，与生理盐水对照组(SA+SA)相比，BL 处理可增加 BL+IE6 和 BL+SA 组
BALF 总细胞数，虽然只有 BL+IE6 组的水平显著高于 SA+SA 组。BL+PS2
组的 BALF 细胞计数与 SA+SA 组没有显著差别。

BALF 中蛋白含量

4 个实验组 BALF 上清的蛋白含量表明，与 SA+SA 对照组相比，IT 滴
注 BL 可显著增加所有 BL 处理组的 BALF 蛋白水平。然而，在 BL+PS2 组
中用 PS2 处理可降低 BL 诱导的 BALF 上清蛋白的增加，尽管差异没有统计学显著性。

小鼠肺的组织病理学

小鼠肺的组织病理学检测表明 SA+SA 组的肺实质组织正常。然而，BL+IE6 和 BL+SA 组的肺表现为不规则的肺泡炎和包括细胞外纤维积累的多源性间质纤维性。这些组的小鼠肺小泡间隔增厚，并且在邻近的空间中出现炎症细胞。与 BL+IE6 和 BL+SA 组相比，BL+PS2 组的肺的纤维性损伤更轻，尽管一些肺叶仍有轻度的间质纤维性。

小鼠肺的 αSMA 免疫组化染色

为了检测在 BL 处理后小鼠中成纤维细胞和成纤维细胞样细胞的积聚，我们利用抗 XSMA 单克隆抗体检测了 XSMA 在肺组织中的表达。在对照肺中，在血管和支气管平滑肌层出现免疫阳性染色。在 BL 和对照抗体组或生理盐水处理组中，在间质和胸膜的纤维性变性斑点内有广泛的强免疫染色。然而，与 BL+IE6 和 BL+SA 组相比，经 BL 和 PS2 处理的肺 αSMA 免疫染色大大降低。

讨论

IPF 是致残性疾病，目前的治疗效果较差。在本研究中，我们的证据表明含 α4 亚单位的整联蛋白在 IPF 治疗中是另一个可能的靶点。通常认为肺的白细胞通过分泌 ROS、致纤维性细胞因子和生长因子而参与肺纤维性病变的进展。白细胞的转导和激活状态是由整联蛋白等各种表面蛋白调节。已经明确细胞-细胞相互作用和细胞-ECM 相互作用在肺纤维性病变发病机制中起关键作用。在活性病纤维性患者和纤维性肺疾病的动物模型中相一致的发现是经历纤维性病变的区中越来越多免疫细胞和炎症细胞的积累。

VLA-4 在所有的循环白细胞上表达，并且与血管细胞粘附分子 (VCAM-1) 和基质蛋白纤连蛋白结合，VCAM-1 是在细胞因子激活的内皮细胞上表达的 Ig 基因超家族成员。α4β7 在 T 细胞和 B 细胞亚群、自然杀伤细胞和嗜酸性粒细胞上表达。它与粘膜血管粘着素 (MAdCAM-1) 以及 VCAM-1 和纤连蛋白结合，粘膜血管粘着素是 Ig 和粘附分子的粘蛋白样家族成员。体外研究证实 VLA-4 与 VCAM-1 的相互作用涉及单核白细胞和嗜酸性粒细胞与内皮细胞的粘附及其穿内皮的迁移，并且 α4β7 被认为主要参与肠相关淋巴组织中的白细胞聚集。
本研究中，PS2治疗降低BALF中由BL诱导的总白细胞的增加。BL+PS2组小鼠肺中白细胞减少可能是经BL处理的动物的肺中炎症损伤和纤维变性消除的原因。肺脂质过氧化反应的测定结果表明PS2的治疗可显著降低BL-诱导的肺损伤。肺中胶原蛋白的增加与间质和肺泡间隙中成纤维细胞数的增加相关。很多这些成纤维细胞样细胞是肌成纤维细胞，它们具有特殊的表型，包括α-SMA的表达。α-SMA是通常存在于平滑肌细胞中的可收缩蛋白，并且被认为在纤维形成和伤口愈合中有重要作用。本研究的重要发现是PS2治疗可减轻BL诱导的肌成纤维细胞增殖。研究于任何特殊的理论，抗α整联蛋白抗体的给药可以降低肺中由浸润的白细胞释放的生长因子的水平，或直接影响肌成纤维细胞的行为。在任一种情况下，增殖中的肌成纤维细胞的减少可导致降低BL+PS2组BL处理动物的肺中胶原蛋白的积累。

实施例3:

用针对含α1亚单位的整联蛋白的拮抗剂抑制纤维变性对动物的处理

在美国实验动物饲养认证协会认可的实验室中，将体重为28-30g的雄性C57/B16小鼠分成4组，在塑料笼中饲养。在治疗前一周，使小鼠适应实验室环境。随后进食Rodent Laboratory Chow5001(Purina Mills, Inc., St. Louis,MO)和水，并且将其饲养在经空气过滤并保持12h/12h光亮/黑暗循环的房间中。将小鼠分为下列各组:

<table>
<thead>
<tr>
<th>组</th>
<th>治疗</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>生理盐水+磷酸缓冲盐</td>
</tr>
<tr>
<td>B</td>
<td>生理盐水+对照抗体IgG</td>
</tr>
<tr>
<td>C</td>
<td>博来霉素+对照抗体IgG</td>
</tr>
<tr>
<td>D</td>
<td>博来霉素+抗α1β1整联蛋白抗体</td>
</tr>
</tbody>
</table>

在气管内(IT)输注之前用无热原质的无菌等渗生理盐水新鲜溶解博来霉素。在甲氧氯烷麻醉下，将100μl无菌等渗生理盐水或100μl0.08单位博来霉素溶液给相应组小鼠气管内输注。给相应组小鼠腹膜内注射抗体(4mg/kg)，一周三次，直到博来霉素给药后21天。之后，用过量的戊巴比妥(100-125mg/kg ip)处死各组动物，并将它们的肺进行处理以备支气管灌洗、生化和组织病理学分析。

测定支气管灌洗液中细胞总数和蛋白水平
支气管插管之后，将肺用共5ml等渗生理盐水灌洗，每次1ml。用注射器通过插管输注生理盐水，轻轻按摩胸腔壁，然后回收灌洗液。将灌洗液在4℃1500g离心20分钟，并用等渗生理盐水溶液重新悬浮。用Lowry等(Lowry等，生物学化学杂志，1193：265-275(1951))所述方法以牛血清白蛋白为标准测定支气管灌洗液标本的上清中蛋白含量。用Coulter Counter(Coulter Electronics, Hialeah, FL)测定悬浮液中的总白细胞数。

羟脯氨酸的测定

用冰冷却的等渗生理盐水经右室在原位灌注用于生化研究的动物肺，通过左心房的开口将肺血管中的血液洗出。迅速切去肺叶的非实质组织，在液氮中速冻，然后在-80℃保存。随后将冰冻的肺解冻，并用Polytron匀浆器在0.1M KCl. 0.02M Tris缓冲液(pH 7.6)中进行匀浆。将肺匀浆物中的羟脯氨酸含量作为胶原蛋白含量的指标，用Woessner(Woessner, Arch. Biochem. Biophys. 93: 440-447(1961))所述的技术定量。

组织病理学研究

肺灌洗之后，打开胸腔，并将心脏和肺整个取出。用溶于1.2M二甲胂酸盐缓冲液中的1%戊二醛-多聚甲醛固定剂，在30cm水柱的压力下以400mOsm进行肺输注。在这个压力下将肺固定约2小时，然后将气管闭塞并在固定剂中保存。在包埋之前，通过钝性切除术去除心脏和所有的非肺组织，分离出肺。从每个肺的右前、右后和左肺叶中切出至少两个矢状厚片(2-3mm厚)的组织块。所切出的每个组织块表面约为1cm²。将组织块在一系列浓度的乙醇溶液中脱水并包埋于石蜡中。从石蜡包埋块中制备切片(5μm厚)并将其用苏木精和伊红染色，用于组织学分析。

数据分析和解释

用均值及其标准差和均数的标准误进行数据分析。利用基于计算机的统计软件包(SAS/STAT指南，第6版 Cary, N.C. 183-260(1985))，应用Student’s t-检验、卡方分布、相关系数、方差分析(ANOVA)和多重比较检验来判断对照组和治疗组之间的差异的显著性。

结果

在本研究中，我们检测了整联蛋白中和抗体α1β1(抗α1β1)在体内减少脑白毒素(BL)-诱导的肺纤维变性的假说。给雄性C57/BL6小鼠气管内(IT)注射生理盐水(SA)或0.1ml0.08U BL，随后腹膜内(IP)注射抗体(100μ
g/0.2ml)，一周三次。在 IT 滴注的 21 天之后，将小鼠处死，进行支气管灌洗(BAL)、生化和组织病理学分析。

肺的组织病理学检测

我们预计用生理盐水和对照 IgG 处理的小鼠不出现可目测的损伤，并且具有正常的薄型肺泡间隔。相反，在用博来霉素和对照 IgG 处理的小鼠中出现各种损伤，从在近肺泡中的聚集到弥散分布，偶尔也累及胸膜。我们预计用博来霉素和抗 α1 整合素抗体处理的小鼠肺部的表现与 B 组(上述)小鼠的表现更为相似。我们预计 D 组动物仅出现有限数量的纤维变性损伤，具有轻度的多发性间隔增厚和小量的单核细胞聚集。

虽然为了便于清楚的理解本发明，通过举例和实施例叙述了上述发明的一些细节，但这可以进行某些改变和修饰，这对于本领域熟练的技术人员是显而易见的。因此，这些叙述和实施例不是对在附加的权利要求中叙述的本发明范围的限制。