Title: IMPROVEMENT OF LIPID PRODUCTION

Abstract: The present invention relates to a genetically modified Acinetobacter host for lipid production. The Acinetobacter host has been genetically modified to be deficient in one or more of genes A) a gene encoding fatty acyl-CoA reductase (EC1.2.1.2), wherein said host is capable of increased production of TAGs and/or of total lipids compared to the parent host; and/or B) a gene encoding lipase (EC3.1.1.3), a gene encoding pyruvate dehydrogenase (EC1.2.2.2), and/or gene ACD1 2177, or functional equivalents of any of said genes, wherein said host is capable of increased production of wax esters and/or total lipids compared to the parent host.
Improvement of lipid production

FIELD OF THE INVENTION

The present invention relates to a genetically modified Acinetobacter host and to a process for producing lipids by using the host.

BACKGROUND OF THE INVENTION

The use of renewable biological material for the production of biofuels is generally motivated by decreasing climate change impacts, by securing the supply of fuels and by economic factors. Lipids are used as a raw material for the production of transportation biofuels, such as biodiesel or renewable diesel, or as their components, for their high energy content and availability. Current raw materials for biodiesel and renewable diesel include vegetable oils, animal fats or recycled greases. Since algae and some other microorganisms are known to naturally produce a wide range of lipids, their use as the source of lipids for biodiesel has been suggested. These microorganism based oils are often called as single cell oils. Lipids are essential for the cell as membrane components, enzyme co-factors, and carbon and energy storages. Some of these lipids, especially triacylglycerols (TAGs), are suitable for biodiesel and/or renewable diesel production.

Many challenges faced with agriculture based raw material, such as vegetable oils, for biodiesel and/or renewable diesel can be reduced with microbial biofuel production. Autotrophic algae are suggested to have significantly higher annual lipid yields per hectare than best oil crops. Alternative option to photosynthetic (autotrophic) production of lipids by algae or cyanobacteria is to utilize heterotrophic microorganisms which produce lipids from organic molecules (such as sugars) without need for light. Importantly, heterotrophic microorganisms can utilize various organic wastes and residues as raw materials for lipid production. Lipid production process using heterotrophic microorganisms comprises cultivating microorganisms in aerated bioreactors, allowing cells to accumulate lipids, harvesting lipid-rich cells and recovering oil from cells.
Single-cell oils have traditionally been used as special products e.g. in health foods, not as commodity chemicals. In these kinds of single cell oil production processes product volumes are relatively small and the product is expensive. Therefore, the cost structure of these processes allows the utilization of expensive feed raw materials and unit operations. Similar kind of production process has also been described for the production of lipids for biodiesel production (Ratledge and Cohen 2008). However, as the product is an inexpensive commodity chemical, the process costs should not be on the level of the process costs of special products. When lipids are used for example as starting material for biodiesel or renewable diesel, it is important that the lipid production process is efficient in terms of lipid yield from substrate and lipid production rate. Since the typical lipid yield by heterotrophic microorganisms is less than 20% weight percent of the fed sugar, the price of raw material has an essential role in cost structure. Since the economy of the production of single cell oils for biofuels is of key importance, new cost-effective processes for lipid production for biofuel production are still of growing interest. Further, the development of more efficient lipid producing organisms is of high interest.

Some bacteria can produce storage lipids, which can be utilized for example as starting material for biodiesel or renewable diesel production. Storage lipids are free fatty acids, acylglycerols, and wax esters and intermediate products thereof. The synthesis of storage lipids is a regulated process in bacteria. The production of storage lipids can be made more efficient by making some genes in the genome of the bacteria inactive and/or by overexpressing some genes in the genome of the bacteria. Such genes have been described for example in the patent publications WO2009/009391 and WO2008/119082. WO2009/009391 discloses a method for making a fatty esters using impure or unpurified alcohol in the production. The recombinant cell used in the method lacks a nucleic acid sequence encoding acyl-CoA dehydrogenase enzyme or the expression of said enzyme is attenuated. The host may comprise also exogenous genes encoding thioesterase, wax synthase, alcohol acetyltransferase, fatty alcohol forming acyl-CoA-reductase, an ester synthase enzyme, or acyl-CoA synthase enzyme. WO2008/119082 discloses recombinant cells from various microorganism hosts.
expressing or over-expressing gene or genes encoding fatty acid derivative enzymes and a gene encoding an acyl-CoA dehydrogenase enzyme, which gene is modified such that expression of the gene is attenuated.

Various patent publications describe the expression of some genes of the lipid synthesis pathway. WO2008/113041 discloses cracking methods for producing low molecular weight hydrocarbons from biocrude or hydrocarbon feedstock, which may be produced from a recombinant microorganism. The recombinant microorganism may be engineered to express or overexpress peptides, for example acyl-CoA synthetase, thioesterase, acetyl-CoA carboxylase or acyl-carrier protein. WO2007/136762 discloses genetically engineered microorganisms that are capable of synthesizing products derived from the fatty acid biosynthetic pathway (fatty acid derivatives).

Furthermore, DE102004052115 discloses a microorganism comprising a nucleic acid molecule encoding procaryotic acyltransferase, a nucleic acid molecule encoding pyruvatedecarboxylase and a nucleic acid molecule encoding alcohoholdehydrogenase.

US 2003145350 discloses a method for increasing the content of short or middle chain length fatty acids in microorganisms and for production of fatty acids and oils having an increased content of short or middle chain length fatty acids. The method comprises the expression of the acyltransferase KAS III in a microorganism.

Although some publications disclose improved microorganism strains for lipid production there is still a need for more efficient processes for lipid production in order to obtain affordable raw material for biofuel and other applications.

SUMMARY OF THE INVENTION

One object of the present invention is to provide a microorganism host capable of improved lipid production

Another object of the invention is to provide an efficient process for producing lipids.
In particular, one object of the invention is to provide a process for producing lipids for biofuel, for components or for starting material for biofuel production.

To achieve these objects the invention is characterized by the features that are enlisted in the independent claims. Other claims represent the preferred embodiments of the invention.

In one aspect the present invention provides an *Acinetobacter* host genetically modified to produce efficiently lipids. More specifically, the invention provides a host that is genetically modified to be deficient of one or more of genes. Genes which are advantageously made deficient in the host encode for example some key enzymes of the biochemical pathways competing with the lipid biosynthesis pathway.

The invention is based on the finding that the production of storage lipids can be significantly improved by making the host deficient of one or more genes encoding fatty acyl-CoA reductase, gene ACIAE 3383 or a functional equivalent thereof in an *Acinetobacter* host, and/or one or more genes encoding lipase, gene ACIAE 3309 or a functional equivalent thereof in an *Acinetobacter* host, pyruvate dehydrogenase, gene ACIAE 3381 or a functional equivalent thereof in an *Acinetobacter* host, or gene ACIAE 2177 or a functional equivalent thereof in an *Acinetobacter* host. *Acinetobacter* hosts modified according to this invention produce significantly higher amount storage lipids at cellular level than the wild type strain. More specifically, it is of advantage to make an *Acinetobacter* host deficient of one or more genes of group A, or one or more genes of group B, or one or more genes of both groups. Hence, an *Acinetobacter* host may be made deficient of one or more of

A) a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), gene ACIAE 3383 (SEQ ID NO:1) or a functional equivalent thereof in an *Acinetobacter* host, wherein said host is capable of increased production of triacylglycerols (TAGs) and/or of total lipids compared to the parent host;

and/or

B) a gene encoding lipase (EC:3.1.1.3), gene ACIAE 3309 (SEQ ID NO: 2) or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding
pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAD 3381 (SEQ ID NO:3) or a functional equivalent thereof in an *Acinetobacter* host, or gene ACIAD 2177 (SEQ ID NO:4) or a functional equivalent thereof in an *Acinetobacter* host, wherein said host is capable of increased production of wax esters (WEs) and/or total lipids compared to the parent host.

In another embodiment of the invention the host may be made deficient of one or more of

A) a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), gene ACIAD 3383 (SEQ ID NO:1) or a functional equivalent thereof in an *Acinetobacter* host; and/or

B) a gene encoding diacylglycerol kinase (EC:2.7.1.107), gene ACIAD 2837 (SEQ ID NO:5) or a functional equivalent thereof in an *Acinetobacter* host, succinate dehydrogenase (EC:1.3.5.1), gene ACIAD 2880 (SEQ ID NO:6) or a functional equivalent thereof in an *Acinetobacter* host, glycerol-3-phosphate dehydrogenase (EC 1.1.5.3), gene ACIAD 2844 (SEQ ID NO:7) or a functional equivalent thereof in an *Acinetobacter* host, cytochrome o ubiquinol oxidase subunit II (EC:1.10.3.-), gene ACIAD 2425 (SEQ ID NO:8) or a functional equivalent thereof in an *Acinetobacter* host, cytochrome o ubiquinol oxidase subunit I (EC:1.10.3.-), gene ACIAD 2426 (SEQ ID NO:9), or a functional equivalent thereof in an *Acinetobacter* host, cytochrome d terminal oxidase polypeptide subunit II (EC:1.10.3.-), gene ACIAD 2291 (SEQ ID NO:10) or a functional equivalent thereof in an *Acinetobacter* host, pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAD 3381 (SEQ ID NO:3) or a functional equivalent thereof in an *Acinetobacter* host, carboxylesterase (EC:3.1.1.1), gene ACIAD 3648 (SEQ ID NO:11) or a functional equivalent thereof in an *Acinetobacter* host, esterase, gene ACIAD 1134 (SEQ ID NO:12) or a functional equivalent thereof in an *Acinetobacter* host; various lipases (EC:3.1.1.3), gene ACIAD 1121 (SEQ ID NO:13) or a functional equivalent thereof in an *Acinetobacter* host, gene ACIAD 3309 (SEQ ID NO:2) or a functional equivalent thereof in an *Acinetobacter* host, acyl-CoA synthetase (EC:6.2.1.3), gene ACIAD 0235 (SEQ ID NO:14) or a functional equivalent thereof in an *Acinetobacter* host,
or gene ACIA D 2177 (SEQ ID NO:4) or a functional equivalent thereof in an
Acinetobacter host,

wherein said host is capable of increased production of TAGs, wax esters
and/or total lipids compared to the parent host.

In one further embodiment of the invention the host may be made deficient of
one or more of
A) a gene encoding fatty acyl-CoA reductase (EC:1.2.1.n2), gene ACIA D 3383
(SEQ ID NO:1) or a functional equivalent thereof in an Acinetobacter host;
and/or

B) a gene encoding cytochrome o ubiquinol oxidase subunit II (EC:1.10.3.-),
gene ACIA D 2425 (SEQ ID NO:8) or a functional equivalent thereof in an
Acinetobacter host, or succinate dehydrogenase (EC:1.3.5.1), gene ACIA D
2880 (SEQ ID NO:6), or a functional equivalent thereof in an Acinetobacter
host,

wherein said host is capable of increased production of TAGs, wax esters
and/or of total lipids compared to the parent strain.

In one further embodiment of the invention the host may be made deficient of one
or more of lipases (EC:3.1.1.3), gene ACIA D 3309 (SEQ ID NO:2) or a functional
equivalent thereof in an Acinetobacter host, pyruvate dehydrogenase (EC:1.2.2.2),
gene ACIA D 3381 (SEQ ID NO:3), or a functional equivalent thereof in an
Acinetobacter host and/or gene ACIA D 2177 (SEQ ID NO:4) or a functional
equivalent thereof in an Acinetobacter host, wherein said host is capable of
increased production of wax esters (WEs) and/or total lipids.

In one still further embodiment of the invention the host may be made deficient of
one or more lipases (EC:3.1.1.3), gene ACIA D 3309 (SEQ ID NO:2) or a functional
equivalent thereof in an Acinetobacter host, pyruvate dehydrogenase (EC:1.2.2.2),
gene ACIA D 3381 (SEQ ID NO:3) or a functional equivalent thereof in an
Acinetobacter host, and/or gene ACIA D 2177 (SEQ ID NO:4) or a functional
equivalent thereof in an Acinetobacter host together with one or more of
a gene encoding diacylglycerol kinase (EC:2.7.1.107), gene ACIAD 2837 (SEQ ID NO:5) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), gene ACIAD 3383 (SEQ ID NO:1), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding succinate dehydrogenase (EC:1.3.5.1), gene ACIAD 2880 (SEQ ID NO:6) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding glycerol-3-phosphate dehydrogenase (EC 1.1.5.3), gene ACIAD 2844 (SEQ ID NO:7) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome o ubiquinol oxidase subunit II (EC:1.10.3.-), gene ACIAD 2425 (SEQ ID NO:8) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome o ubiquinol oxidase subunit I (EC:1.10.3.-), gene ACIAD 2426 (SEQ ID NO:9), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome d terminal oxidase polypeptide subunit II (EC1.10.3.-), gene ACIAD 2291 (SEQ ID NO:10, or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding pyruvate dehydrogenase (EC1.2.2.2), gene ACIAD 3381 (SEQ ID NO:3) or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding carboxylesterase (EC:3.1.1.1), gene ACIAD 3648 (SEQ ID NO:11), or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding esterase, gene ACIAD 1134 (SEQ ID NO:12), or a functional equivalent thereof in an *Acinetobacter* host, various lipases (EC:3.1.1.3), gene ACIAD 1121 (SEQ ID NO:13) or a functional equivalent thereof in an *Acinetobacter* host, or a gene encoding acyl-CoA synthetase (EC:6.2.1.3), gene ACIAD 0235 (SEQ ID NO:14) or a functional equivalent thereof in an *Acinetobacter* host, wherein said host is capable of increased production of wax esters (Wes) and/or of total lipids.

In one still further embodiment of the invention the host may be genetically modified to express one or more genes encoding the enzymes of lipid biosynthesis pathway.

In one still further embodiment of the invention the host may be genetically modified to express a gene encoding diacylglycerol synthase enzyme or to overexpress a gene encoding WS and/or DGAT.
In another aspect the invention provides a process for producing lipids. The process comprises cultivating the modified microorganisms under suitable cultivation conditions; allowing microorganism to accumulate lipids; and recovering the lipids.

5 Yet, in another aspect the invention provides a process for producing biofuel. The process comprises cultivating the modified microorganisms under suitable cultivation conditions; allowing microorganisms to accumulate lipids; recovering the lipids; and producing biofuel using the recovered lipids as a component or starting material for biofuel, such as biodiesel and/or renewable diesel.

