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(57) ABSTRACT 

A method and apparatus for compressing the data associated 
with trie cuts (strides), and a method and apparatus for 
utilizing Such compressed data to determine forwarding 
decisions for data packets in a communication network are 
presented. The compression technique presented generates a 
pair of bitmaps and a pair of base pointers for each Set of 
compressed data. The bitmaps are compared with a portion 
of the address to ascertain whether the forwarding decision 
is determined within this portion of the trie. Forwarding 
decisions are Stored in a leaf table that is accessed via a leaf 
table index. The leaf table indeX is generated by combining 
a leaf table offset generated from at least one of the bitmaps 
with a leaf table base pointer included in the stride block. 
Thus, if the forwarding decision is determined within the 
stride, the leaf table will be accessed via the leaf table index 
to retrieve the forwarding decision. If the forwarding deci 
Sion is not completely determined within the Stride, a branch 
table is used to determine the location of the Subsequent 
Stride to be processed. The branch table is accessed via a 
branch table indeX generated by combining the branch table 
base pointer of the Stride with a branch table indeX generated 
from one or more of the bitmaps included in the stride block. 
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METHOD AND APPARATUS FOR LONGEST 
MATCHING PREFX DETERMINATION INA 

COMMUNICATION NETWORK 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation of prior applica 
tion Ser. No. 09/606,859, filed Jun. 28, 2000. 

BACKGROUND OF THE INVENTION 

0002 (1) Field of the Invention 
0003. The invention relates generally to communications 
networks and more particularly to a method and apparatus 
for longest matching prefix determination in communica 
tions networks. 

0004) (2) Description of the Related Art 
0005 Data communications networks utilize addresses to 
forward packets of information between users. AS data 
communication networks continue to evolve, the number of 
addresses Supported, the amount of traffic, and the Speed 
with which the traffic is traveling are all increasing. AS Such, 
routers in Such communications networks must determine 
Sources and destinations of endstations associated with 
traffic more quickly than in the past. 
0006 Routing data packets in Internet Protocol (IP) net 
works requires determining the best matching prefix corre 
sponding to the Source and destination addresses for the 
packet, which may also be referred to as determining a 
longest prefix match (LPM) for the addresses. Routers that 
forward packets typically include a database that Stores a 
number of address prefixes and their associated forwarding 
decisions that indicate where the data should be sent next 
(next hops). When the router receives a packet it must 
determine which of the prefixes in the database is the best 
match for the packet. 
0007 Binary tries have commonly been used for deter 
mining the LPM for data packets. FIG. 1 illustrates a basic 
binary trie Structure that includes a Set of binary prefixes. 
The example trie illustrated in FIG. 1 corresponds to a 
Six-bit address Space that is used to Simplify the discussion. 
The shaded circles indicate valid prefixes. The binary trie 
illustrated in FIG. 1 contains a default route corresponding 
to the root of the trie and a plurality of valid prefixes that 
may only be partially specified (e.g. 000XXX), or fully 
specified (e.g. 000100). Bits included in the address to be 
resolved are used to make branching decisions at each of the 
nodes within the trie, where 0 bits cause a branch to the left 
and one bits cause a branch to the right. AS is illustrated, the 
binary prefix 000XXX is a valid prefix, as is the prefix 
000100. Although a packet that has an address that matches 
the prefix 000100 would also match the valid prefix 
000XXX, the longest matching prefix is 000100, and thus 
000100 is the prefix which must be selected for the address. 
0008 FIG. 2 illustrates a prior art technique for simpli 
fying the basic binary trie illustrated in FIG. 1. FIG. 2 
illustrates a Patricia trie that flattens the basic binary trie in 
areas where decisions at nodes within the trie Structure 
cannot result in more than one possible prefix determination. 
In other words, nodes within the trie structure that are 
traversed in route to a valid prefix with no further decision 
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making required are compressed out. Such path compression 
can reduce the average number of memory accesses required 
to determine the LPM for an address to log-N accesses, 
where N is the number valid prefixes stored in the trie. 
However, in the worst case when a path cannot be com 
pressed, Patricia trees may require L memory accesses to 
resolve an LPM, where L is equal to the number of bits in 
the address, which may be 32 bits in Some applications Such 
as IP version 4 and 128 bits for IP version 6. The variability 
in the number of memory accesses requires presents prob 
lems for high-speed router design. Furthermore, even if all 
LPM determinations could be made with log-N memory 
accesses, the memory bandwidth requirements would still 
make router design impractical when high link rates must be 
Supported. 

0009. Another trie processing method that attempts to 
reduce the time it takes to determine the appropriate prefix 
is to create a multi-way branching trie that processes mul 
tiple bits of the address in a single Step. This is illustrated in 
FIG. 3, where a trie that exists in a 32-bit address space has 
been broken into a set of Steps, or Strides. AS is illustrated, 
the Strides may be Selected to be of varying bit lengths. Thus, 
4-bit strides, 8-bit strides, and even 16-bit strides may be 
employed to traverse the trie Structure. For each Stride, a 
portion of the address is compared with Sets of bits corre 
sponding to that stride to determine if a LPM has been 
resolved or if one or more additional strides must be 
traversed in order to determine the LPM. 

0010. In order to be able to process a number of address 
bits in a Stride, prefix expansion must be performed So that 
there is a valid prefix for each binary value at the cut depth 
for the stride, where the cut depth is determined by the size 
of the stride. FIG. 4 shows the root level of a 5-bit portion 
of a trie Structure after prefix expansion. The cut depth is the 
bottom set of prefixes of the trie structure illustrated in FIG. 
4 and is shown Surrounded by a long rectangular box. In 
order to have valid prefixes at all of the nodes at the cut level, 
new nodes may have to be created at the cut depth in order 
to make the trie complete. Values for newly created nodes 
are then propagated from parent nodes. Propagation of a 
prefix value to a newly created node is illustrated via the 
arrows originating from parent nodes. One example is the 
labeled parent node that propagates a valid prefix to the three 
labeled propagated nodes. AS can be seen, the highest level, 
or root node also serves as a parent node to Some of the 
nodes at the cut level. 

0011 Those nodes in the trie structure of FIG. 4 that 
represent a final prefix match and a resolved forwarding 
decision are represented by a shaded circle, whereas those 
nodes that indicate the next Stride must be accessed in order 
to continue towards determination of a forwarding decision 
are represented by Shaded Squares. Thus, Shaded circles 
represent a point at which the Search for prefix match is 
terminated, whereas shaded Squares indicate that the prefix 
match must exist at a deeper level in the Overall trie Structure 
and therefore the Search is extended. 