10 In one further aspect the invention provides lipid compositions produced by the embodiments of the invention.

In one still further aspect the invention provides use of the modified hosts for producing lipids and use of the lipids as biofuel, as a component of biofuel, or as a starting material for biofuel production.

15 In some variations of the invention the host may be made deficient of at least 1, 2, 3, 4 or 5 genes.

Considerable advantages are obtained by means of the present invention. By means of the invention new microorganisms belonging to the genus *Acinetobacter* are obtained, said microorganisms being capable of improved lipid production.

20 **BRIEF DESCRIPTION OF THE FIGURES**

Figure 1 shows the gravimetric analysis of total lipids of the mutant strains.

Figure 2 presents the result of thin layer chromatography analyses; lipid production per cultivation time

Figure 3 presents the lipid production per cell

25 Figure 4 presents the lipid production per cultivation volume

Figure 5 presents the production of specific lipid compound (TAG)
Figure 6 shows a comparative TLC for the B2 and ADP1 wild types, single gene ko-mutants and Qm with four gene deletions.

Figure 7 shows flanking regions from the target gene to be knocked-out are cloned to the gene cassette. The synthetic gene cassette is used for gene knock-outs.

Figure 8 shows an example of a gene cassette for knock-out of multiple genes.

Figure 9 shows a gene cassette for knock-out of three genes and over-expression of the synthetic gene raSVA.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides new genetically modified *Acinetobacter* hosts in which a specific gene or genes are made deficient, typically inactive, in order to make the lipid production more efficient. In addition, lipid production may be further improved by introducing genetic constructs comprising genes of the lipid biosynthesis pathway.

"A genetically modified microorganism" refers here to a genetically modified *Acinetobacter* host whose genetic material has been altered using genetic engineering techniques. For example, one or more genes may be made deficient, typically inactive, in the host microorganism or one or more endogenous or exogenous genes may be expressed or overexpressed in the host. "A gene" refers here typically to a nucleotide sequence encoding a specific product, here usually an enzyme.

"Making deficient a gene in a host" means a genetic modification of the host by any suitable method resulting in reduced or lacking expression of a specific gene or reduced or lacking activity of a specific gene product. The method may comprise deletion or truncation or other modification of a specific gene, in particular a gene responsible of pathways competing with lipid biosynthesis. By "inactivation" is meant a genetic modification, typically deletion, resulting in complete loss of activity of a gene product. The effect of the genetic modification of a specific gene on lipid production can be studied by determining the amount of total lipids, storage lipids, structural lipids and/or specific lipid compounds (e.g. triacylglycerols, wax esters).
The term "lipid" refers to a fatty substance, whose molecule generally contains, as a part, an aliphatic hydrocarbon chain, which dissolves in nonpolar organic solvents but is poorly soluble in water. Lipids are an essential group of large molecules in living cells. Lipids are, for example, fats, oils, waxes, wax esters, sterols, terpenoids, isoprenoids, carotenoids, polyhydroxyalkanoates, nucleic acids, fatty acids, fatty alcohols, fatty aldehydes, fatty acid esters, phospholipids, glycolipids, sphingolipids and acylglycerols, such as triacylglycerols, diacylglycerols, or monoacylglycerols.

Preferred lipids in the present invention are fats, oils, waxes, acylglycerols and fatty acids and their derivatives, in particular triacylglycerols and wax esters.

Term “total lipids” refers to the sum of all compounds classified as lipids. Total lipids can be determined e.g. per weight of in cell biomass (per wet or dry weight) or per weight in cultivation volume. An increase in total lipids or improved total lipid production means that at least one of the compounds classified as lipids is increased increasing the sum of all lipid compounds.

The term “acylglycerol “refers to an ester of glycerol and fatty acids. Acylglycerols occur naturally as fats and fatty oils. Examples of acylglycerols include triacylglycerols (TAGs, triglycerides) diacylglycerols (diglycerides) and monoacylglycerols (monoglycerides). Triacylglycerols (TAG) are non-polar and hydrophobic glycerol triesters with three fatty acids. The properties of TAG are dependent on their fatty acid composition.

The term “wax ester” (WE) refers to an ester of fatty acids with long-chain monohydric alcohols which dissolves in nonpolar organic solvents but is poorly soluble in water.

The term “storage lipids” can be defined as lipids which microorganisms store intracellularly mainly for the purpose of storing energy, and fatty acids required for lipid biosynthesis in cells. Typically storage lipids are non-polar lipids such as triacylglycerols, wax esters and/or polyhydroxyalkanoates. Storage lipids are typically located in intracellular inclusions in microbial cells. In some cases, these
non-polar lipids are excreted out of cells to growth medium. Storage lipids differ from “structural lipids” or membrane lipids which are included vital cell structures, such as cell membranes. Structural lipids are typically polar lipids such as phospholipids, glycolipids and/or sphingolipids. Structural lipids also include sterols.

By “increased” or “improved” lipid production is here meant increased or improved production of total lipids, or increased or improved production of storage lipids, or increase in particular lipid compounds such as TAGs and/or wax esters by the modified micro-organisms. The increased lipid production can be measured as changes in the amounts of total lipids, storage lipids, structural lipids and/or specific lipid compounds (e.g. TAG, WE) compared to the wild-type or to the parent host. The increase or improvement of at least one of these factors is at least 5 %, preferably at least 10 %, preferably at least 15 %, more preferably at least 20 %, still more preferably at least 25 %, more and more preferably at least 30 %, still more preferably at least 40 %, still more preferably at least 50 %, still more preferably at least 60 %, still more preferably at least 70 % in weight compared to the lipid production in the wild-type or parent host determined in terms of lipid production per time, lipid production per biomass, lipid production per cultivation volume or lipid production per consumed substrate (carbon source).

Increased or improved lipid production can be achieved by genetic modification that increases one or more of the properties: lipid production per time, lipid production per biomass, lipid production per cultivation volume, lipid production per consumed substrate (carbon source) and/or lipid stability over time, or by genetic modification that increases or improves production of the specific lipid compounds (TAG, WE). In some embodiments of the invention the production of total lipids is increased or improved; in some preferred embodiments the production of TAGs and/or WEs is increased or improved.

By “parent host” or “parent strain” is meant typically a host or a strain without the specific genetic modification resulting in increased or improved lipid production. The parent host may be the wild-type host or for example a production host, having improved properties, such as stability.
By an *Acinetobacter* host is here meant a bacterial host belonging to the genus *Acinetobacter* classified as compiled by DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany, October 2010. More specifically the host may belong to species *Acinetobacter baumannii*, *A. baylyi*, *A. beijerinckii*, *A. bereziniae*, *A. bouvetii*, *A. calcoaceticus*, *A. gerneri*, *A. grimonii* (synonym *A. junii*), *A. guillouiae*, *A. gyllenbergii* *A. haemolyticus*, *A. johnsonii*, *A. junii*, *A. lwoffii*, *A. parvus*, *A. radiorestantes*, *A. schindleri*, *A. soli*, *A. tandoii*, *A. tjembergiae*, *A. towncri*, *A. ursingii*, or *A. venetianus*. The preferred species is *A. baylyi*.

The invention has been exemplified by using *A. baylyi* ADP 1 and *A. baylyi* B2 strains. The strains are wild type strains, which are available to the public from recognized depository culture collections; the strain B2 is available from Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany, under accession number DSM14961, and the ADP1 strain from AmericanType Culture Collection, under accession number ATCC 33305.

Acinetobacter strains, in general, have a wide substrate (carbon source) utilization range. Several *Acinetobacter* strains can utilize a wide range of sugars (carbohydrates), such as hexose (C6) or pentose (C5) sugars, polar and non-polar hydrocarbons, such as aliphatic alcohols, long-chain fatty acids, glycols and polylols, aromatic and halogenated compounds, amino acids, amines and various nitrogenous compounds, alkanes, and organic acids as a sole carbon and energy source. Wide substrate utilization range is beneficial, since it enables the utilization of a variety of raw materials as carbon sources in cultivations for lipid production. Carbohydrates, in particular sugars, for the cultivation and lipid production by *Acinetobacter* can be derived from agricultural crops (e.g. sugar crops, sugar beet, sugar cane, grains, wheat, barley, maize, cassava, sweet sorghum, jerusalem artichoke), lignocellulosic materials (e.g. agricultural residues, wood residues, energy crops, pulp and paper industry residues), industrial organic wastes, municipal organic wastes or algae biomass or residues. Materials containing complex polymers, such as lignocellulosic materials, and polymeric sugars such
as cellulose, xylan or starch, can be depolymerized (hydrolysis) before use as substrate for *Acinetobacter*, if needed. Advantageously, e.g. hosts belonging to *Acinetobacter baylyi* species (exemplified by using strain ADP1), can utilize both hexose and pentose sugars, which is beneficial for the use of lignocellulosic materials, their fractions or hydrolysates as raw materials for lipid production.

Species of *Acinetobacter* are strict aerobes and their catabolism is shifted towards utilizing substrates that can be directly processed in citric acid cycle, for which all the genes are present. Also glyoxylate cycle via anaplerotic reactions is functional due to the presence of the key enzymes, isocitrate lyase and malate synthase.

Acinetobacter species and strains can produce a number of extra- and intracellular biopolymers. *Acinetobacter* species, for example *A. baylyi* can accumulate wax esters (Fixter et al. 1986), triacylglycerols (Kalscheuer and Steinbüchel 2003) and polyhydroxyalkalonic acids (Krehenbrink et al. 2002).

Genetically modified *Acinetobacter* hosts are suitable in particular for biofuel applications; the main constituents of the fatty acids, C16 and C18 fatty acids (16 and 18 carbon fatty acids), are desirable raw materials for biodiesel or renewable diesel. In various embodiments of the present invention the fatty acid profile has been found to be very homogenic regardless of the medium composition, growth phase or genetically modified strains used, which makes *Acinetobacter* hosts suitably for variable bioprocess conditions. In some embodiments more than about 70 % of the components are C16:0, C16:1, C18:0 and C18:1 fatty acids. Minor amounts of C12:0, C13:1 and C14:0 fatty acids are also present.

The lipids produced by *Acinetobacter* are relatively saturated meaning that the amount of double bonds in fatty acid moieties is low. This is beneficial for the production of renewable diesel, since it reduces the quantity of hydrogen in hydrogen treatment step (hydrogen deoxygenation, hydroprocessing).

In summary, *Acinetobacter* hosts can utilize a wide range of substrates and produce commercially interesting biopolymers. The strains are tolerant to many
toxic compounds and are able to degrade aromatic compounds and complex lignin
derivatives containing phenol groups. *Acinetobacter* hosts are therefore ideal hosts
for lipid production in large scale for biofuel and other applications.

5 The *Acinetobacter* hosts can be cultivated in a cultivation medium in a bioreactor,
or fermentor. During the cultivation the microorganisms produce lipids, in particular
storage lipids, which can be recovered after the cultivation, during the cultivation or
at regular intervals. The cultivation can thus be batch, continuous or fed-batch
cultivation, or any other type of cultivation.

10 "Suitable cultivation conditions" mean here conditions under which the
Acinetobacter host is able to grow and produce lipids. The cultivation is typically
carried out in a fermentor under suitable aeration and agitation. The cultivation
medium is provided with suitable carbon sources, nutrients, such as amino acids,
salts, typically mineral salts, trace elements and water. The strain can be
cultivated in rich or minimal salt media.

In one embodiment *Acinetobacter* strains can be cultivated using algae biomass or
residues, of species such as, but not limited to, *Chlorella, Phaeodactylum,
Dunaliella, Nannochloropsis or Nannochloris* as a carbon and/or energy source.

20 Algae biomass can be used with or without oil-extraction or recovery of
carbohydrates before use.

In another embodiment *Acinetobacter* strains can be cultivated on sugars derived
from various different cellulose or lignocellulosic materials, e.g., but not limited to,
agricultural residues like wheat, barley, rye or rice straw, corn stalk or sugar
cane bagasse, wood materials or residues, pulp and paper industry residues or side
streams, energy crops like switchgrass, reed canary grass, Miscanthus or poplar,
or paper waste. *Acinetobacter* strains can grow on glucose abundant in cellulose
fraction in lignocellulosic materials and on xylose, which is abundant component in
hemicellulose fractions of several lignocellulosic materials.
The cultivation temperature is 18 to 38 °C, generally 20 to 38 °C, usually 28 to 32 °C, typically about 30 °C. The optimal temperature range is from 25 °C to 37 °C. Suitable pH is from pH 6 to 8, optimal pH is about pH 7. The generation time is around 30-60 minutes depending on the conditions. Aeration of the liquid cultures is required. Agitation is preferably 100rpm to 800rpm, more preferably 250 – 400 rpm.

"Biofuel" refers to solid, liquid or gaseous fuel mainly derived from biomass or biowaste and is different from fossil fuels, which are derived from the organic remains of prehistoric plants, animals and/or microorganisms.

In a preferred embodiment of the invention the lipids are produced by using *Acinetobacter* hosts and recovered after cultivation and used as feedstock for the production of biodiesel, renewable diesel, jet fuel, gasoline or base oil components and the like.

By the term "biodiesel" is meant here diesel which consists of fatty acid alkyl esters, and is typically produced by transesterification. In transesterification, the acylglycerols are converted to long-chain fatty acid alkyl esters, such as methyl, ethyl or propyl esters. According to EU directive 2003/30/EU "biodiesel" refers to a methyl-ester produced from vegetable oil or animal oil, of diesel quality to be used as biofuel.

"Renewable diesel" refers to a fuel which is produced by a hydrogen treatment of lipids such as hydrogen deoxygenation, hydrogenation or hydroprocessing. In hydrogen treatment, acylglycerols are converted to corresponding alkanes i.e. paraffins or saturated hydrocarbons. The paraffins can be further modified by isomerization or by other process alternatives. Renewable diesel can be produced also from waxes derived from biomass by gasification and Fischer-Tropsch synthesis. Renewable diesel process is optionally used to produce jet fuel and/or gasoline. In addition, cracking of lipids can be performed to produce biofuels. Furthermore, lipids are preferably used as biofuels directly without any further treatment in certain applications.
Raw materials for the production biodiesel and/or renewable diesel can be originated from plant or vegetable oil, animal oil or fat or from a lipid from microorganism, such as bacterium, fungi (a yeast or a filamentous fungus) or a microalga.

The production of renewable diesel has been described in patent publications EP 1396531, EP1398364, EP 1741767 and EP1741768.

Biodiesel or renewable diesel may be blended with diesel made from fossil fuels. Suitable additives, such as preservatives and antioxidants may be added to the fuel product.