0012 Because 2 valid prefixes are typically stored to 
process an N-bit Stride, larger Strides require a great deal of 
memory, which can be a limiting factor in the Stride size 
chosen. Smaller Strides require, on average, more memory 
accesses to ascertain the forwarding decisions. Thus, there is 
a trade-off between the amount of memory required to Store 
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the data for a trie Structure and the number of memory 
accesses required to completely traverse the trie Structure to 
the appropriate end prefix. 
0013 Therefore, a need exists for a method and apparatus 
that reduces the memory required to Store values associated 
with Strides in trie Structures Such that prefix matching can 
be performed using a minimal number of memory accesses. 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

0.014 FIG. 1 illustrates a graphical representation of a 
prior art binary trie Structure; 
0.015 FIG. 2 illustrates a graphical representation of a 
prior art Patricia trie Structure; 
0016 FIG. 3 illustrates a graphical representation of a 
prior art trie Structure broken into a number of Strides, 
0017 FIG. 4 illustrates a graphical representation of a 
prior art prefix-expanded trie; 
0.018 FIG. 5 illustrates compression of the stride results 
for a trie cut to a Set of compressed Stride results in 
accordance with a particular embodiment of the present 
invention; 
0.019 FIG. 6 illustrates a graphical representation of a 

trie cut associated with a Stride that includes compressed 
nodes; 
0020 FIG. 7 illustrates the further compression of com 
pressed Stride results into a Stride record and corresponding 
leaf and branch tables in accordance with a particular 
embodiment of the present invention; 
0021 FIG. 8 illustrates an alternate form of further 
compression of the compressed Stride results into a Stride 
record that includes Sub-tries and a corresponding leaf 
pointer table in accordance with a particular embodiment of 
the present invention; 
0022 FIG. 9 illustrates a graphical representation of a 

trie cut with compressed nodes that distinguishes between 
Subsequent dense and sparse Stride records in accordance 
with a particular embodiment of the present invention; 
0023 FIG. 10 illustrates a graphical representation of a 
sparse Stride record in accordance with a particular embodi 
ment of the present invention; 
0024 FIG. 11 illustrates a graphical representation of a 
dense Stride record in accordance with a particular embodi 
ment of the present invention; 
0.025 FIG. 12 illustrates a graphical representation of a 
dense block in accordance with a particular embodiment of 
the present invention; 
0026 FIG. 13 illustrates a flow diagram of a method for 
compressing Stride data in accordance with a particular 
embodiment of the present invention; 
0.027 FIG. 14 illustrates a block diagram of a packet 
routing circuit in accordance with a particular embodiment 
of the present invention; 
0028 FIG. 15 illustrates a block diagram of a packet 
routing processor in accordance with a particular embodi 
ment of the present invention; 
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0029 FIG. 16 illustrates a flow diagram of a method for 
packet routing in accordance with a particular embodiment 
of the present invention; 
0030 FIG. 17 illustrates a flow diagram of a method for 
processing a dense Stride record in accordance with a 
particular embodiment of the present invention; and 
0031 FIG. 18 illustrates a graphical representation of the 
determination of a forwarding decision for a particular 
address in accordance with a particular embodiment of the 
present invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

0032 Generally, the present invention provides a method 
and apparatus for compressing the data associated with trie 
cuts (Strides), and a method and apparatus for utilizing Such 
compressed data to determine forwarding decisions for data 
packets in a communication network. The compression 
technique presented generates a pair of bitmaps and a pair of 
base pointers for each Set of compressed data. The bitmaps 
are compared with a portion of the address to ascertain 
whether the forwarding decision is determined within this 
portion of the trie. Forwarding decisions are Stored in a leaf 
table that is accessed via a leaf table index. The leaf table 
indeX is generated by combining a leaf table offset generated 
from at least one of the bitmaps with a leaf table base pointer 
included in the stride record. Thus, if the forwarding deci 
Sion is determined within the stride, the leaf table will be 
accessed via the leaf table indeX to retrieve the forwarding 
decision. If the forwarding decision is not completely deter 
mined within the stride, a branch table is used to determine 
the location of the Subsequent Stride to be processed. The 
branch table is accessed via a branch table indeX generated 
by combining the branch table base pointer of the stride with 
a branch table indeX generated from one or more of the 
bitmaps included in the Stride record. 
0033. The method and apparatus described herein pro 
vide techniques for compressing data associated with Stride 
records. Techniques are also described for Storing the data in 
an efficient manner Such that forwarding decisions can be 
determined utilizing a minimal number of memory accesses. 
The compression techniques described herein enable the 
data associated with large Strides to be Stored in an efficient 
manner Such that the memory required to Store the forward 
ing or branching decisions for each Stride is greatly reduced 
in comparison to prior art Solutions. AS Such, rapid deter 
mination of forwarding decisions can be performed in a 
System that utilizes memory efficiently Such that large Strides 
can be accommodated with a practical amount of memory in 
a System that can Support high Speed routing. 

0034. The invention can be better understood with refer 
ence to FIGS. 5-18. FIG. 5 shows the list, or table of stride 
results 62 represents the corresponding pointers for each of 
the nodes in the extended trie structure of FIG. 4. At the top 
of the list, the leaf pointer for 000XXX corresponds to the 
left most shaded circle in the cut level of the trie structure of 
FIG. 4. The bottom-most entry in the list of stride results 62, 
a leaf pointer for 11111X, corresponds to the right most 
shaded circle at the cut level of the trie structure of FIG. 4. 

0035. As can be seen from the list of stride results 62 in 
FIG. 5, there is a fair amount of repetition for certain entries. 
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For example, the first two entries of the table of stride results 
62 are the Same. This is because these entries correspond to 
a pair of the propagated nodes that were created and filled 
with the leaf pointer corresponding to the parent node. 
Similar Sets of repeating pointers can be observed within the 
stride results 62. 

0.036 By recognizing that compression of the stride 
results 62 can be accomplished through a form of run length 
encoding, the amount of memory required to Store the results 
for this 5-bit stride can be greatly reduced. FIG. 6 illustrates 
a compressed trie Structure 50 in which consecutive repeti 
tive results are compressed to a Single result. A bitmap 54 is 
used to indicate whether or not a result is Stored for a 
particular node. For example, the first bit in the bitmap 54 is 
a one, thus indicating that results are included in the com 
pressed set of results for the first node 52 at the cut level. 