“Lubricant” refers to a substance, such as grease, lipid or oil, that reduces friction when applied as a surface coating to moving parts. Two other main functions of a lubricant are heat removal and to dissolve impurities. Applications of lubricants include, but are not limited to uses in internal combustion engines as engine oils, additives in fuels, in oil-driven devices such as pumps and hydraulic equipment, or in different types of bearings. Typically lubricants contain 75-100% base oil and the rest is additives. Suitable additives are for example detergents, storage stabilizers, antioxidants, corrosion inhibitors, dehazers, demulsifiers, antifoaming agents, cosolvents, and lubricity additives (see for example US 7,691,792). Base oil for lubricant can originate from mineral oil, plant or vegetable oil, animal oil or fat or from a lipid from a microorganism. Base oil can also originate from waxes derived from biomass by gasification and Fischer-Tropsch synthesis. Viscosity index is used to characterise base oil. Typically high viscosity index is preferred.

In an embodiment of the invention biofuel is produced by a method, which comprises that *Acinetobacter* hosts are cultivated under suitable cultivation conditions to produce lipids and the lipids are recovered. Biofuel or lubricant is produced by using the recovered lipids as a component or as a starting material for biofuel or lubricant production. "As a component" of biofuel or lubricant means that the lipids can be used without further treatment, but suitable additives may be added. "As a starting material" means that the lipids are treated with suitable
methods, such as transesterification, hydrogen treatment (hydrogen deoxygenation, hydrogenation or hydroprocessing), isomerization, cracking etc.

In microorganisms storage compounds serve as energy, carbon or nitrogen source during periods of starvation of a microorganism. Due to the hydrophobic properties of reserve materials they can be accumulated into cells in large quantities without changing the osmotic pressure of the cell.

Acinetobacter genus bacteria produce storage lipids in the form of TAGs and wax esters (WE) by using an enzyme which has both TAG and WE activity. This has been shown in *A. baylyi* by Stöveken et al (2005) J Bacteriol. Feb; 187(4): 1369-76. The enzyme WS/DGAT bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase, EC 2.3.1.75 and EC 2.3.1.20, catalyzing the synthesis of both wax esters and triacylglycerols is a membrane-bound bifunctional enzyme WS/DGAT encoded by the gene *aftA*. The enzyme possesses both acyl-CoA:fatty alcohol acyltransferase (wax ester synthase, WS) activity and acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. The substrate range of the enzyme is wide and for example alkanes and fatty alcohols of several lengths can be utilized for lipid synthesis (Stöveken and Steinbüchel 2008). In genetical modificatiosts of the gene the encoded activities may change. Hence, in some embodiments of the invention a genetically modified nucleotide sequence encodes either or both activities, WS and/or DGAT.

Accumulation of TAG and WE usually occurs during stationary growth phase when a carbon source is present in the medium in excess and some nutrient, typically nitrogen, is limiting the growth, shifting the biosynthesis of phospholipids towards synthesis of neutral lipids.

Triacylglycerols and wax esters (WE) like many other storage compounds often occur as intracellular lipid inclusions. The quantity and properties, e.g. fatty acid chain lengths, is depend on the *Acinetobacter* strain and growth conditions.

In one embodiment of the invention the production of lipids is increased in *Acinetobacter* hosts by genetically modifying the host to be deficient of one or more genes encoding proteins that are involved in competitive lipid metabolism or...
utilize the same substrates as the key enzymes of the host's lipid synthesis pathway. Competitive metabolism can refer to production of unwanted metabolites or other products in the cell or indirectly by consuming substrates or energy needed in the lipid synthesis. The increase or improvement can be achieved by making a gene in the host deficient. This can be made by any gene modification resulting in reduced production or activity of the gene. Typically this is made by gene inactivation, for example knocking out a gene or genes. By making a specific gene(s) deficient leads to improvement of lipid production. This can be due to increase in biomass, blocking or silencing competitive metabolic reactions or pathways, activation of lipid production synthesis route, increase in growth rate, increase in substrate usage, blocking or silencing lipid degrading pathway or activity, redirecting the lipid production towards different lipid groups, or some unknown mechanism, or combination of those.

As described herein the gene modification resulting in reduced production or activity of a desired gene has been exemplified here by making deficient an *Acinetobacter baylyi* host, strain ADP1 and strain BP1.

“ACIADXXXX”, such as ACIAD2177 means a gene in *A. baylyi* species, in strain ADP1. For example *A. baylyi* strain ADP1 has been made deficient of gene ACIAD2177. The modified strain lacking gene ACIAD2177 is called ACIAD2177. ACIAD numbers are identifiers that are systematically applied to every gene in the genome of *Acinetobacter* sp. ADP1. They are in sequential order on the genome.

In various embodiments of the invention the genes listed below may be made deficient in an *Acinetobacter* host. The functions of some specific gene deletions are discussed. However, the specific gene deficiencies may also have other functions and the combination of specific gene deficiencies may have several different functions.

Within the scope of the present invention are genes encoding a specific enzyme activity. Within the scope of the present invention are also functional equivalents of the genes. A functional equivalent of a gene in an *Acinetobacter* host refers here to any nucleotide sequence causing when expressed in the host the same or
equivalent function as the mentioned gene. A functional equivalent refers to a
fragment, a gene having different nucleotide sequence or encoding different amino
acid sequence, or the closest homologue in an *Acinetobacter* host, i.e. in another
Acinetobacter species or in another *Acinetobacter baylyi* strain.

A gene encoding fatty acyl-CoA reductase means any gene in an *Acinetobacter*
host encoding fatty acyl-CoA reductase having according to the Enzyme
Classification the EC number EC1.2.1.n2. In a specific embodiment the gene is
ACIAD 3383 (nucleotide sequence SEQ ID NO:1, encoded amino acid sequence
SEQ ID NO:15), or a functional equivalent thereof in an *Acinetobacter* host. In
some embodiments of the invention the inactivation or other deficiency of this
gene increases TAG production as a competitive reaction is blocked. It is assumed
that the gene ACIAD3383 is involved in converting the fatty acid chain to aldehyde
which is further esterified with alcohol molecule. Thus, inactivation or other
deficiency of the gene blocks the wax ester synthesis pathway. The ACIAD3383
knock-out strain possibly contains free long chain fatty acids.

A gene encoding lipase means any gene in an *Acinetobacter* host encoding lipase
having according to the Enzyme Classification the EC number EC:3.1.1.3. In a
specific embodiment of the invention the gene is ACIAD 3309 (nucleotide
sequence SEQ ID NO:2, encoded amino acid sequence SEQ ID NO:16), or a
functional equivalent thereof in an *Acinetobacter* host. The gene is annotated as
TAG lipase but for unknown reason in various embodiments inactivation or other
deficiency of the gene improves wax ester production. Without binding to any
theory the lipase may possess activity on wax esters, thus preventing the mutant
strain to degrade wax esters. In addition, inactivation or other deficiency of TAG
lipase may inhibit the lipid degradation in long cultivations and downstream
processing.

A gene encoding pyruvate dehydrogenase means any gene in an *Acinetobacter*
host encoding pyruvate dehydrogenase having according to the Enzyme
Classification the EC number (EC:1.2.2.2). In a specific embodiment the gene is
ACIAD 3381 (nucleotide sequence SEQ ID NO:3, encoded amino acid sequence
SEQ ID NO:17), or a functional equivalent thereof in an *Acinetobacter* host. In various embodiments of the invention inactivation or other deficiency of this gene blocks the synthesis of acetate as an over-flow metabolite, re-directing the carbon flow towards wax ester synthesis. The inactivation or other deficiency of this gene also increases and accelerates biomass production.

In a specific embodiment the gene is ACIAD 2177 (nucleotide sequence SEQ ID NO:4, amino acid sequence SEQ ID NO:18), or a functional equivalent thereof in an *Acinetobacter* host. The gene deficiency causes in some embodiments of the invention enhanced lipid production, although the function mechanism is not known.

A gene encoding diacylglycerol kinase means any gene in an *Acinetobacter* host encoding diacylglycerol kinase having according to the Enzyme Classification the EC number EC:2.7.1.107. In a specific embodiment the gene is ACIAD 2837 (nucleotide sequence SEQ ID NO:5, amino acid sequence SEQ ID NO:19), or a functional equivalent thereof in an *Acinetobacter* host. The corresponding protein (*dgkA*, diacylglycerol kinase) directs 1,2-diacylglycerol to phospholipid synthesis. In some embodiments of the invention inactivation or other deficiency of the gene may prevent an accumulation of unwanted lipids in the cell.

A gene encoding succinate dehydrogenase means any gene in an *Acinetobacter* host encoding succinate dehydrogenase having according to the Enzyme Classification the EC number EC:1.3.5.1. In a specific embodiment the gene is ACIAD 2880 (nucleotide sequence SEQ ID NO:6, amino acid sequence SEQ ID NO:20), or a functional equivalent thereof in an *Acinetobacter* host. In various embodiments of the invention inactivation or other deficiency of the gene in a host may increase the amount of glycerol in the cell, which is needed for acylglycerol, such as TAG, synthesis.

A gene encoding glycerol-3-phosphate dehydrogenase means any gene in an *Acinetobacter* host encoding glycerol-3-phosphate dehydrogenase having according to the Enzyme Classification the EC number EC 1.1.5.3. In a specific embodiment the gene is ACIAD 2844 (nucleotide sequence SEQ ID NO:7, encoded amino acid sequence SEQ ID NO:21), or a functional equivalent thereof
in an *Acinetobacter* host. In some embodiments of the invention gene ACIAD2844 has similar function as ACIAD2880.

A gene encoding cytochrome o ubiquinol oxidase subunit II means any gene in an *Acinetobacter* host encoding cytochrome o ubiquinol oxidase subunit II having according to the Enzyme Classification the EC number EC:1.10.3.-. In a specific embodiment of the invention the gene is ACIAD 2425 (nucleotide sequence SEQ ID NO:8, encoded amino acid sequence SEQ ID NO:22) or a functional equivalent thereof in an *Acinetobacter* host. In some embodiments of the invention the gene deficiency causes enhanced lipid production. The advantages obtained by inactivation or other deficiency of the gene may be based on increased production of acetyl-CoA for fatty acid synthesis. The advantages are considered to be similar as in strain being deficient of ACIAD2426 or ACIAD2291.

A gene encoding cytochrome o ubiquinol oxidase subunit I means any gene in an *Acinetobacter* host encoding cytochrome o ubiquinol oxidase subunit I having according to the Enzyme Classification the EC number EC:1.10.3.-. In a specific embodiment the gene is ACIAD 2426 (nucleotide sequence SEQ ID NO:9, encoded amino acid sequence SEQ ID NO:23), or a functional equivalent thereof in an *Acinetobacter* host. The advantages of the deficiency of the gene are considered to be similar as in strain being deficient of ACIAD2425 or ACIAD2291.

A gene encoding cytochrome d terminal oxidase polypeptide subunit II means any gene in an *Acinetobacter* host encoding cytochrome d terminal oxidase polypeptide subunit II having according to the Enzyme Classification the EC number EC1.10.3.-. In a specific embodiment the gene is ACIAD 2291 (nucleotide sequence SEQ ID NO:10, encoded amino acid sequence SEQ ID NO:24), or a functional equivalent thereof in an *Acinetobacter* host. The advantages are considered to be similar as in strain being deficient of ACIAD2425 or ACIAD2426.

A gene encoding carboxylesterase means any gene in an *Acinetobacter* host encoding carboxylesterase having according to Enzyme Classification the EC number EC:3.1.1.1. In a specific embodiment the gene is ACIAD 3648 (nucleotide sequence SEQ ID NO:11, encoded amino acid sequence SEQ ID NO:25), or a functional equivalent thereof in an *Acinetobacter* host. In some
embodiments of the invention the inactivation or other deficiency of the gene prevents wax ester degradation in the cell. The protein encoded by the gene is annotated as esterase (wax ester lipase).

A gene encoding esterase means any gene in an *Acinetobacter* host encoding esterase. In a specific embodiment the gene is ACIAD 1134 (nucleotide sequence SEQ ID NO:12, encoded amino acid sequence SEQ ID NO:26), or a functional equivalent thereof in an *Acinetobacter* host. In some embodiments of the invention the gene deficiency prevents lipid degradation in the cell.

A gene encoding lipase means any gene in an *Acinetobacter* host encoding lipase having according to the Enzyme Classification the EC number EC:3.1.1.3. In a specific embodiment the gene is ACIAD 1121 (nucleotide sequence SEQ ID NO:13, encoded amino acid sequence SEQ ID NO:27); or a functional equivalent thereof in an *Acinetobacter* host. In some embodiments of the invention the function is considered to be similar as of the deficiency of gene ACIAD1134.

A gene encoding acyl-CoA synthetase means any gene in an *Acinetobacter* host encoding acyl-CoA synthetase having according to the Enzyme Classification the EC number (EC:6.2.1.3). In a specific embodiment the gene is ACIAD 0235 (nucleotide sequence SEQ ID NO:14, encoded amino acid sequence SEQ ID NO:28) or a functional equivalent thereof in an *Acinetobacter* host. In some embodiments of the invention the deficiency of the gene in a host inhibits competitive metabolism, in which the fatty acids are directed to degradation.

In some embodiments of the invention the following combinations of gene deficiency are of advantage:

In an embodiment an *Acinetobacter* host is made deficient of genes encoding pyruvate dehydrogenase (EC:1.2.2.2), fatty acyl-CoA reductase (EC1.2.1.n2) and lipase (EC:3.1.1.3), for example a strain being deficient of genes ACIAD3381, ACIAD3383 and ACIAD3309 or a functional equivalent thereof in an *Acinetobacter* host. A preferred example of such strain is "Qm", the construction of which is described in the examples. The combination of the above gene deficiencies is expected to increase both biomass and TAG compared to single gene deficiencies (ACIAD3381, ACIAD3383 or ACIAD3309). Deficiency of ACIAD3383 blocks the
WE synthesis (competitive reaction pathway). As WE seems to be an over-flow metabolite for ACIAD3381 and potentially also for ACIAD3309, the combination of these three deficiencies are assumed to force the cell to produce more TAG. In addition, making deficient the ACIAD3381 potentially prevents the synthesis of acetate. Making deficient TAG lipase is expected to inhibit the lipid degradation in long cultivations and downstream processing.