0037 AS was seen in the table of stride results 62, the 
results for the second node 51 are the same as the result for 
the first node 52. As such, the bitmap stores a 0 at the bit 
location corresponding to the second node 51. A 0 bit entry 
in the bitmap 54 corresponds to a node for which the result 
has been compressed and, as Such, the associated pointer is 
not immediately available. In order to retrieve this com 
pressed pointer, a Search algorithm must Search for the first 
non-compressed entry (as represented by a 1 bit) to the left 
of the compressed entry in the bitmap 54. The pointer 
returned at this entry is identical to that which would have 
been Stored for the compressed entry in an uncompressed 
format. The closest set bit corresponds to a node for which 
valid results are Stored in the Set of compressed Stride results 
66 illustrated in FIG. 5. This result is also applicable to the 
Subsequent nodes for which a 0 is stored in the bitmap 54. 
AS is illustrated, the compressed Stride results 66 greatly 
reduce the number of pointers that must be Stored to repre 
sent the results for each of the nodes at the cut level in the 
expanded trie Structure. The bitmap 54 is used in conjunc 
tion with the set of compressed stride results 66 to determine 
the appropriate pointer for each of the nodes at the cut level. 
0.038. Many modern processors include a single cycle 
instruction that Scans a register for the least or most signifi 
cant bit set. When combined with masking of portions of the 
bitmap 54, Such operations provide an easy means for 
determining the next higher bit Set in a particular bitmap 
with respect to a bit position Selected by an address. 

0039. As stated above, in order to recover the appropriate 
pointer, or result, for a node within the cut Section of a Stride, 
the bitmap 54 can be used in conjunction with the com 
pressed stride results 66. If the compressed stride results 66 
are individually Stored in a contiguous fashion within 
memory, an appropriate pointer can be determined by cal 
culating an offset within the Set of contiguous compressed 
results based on the number of set bits in the bitmap 54 to 
the left of the desired bit location. Although this may be 
accomplished by Sequentially Scanning the bitmap 54 and 
counting the number of 1's, more efficient means for cal 
culating the number of 1's in a particular set of bits are 
commonly available. In many processors, a population count 
(popcount) operation may be available which calculates the 
number of 1's in a set of bits. Thus, by masking off the lower 
section of the bitmap 54 below the selected bit location and 
performing a popcount on the remaining Set of bits, an offset 
to the table of compressed stride results 66 can be deter 
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mined. In processors that do not Support a specific popcount 
operation, a simple linear Set of instructions can be used to 
calculate the popcount for a set of bits. One Such set of 
instructions is detailed in the GNU C library. 

0040 Although the combination of the bitmap 54 and the 
set of compressed stride results 66 is illustrated in FIG. 6 
reduces the amount of memory required to Store the results 
for a particular trie cut, or Stride, two memory accesses are 
Still required in order to determine a specific result for a 
node. One memory access to retrieve the bitmap 54, and 
another to retrieve the appropriate pointer from the list of 
compressed stride results 66. FIG. 7 illustrates a refinement 
on the data structure of FIG. 6 in which an additional bitmap 
is added to the compressed record to indicate which of the 
pointers are leaf pointers. By Storing the leaf pointers in a 
Separate leaf pointer table and calculating an indeX to this 
table when a leaf is determined, the total number of memory 
accesses required can be reduced. 

0041 FIG. 7 illustrates the compressed stride results 66 
being further compressed into a stride block 70 that includes 
a branch bitmap 72, a leaf bitmap 74, a leaf base pointer 75 
and a set of branches 77 (sub-tries). “Block” is a term that 
may be used to describe a portion of the trie Structure that 
includes the information for processing a Stride. A Set bit in 
the branch bitmap 72 indicates that the node corresponding 
to the bit location within the branch bitmap 72 has a result 
that corresponds to an entry in the list of branch pointers. A 
Set bit within the leaf bitmap 74 indicates that the node to 
which the bit location within the leaf bitmap 74 corresponds 
has a result which is a leaf pointer Stored in the leaf pointer 
table 76. If a leaf pointer needs to be referenced, a popcount 
can be used to determine an indeX within the leaf pointer 
table 76. This index can be combined with the leaf base 
pointer 75, which points to the first entry of the leaf pointer 
table 76, in order to access the appropriate entry within the 
leaf pointer table 76. 

0042. In order to eliminate the list of sub-trie pointers 
from the stride block 70, the sub-tires are placed in con 
tiguous memory, and the individual Sub-trie pointers are 
replaced by a bitmap and a base pointer to the contiguous 
memory location. This is illustrated in FIG. 8. The stride 
record 80 of FIG. 8 has been reduced to the branch bitmap 
72, the leaf bitmap 74, the leaf base pointer 75, and a branch 
base pointer 76. The branch base pointer 76 points to a base 
entry of a branch table 89 (which also may be referred to as 
a next sub-trie block) that stores the branches (sub-tries) for 
the particular Stride. AS was the case with the leaf pointer 
table 76, the branch table 89 can be accessed through a 
combination of the branch base pointer 76 and an offset 
generated using the branch bitmap 72. Thus, by masking off 
a portion of the branch bitmap 72 and performing a popcount 
on the remaining portion, the appropriate offset for the 
branch table 89 can be determined. 

0043. The stride block 80 in the compressed format 
shown in FIG. 8 is compact enough to fit within a cache line 
of a cache Structure utilized by a processor for processing the 
Stride. AS is known in the art, an entire cache line (group of 
words) may be read from the cache in roughly the same time 
as is required to read a Single word. This allows the Stride to 
be processed in an efficient manner Such that the forwarding 
decision for an address can be determined using a minimal 
number of memory accesses. Because of the compression 
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performed, the amount of memory required to Store the data 
required to process each Stride is also greatly reduced in 
comparison with prior art Solutions. 
0044) In order to further optimize the storage of the 
results for a particular Stride, a differentiation can be made 
between Subsequent blocks, which must be processed in 
order to determine the final forwarding decision. Some 
Strides of the overall trie Structure may include a Small 
number of pointers that can be Stored in a Small amount of 
memory. These sparse Sections of the trie can be compressed 
into a particular sparse compression format that is more 
efficient in terms of processing as it may include the actual 
results for leaves rather than pointers to a leaf table. In order 
to take advantage of the differentiation between Sparse and 
dense blocks, the Stride block that points to a Subsequent 
sparse or dense block may include an encoding Such that the 
type of compression used for the Subsequent blockS is 
known. FIG. 9 illustrates a particular encoding technique 
that can be used to accomplish this differentiation. FIG. 9 
illustrates a Stride that includes compressed nodes. Each 
node at the cut level can have one of four states. These four 
States are encoded through the combination of an extends 
bitmap 95 and a type bitmap 96 included in the stride record 
99. For each node at the cut level, there is a bit within the 
extended bitmap 95 and a bit within the type bitmap 96. The 
combination of these two bits for each node indicates the 
particular State of that node. 
004.5 The extends and type bitmaps allow four states to 
be encoded for each node, which was not possible using the 
leaf and branch bitmaps as described thus far. AS is apparent 
to one of ordinary skill in the art, the distinction between the 
use of the branch and leaf bitmaps as opposed to type and 
extends bitmaps is solely dependent on whether different 
encoding of blocks (sparse VS. dense) is employed in the 
System. For embodiments that only use one block encoding, 
branch and leaf bitmaps provide enough encoded States. For 
embodiments that Support Sparse and dense blocks, extends 
and type bitmaps provide the necessary number of States to 
indicate the type of encoding for Subsequent blockS. 
0046) The first node is shown to have state that corre 
sponds to a leaf indication 91. Nodes having a State corre 
sponding to a leaf indication are shown as Shaded circles. A 
leaf indication indicates that a valid entry is included within 
the leaf table for this particular node. A combination of the 
extends bitmap 95 and the type bitmap 96 will generate the 
leaf bitmap 74 described earlier, which can then be manipu 
lated to determine an offset for the leaf table. This offset can 
then be combined with the leaf base pointer 75 to access the 
leaf table and fetch the forwarding decision for the node 
from the leaf table. Leaf indications are encoded with a 0 in 
the extends bitmap 95 and a 1 in the type bitmap 96. As is 
apparent to one of ordinary skill in the art, the particular bit 
encodings used in the examples described herein are arbi 
trary, and as long as the particular relationships between 
different bitmaps are preserved, differing bit values for 
various encodings may be utilized. 
0047 The second node location is shown to correspond 
to an empty indication 94, which is illustrated as an 
unshaded circle. Empty indications are encoded with a 0 in 
the extends bitmap 95 and a 0 in the type bitmap 96. An 
empty indication means that a Search to the left must be 
performed to determine the appropriate result for this par 
ticular node as it has been compressed. 
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0048. The third node location at the cut level is shown to 
correspond to a sparse indication 92. Sparse indications are 
indicated by a 1 in the extends bitmap 95 and a 0 in the type 
bitmap 96. Asparse indication means that the Search extends 
beyond the cut level present in the trie structure 90. It further 
indicates that the Subsequent Stride block fetched based on 
the indeX generated for this node will be a sparse Stride 
block, which, in one embodiment, may process a Stride of 8 
address bits. Knowing that the Subsequent block to be 
fetched is a sparse block enables the processor to improve 
the efficiency with which the Subsequent stride block is 
processed. This is because additional information can be 
Stored within the Sparse block, as it does not include as many 
end results as a dense block. An example sparse Stride block 
901 is illustrated in FIG. 10. 

0049. The sparse block 901 includes a branch base 
pointer that points to the next block in the trie structure. The 
leaf base pointer included in the Sparse block Stores a base 
address for the leaf table. All leaves for the sparse block are 
Stored contiguously from this base address, and can be 
accessed by generating an appropriate offset using the type 
and extends bitmaps. The Second line of the Sparse block is 
shown to include eight values. Each of these values can be 
directly compared with the portion of the address that is 
being used to resolve this Stride. If an exact match is found, 
then there is a pointer associated with that address in either 
the branch table or the leaf table. If no match it determined, 
a left Search is performed Such that the next highest value in 
the array of values is Selected, which is analogous to the Scan 
bit operation on a bitmap. Because only eight values are 
Stored within the Sparse block, the type and extends bitmaps 
are each only 8-bit bitmaps. The use of the type and extends 
bitmaps is identical to that of a dense block, and they can be 
used to determine offsets to either the branch table or the leaf 
table, and the bitmaps can also be used to distinguish 
between sparse and dense Subsequent blockS. 

0050 Returning to FIG. 9, the sixth bit location within 
the cut level of the Stride is shown to correspond to a dense 
indication 93. The dense indication 93 is indicated by a 1 in 
the extends bitmap 95 and a 1 in the type bitmap 96. A dense 
indication 93 indicates that an offset should be generated and 
combined with the branch base pointer 76 to reference a 
Subsequent stride block that is a dense block. The stride 
block 99 of FIG. 9 is a dense Stride block in that it includes 
a full extends bitmap and type bitmap for all of the nodes at 
the cut level for the Stride. This is in contrast to a Sparse 
block that only includes a limited Set of values correspond 
ing to a limited Set of nodes, and the appropriate type and 
extends bitmaps for those particular values. 

0051 AS stated earlier, a block is a portion of the trie 
Structure that is used to process a Stride. A block can be 
divided into a number of records where a particular record 
is Selected by a portion of the address bits used to Step 
through the stride. For example, a block for an 8-bit stride 
may be divided into eight records where three of the eight 
address bits used to process this Stride are used to Select a 
Specific one of the records within the block corresponding to 
the stride. The remaining five bits could then be used to 
process the record Selected, where the Structure of the record 
may be similar to the structures described thus far for a 5-bit 
block. In other words, each record could be structured as a 
block in that it would include bitmaps and base pointers. 
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FIG. 11 illustrates a dense record 911. The differentiation 
between blocks and strides will be further explained with 
reference to FIG. 18 below. 

0.052 The dense record 911 includes an extends bitmap, 
a type bitmap, a number of bits that are reserved for future 
use (RFU), a branch table base pointer, a leaf table base 
pointer, and may include an indication as to how many of the 
blocks in the sub-trie below are sparse blocks. The indica 
tion as to how many blockS in the Sub-trie below are sparse 
blockS can be used to optimize accesses to the Sub-trie 
below. 

0.053 Dense blocks are used where the density of point 
ers within a stride prohibits the use of the more memory 
efficient sparse blocks. One example of a dense block 921 
for an 8-bit stride is shown in FIG. 12. 

0054) Note that the large bitmaps included in the dense 
block above may be difficult for software to manipulate, and 
the amount of data that has to be retrieved to proceSS Such 
a block is large. In addition, the fields within the block are 
not aligned to normal cache line boundaries, and the amount 
of contiguous memory that would likely be required for the 
leaf table and branch table would place restrictions on the 
dynamic allocation of memory in the implementation. How 
ever, the representation illustrated above does present the 
minimum memory usage for a dense block. In embodiments 
that include wide or Separate memory Structures, Such a 
dense block Structure may be practical. 
0055. In other embodiments where the dense blocks such 
as that illustrated above are less practical, dense blockS may 
be broken up into records to facilitate both the hardware 
implementation of the System and efficient processing by 
Software. This was briefly discussed above. For example, a 
32 bit microprocessor would most likely prefer to manipu 
late 32 bit bitmaps. Thus, for an 8-bit stride, eight stride 
records could be used which are indexed using the upper 
three bits of the stride. Each of the records would then be 
used to process the lower five bits of the stride, where the 
bitmaps in a 5-bit dense stride record would be 32-bit 
bitmaps. 

0056. In order to facilitate fetching of records for a 
Subsequent Stride, each record may include an indication of 
the number of sparse records included in the following Stride 
block. If the Sparse records are Stored contiguously in the 
branch table before the dense records, indexing the branch 
table is simplified by keeping a count of the number of 
sparse records. 
0057 FIG. 13 illustrates a flow diagram of one method 
for compressing a dense Stride block. At Step 102 the Stride 
block is separated into a plurality of Stride portions. This is 
analogous to Separating the block into a number of records. 
For each stride portion, or record, steps 104-112 are per 
formed. 