In an embodiment an *Acinetobacter* host is made deficient of genes encoding pyruvate dehydrogenase (EC:1.2.2.2), fatty acyl-CoA reductase (EC1.2.1.n2) and diacylglycerol kinase (EC:2.7.1.107), for example a strain being deficient of genes ACIAD3381, ACIAD3383 and ACIAD2837, or a functional equivalent thereof in an *Acinetobacter* host. These gene deficiencies have same expected outcomes as the above described gene deficiencies exemplified by strain "Qm". Instead of the gene deficiency ACIAD3309, the strain is made deficient of gene ACIAD2837, which inhibits unwanted lipids to accumulate in the cell.

In an embodiment an *Acinetobacter* host is made deficient of genes encoding pyruvate dehydrogenase (EC:1.2.2.2), fatty acyl-CoA reductase (EC1.2.1.n2) and gene ACIAD2177, or a functional equivalent thereof in an *Acinetobacter* host, for example a strain being deficient of genes ACIAD3381, ACIAD3383 and ACIAD2177, or a functional equivalent thereof in an *Acinetobacter* host. These gene deficiencies have same expected outcomes as the above described gene deficiencies exemplified in strain Qm. Instead of the gene deficiency ACIAD3309, the strain is made deficient of gene ACIAD2177, which which has been experimentally shown to improve lipid production.

In an embodiment an *Acinetobacter* host is made deficient of genes encoding pyruvate dehydrogenase (EC:1.2.2.2), lipase (EC:3.1.1.3) and/or carboxyl esterase, for example a strain being deficient of genes ACIAD3381, ACIAD3309 and/or ACIAD3648, or a functional equivalent thereof in an *Acinetobacter* host. The combination of the gene deficiencies increases in some embodiments both biomass and wax ester production. As WE seems to be an over-flow metabolite for ACIAD3381 and potentially also for ACIAD3309, the combination of these two deletions may force the cell to produce more WE. In addition, making deficient the gene ACIAD3381 potentially prevents the synthesis of acetate. Deficiency of
lipases inhibits the lipid degradation in long cultivations and downstream processing.

Within the scope of the present invention are also functional equivalents of the genes in an Acinetobacter host i.e. other nucleotide sequences of the described genes comprising shorter forms of said genes, or nucleotide sequences having deletions, substitutions, insertions or other modifications compared to the described genes or the closest homologues of the genes in an Acinetobacter host, but having the same or equivalent function as the described genes.

When searching for genes corresponding to the described genes of A. baylyi ADP1 in other Acinetobacter strains or species, it is evident that the corresponding genes may have small variations in the nucleotide sequence, but that such small variations in the nucleotide sequence of a gene do not significantly change the catalytic properties of the encoded protein. Also the deficiency of said genes is likely to cause the same or similar effect as the deficiency of the described genes in A. baylyi ADP1. For example many changes in the nucleotide sequence do not change the amino acid sequence of the encoded protein. Also an amino acid sequence may have variations, which do not change the functional properties of a protein, in particular they do not prevent an enzyme from carrying out its catalytic function. Such variations in the nucleotide sequence or DNA molecules or in an amino acid sequence are known as “functional equivalents”, because they do not significantly change the function of the gene to encode a protein with a particular function, e.g. catalyzing a particular reaction or, respectively, change the particular function of the protein. The deficiency of genes being functional equivalents of the described genes causes equivalent effects to the Acinetobacter host in question as the deficiency of the described genes in A. baylyi ADP1. Within the scope of the present invention are functional equivalents, including fragments or other modifications, or closest homologues of the above listed genes, in particular functional equivalents of nucleotide sequences SEQ ID NO: 1 to 14, or amino acid sequences SEQ ID NO: 15 to 28.

Within the scope of the present invention are genes showing at least 50%, preferably at least 60 % identity, preferably at least 65 %, preferably at least 70 %,
preferably at least 75 %, preferably at least 80 %, preferably at least 85 %, more preferably at least 90 %, still more preferably at least 95 %, more and more preferably at least 98 % identity to any of the nucleotide sequences SEQ ID NO: 1 to 14.

Within the scope of the present invention are genes encoding amino acid sequences showing at least 50%, preferably at least 60 % identity, preferably at least 65 %, preferably at least 70 %, preferably at least 75 %, preferably at least 80 %, preferably at least 85 %, more preferably at least 90 %, still more preferably at least 95 %, more and more preferably at least 98 % identity to any of the amino acid sequences SEQ ID NO: 15 to 28.

Within the scope of the present invention are genes comprising any of the nucleotide sequences SEQ ID NO:1 to 14.

Within the scope of the present invention are genes encoding proteins comprising any of the amino acid sequences SEQ ID NO:15 to 28.

The term "identity" refers to the identity between two nucleic acid or amino acid sequences, respectively compared to each other from the first nucleic acid to the last nucleic acid or from the first amino acid encoded by the corresponding gene to the last amino acid. The identity of the full-length sequences can be measured by using BLAST program (Altschul, S. F., T.L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller und D. J. Lipman 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402). In the comparison is preferably used nucleotide sequence without signal sequence or the mature sequences of the proteins.

Within the scope of the present invention are also the closest homologues of the genes in other *Acinetobacter* species or strains. The "closest homologue of an *Acinetobacter* gene" in other species or strains means here a gene that has the highest percentage of identical nucleotides with the *Acinetobacter* gene of all the genes of the organism; or a gene whose protein product has the highest percentage of identical amino acids with the protein product encoded by the *Acinetobacter* gene of all the gene products of the organism. The nucleotide or
amino acid sequences may be aligned and the percentage of sequence identity in the aligned sequences can be used as a measure to identify the closest homologue of the gene in the other organism. This can be done by using public databases and tools, for example BLAST search.

Within the scope of the present invention are also functional equivalents of said genes hybridizing under stringent conditions to said genes or said homologues. The hybridization is preferably carried out under stringent hybridization conditions. Stringent conditions can be defined as hybridization at 65°C in a low salt concentration, 1.5 mM sodium citrate, pH 7.0 and 0.015 NaCl, according to Boehringer Mannheim’s manual, DIG System User’s Guide for Filter hybridization.

The deficiency of gene(s) leading to improvement of lipid production can be due to increase in biomass, blocking or silencing competitive metabolic reactions or pathways, activation of lipid production synthesis route, increase in growth rate, increase in substrate usage, blocking or silencing lipid degrading pathway or activity, redirecting the lipid production towards different lipid groups, or some unknown mechanism, or combination of those.

As disclosed herein some embodiments of the invention have been exemplified by constructing and verifying the following gene deficiency combinations: ACIAD(3381, 3383, 3309), ACIAD(3383, 2880), ACIAD(2177, 3381, 3383), ACIAD(2837, 3381, 3383).

In various embodiments of the invention one or more of the following genes or functional equivalents thereof can be made deficient in an *Acinetobacter* host: ACIAD3381, ACIAD3309, ACIAD2837, ACIAD2177, ACIAD3383, ACIAD2880, ACIAD2844, ACIAD2425, ACIAD2426, ACIAD2291, ACIAD3648, ACIAD1121, ACIAD1134 or ACIAD0235, in combination with one or more of the following genes ACIAD3381, ACIAD3309, ACIAD2837, ACIAD2177, ACIAD3383, ACIAD2880, ACIAD2844, ACIAD2425, ACIAD2426, ACIAD2291, ACIAD3648, ACIAD1121, ACIAD1134, ACIAD0235 or a functional equivalent of said genes in an *Acinetobacter* host. In Table 1 has been listed the genes made deficient in an *Acinetobacter* host and the assumed function causing the effects to the lipid metabolism.
Table 1. Gene deficiencies related to lipid metabolism and their hypothetic functions.

<table>
<thead>
<tr>
<th>gene ID</th>
<th>Gene name</th>
<th>Product</th>
<th>EC</th>
<th>working hypotheses</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIAD2837</td>
<td>dglA</td>
<td>diacylglycerol kinase</td>
<td>EC 2.7.1.107</td>
<td>directs diacylglycerol (substrate for WS/GDAT) to phospholipid synthesis</td>
<td>competitive metabolism</td>
</tr>
<tr>
<td>ACIAD3383</td>
<td>acr1</td>
<td>fatty acyl-CoA reductase (hexadecanal dehydrogenase, acylating)</td>
<td>EC 1.2.1.12</td>
<td>converts fatty acid to aldehyde; in absence of 3383 wax esters are not formed</td>
<td>competitive metabolism</td>
</tr>
<tr>
<td>ACIAD2880</td>
<td>sdhA</td>
<td>succinate dehydrogenase, flavoprotein subunit</td>
<td>EC 1.3.5.1</td>
<td>takes part in citric acid cycle; in absence of 2880, more free glycerol is in the cell?</td>
<td>glycerol metabolism</td>
</tr>
<tr>
<td>ACIAD2844</td>
<td>gfpD</td>
<td>glycerol-3-phosphate dehydrogenase</td>
<td>EC 1.1.5.3</td>
<td>in absence, more glycerol for WS and/or DGAT?</td>
<td>glycerol metabolism</td>
</tr>
<tr>
<td>ACIAD2425</td>
<td>cyoA</td>
<td>cytochrome o ubiquinol oxidase subunit II</td>
<td>EC 1.10.3.1</td>
<td>not clear</td>
<td>other</td>
</tr>
<tr>
<td>ACIAD2426</td>
<td>cyoB</td>
<td>cytochrome o ubiquinol oxidase subunit I</td>
<td>EC 1.10.3.1</td>
<td>not clear</td>
<td>other</td>
</tr>
<tr>
<td>ACIAD2291</td>
<td>cydB</td>
<td>cytochrome d terminal oxidase polypeptide subunit II</td>
<td>EC 1.10.3.1</td>
<td>not clear</td>
<td>other</td>
</tr>
<tr>
<td>ACIAD3381</td>
<td>poxB</td>
<td>pyruvate dehydrogenase (cytochrome)</td>
<td>EC 1.2.2.2</td>
<td>acetate production; in absence of 3381, significantly more WE is formed</td>
<td>enhanced WE production</td>
</tr>
<tr>
<td>ACIAD3648</td>
<td>estA</td>
<td>carboxylesterase (AUL-esterase) (B-esterase) (METHYLBUTYRASE) (Cocaine esterase) (PROCAINE esterase) (METHYL BUTYRASE)</td>
<td>EC 3.1.1.1</td>
<td>esterase, lipase for WE</td>
<td>lipase + enhanced WE production</td>
</tr>
<tr>
<td>ACIAD1134</td>
<td>aetA</td>
<td>esterase</td>
<td>?</td>
<td>esterase, lipase for WE</td>
<td>lipase</td>
</tr>
<tr>
<td>ACIAD3309</td>
<td>-</td>
<td>lipase</td>
<td>EC 3.1.1.3</td>
<td>TAG lipase, in absence also more WE are produced</td>
<td>lipase + enhanced WE production</td>
</tr>
<tr>
<td>ACIAD1121</td>
<td>lip1</td>
<td>lipase</td>
<td>EC 3.1.1.3</td>
<td>lipase</td>
<td>lipase</td>
</tr>
<tr>
<td>ACIAD0235</td>
<td>fadD</td>
<td>acyl-CoA synthetase (long-chain-fatty-acid-CoA ligase)</td>
<td>EC 6.2.1.3</td>
<td>rasvahappojen ohjaus hajotukseen</td>
<td>competitive metabolism</td>
</tr>
<tr>
<td>ACIAD2177</td>
<td>-</td>
<td>conserved hypothetical protein</td>
<td>?</td>
<td>not clear</td>
<td>enhanced lipid production</td>
</tr>
</tbody>
</table>

In one still further embodiment of the invention the *Acinetobacter* host may be genetically modified to express one or more genes encoding the enzymes of lipid biosynthesis pathway with or without making the host deficient in one or more of the genes described in Table 1 or functional equivalents thereof. The gene may be endogenous or exogenous to the *Acinetobacter* host.
The term "endogenous gene" refers here to a gene which is natural to an *Acinetobacter* host.

The term "exogenous gene" refers here to a gene which is not natural to an *Acinetobacter* host.

"Genetical modification" of an *Acinetobacter* host means here any genetic modification method by which an *Acinetobacter* host is modified to express a specific endogenous or exogenous gene and/or to be deficient of a specific gene or genes. Genetical modification methods for an *Acinetobacter host* are available and well known for a person skilled in the art and disclosed for example in Metzgar et al. 2004.

In one still further embodiment of the invention the host may be genetically modified to express a gene encoding diacylglycerol synthase enzyme and/or to overexpress a gene encoding wax ester synthase and/or acyl-CoA:diacylglycerol acyltransferase (WS and/or DGAT).

In one embodiment of the invention the WE/TAG synthesis of *Acinetobacter* may be made more efficient to the direction of TAG production. This can be achieved by expressing a gene producing TAG or a similar kind of gene having TAG synthesizing activity, but which lacks WE synthesizing activity. Suitable gene for directing the lipid synthesis towards TAG production in *Acinetobacter* host is a gene encoding diacylglycerol acyltransferase (DGAT) (EC 2.3.1.20).

A gene encoding acylglycerol synthase enzyme (EC 2.3.1.20) is typically an exogenous gene to an *Acinetobacter* host. Preferably it originates from a *Streptomyces* bacterium. For example in *Streptomyces coelicolor* gene sco0958 encodes TAG producing activity, but not WE producing activity. The gene sco0958 (gene ID number 101096381) catalyzes the ultimate step in the biosynthesis of TAGs (Arabolaza et al., 2008). As herein described the effect of a gene encoding acylglycerol synthase enzyme has been exemplified by using a codon-optimized synthetic gene (raSVA) (SEQ ID NO:29) encoding amino acid sequence analogous to sco0958 from *Streptomyces coelicolor* (SEQ ID NO:30).
A gene encoding WS/DGAT typically originates from the same or another Acinetobacter species as the Acinetobacter host to be modified. Acinetobacter genus bacteria produce storage lipids in the form of TAGs and wax esters (WE) by using an enzyme which has both TAG and WE activity. For example in A. baylyi the enzyme WS/DGAT, bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase, EC 2.3.1.75 and EC 2.3.1.20 is encoded by gene attA (SEQ ID NO: 31) and comprise the amino acid sequence (SEQ ID NO:32). The enzyme possesses both acyl-CoA:fatty alcohol acyltransferase (wax ester synthase, WS) activity and acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. In some embodiments of the invention a genetically modified nucleotide sequence encodes either or both activities, WS and/or DGAT.

It is evident that small variations in the nucleotide sequence of a gene do not significantly change the catalytic properties of the encoded protein. For example many changes in the nucleotide sequence do not change the amino acid sequence of the encoded protein. Also an amino acid sequence may have variations, which do not change the functional properties of a protein, in particular they do not prevent an enzyme from carrying out its catalytic function. Such variations in the nucleotide sequence or DNA molecules or in an amino acid sequence are known as “functional equivalents”, because they do not significantly change the function of the gene to encode a protein with a particular function, e.g. catalyzing a particular reaction or, respectively, change the particular function of the protein. Within the scope of the present invention are functional equivalents, including fragments, derivatives, genes having different nucleotide sequence or encoding different amino acid sequence, modified forms or closest homologues of the nucleotide sequence SEQ ID NO:29 or SEQ ID NO:31, or of the amino acid sequence SEQ ID NO: 30 or SEQ ID NO:32.

Within the scope of the present invention are also a nucleotide sequence showing at least 60 % identity, preferably at least 65 %, preferably at least 70 %, preferably at least 75 %, preferably at least 80 %, preferably at least 85 %, more preferably at least 90 %, still more preferably at least 95 %, more and more preferably at least 98 % identity to nucleotide sequence SEQ ID NO:29 or SEQ ID NO:31.
Within the scope of the present invention are also a nucleotide sequence encoding an amino acid sequence showing at least 60 % identity, preferably at least 65 %, preferably at least 70 %, preferably at least 75 %, preferably at least 80 %, preferably at least 85 %, more preferably at least 90 %, still more preferably at least 95 %, more and more preferably at least 98 % identity to amino acid sequence SEQ ID NO:30 or SEQ ID NO:32.

The term "identity" refers to the identity between two nucleic acid or amino acid sequences, respectively compared to each other from the first nucleic acid to the last nucleic acid or from the first amino acid encoded by the corresponding gene to the last amino acid. The identity of the full-length sequences can be measured by using Needleman-Wunsch global alignment program at EMBOSS program package (European Molecular Biology Open Software Suite; Rice et al., 2000) Alternatively, or in addition, identity can be measured by ClustalW-software. In the comparison is preferably used the nucleotide sequences without signal sequence or mature sequences of the proteins without signal sequence.

Within the scope of the present invention are nucleotide sequences causing the same function or equivalent function as said genes sco0958 (SEQ ID NO:29) or aftA (SEQ ID NO:31). Such nucleotide sequences are fragments, derivatives, genes having different nucleotide sequence or encoding different amino acid sequence, modified forms of said genes, the closest homologues of said genes in various Streptomyces species (as regards to sco0958) or in various Acinetobacter species (as regards to aftA), or nucleotide sequences which hybridize to at least one of said genes or said homologues.

The hybridization is preferably carried out under stringent hybridization conditions. Stringent conditions can be defined as hybridization at 65°C in a low salt concentration, 1.5 mM sodium citrate, pH 7.0 and 0.015 NaCl, according to Boehringer Mannheim’s manual, DIG System User’s Guide for Filter hybridization.

Within the scope of the present invention are also the closest homologues of the genes in other Streptomyces (as regards to sco0958) or Acinetobacter (as regards to aftA) species or strains. The "closest homologue of a Streptomyces" or...
"an Acinetobacter gene" in other species or strains means here a gene that has the highest percentage of identical nucleotides with the Streptomyces or Acinetobacter gene, respectively, of all the genes of the organism; or a gene whose protein product has the highest percentage of identical amino acids with the protein product encoded by the Streptomyces or Acinetobacter gene of all the gene products of the organism. The nucleotide or amino acid sequences may be aligned and the percentage of sequence identity in the aligned sequences can be used as a measure to identify the closest homologue of the gene in the other organism. This can be done by using public databases and tools, for example BLAST search.

Micro-organisms capable of producing enzymes involved in lipid biosynthesis can be screened, the activity on various substrates can be determined, and the enzyme characterized. Nucleotide sequences encoding enzymes involved in lipid biosynthesis in various organisms can be isolated and the nucleotide sequences can be compared with the nucleotide sequences SEQ ID NO: 29 or SEQ ID NO:31 and the amino acid sequences can be compared with the amino acid sequences SEQ ID NO: 30 or SEQ ID NO:32. A person skilled in the art can also identify a conserved region in the nucleotide or amino acid sequence and clone a gene fragment using for example PCR techniques. After sequencing the fragment the complete gene can be obtained for example by using cDNA library in a vector. A nucleotide sequence encoding the enzyme can be identified also by nucleic acid hybridization.

Standard molecular biology methods can be used in the cloning of the genes i.e. in the isolation and enzyme treatments of DNA, in E. coli transformations, the isolation of a fragment comprising the gene by amplification in a PCR reaction (Coen D M, 2001) and in the techniques for codon change. The basic methods used are described in the standard molecular biology handbooks, e.g. Sambrook et al. (1990) and Sambrook and Russell (2001). Insertion of the nucleotide sequence under a strong promoter in an expression vector, transfer of the vector into suitable host cells and cultivation of the host cells in conditions provoking production of said enzyme. Methods for protein production by recombinant technology in different host systems are well known in the art (Gellissen, 2005).
Within the scope of the present invention is any gene, that has the same or equivalent effect as the above described genes. Within the scope of the present invention are also genes, which are highly homologous to the genes of interest. The gene introduced to *Acinetobacter* may encode *Acinetobacter* diacylglycerol synthase enzyme or a homologous enzyme or an enzyme having the equivalent function. The gene introduced to *Acinetobacter* may encode *Acinetobacter* WS and/or DGAT enzyme or a homologous enzyme or an enzyme having the equivalent function.

A gene encoding an enzyme producing TAG or WE or both can be linked to a part of an expression system functioning in an *Acinetobacter* host and it can be transferred to the cell with a gene technology method or by using the natural transformation capability of *Acinetobacter*. The gene encoding an enzyme producing TAG or WE or both can originate from a known organism or it can originate from a yet unknown organism, for example metagenomic library.

In addition to modifying an *Acinetobacter* host to express or overexpress specific gene(s), the host may be genetically modified to be deficient of specific gene(s). The genetic modifications may be made in any suitable order or at the same time. Typically the host is first made deficient of specific genes and after that other desired genes are introduced to the host cell. By various genetic modification the WE/TAG ratio and/or amount can be changed.

The effect of expression or overexpression of a gene on lipid production can be studied by culturing the modified host under conditions suitable for lipid production.

Genetically modifying an *Acinetobacter* host to express an endogenous or exogenous gene can be carried out for example by introducing into an *Acinetobacter* host an exogenous gene or an additional copy or copies of an endogenous gene. The gene may be expressed under a promoter recognized by the *Acinetobacter* host. In some embodiments the gene may be expressed under another promoter resulting in increased expression of the gene. Alternatively the *Acinetobacter* host may be genetically modified so that either the gene is more abundantly expressed or that the activity of the gene product is increased.
“Regulatory elements” refer to regulatory elements which can regulate the expression of a gene introduced into a host cell, here in particular into *Acinetobacter*. Regulatory elements include promoters, terminators, enhancers and signal sequences.

“Expression” or “overexpression of a gene” refers here in particular to a gene of the lipid biosynthesis pathway. A desired gene can be introduced into an *Acinetobacter* host as an additional copy or copies of a specific gene, or expressing the gene under another promoter resulting in increased expression of the gene, or otherwise genetically modifying the host so that either the gene is more abundantly expressed or the activity of the gene product is increased.

The genes have been numbered and named according to *A. baylyi* strain ADP1, and they can have different names in different *Acinetobacter* species and strains. The genes have the same or partly the same function in different *Acinetobacter* species and strains. The function can be predicted based for example on sequence data.

Genetic engineering of Acinetobacter hosts, exemplified here by *A. baylyi* species host can be done by exploiting the capability of the host to undergo natural transformation and homologous recombination. In natural transformation DNA molecule is brought into cells through membranes by mechanism, which is regulated by specific competence genes of the host. Of the genus *Acinetobacter*, the strains of *A. baylyi* (ADP1, B2, 93A2, A7, and C5) are naturally transformable. The competence can be induced by transferring cells of stationary growth phase to fresh media; it has been shown that the competence for natural transformation in ADP1 is developed immediately after the start of exponential growth phase and lasts until the stationary growth phase. For example, if the DNA fragment (linear or circular) to be transformed contains flanking regions of a specific target gene of the host, the gene will be replaced (i.e. knocked-out) with the DNA fragment. The target gene can be also inactivated by gene knock-down. Knockdown refers to techniques by which the expression of genes is reduced via genetic modification (a change in the genome) or treatment with a reagent such as a short DNA or RNA with a capacity to specifically bind to a transcript or a gene of interest. After
incubation of 1-12 h, the cells can be selected on a plate containing appropriate selection agent, such as antibiotic.

Alternatively, Red/ET recombineering can be applied for making gene knockouts, as the method is not restricted to naturally competent bacteria. The method is most commonly used to generate simple gene replacements, substituting a drug marker in place of the gene of interest. In Red/ET recombineering, a generated PCR product contains a drug marker flanked by ~40 bp of target sequence. The PCR product is purified and electroporated into the host containing the λ Red + Gam (or RecET + λ Gam) recombination system (from bacteriophage). After growing the cells for 1–2 hours, the culture is plated on antibiotic-selection media for growth of the drug resistant transformant. The gene replacement can be verified phenotypically, or by a PCR using primers upstream, downstream, or within the drug marker. For example, this technology has been used to generate a gene knockout in every nonessential gene in the E. coli chromosome.

For genetic engineering of prokaryotes, also commercial kits are available (for example Targe Tron, Sigma).

Recovery of Lipids

In various embodiments of the invention, lipids, can be recovered from Acinetobacter cell biomass or culture broth using any method known in the art or developed in the future. For example, bacteria are separated from the medium using a filtration or decanting techniques. Alternatively, centrifugation with industrial scale commercial centrifuges of large volume capacity are used to separate the desired products.

In some embodiments of the invention, bacterial cells are disrupted to facilitate the separation of lipids and other components. Any method known for cell disruption may be used, such as ultrasonication, osmotic shock, mechanical shear force, cold press, thermal shock, enzyme-catalyzed or self-directed autolysis. Lipids can be recovered from cells by extraction with organic solvents or by any method known in the art or developed in the future.
The strains, methods, cultivation conditions, ingredients for fermentation and the process as disclosed and claimed herein concern technology that supports large scale and economical cultivation of *Acinetobacter* bacteria. This technology is useful to support industrial manufacturing of lipids by *Acinetobacter* bacteria.

Production of biofuel

The lipids produced with the method described in this invention can be used as a raw material or as a component in the raw material for the production of biofuel, in particular biodiesel, renewable diesel, jet fuel or gasoline. Biodiesel consists of fatty acid alkyl esters, and is typically produced by transesterification. In transesterification, the acylglycerols are converted to long-chain fatty acid alkyl (methyl, ethyl or propyl) esters. Renewable diesel refers to fuel which is produced by hydrogen treatment (hydrogen deoxygenation, hydrogenation or hydروprocessing) of lipids. In hydrogen treatment, acylglycerols are converted to corresponding alkanes (paraffins). The alkanes (paraffins) can be further modified by isomerization or by other process alternatives. Renewable diesel process can also be used to produce jet fuel and/or gasoline. In addition, cracking of lipids can be performed to produce biofuels. Further, lipids can be used as biofuels directly in certain applications. Lipids can be also used as a component of biofuel. Further, lipids can be mixed with fossil fuels and co-processed to produce transportation fuels with bio-content or biocomponents.

The *Acinetobacter* lipids are beneficial for the production of biofuel. Further, the main fatty chain lengths are mainly from C12 (12 carbons) to C18 (18 carbons), which is advantageous for the utilization in diesel applications. The lipids in *Acinetobacter* are rather saturated (fatty acids contain low amount of double bonds). The fatty acid saturation is advantageous especially for renewable diesel production since it reduces the amount of hydrogen in hydrogen treatment, and therefore lowers the production (operation) cost.

Acinetobacter hosts showing suitable properties for industrial useful fermentation processes, in particular for biofuel production, can be further improved by any known strain improvement methods, such as natural selection, random
mutagenization, and by genetic engineering. In addition, for industrial use are chosen species and strains which are non-pathogenic and non-virulent to human or animals.

In summary, various embodiments of the invention are described below with the aid of the following numbered clauses 1-21:

1. A genetically modified Acinetobacter host for lipid production, which comprises that the Acinetobacter host has been genetically modified to be deficient of one or more genes of group A or of group B or one or more genes of both groups, wherein

 group A comprises a gene encoding fatty acyl-CoA reductase (EC:1.2.1.n2), gene ACIAD 3383 (SEQ ID NO:1) or a functional equivalent thereof in an Acinetobacter host, wherein said host is capable of increased production of TAGs and/or of total lipids compared to the parent host; and

 group B comprises a gene encoding lipase (EC:3.1.1.3), gene ACIAD 3309 (SEQ ID NO: 2) or a functional equivalent thereof in an Acinetobacter host, a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAD 3381 (SEQ ID NO:3) or a functional equivalent thereof in an Acinetobacter host and/or gene ACIAD 2177 (SEQ ID NO:4) or a functional equivalent thereof in an Acinetobacter host,

 wherein said host is capable of increased production of wax esters and/or total lipids compared to the parent host.

2. The host according to clause 1, wherein the host has been made deficient of one or more genes of group A or of group B or one or more genes of both groups, wherein

 group A comprises ACIAD3383, and

 group B comprises ACIAD3309, ACIAD3381 and/or ACIAD2177,

 or a functional equivalent of said genes in an Acinetobacter.

3. The host according to clause 1, wherein the host has been made deficient of
37

A) a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), gene ACIAD 3383 (SEQ ID NO:1) or a functional equivalent thereof in an *Acinetobacter* host, and/or one or more of

B) a gene encoding diacylglycerol kinase (EC:2.7.1.107), gene ACIAD 2837 (SEQ ID NO:5) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding succinate dehydrogenase (EC:1.3.5.1), gene ACIAD 2880 (SEQ ID NO:6) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding glycerol-3-phosphate dehydrogenase (EC 1.1.5.3), gene ACIAD 2844 (SEQ ID NO:7) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome o ubiquinol oxidase subunit II (EC:1.10.3.-), gene ACIAD 2425 (SEQ ID NO:8) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome o ubiquinol oxidase subunit I (EC:1.10.3.-), gene ACIAD 2426 (SEQ ID NO:9), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome d terminal oxidase polypeptide subunit II (EC:1.10.3.-), gene ACIAD 2291 (SEQ ID NO:10), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAD 3381 (SEQ ID NO:3), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding carboxylesterase (EC:3.1.1.1), gene ACIAD 3648 (SEQ ID NO:11), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding esterase, gene ACIAD 1134 (SEQ ID NO:12), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding lipase (EC:3.1.1.3), gene ACIAD 3309 (SEQ ID NO:2) or a functional equivalent thereof in an *Acinetobacter* host, gene ACIAD 1121 (SEQ ID NO:13) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding acyl-CoA synthetase (EC:6.2.1.3), gene ACIAD 0235 (SEQ ID NO:14) or a functional equivalent thereof in an *Acinetobacter* host; or gene ACIAD 2177 (SEQ ID NO:4) or a functional equivalent thereof in an *Acinetobacter* host;

wherein said host is capable of increased production of TAGs, wax esters and/or total lipids compared to the parent host.