0.058 At step 104, the stride results for the portion are 
compressed to produce a compressed bitmap and a com 
pressed list of Stride results. This is the compression Step 
illustrated in FIG. 6. At step 106, the compressed bitmap 
and compressed list of Stride results are further compressed 
to produce a leaf bitmap, branch bitmap, leaf table Section 
and a branch table Section. This is Similar to the Step shown 
in FIG. 7 where the leaf table section corresponds to the set 
of leaf pointers included in the leaf pointer table for the 
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Stride portion, and the branch table Section corresponds to 
the set of branch pointers for the stride portion. At step 108, 
the leaf table Section is Stored in the portion of memory or 
the table associated with the leaf pointers for the trie. 
Preferably, these leaf pointers are Stored in a contiguous 
fashion within the leaf table starting at a leafbase pointer for 
the Stride portion Such that they can be accessed through the 
combination of a base pointer and offsets combined to 
produce indexes to the table. 
0059) At step 110, the branch table section is stored in 
memory Starting at a location corresponding to a branch base 
pointer. Preferably, it is Stored in a contiguous fashion in 
memory Such that random access to the entries in the branch 
table can be performed using a base pointer and offsets. 
0060. At step 110, a stride record is stored in memory for 
the stride portion where the stride record includes the leaf 
bitmap, the branch bitmap, the leaf table base pointer at 
which the leaf table section was stored, and the branch table 
base pointer at which the branch table section for the stride 
portion was Stored. Storing the Stride record at Step 112 may 
include encoding the leaf bitmap and the branch bitmap in 
an extends bitmap and a type bitmap as was described with 
respect to FIG. 9 above. The extends bitmap and type 
bitmap enable the Stride record to encode Sparse and dense 
format distinctions for Subsequent Stride blocks that are 
accessed via branch pointers included in the branch table. 
0061 FIG. 14 illustrates a block diagram of a packet 
routing circuit 250 that may be used in conjunction with the 
trie compression techniques discussed thus far to perform 
packet routing in a communications network. The packet 
routing circuit 250 includes memory 220, a determination 
block 200, packet memory 230, and output circuitry 240. 
Packets 202 received by the packet routing circuit 250 are 
stored in the packet memory 230 while a forwarding deci 
sion for each packet is determined. The address 203 for each 
packet is provided to the determination block 200 that 
determines the routing decision 242 for each packet. The 
determination block 200 may be implemented as a state 
machine, discrete circuitry, or as a packet routing processor 
Such as that illustrated in FIG. 15. The determination block 
200 is operably coupled to a memory 220 that stores a 
forwarding table 222. Preferably, the forwarding table 222 is 
Structured in a manner Such that the forwarding decisions for 
packets are determined through the use of a compressed trie 
Structure. The compressed trie Structure may include a 
number of Strides where the block corresponding to each 
stride may be broken into a number of records. 
0062) When the determination block 200 receives a 
packet address, it processes the address to determine a 
forwarding decision 242 in a manner Similar to that illus 
trated in the flow diagram of FIG. 16, which is described in 
additional detail below. In order to facilitate the determina 
tion of the forwarding decision 242, a cache 210 may be 
included in the packet routing circuit 250. The cache 210, 
which is operably coupled to the memory 220 and the 
determination block 200, may be used to cache certain 
portions of the forwarding table 222 Such that the determi 
nation of the forwarding decision 242 can be done in a more 
efficient manner that requires fewer accesses to the memory 
220. 

0063. Once a forwarding decision 242 has been deter 
mined by the determination block 200, it is provided to the 
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output circuitry 240. For each packet, the output circuitry 
receives a forwarding decision 242 and forwards the packet 
to at least one of the plurality of outputs 246 based on the 
forwarding decision. 
0.064 Preferably, the packet routing circuit 250 is 
included in a router for use in a data communication 
network. Such a router may be used in a data communica 
tions network that supports IP traffic. The memory 220 may 
Store a plurality of forwarding tables, where a particular 
forwarding table is Selected for use in determining the 
forwarding decision for a particular packet based on either 
a field included in the packet or the identity of an input port 
over which the packet was received. 
0065 FIG. 15 illustrates a packet routing processor 300 
that includes a processing module 302 and memory 304. The 
packet routing processor preferably executes the method 
illustrated in FIG. 16 through the use of Software stored as 
a set of operational instructions in the memory 304. The 
processing module 302 may include a single processing 
entity or a plurality of processing entities. Such a processing 
entity may be a microprocessor, a microcontroller, a digital 
Signal processor or any device that processes information 
based on operational or programming instructions. 
0.066 The memory 304 may be a single memory device 
or a plurality of memory devices. Such a memory device 
may be a read only memory device, random acceSS memory 
device, floppy disk, hard drive memory, or any device that 
stores digital information. Note that the memory 304 may be 
incorporated in the memory 220 included in the packet 
routing circuit or may be a separate memory Structure. The 
memory 304 Stores programming or operational instructions 
that, when executed by the processing module 302, allow the 
processing module 302 to perform packet routing functions 
such as those illustrated in the flow diagram of FIG. 16. 
Note that the packet routing processor 300 may implement 
Some of the functions of FIG. 16 through software stored in 
the memory 304, whereas other portions may be imple 
mented using hardware or circuitry included within the 
packet routing processor 300. Thus, in Some embodiments a 
mix of hardware and Software may be used to perform the 
method illustrated in FIG. 16 

0067 FIG. 16 illustrates a flow diagram of a method for 
packet routing in a communications network. The method 
begins at Step 402 where a packet is received. The packet 
includes an address that is used to determine a forwarding 
decision for the packet. The forwarding decision is deter 
mined based on a compressed trie Structure that may be 
Stored in a forwarding table. The compressed trie Structure 
is preferably made up of a number of strides where the 
blocks that make up a Stride may be divided into a number 
of records where the blocks and records are preferably 
Structured as indicated above. 

0068. At step 404 a first stride block is fetched using a 
first portion of the address. AS Stated above, a Stride block 
may be broken into a number of records in order to simplify 
processing. In one embodiment, the most significant bits of 
the address are used to retrieve a Stride record included in a 
Stride block, where the most significant bits indeX between 
a number of Stride records that make up a dense block within 
the trie Structure. Each Stride block includes a first bitmap, 
a Second bitmap, a leaf table base pointer, and a branch table 
base pointer. Once the stride block has been fetched at step 
404, it is processed using steps 406-416. 
0069. At step 406, it is determined if the forwarding 
decision for the address can be fully determined based on the 
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stride block that has been fetched. This is determined based 
on at least one of the first and second bitmaps. The first 
bitmap is an extends bitmap and the Second bitmap is a type 
bitmap, the extends bitmap alone can be used to determine 
if the forwarding decision is fully determined using this 
Stride record. 