4. The host according to clause 3, wherein the host has been made deficient of group A comprises ACIAD3383, and/or
group B comprises ACIAD2837, ACIAD 2880, ACIAD2844, ACIAD2425, ACIAD2426, ACIAD2291, ACIAD3381, ACIAD3648, ACIAD1134, ACIAD3309, ACIAD1121, ACIAD 0235, or ACIAD2177,

or a functional equivalent of said genes in an *Acinetobacter* host.

5. The host according to clause 1, wherein the host has been made deficient of

A) a gene encoding fatty acyl-CoA reductase (EC:1.2.1.n2), gene ACIAD 3383 (SEQ ID NO:1) or a functional equivalent thereof in an *Acinetobacter* host, and/or one or more of

B) a gene encoding cytochrome o ubiquinol oxidase subunit II (EC:1.10.3.-), gene ACIAD 2425 (SEQ ID NO:8) or a functional equivalent thereof in an *Acinetobacter* host, or a gene encoding succinate dehydrogenase (EC:1.3.5.1), gene ACIAD 2880 (SEQ ID NO:6), or a functional equivalent thereof in an *Acinetobacter* host,

wherein said host is capable of increased production of TAGs, wax esters and/or of total lipids compared to the parent host.

6. The host according to clause 5, wherein the host has been made deficient of

A) ACIAD3383 and/or one or more of

B) ACIAD2425 or ACIAD2880,

or a functional equivalent of said genes in an *Acinetobacter* host.

7. The host according to any one of clause 1, wherein the host has been made deficient of one or more of

a gene encoding lipase (EC:3.1.1.3), gene ACIAD 3309 (SEQ ID NO:2) or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAD 3381 (SEQ ID NO:3) or a functional equivalent thereof in an *Acinetobacter* host and/or gene 2177 or a functional equivalent thereof in an *Acinetobacter* host, wherein said host is capable of increased production of WEs and/or total lipids.
7. The host according to clause 7, wherein the host has been made deficient of one or more of

ACIAD 3309, ACIAD3381 and/or 2177, or a functional equivalent of said genes in an *Acinetobacter* host.

8. The host according to clause 7, wherein the host has been made deficient of a gene encoding lipase (EC:3.1.1.3), gene ACIAD 3309 (SEQ ID NO:2) or a functional equivalent thereof in an *Acinetobacter* host, alone or together with one or more of

a gene encoding diacylglycerol kinase (EC:2.7.1.107), gene ACIAD 2837 (SEQ ID NO:5) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), gene ACIAD 3383 (SEQ ID NO:1), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding succinate dehydrogenase (EC:1.3.5.1), gene ACIAD 2880 (SEQ ID NO:6) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding glycerol-3-phosphate dehydrogenase (EC 1.1.5.3), gene ACIAD 2844 (SEQ ID NO:7) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome o ubiquinol oxidase subunit II (EC:1.10.3.-), gene ACIAD 2425 (SEQ ID NO:8) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome o ubiquinol oxidase subunit I (EC:1.10.3.-), gene ACIAD 2426 (SEQ ID NO:9) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome d terminal oxidase polypeptide subunit II (EC1.10.3.-), gene ACIAD 2291 (SEQ ID NO:10), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding pyruvate dehydrogenase (EC1.2.2.2), gene ACIAD 3381 (SEQ ID NO:3) or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding carboxylesterase (EC:3.1.1.1), gene ACIAD 3648 (SEQ ID NO:11), or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding esterase, gene ACIAD 1134 (SEQ ID NO:12), or a functional equivalent thereof in an *Acinetobacter* host, various lipases (EC:3.1.1.3), gene ACIAD 1121 (SEQ ID NO:13) or a functional equivalent thereof in an *Acinetobacter* host, or a gene encoding acyl-CoA synthetase (EC:6.2.1.3), gene ACIAD 0235 (SEQ ID NO:14) or a functional equivalent thereof in an
Acinetobacter host, wherein said host is capable of increased production of WEs and/or of total lipids.

9. The host according to clause 8, wherein the host has been made deficient of one or more of ACIAAD3309 alone or together with one or more of

5 ACIAAD 2837, ACIAAD3383, ACIAAD 2880, ACIAAD 2844, ACIAAD2425, ACIAAD2426, ACIAAD 2291, ACIAAD3381, ACIAAD3648, ACIAAD 1134, ACIAAD1121, ACIAAD0235 or ACIAAD2177, or a functional equivalent of said genes in an **Acinetobacter** host s.

10. The host according to clause 7, wherein the host has been made deficient of a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAAD 3381 (SEQ ID NO:3) or a functional equivalent thereof in an **Acinetobacter** host, alone or together with one or more of the genes as defined in clause 8.

11. The host according to clause 10, wherein the host has been made deficient of one or more of a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAAD 3381 (SEQ ID NO:3) or a functional equivalent thereof in an **Acinetobacter** host alone or together with one or more of the genes as defined in clause 8 or 9.

12. The host according to clause 7, wherein the host has been made deficient of ACIAAD 2177 or a functional equivalent thereof in an **Acinetobacter** host alone or together with one or more of the genes as defined in clause 8 or 9 wherein said host is capable of increased production of total lipids.

13. The host according to clause 12, wherein the host has been made deficient of one or more of ACIAAD2177 alone or together with one or more of the genes as defined in clause 8 or 9.

14. The host according to any one of clauses 1 to 13, wherein the host been genetically modified to express one or more genes encoding the enzymes of lipid biosynthesis pathway.

15. The host according to any one of clauses 1 to 8, wherein the host been genetically modified to express a gene encoding diacylglycerol synthase enzyme (EC 2.3.1.20) or to express a gene encoding WS and/or DGAT bifunctional wax
ester synthase/acyl coenzyme A:diacylglycerol acyltransferase, EC 2.3.1.75 and EC 2.3.1.20.

16. The host according to any one of clauses 1 to 15, wherein the host is genetically modified to express a gene selected from the group of

(a) sco0958 (SEQ ID NO: 29) or aftA (SEQ ID NO: 31);

(b) the closest homologue of sco0958 in a Streptomyces species, said homologue encoding diacylglycerol synthase enzyme (EC 2.3.1.20) or the closest homologue of aftA in an Acinetobacter species, said homologue encoding WS and/or DGAT (bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase, EC 2.3.1.75 and EC 2.3.1.20);

(c) a nucleotide sequence which hybridizes to SEQ ID NO: 29 or a homologue thereof under stringent hybridization conditions and encodes diacylglycerol synthase enzyme (EC 2.3.1.20) activity or a nucleotide sequence which hybridizes to SEQ ID NO: 31 or a homologue thereof under stringent hybridization conditions and encodes WS and/or DGAT (bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase, EC 2.3.1.75 and EC 2.3.1.20); and

(d) a nucleotide sequence encoding the amino acid sequence SEQ ID NO:30, or a sequence having at least 60% identity to said sequence and having diacylglycerol synthase enzyme (EC 2.3.1.20), or a nucleotide sequence encoding the amino acid sequence SEQ ID NO:32 or a sequence having at least 60% identity to said sequence and having WS and/or DGAT (bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase), EC 2.3.1.75 and EC 2.3.1.20 activity.

17. A method for genetically modifying an Acinetobacter host by making the host deficient of one or more genes as defined in any one of clauses 1 to 16 and optionally by introducing into said host in an operational manner one or more genes of the lipid biosynthesis pathway.
18. A process for producing lipids, which comprises

- cultivating an *Acinetobacter* host of any one of clauses 1 to 16 under suitable cultivation conditions;

- allowing *Acinetobacter* host to accumulate lipids; and

5 - recovering the lipids.

19. A lipid composition produced by the process of clause 18.

20. Use of the lipids produced according to clause 18 or lipid composition according to clause 19 as a component of biofuel or as a starting material for biofuel production.

21. A method for producing biofuel, which comprises

- cultivating *Acinetobacter* host according to any one of clauses 1 to 16 under suitable cultivation conditions;

- allowing *Acinetobacter* host to accumulate lipids

- recovering the lipids,

15 - producing biofuel using the recovered lipids as a component or as starting material for biofuel production.

Examples

Example 1: Improvement of total lipid production

Strains

20 *Acinetobacter baylyi* ADP1 wild type, also referred as BD413, is available to the public at American Type Culture Collection (ATCC, Accession number 33305). The natural wild type strain B2 is available to the public at Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ, Accession number 14961). Single gene knock-out mutants lacking the gene in question are referred as the gene name ACIAD[number], for example ACIAD3381 means ADP1 strain lacking the gene ACIAD3381.
The widely studied laboratory strain ADP1 does not carry any virulence or pathogenicity factors. Furthermore, most of the antibiotics used with *E. coli* are also effective against ADP1. ADP1 has competence to undergo natural transformation via an efficient DNA uptake and homologous recombination.
Growth conditions

ADP1 strains were cultivated in LB (10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl, pH 7), M9 minimal medium (6 g/l Na$_2$HPO$_4$, 3 g/l KH$_2$PO$_4$, 1 g/l NH$_4$Cl, 0.5 g/l NaCl, 2 mM MgSO$_4$, 0.1 mM CaCl$_2$) or MA/9 minimal medium (Table2) supplemented with appropriate carbon source. In some experiments the media were supplemented with 0.2 % casein amino acids, and/or yeast extract and appropriate antibiotics. Temperature was set to 30 °C and shaking for aeration to 300 rpm and glucose was used as a substrate if not stated otherwise. For plate cultivations, medium components were the same except 15 g/l agar was added to the medium before autoclaving. All the components were provided by Sigma (USA) if not stated otherwise.

Table 2. Medium components MA/9

<table>
<thead>
<tr>
<th>Component</th>
<th>/ liter medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$HPO$_4$ · 2 H$_2$O</td>
<td>5.518 g</td>
</tr>
<tr>
<td>KH$_2$PO$_4$</td>
<td>3.402 g</td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>0.963 g</td>
</tr>
<tr>
<td>Nitrilotriacetic acid</td>
<td>0.008 g</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.0 g</td>
</tr>
<tr>
<td>FeCl$_3$</td>
<td>0.487 mg</td>
</tr>
<tr>
<td>FeSO$_4$ · 7 H$_2$O</td>
<td>5.6 mg</td>
</tr>
<tr>
<td>MgSO$_4$ · 7 H$_2$O</td>
<td>250 mg</td>
</tr>
<tr>
<td>CaCl$_2$ · 2 H$_2$O</td>
<td>20 mg</td>
</tr>
<tr>
<td>NaCl</td>
<td>117 mg</td>
</tr>
<tr>
<td>MnSO$_4$ · 4 H$_2$O</td>
<td>0.56 mg</td>
</tr>
<tr>
<td>ZnSO$_4$ · 7 H$_2$O</td>
<td>0.140 mg</td>
</tr>
<tr>
<td>Co(NO$_3$)$_2$ · 6 H$_2$O</td>
<td>0.150 mg</td>
</tr>
<tr>
<td>CuSO$_4$ · 5 H$_2$O</td>
<td>0.130 mg</td>
</tr>
<tr>
<td>Na$_2$MoO$_4$ · 2 H$_2$O</td>
<td>0.120 mg</td>
</tr>
<tr>
<td>H$_3$BO$_3$</td>
<td>0.160 mg</td>
</tr>
<tr>
<td>EDTA III</td>
<td>22.7 mg</td>
</tr>
</tbody>
</table>
Substrate tests

The following substrates (at concentrations ~1 %) were tested on ADP1 strains: glucose, xylose, cellobiose, starch, acetate, succinate, casein amino acids, and algae biomass. The compounds tested as carbon and energy source were provided by Sigma, if not stated otherwise. The strains B2, and strains lacking one of the following genes ACIAD3383, ACIAD2844, ACIAD2880, and ACIAD2837 were cultivated in 50 ml MA/9 medium at 30 °C and 300 rpm. Parallel cultivations with and without cas. amino acids were carried out. The optical densities (OD\textsubscript{600} value) were measured after 24 hours cultivation.

Table 3. Substrate utilization of the genetically modified strains variable substrates with or without casaminoacids.

<table>
<thead>
<tr>
<th>casam</th>
<th>OD\textsubscript{600}, 24 h</th>
<th>ACIAD 3383</th>
<th>ACIAD 2844</th>
<th>ACIAD 2880</th>
<th>ACIAD 2837</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>+</td>
<td>9.64</td>
<td>13.51</td>
<td>10.29</td>
<td>12.44</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1.35</td>
<td>6.54</td>
<td>7.54</td>
<td>0.068</td>
</tr>
<tr>
<td>Starch</td>
<td>+</td>
<td>1.0</td>
<td>1.3</td>
<td>1.52</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td><0.1</td>
<td><0.1</td>
<td>0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>2.22</td>
<td>1.27</td>
<td>1.11</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Xylose</td>
<td>+</td>
<td>2.22</td>
<td>2.07</td>
<td>2.06</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Algae biomass</td>
<td>+</td>
<td>~4</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>~2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Acetate</td>
<td>+</td>
<td>4.22</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.21</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Succinate</td>
<td>+</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1.23</td>
<td>0.70</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cas.amino acids</td>
<td></td>
<td>1.10</td>
<td>1.05</td>
<td>1.07</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Of the tested substrates, glucose with and without amino acids was utilized most effectively, strains ACIAD3383 and ACIAD2844 possessing the highest OD\textsubscript{600} values. The minimal salts medium supplied only with cas. amino acids resulted in OD\textsubscript{600} value around one in all strains, suggesting that for example starch and cellobiose were utilized to only minor extent if any. However, the utilization of
acetate demonstrates well the strain's capability to co-metabolism: the presence of amino acids boosts significantly the acetate utilization. Strain B2 was also cultivated on oil-extracted algae *Chlorella* residue as a carbon and energy source. The strain grew well on oil-extracted algae indicated that this material is potential raw material for cultivations. *Acinetobacter* strains were able to grow on glucose, which is important feature since glucose is a main component in sugar crop based carbohydrates, such as wheat or corn starch or sugar cane or beet sugar, and also in cellulose fraction of lignocellulosic materials such as agricultural residues (e.g. straw, stalk, bagasse), wood materials and herbaceous materials. *Acinetobacter* strains were able to grow also on xylose, which is important feature since xylose is abundant component is hemicellulose fractions of several lignocellulosic materials, e.g. agricultural residues like rice or wheat straw, corn stover or bagasse, wood materials like softwood and energy crops like switchgrass, reed canary grass, macroalgae (seaweed) and Miscanthus.

15 **Antibiotic tests**

The sensitivity of ADP1 to different antibiotics was tested on LB medium and/or on LA plates. The antibiotics and concentrations used are listed in the Table 4. The antibiotics were provided by Sigma.

20

Table 4. The antibiotics and concentrations tested with ADP1.

<table>
<thead>
<tr>
<th>Antibiotic name</th>
<th>Concentration, µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanamycin</td>
<td>15-250</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>1-20</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>100</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>25-50</td>
</tr>
</tbody>
</table>

Genetic engineering of ADP1

The molecular work was carried out by using methods well known to a person skilled in the art. For digestions and ligations, the enzymes and buffers were provided by Fermentas (Lithuania) and used according to provider’s instructions.
PCR reagents were provided by Finnzymes (Finland) (DNA polymerase Phusion™
and buffer) and Fermentas (nucleotides). Primers were ordered from
ThermoFisher Scientific (USA) with appropriate restriction sites, and the annealing
temperatures were calculated according to Finnzymes' instructions.

The transformation of ADP1 was carried out as follows; briefly, a linear DNA
fragment with flanking regions of the target site in genome was inserted to ADP1
cultivation in an exponential growth phase. The cultivation was conducted at 30 °C
and stirring of 300 rpm using LB medium supplied with 1 % glucose. For
transformation, ~2 μg DNA was used per 1 ml of cultivation. After insertion, the
cultivation was incubated for 2-3 h and then spread on a selective LA plate
supplied with an appropriate antibiotic and glucose. The plate was incubated at 30
°C until colonies appeared. Negative controls were cultivated in the same method
except for insertions sterile water was used instead of DNA fragments.

Construction of synthetic gene cassettes for knock-outs and over-
expression

The six gene cassette components were amplified separately by PCR: flanking
region upstream of the target gene, for example ACIAD2837 (GeneY) was
amplified from ADP1 by colony PCR with appropriate primers and flanking region
downstream of the target gene, for example ACIAD2837 (GeneY'), respectively.
The promoter T5 (lac/T5) was amplified from plasmid pCSS810 (Tauriainen et al.
1997). The selection marker kan(r) was amplified from the plasmid pET-28
(Novagen, USA) and cloned back to the plasmid in vitro using restriction enzymes
Xhol and PstI and T4-DNA-ligase. The resulting plasmid was used as a PCR
template for amplifying multiple cloning site (MCS) and kan(r) together. The
selection marker cam(r) was amplified from the plasmid pAK400c. Transcription
termination loop (t lpp) was amplified from plasmid pAK400c. Double digestions
were carried out for the PCR products with restriction enzymes and ligated in
pairs. The ligation reactions were amplified by PCR with corresponding primers,
digested again, and two of the pairs were ligated and amplified by PCR again. The
two- and four-gene component sets were ligated and the whole gene cassette
construct was amplified by PCR, the final product being ~2000 bp long.
Purification of the PCR products was carried out in every step using PCR purification kit (Fermentas) or gel extraction kit (Fermentas). PCR products were run on 1-2 % agarose (Sigma-Aldrich) gel supplied with SYBRsafe (Invitrogen, USA) and visualized with Safelmaiger (Invitrogen). The right construct was verified by sequencing.

For over-expression of a diacylglycerol acyltransferase, a codon-optimized synthetic gene (raSVA) with amino acid sequence analogous to sco0958 from Streptomyces coelicolor with appropriate restriction sites (Ndel, Xhol) was ordered from GenScript (USA). The codons were optimized based on the codon usage table of ADP1 preferring the triplets that are most abundant in the protein coding sequences of ADP1. The sequence was modified not to include any internal transcription termination loops or ribosome binding sites (RBS). The sequence data is presented in the Sequence listing as SEQ ID NO: 29. The synthetic gene was cloned into the gene cassette scaffold using restriction sites Ndel and Xhol.

By changing the ADP1 flanking regions in the cassette, the specific knock-out target site in the genome can be re-defined. By using different selection markers with variable flanking regions, mutants with multiple gene deletions can be constructed (Example: the strain Qm with deleted genes ACIAD3381, ACIAD3382, ACIAD3383, ACIAD3309). The gene cassette is integrated to a specific locus in ADP1 genome by homologous recombination.

The gene cassettes were transformed into A. baylyi B2 and ADP1 by natural transformation as described above. The transformants were selected on LA plates supplemented with appropriate antibiotic and the presence of the gene cassette was confirmed with PCR and further by sequencing.

Cultivations for characterization of lipid producing single gene knock-out-mutants

For determining the growth properties of the single gene knock-out mutants, the obtained strains were cultivated in 100 ml MA/9 medium supplemented with 0.2 % casein amino acids and 1 % glucose, at 37 °C and 300 rpm for 24 hours. The
optical density (OD) was measured and the cells were collected and centrifuged at 5000 g for 1 hour. Thereafter, the cells were freeze dried in order to determine the cell dry weight gravimetrically.

For lipid analyses, the ADP1 strains (wild type (wt), ACIAD2837, ACIAD2844, ACIAD2880, ACIAD2291, ACIAD3316, SM100, ACIAD3381, ACIAD3309, ACIAD1134, and ACIAD2837) were cultivated in 100 ml MA/9 medium supplemented with 1 % glucose, 0.2 % cas.aminoacids and 30 μg/ml kanamycin at 30 °C and 300 rpm for 24 hours. The cells were collected in two 45 ml samples, centrifuged at 5000 g for one hour, freeze dried and stored at -20 °C. The biomass was used for determination of the cell dry weight, fatty acid profile by gas chromatography (GC) analyses, and gravimetric analyses of total lipids.

Lipid analyses

Lipid extraction

The cells were centrifuged and dried after cultivation. The lipids were extracted using chloroform-methanol-PBS extraction method. For 45-50 ml of original culture 5 ml chloroform, 10 ml methanol and 4 ml PBS buffer (ratio 1:2:0.8) was used. The volumes were scaled up when needed. The cell suspension was mixed well and stored in a shaker (150-200 rpm) for two hours. Another 5 ml of chloroform and 5 ml of PBS buffer (1:1) was added and the sample tube was mixed again and stored overnight in a refrigerator at 4 °C. The lower (chloroform) phase was collected to a tared glass vial and evaporated under nitrogen. The extraction was repeated by adding 10 ml of chloroform to the original tube, and after mixing incubated for another 40 hours. Finally, the phase separation was completed by centrifugation at 3000 rpm for 20 minutes. The chloroform phase was transferred to the glass vial with the first extract and purged under nitrogen. The amount of total lipids was determined gravimetrically.

GC run

Analysis of the fatty acid composition was carried out with gas chromatograph (GC) based on a standard procedure (ISO15304) from lipids extracted from *Acinetobacter* biomass. In the method, the fatty acids in lipids were first
transesterified to form fatty acid methyl esters (FAME). Prior to analysis with gas chromatograph.

The main fatty acids in *Acinetobacter baylyi* ADP1 oil included C16:0, C16:1, C18:0 and C18:1 and C12:0, while the minor constituents included C13:1 and C14:0 fatty acids. The results of qualitative lipid analyses of ADP1 knock-out strains demonstrate the potential of ADP1 for bioenergy application; the main constituents of the fatty acid composition, C16 and C18, are known to be desirable raw materials for biodiesel or renewable diesel.

Example 2: Improvement of storage lipid production in a function of time

Genetic engineering of strains was done as in example 1. The strains B2, ADP1 wt, ACIAD3383, ACIAD3381 were cultivated in 50 ml MA/9 medium supplemented with 0.2 % cas.amino acids and 5 % glucose. The cultivation was carried out at 37 °C and 300 rpm for 8 hours for each strain. Biomass of 2 ml samples was collected by centrifugation at 20000 g for 5 minutes and stored at –20 °C.

TLC analyses

For thin layer chromatography (TLC), lipid extraction was carried out in small-scale for 1.5-5 ml cultivation to quantify the amount of specific lipid components: the cells were centrifuged at 15000 rpm and the supernatant was discarded. Methanol (500 μl) was added on the cell pellets and tubes were shaken for one hour. Chloroform (250 μl) was added and tubes were shaken gently for additional hour. The tubes were centrifuged at 20000 g for 5 min. Additional 250 μl of chloroform and 250 μl of PBS were added to the tubes and the tubes were slowly swirled overnight. The next day, the tubes were centrifuged at 20000 g for 5 min and lower phase (chloroform) was collected and 10-40 μl of the sample was applied to the TLC plate. The composition of mobile phase was n-hexane, ether and acetic acid in the ratio 80:20:2, respectively. The plates used were 10x20 cm or 20x20 cm Silica Gel 60 F254 with 2.5x10 cm concentration zone (Merck, USA) and dyed with iodine for visualization. Olive oil and trioleoylglycerol (Sigma) were used as
standards. The ImageJ-software was used for measuring the intensity of the lipid spots in order to quantify specific lipid components.

Based on the densitometric analysis, the relative differences in WE and TAG production between the strains were estimated and proportioned to the wild type value. According to densitometric calculations, the strain ACIAD3381 produced 78 fold the amount of wax esters compared to ADP1 wild type strain (see Figure 2) per the same cultivation time.

Example 3: Improvement of storage lipid production per cell

Genetic engineering of strains was done as in example 1. The strains B2, ADP1 wt, ACIAD3381, ACIAD3383, ACIAD2880, ACIAD3648, ACIAD2425, ACIAD2837, ACIAD3309, ACIAD2177, ACIAD1121 and ACIAD0235 were cultivated in 50 ml MA/9 supplemented with 5 % glucose and 0.2 % cas.amino acids at 37 °C and 300 rpm for 30 hours. Samples containing same amount of biomass were centrifuged at 20000 g for 5 minutes and stored at −20 °C.

The lipid extraction, TLC analyses and densitometric calculations were done as in example 2.

Based on the densitometric analysis, the relative differences in WE and TAG production between the strains were estimated and proportioned to the wild type value. It was calculated that for example ACIAD2177 produced 30 fold, ACIAD3309 produced 24 fold, ACIAD2837 produced 4 fold, ACIAD1121 produced 2 fold, ACIAD3648 produced 2 fold, and ACIAD3381 strain 17 fold the amount of wax esters compared to the wild type strain per cell weight. The ACIAD3383 produced TAG 1.5 fold compared to the wild type and ACIAD2425 1.3 fold compared to the wild type per cell weight (see Figure 3).

Example 4: Improvement of storage lipid production per cultivation volume

Genetic engineering of strains was done as in example 1. The strains B2, ADP1 wt, ACIAD3381, ACIAD3383, ACIAD2880, ACIAD3648, ACIAD2425, ACIAD2837, ACIAD3309, ACIAD2177, ACIAD1121 and ACIAD0235 were cultivated in 50 ml MA/9 supplemented with 5 % glucose and 0.2 % cas.amino acids at 37 °C and
300 rpm for 30 hours. Samples of 2 ml were collected and centrifuged at 20000 g for 5 minutes and stored at −20 °C.

The lipid extraction, TLC analyses and densitometric calculations were done as in example 2 in order to quantify the amounts of specific lipid components.

Based on the densitometric analysis, the relative differences in wax ester (WE) and TAG production between the strains were estimated and proportioned to the wild type value. It was calculated that for example ACIAD3381 produced 8 fold, ACIAD2837 produced 1.7 fold and ACIAD3309 about 20 fold the amount of wax esters compared to the wild type strain per cultivation volume (see Figure 4). The ACIAD3383 produced TAG 2 fold compared to the wild type and ACIAD2837 produced 1.7 fold compared to the wild type per cultivation volume.

Example 5: The production of specific lipid compound (TAG)

Genetic engineering of strains was done as in example 1. The strains ACIAD3381, ACIAD3383 and ACIAD3309 were cultivated in 50 ml MA/9 supplemented with 5% glucose and 0.2% cas.amino acids at 37 °C and 300 rpm for 30 hours. Samples of 2 ml were collected and centrifuged at 20000 g for 5 minutes and stored at −20 °C. The lipid extraction, TLC analyses and densitometric calculations were done as in example 2. Based on TLC analysis, the strain lacking the ACIAD3383 gene produces only TAGs as a storage lipid. The strains ACIAD3309 and ACIAD3381 produce TAGs and WEs (see Figure 5).

Example 6: Lipid production of a strain with four gene deletions

Genetic engineering of strains was done as in example 1. For the three single gene knock-out mutants (ACIAD3309, ACIAD3381, ACIAD3383) and the mutant Qm with four knock-outs (ACIAD3309, ACIAD3381, ACIAD3382, ACIAD3383), were cultivated in 100 ml medium / 250 ml Erlenmeyer flasks. In the phase I, the strains were cultivated for 24 h in MA/9 medium supplemented with 2% sodium gluconate and 0.5% glycerol at 30 °C and 300 rpm. For phase II, the cells were collected by centrifugation (30 min., 3000 rpm) and suspended to fresh medium with reduced nitrogen concentration (0.1 g/l NH4Cl). The cultivation was continued additional 24 h in same conditions.
After the cultivation the cells were collected by centrifugation (45 min., 3000 rpm) and freeze-dried in parallel samples (40 ml cultivation). The cell dry weight of the samples was determined gravimetrically.

A total of 40 ml of original culture containing freeze-dried cells was extracted with 5 ml of chloroform, 10 ml of methanol and 4 ml of PBS buffer (ratio 1:2:0.8 v/v/v). The cell suspension was mixed well and shaken for 2 h at 150-200 rpm. The mixture of 5 ml of chloroform and 5 ml of PBS buffer (1:1 v/v) was added, suspension was mixed well again and stored overnight in a refrigerator at +4°C. The suspension was centrifuged at 7000 rpm for 10 min. The lower (chloroform) phase was collected into a pre-weighted glass vial and evaporated under nitrogen. The extraction was repeated by adding 10 ml of chloroform to the upper water-methanol phase containing the cells and after mixing incubated for 40 hours at +4°C. Finally, the phase separation was completed by centrifugation at 7000 rpm for 20 min. The chloroform phase was transferred to the glass vial with the first extract and purged under nitrogen.