0070 If the forwarding decision is fully determined using 
the stride block, the method proceeds to 408 where a leaf 
table offset is generated from at least one of the first and 
Second bitmaps and the Second portion of the address. The 
Second portion of the address is used to Select a specific bit 
location within one or more of the bitmaps and a masking 
operation followed by a population count is used to deter 
mine an offset to the leaf table. The extends bitmap and type 
bitmap must be combined to generate the leaf bitmap. This 
can be accomplished by performing a bit-wise AND opera 
tion of the type bitmap and the bit-wise inverse of the 
extends bitmap. 
0071 At step 410, the leaf table offset generated at step 
408 is combined with the leaf table base pointer to produce 
a leaf table index. This leaf table index is then used at step 
412 to access the leaf table to retrieve the forwarding 
decision for the packet. The leaf table may either directly 
Store the forwarding decisions, or may store pointers to a list 
of forwarding decisions. 
0072) If it determined at step 406 that the forwarding 
decision is not fully determined in this stride, the method 
proceeds to Step 414 where the Steps necessary to fetch a 
Subsequent Stride record or block commence. At step 414 a 
branch table offset is generated from the Second portion of 
the address and at least one of the first and Second bitmaps. 
If Sparse and dense blocks are Supported by the System in 
which the method of FIG. 16 is employed, generating the 
branch table offset may include generating either a branch 
table offset to a Sparse block or to a dense block. The Sparse 
and dense distinction and the encodings necessary for dis 
tinguishing between sparse and dense blocks were described 
with respect to FIG. 9 above. Thus, extend and type bitmaps 
are required for distinguishing sparse and dense blockS. The 
generation of the branch table offset is performed using 
masking and popcount Steps in a similar manner as those 
used to generate the leaf table offset. 
0073. At step 416, the branch table offset is combined 
with a branch table base pointer to produce a branch table 
index. The branch table index is then used to retrieve a 
Subsequent stride block at step 418. Step 418 may include 
retrieving a Subsequent block corresponding to a Stride and 
then indexing to a particular record within the Stride. It may 
also involve simply fetching a Subsequent Sparse block in its 
entirety. 

0074. A method that may be used for processing the 
dense blocks are illustrated in FIG. 17, which has been 
included for added clarity. FIG. 17 illustrates a flow diagram 
of a method for processing a dense block or record utilizing 
a portion of the address corresponding to the packet. At Step 
502 a particular bit within the bitmaps included for the dense 
record is selected using the address portion. At step 504 it is 
determined if the bit to which the address portion corre 
sponds is Set within the extends bitmap. If not, this indicates 
that a leaf will be reached during this record, and Steps 
506-516 are executed in order to retrieve a forwarding 
decision for that leaf. 

0075). At step 506 the leaf bitmap is generated by bit-wise 
ANDing the type bitmap with the bit-wise inverse of the 
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extends bitmap. At step 508, it is determined if the bit to 
which the address portion corresponds in the leaf bitmap is 
set. If it is, the method proceeds to step 510, and if it is not, 
the method proceeds to step 509. At step 509, a scan to the 
left in the leaf bitmap is performed to find the next set bit. 
At step 510, unwanted bits in the leaf bitmap generated at 
step 506 are masked off. The unwanted bits are those bits to 
the right of the set bit determined at step 506. 
0.076. At step 512, a popcount is performed on the 
remaining non-masked bits in the leaf bitmap in order to 
determine a leaf offset. At step 514, the leaf offset is 
combined with the leaf base pointer for the record to 
generate a leaf index. This leaf index is then used at step 516 
to retrieve the forwarding decision for the packet. 
0077. If it is determined at step 504 that the bit in the 
extends bitmap corresponding to the portion of the address 
is Set, this indicates that a Subsequent block must be fetched 
in order to further process the address. AS Such, the method 
proceeds to step 518. At step 518 it is determined if the bit 
corresponding to the address portion is also Set in the type 
bitmap, where the type bitmap indicates whether or not the 
Subsequent block to be fetched is sparse or dense. If the bit 
is set at 518, a dense block is to be processed, and the 
method proceeds to step 520. 
0078. At step 520, the dense entry bitmap is generated by 
bit-wise ANDing the type and extends bitmaps together. 
Unwanted bits in the dense entry bitmap are masked off at 
step 522, where those bits to the right of that selected by the 
address portion are masked. At Step 524, a popcount is 
performed on the remaining non-masked bits in order to 
determine a dense offset. 

0079 At step 526, the dense offset is combined with a 
dense base pointer to generate the dense index. ASSuming 
that all sparse blocks are contiguously Stored based on a 
branch base pointer, and all dense blocks are Stored imme 
diately following the sparse blocks (also contiguously), the 
dense base pointer may be determined by adding the size of 
the number of Sparse blocks included in the Subsequent 
block to the branch base pointer. Thus, Storing the number 
of sparse blocks included in a Subsequent Stride as described 
earlier can be used to efficiently generate pointers to Sub 
Sequent dense Stride blocks. The dense indeX generated at 
step 526 can then be used at step 528 to retrieve the 
Subsequent dense Stride block. Because the processing Sys 
tem already knows that the Subsequent block is a dense 
block, it will be fetched and processed in the manner most 
efficient for dense blocks. 