In order to determine the TAG content of the samples, preparative TLC analyses were carried out using 10x20 cm Silica Gel 60 F254 glass plates with 2.5x10 cm concentrating zone (Merck) and dyed with iodine for visualization. Mobile phase was n-hexane:diethyl ether:acetic acid 80:20:2. Tripalmitoyl-glycerol (Sigma) was used as a standard. After evaporation of iodine Silica Gel from desired TAG-zone was scraped by a metal spatula and transferred into a clean Pasteur pipet containing cotton wool. TAG were eluted from Silica Gel with chloroform (3 x 0.7 ml). Chloroform was purged under nitrogen. The amount of TAG was determined gravimetrically (Table 2).
Table 2.

<table>
<thead>
<tr>
<th></th>
<th>dry biomass (mg)</th>
<th>TAG (mg)</th>
<th>TAG/biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type</td>
<td>125</td>
<td>0.15</td>
<td>0.12 %</td>
</tr>
<tr>
<td>Qm</td>
<td>90</td>
<td>0.6</td>
<td>0.67 %</td>
</tr>
<tr>
<td>3383</td>
<td>106.5</td>
<td>0.5</td>
<td>0.47 %</td>
</tr>
<tr>
<td>3309</td>
<td>128.5</td>
<td>0.65</td>
<td>0.51 %</td>
</tr>
</tbody>
</table>

The change in phenotype resulting from the knock-outs can be seen for the strain Qm: wax ester production has been blocked (see Figure 6). Thus it can be concluded that the strain Qm produces most TAG among the strains that do not produce wax esters.

Example 7: Over-expression of aftA

The natural capability of *Acinetobacter* strains to produce storage lipids, such as TAG and WE, can be further improved by over-expressing the key enzyme WS and/or DGAT, or a gene coding function equivalent. The gene encoding WS and/or DGAT is naturally present in the *Acinetobacter* genome or can be obtained from other native sources or is synthetically constructed. The gene is amplified with PCR and cloned to a suitable gene cassette for over-expression. The construction of a gene cassette can be done as described in example 1. The suitable gene cassette contains flanking regions for targeted knock-out, selection marker, promoter for *aftA* expression and a transcription termination loop. The over-expression promoter is preferentially inducible, and obtained from *A. baylyi* or other source. For example, the following promoters can be used for *aftA* over-expression: T5 promoter, the lactose promoter or the arabinose promoter. If needed, the gene cassette contains accessory genes to control promoter activity such as a gene encoding repressor for arabinose promoter. The gene cassette is transformed in *Acinetobacter* strain as described in example 1. The effect of *aftA* expression on storage lipid production is shown by lipid analyses.
References

Claims

1. A genetically modified *Acinetobacter* host for lipid production, which comprises that the *Acinetobacter* host has been genetically modified to be deficient of one or more genes of group A or of group B or one or more genes of both groups, wherein

 group A comprises a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), gene ACIA ID 3383 (SEQ ID NO:1) or a functional equivalent thereof in an *Acinetobacter* host, wherein said host is capable of increased production of TAGs and/or of total lipids compared to the parent host; and

 group B comprises a gene encoding lipase (EC:3.1.1.3), gene ACIA ID 3309 (SEQ ID NO:2) or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIA ID 3381 (SEQ ID NO:3) or a functional equivalent thereof in an *Acinetobacter* host and/or gene ACIA ID 2177 (SEQ ID NO:4) or a functional equivalent thereof in an *Acinetobacter* host, wherein said host is capable of increased production of wax esters and/or total lipids compared to the parent host.

2. The host according to claim 1, wherein the host has been made deficient of one or more of

 A) a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), gene ACIA ID 3383 (SEQ ID NO:1) or a functional equivalent thereof in an *Acinetobacter* host, and/or one or more of

 B) a gene encoding diacylglycerol kinase (EC:2.7.1.107), gene ACIA ID 2837 (SEQ ID NO:5) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding succinate dehydrogenase (EC:1.3.5.1), gene ACIA ID 2880 (SEQ ID NO:6) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding glycerol-3-phosphate dehydrogenase (EC 1.1.5.3), gene ACIA ID 2844 (SEQ ID NO:7) or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding cytochrome o ubiquinol oxidase subunit II (EC:1.10.3.-), gene ACIA ID 2425 (SEQ ID NO:8) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome o ubiquinol oxidase subunit I (EC:1.10.3.-), gene ACIAID
2426 (SEQ ID NO:9), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome d terminal oxidase polypeptide subunit II (EC1.10.3.-), gene ACIAI 2291 (SEQ ID NO:10), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAI 3381 (SEQ ID NO:3), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding carboxylesterase (EC:3.1.1.1), gene ACIAI 3648 (SEQ ID NO:11), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding esterase, gene ACIAI 1134 (SEQ ID NO:12), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding lipase (EC:3.1.1.3), gene ACIAI 3309 (SEQ ID NO:2) or a functional equivalent thereof in an *Acinetobacter* host, gene ACIAI 1121 (SEQ ID NO:13) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding acyl-CoA synthetase (EC:6.2.1.3), gene ACIAI 0235 (SEQ ID NO:14) or a functional equivalent thereof in an *Acinetobacter* host; or gene ACIAI 2177 (SEQ ID NO:4) or a functional equivalent thereof in an *Acinetobacter* host,

wherein said host is capable of increased production of TAGs, wax esters and/or total lipids compared to the parent host.

3. The host according to claim 1 or 2, wherein the host has been made deficient of one or more of

A) a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), gene ACIAI 3383 (SEQ ID NO:1) or a functional equivalent thereof in an *Acinetobacter* host, and/or one or more of

B) a gene encoding cytochrome o ubiquinol oxidase subunit II (EC:1.10.3.-), gene ACIAI 2425 (SEQ ID NO:8) or a functional equivalent thereof in an *Acinetobacter* host, or a gene encoding succinate dehydrogenase (EC:1.3.5.1), gene ACIAI 2880 (SEQ ID NO:6), or a functional equivalent thereof in an *Acinetobacter* host,

wherein said host is capable of increased production of TAGs, wax esters and/or of total lipids compared to the parent host.

4. The host according to claim 1, wherein the host has been made deficient of one or more of
a gene encoding lipase (EC:3.1.1.3), gene ACIAID 3309 (SEQ ID NO:2) or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAID 3381 (SEQ ID NO:3) or a functional equivalent thereof in an *Acinetobacter* host and/or gene 2177 or a functional equivalent thereof in an *Acinetobacter* host, wherein said host is capable of increased production of wax esters and/or total lipids.

5. The host according to claim 4, wherein the host has been made deficient of a gene encoding lipase (EC:3.1.1.3), gene ACIAID 3309 (SEQ ID NO:2) or a functional equivalent thereof in an *Acinetobacter* host, alone or together with one or more of

a gene encoding diacylglycerol kinase (EC:2.7.1.107), gene ACIAID 2837 (SEQ ID NO:5) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding fatty acyl-CoA reductase (EC1.2.1.n2), gene ACIAID 3383 (SEQ ID NO:1), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding succinate dehydrogenase (EC:1.3.5.1), gene ACIAID 2880 (SEQ ID NO:6) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding glycerol-3-phosphate dehydrogenase (EC 1.1.5.3), gene ACIAID 2844 (SEQ ID NO:7) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome o ubiquinol oxidase subunit II (EC:1.10.3.-), gene ACIAID 2425 (SEQ ID NO:8) or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome o ubiquinol oxidase subunit I (EC:1.10.3.-), gene ACIAID 2426 (SEQ ID NO:9), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding cytochrome d terminal oxidase polypeptide subunit II (EC1.10.3.-), gene ACIAID 2291 (SEQ ID NO:10), or a functional equivalent thereof in an *Acinetobacter* host; a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAID 3381 (SEQ ID NO:3) or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding carboxylesterase (EC:3.1.1.1), gene ACIAID 3648 (SEQ ID NO:11), or a functional equivalent thereof in an *Acinetobacter* host, a gene encoding esterase, gene ACIAID 1134 (SEQ ID NO:12), or a functional equivalent thereof in an *Acinetobacter* host, various lipases (EC:3.1.1.3), gene ACIAID 1121 (SEQ ID NO:13) or a functional equivalent thereof in an *Acinetobacter* host, or a gene encoding acyl-CoA synthetase (EC:6.2.1.3), gene ACIAID 0235 (SEQ ID
NO:14) or a functional equivalent thereof in an *Acinetobacter* host, wherein said host is capable of increased production of wax esters and/or of total lipids.

6. The host according to claim 4, wherein the host has been made deficient of a gene encoding pyruvate dehydrogenase (EC:1.2.2.2), gene ACIAD 3381 (SEQ ID NO:3) or a functional equivalent thereof in an *Acinetobacter* host, alone or together with one or more of the genes as defined in claim 5.

7. The host according to claim 4, wherein the host has been made deficient of gene ACIAD 2177 or a functional equivalent thereof in an *Acinetobacter* host alone or together with one or more of the genes as defined in claim 5, wherein said host is capable of increased production of total lipids.

8. The host according to any one of claims 1 to 7, wherein the host been genetically modified to express one or more genes encoding the enzymes of lipid biosynthesis pathway.

9. The host according to any one of claims 1 to 8, wherein the host been genetically modified to express a gene encoding diacylglycerol synthase enzyme (EC 2.3.1.20) or to express a gene encoding WS and/or DGAT (EC 2.3.1.75 and EC 2.3.1.20).

10. The host according to any one of claims 1 to 9, wherein the host is genetically modified to express a gene selected from the group of

20 (a) sco0958 (SEQ ID NO: 29) or *aflA* (SEQ ID NO: 31);

(b) a functional equivalent of sco0958 in a *Streptomyces* species, said functional equivalent encoding diacylglycerol synthase enzyme (EC 2.3.1.20) or a functional equivalent of *aflA* in an *Acinetobacter* species, said functional equivalent encoding WS and/or DGAT (EC 2.3.1.75 and EC 2.3.1.20);

25 (c) a nucleotide sequence which hybridizes to SEQ ID NO: 29 under stringent hybridization conditions and encodes diacylglycerol synthase enzyme (EC 2.3.1.20) activity or a nucleotide sequence which hybridizes to SEQ ID NO: 31 under stringent hybridization conditions and encodes WS and/or DGAT (EC 2.3.1.75 and EC 2.3.1.20); and
(d) a nucleotide sequence encoding the amino acid sequence SEQ ID NO:30, or a sequence having at least 60 % identity to said sequence and having diacylglycerol synthase enzyme activity(EC 2.3.1.20), or a nucleotide sequence encoding the amino acid sequence SEQ ID NO:32 or a sequence having at least 60 % identity to said sequence and having WS and/or DGAT (EC 2.3.1.75 and EC 2.3.1.20) activity.

11. A method for genetically modifying an *Acinetobacter* host by making the host deficient of one or more genes as defined in any one of claims 1 to 7 and optionally by introducing into said host in an operational manner one or more genes of the lipid biosynthesis pathway.

12. A method according to claim 11, wherein the introduced gene is sco958 and/or aftA, or wherein gene AftA is overexpressed.

13. A process for producing lipids, which comprises

- cultivating *Acinetobacter* host according to any one of claims 1 to 10 or obtained by the method according to claim 11 or 12 under suitable cultivation conditions;

- allowing *Acinetobacter* host to produce and/or accumulate lipids;

- recovering the lipids.

15. Use of the host according to any one of claims 1 to 10 or obtained according to claim 11 or 12 for producing lipids.

16. Use of the lipids produced according to claim 13 or lipid composition according to claim 14 as a component of biofuel or as a starting material for biofuel production.

17. A method for producing biofuel, which comprises

- cultivating *Acinetobacter* host according to any one of claims 1 to 10 or obtained by the method according to claim 11 or 12 under suitable cultivation conditions;
- allowing *Acinetobacter* host to produce and/or accumulate lipids;

- recovering the lipids,

- producing biofuel using the recovered lipids as a component or as starting material for biofuel production.
Fig. 1

Fig. 2
Fig. 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C12N, C12P, C12R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

FI, SE, NO, DK

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI, BIOSIS, EMBASE, COMPDX, REGISTRY, CAPLUS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search

29 March 2012 (29.03.2012)

Date of mailing of the international search report

02 April 2012 (02.04.2012)

Name and mailing address of the ISA/FI

National Board of Patents and Registration of Finland
P.O. Box 1160, FI-00101 HELSINKI, Finland
Facsimile No. +358 9 6939 5328

Authorized officer

Petra Vartiainen

Telephone No. +358 9 6939 500

Form PCT/ISA/210 (second sheet) (July 2009)
Documents Considered to Be Relevant

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6143538 A (SOMERVILLE CHRIS R et al.) 07 November 2000 (07.11.2000) Example 1, column 14, line 30 - column 16, line 41; Example 2, column 16, line 43 - column 24, line 31</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>WO 2010036951 A2 (JOULE BIOTECHNOLOGIES, INC.) 01 April 2010 (01.04.2010) paragraphs [0002] and [0090], claim 1</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>WO 2007136762 A2 (LS9, INC.) 29 November 2007 (29.11.2007) page 2, lines 1-4, claims 5-8, cited in the application</td>
<td>1-17</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family members(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>US 6143538 A</td>
<td>07/11/2000</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2285948 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2728285 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011008861 A1</td>
</tr>
<tr>
<td>WO 2007136762 A2</td>
<td>29/11/2007</td>
<td>BR PI0712205 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2395074 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 201125599 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011097769 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010538602 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2009009371 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090029708 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2008014603 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008119082 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010251601 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100015763 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2129785 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101680009 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2678915 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008230735 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008113041 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010170826 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010242345 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010505388 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 21944119 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2157170 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2024491 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101490241 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2650773 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008100251 A1</td>
</tr>
<tr>
<td>Int.Cl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>C12N 1/21</td>
<td>(2006.01)</td>
<td></td>
</tr>
<tr>
<td>C12R 1/01</td>
<td>(2006.01)</td>
<td></td>
</tr>
<tr>
<td>C12P 7/64</td>
<td>(2006.01)</td>
<td></td>
</tr>
<tr>
<td>C12N 9/02</td>
<td>(2006.01)</td>
<td></td>
</tr>
<tr>
<td>C12N 9/20</td>
<td>(2006.01)</td>
<td></td>
</tr>
<tr>
<td>C12N 15/53</td>
<td>(2006.01)</td>
<td></td>
</tr>
<tr>
<td>C12N 15/55</td>
<td>(2006.01)</td>
<td></td>
</tr>
</tbody>
</table>