0080) If at step 518 it is determined that the bit corre 
sponding to the address portion is not Set in the type bitmap, 
the Subsequent record to be fetched is a Sparse block. AS 
Such, a Sparse entry bitmap is generated at Step 530. This is 
accomplished by bit-wise ANDing the extends bitmap with 
the bit-wise inverse of the type bitmap. 
0081. At step 532, unwanted bits in the sparse entry 
bitmap are masked off. At Step 534, a popcount is performed 
to determine a sparse offset. The Sparse offset is combined 
with a sparse base pointer at Step 536 to generate a Sparse 
index. Note that if the Sparse records for the Subsequent 
Stride are all Stored contiguously prior to the dense records, 
the Sparse base pointer will simply be the branch base 
pointer for the subsequent stride. At step 538, the subsequent 
sparse Stride record is retrieved using the Sparse indeX 
generated at step 536. 
0082 The methodology for processing a sparse stride 
record or block is similar to that for processing a dense 
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record. The exception is that rather than checking the 
extends and type bitmaps at a particular bit location corre 
sponding to the portion of the address, a comparison must 
first be performed with the values included in the sparse 
record. If a match is determined, the bit location correspond 
ing to that value in the extends and type bitmaps is consulted 
to determine if a leaf has been reached or if a Subsequent 
sparse or dense record must be fetched. If no match is 
determined, the next higher value is Selected, and the bit 
location corresponding to that value is referenced in the 
bitmaps. AS Stated earlier, this is analogous to performing a 
Scan left operation in a dense bit map. 
0083 FIG. 18 illustrates a graphical representation of the 
determination of a leaf table pointer 750 utilizing an address 
702 that is provided as an example to supplement the 
discussion above. A first portion of the address 704 is 
applied to a block corresponding to the first Stride in the trie 
Structure that Stores the potential prefix matches for the 
address. The first portion of the address 704 indexes through 
this dense block to select the dense record 706. Although the 
first stride is shown to process 8 bits of the address 702, in 
other embodiments, the first stride may process 16 bits of the 
address. Processing the first 16 bits of the address in a single 
Stride may allow the average number of memory accesses 
required to process an address to be reduced at the cost of 
additional memory. Thus, the number of bits processed in 
each Stride of a System may be Selected based on both Speed 
and memory considerations. 
0084. In one embodiment, it is assumed that the first 
block of the trie structure is always encoded as a dense 
block. AS is apparent to one of ordinary skill in the art, this 
block may also be encoded as a sparse block in Some 
circumstances, but in embodiments that Support sparse or 
dense encoding of the first block, an external variable that 
indicates the type of encoding used must be available Such 
that processing of the first block is properly performed. 
0085. The bitmaps 708 for the dense record 706 are 
processed via a function 707, which processes the bitmaps 
using a Second portion of the address 705 to generate an 
offset 709. Note that this assumes that the address 702 will 
require multiple records to determine the forwarding deci 
Sion. If the forwarding decision were determined based on 
the dense record 706 alone, a leaf in the trie would have been 
reached during the first Stride, and no further processing 
would be necessary. 

0086) The offset 709 is combined with the branch table 
base pointer 710 for the dense record 706 to generate a 
sparse block pointer 711. The offset 709 was preferably 
determined in a manner that included a differentiation 
between Subsequent blocks being sparse or dense. Thus, the 
processor will know that the next block to be fetched is 
sparse, and can be fetched and processed accordingly. 

0087. The sparse block pointer 711 is used to retrieve the 
sparse block 720. Because the sparse block 720 is sparse, the 
Subsequent eight bits of the address that make up address 
portion 712 are used in comparison operations with each of 
the values included in the array of values of the Sparse block 
720. This value comparison generates an offset 724 that is 
combined with a branch table base pointer 722 for the sparse 
block to generate a Subsequent dense block base pointer 726. 
0088. The dense block base pointer 726 points to the 
beginning of a dense block which is indexed through by a 
Subsequent portion of the address 731. This indexing selects 
a particular dense record 730 within the dense block. The 
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bitmaps 732 for the dense record 730 are provided to the 
function 707 along with address bits 737 to produce the 
offset 733. The offset 733 is then combined with a branch 
table base pointer 734 for the dense record 730 to produce 
a sparse block pointer 735 that selects the sparse block 740. 
0089. The final eight bits of the address 741 are then used 
to compare with the values Stored in the Sparse block to 
produce the offset 744. The offset 744 is combined with the 
leaf table base pointer 742 of the sparse block 740 to 
generate the leaf table index 750. The leaf table index 750 
can then be used to access the leaf table and retrieve the 
forwarding decision for the packet. It should be noted that 
dense and Sparse blocks can be combined in any order when 
processing an address. FIG. 18 illustrates one example of 
one Such combination. 

0090 The present invention provides a means for com 
pressing the data associated with Strides in trie Structures in 
a manner that improves memory usage and reduces the 
average number of memory acceSS required to determine a 
forwarding decision for a packet. AS Such, higher speed 
networks can be Supported without the need for impracti 
cally large memory Structures to Store the trie Structures. 
Utilization of the compressed data structures requires only 
linear operations, thus reducing the Overall cost and com 
plexity of the packet forwarding System. 
0.091 In the foregoing specification, the invention has 
been described with reference to specific embodiments. 
However, one of ordinary skill in the art appreciates that 
various modifications and changes can be made without 
departing from the Scope of the present invention as Set forth 
in the claims below. Accordingly, the Specification and 
figures are to be regarded in an illustrative rather than a 
restrictive Sense, and all Such modifications are intended to 
be included within the Scope of present invention. 
0092 Benefits, other advantages, and solutions to prob 
lems have been described above with regard to specific 
embodiments. However, the benefits, advantages, Solutions 
to problems, and any element(s) that may cause any benefit, 
advantage, or Solution to occur or become more pronounced 
are not to be construed as a critical, required, or essential 
feature or element of any or all the claims. AS used herein, 
the terms “comprises,”“comprising,” or any other variation 
thereof, are intended to cover a non-exclusive inclusion, 
Such that a process, method, article, or apparatus that com 
prises a list of elements does not include only those elements 
but may include other elements not expressly listed or 
inherent to Such process, method, article, or apparatus. 

What is claimed is: 
1. A method for packet routing, comprising: 

receiving a packet that includes an address, 

fetching a first stride block based on a first portion of the 
address, wherein each Stride block includes a first 
bitmap, a Second bitmap, a leaf table base pointer, and 
a branch table base pointer; 

processing the first Stride block, wherein processing a 
stride block includes: 

determining if a forwarding decision is determined 
based on a Second portion of the address and at least 
one of the first and second bitmaps of the stride 
block; 
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when the forwarding decision is determined based on at 
least one of the first and Second bitmaps: 
generating a leaf table offset from at least one of the 

first and Second bitmaps and the Second portion of 
the address, 

combining the leaf table offset with the leaf table 
base pointer to produce a leaf table index; and 

accessing a leaf table using the leaf table indeX to 
retrieve the forwarding decision; 

when the forwarding decision is not determined based 
on the Second portion of the address and at least one 
of the first and Second bitmaps, 
generating a branch table offset from the Second 

portion of the address and at least one of the first 
and Second bitmaps, 

combining the branch table offset with the branch 
table base pointer to produce a branch table index; 

accessing a branch table using the branch table index 
to retrieve a Subsequent Stride block, and 

processing the Subsequent Stride block and any additional 
Subsequent Stride blockS generated using additional 
portions of the address until the forwarding decision is 
retrieved. 

2. The method of claim 1, wherein the first bitmap is a leaf 
bitmap and the Second bitmap is a branch bitmap, wherein 
determining if a forwarding decision is determined further 
comprises determining if the forwarding decision is deter 
mined based on the Second portion of the address and the 
leaf and branch bitmaps, wherein generating the leaf table 
offset further comprises generating the leaf table offset from 
the Second portion of the address and the leaf bitmap, and 
wherein generating the branch table offset further comprises 
generating the branch table offset from the Second portion of 
the address and the branch bitmap. 

3. The method of claim 2, wherein generating the leaf 
table offset further comprises: 

masking off a portion of the leaf bitmap to produce a 
masked leaf bitmap, wherein the portion of the leaf 
bitmap that is masked off is determined based on the 
Second portion of the address, and 

performing a population count on the masked leaf bitmap 
to produce the leaf offset. 

4. The method of claim 2, wherein generating the branch 
table offset further comprises: 

masking off a portion of the branch bitmap to produce a 
masked branch bitmap, wherein the portion of the 
branch bitmap that is masked off is determined based 
on the Second portion of the address, and 

performing a population count on the masked branch 
bitmap to produce the branch offset. 

5. The method of claim 1, wherein accessing the leaf table 
using the leaf table indeX to retrieve the forwarding decision 
further comprises: 

accessing the leaf table to retrieve a pointer to the for 
warding decision; and 

retrieving the forwarding decision using the pointer to the 
forwarding decision. 
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6. The method of claim 1, wherein the first bitmap is an 
extends bitmap and the Second bitmap is a type bitmap, 
wherein determining if a forwarding decision is determined 
further comprises determining if the forwarding decision is 
determined based on the Second portion of the address and 
the extends bitmap, wherein generating the leaf table offset 
further comprises generating the leaf table offset from the 
Second portion of the address and the extends and type 
bitmaps, and wherein generating the branch table offset 
further comprises generating the branch table offset from the 
Second portion of the address and the extends and type 
bitmaps. 

7. The method of claim 6, wherein generating the leaf 
table offset further comprises: 

combining the extends bitmap and the type bitmap to 
generate a leaf bitmap, 

masking off a portion of the leaf bitmap to produce a 
masked leaf bitmap, wherein the portion of the leaf 
bitmap that is masked off is determined based on the 
Second portion of the address, and 

performing a population count on the masked leaf bitmap 
to produce the leaf offset. 

8. The method of claim 6, wherein generating the branch 
table offset further comprises: 

combining the extends bitmap and the type bitmap to 
generate a branch bitmap; 

masking off a portion of the branch bitmap to produce a 
masked branch bitmap, wherein the portion of the 
branch bitmap that is masked off is determined based 
on the Second portion of the address, and 

performing a population count on the masked branch 
bitmap to produce the branch offset. 

9. The method of claim 8, wherein the type bitmap 
identifies each Subsequent Stride block as one of a Sparse 
stride block and a dense stride block. 

10. The method of claim 9, wherein subsequent stride 
blocks for each Stride block are Stored in contiguous Sets. 

11. The method of claim 10, wherein sparse blocks are 
grouped together and dense blocks are grouped together in 
the contiguous Sets. 

12. A packet routing processor, comprising: 

a processing module, and 
memory operably coupled to the processing module, 

wherein the memory Stores operating instructions Such 
that, when executed by the processing module, the 
operating instructions cause the processing module to 
perform the functions of: 

fetching a first stride block based on a first portion of 
an address for a received packet, wherein each Stride 
block includes a first bitmap, a Second bitmap, a leaf 
table base pointer, and a branch table base pointer; 

processing the first Stride block, wherein processing a 
stride block includes: 

determining if a forwarding decision is determined 
based on a Second portion of the address and at 
least one of the first and Second bitmaps of the 
stride block; 
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when the forwarding decision is determined based on 
at least one of the first and Second bitmaps: 
generating a leaf table offset from at least one of 

the first and Second bitmaps and the Second 
portion of the address, 

combining the leaf table offset with the leaf table 
base pointer to produce a leaf table index; and 

accessing a leaf table using the leaf table indeX to 
retrieve the forwarding decision; 

when the forwarding decision is not determined 
based on the Second portion of the address and at 
least one of the first and Second bitmaps, 
generating a branch table offset from the Second 

portion of the address and at least one of the first 
and Second bitmaps, 

combining the branch table offset with the branch 
table base pointer to produce a branch table 
index; 

accessing a branch table using the branch table 
indeX to retrieve a Subsequent Stride block, and 

processing the Subsequent Stride block and any addi 
tional Subsequent Stride blockS generated using addi 
tional portions of the address until the forwarding 
decision is retrieved. 

13. The packet routing processor of claim 12, wherein the 
first bitmap is a leaf bitmap and the Second bitmap is a 
branch bitmap, wherein determining if a forwarding deci 
Sion is determined further comprises determining if the 
forwarding decision is determined based on the Second 
portion of the address and the leaf and branch bitmaps, 
wherein generating the leaf table offset further comprises 
generating the leaf table offset from the Second portion of the 
address and the leaf bitmap, and wherein generating the 
branch table offset further comprises generating the branch 
table offset from the second portion of the address and the 
branch bitmap. 

14. The packet routing processor of claim 13, wherein 
generating the leaf table offset further comprises: 

masking off a portion of the leaf bitmap to produce a 
masked leaf bitmap, wherein the portion of the leaf 
bitmap that is masked off is determined based on the 
Second portion of the address, and 

performing a population count on the masked leaf bitmap 
to produce the leaf offset. 

15. The packet routing processor of claim 13, wherein 
generating the branch table offset further comprises: 

masking off a portion of the branch bitmap to produce a 
masked branch bitmap, wherein the portion of the 
branch bitmap that is masked off is determined based 
on the Second portion of the address, and 

performing a population count on the masked branch 
bitmap to produce the branch offset. 

16. The packet routing processor of claim 12, wherein 
accessing the leaf table using the leaf table indeX to retrieve 
the forwarding decision further comprises: 

accessing the leaf table to retrieve a pointer to the for 
warding decision; and 
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retrieving the forwarding decision using the pointer to the 
forwarding decision. 

17. The packet routing processor of claim 12, wherein the 
first bitmap is an extends bitmap and the Second bitmap is a 
type bitmap, wherein determining if a forwarding decision is 
determined further comprises determining if the forwarding 
decision is determined based on the Second portion of the 
address and the extends bitmap, wherein generating the leaf 
table offset further comprises generating the leaf table offset 
from the Second portion of the address and the extends and 
type bitmaps, and wherein generating the branch table offset 
further comprises generating the branch table offset from the 
Second portion of the address and the extends and type 
bitmaps. 

18. The packet routing processor of claim 17, wherein 
generating the leaf table offset further comprises: 

combining the extends bitmap and the type bitmap to 
generate a leaf bitmap, 

masking off a portion of the leaf bitmap to produce a 
masked leaf bitmap, wherein the portion of the leaf 
bitmap that is masked off is determined based on the 
Second portion of the address, and 

performing a population count on the masked leaf bitmap 
to produce the leaf offset. 

19. The packet routing processor of claim 17, wherein 
generating the branch table offset further comprises: 

combining the extends bitmap and the type bitmap to 
generate a branch bitmap; 

masking off a portion of the branch bitmap to produce a 
masked branch bitmap, wherein the portion of the 
branch bitmap that is masked off is determined based 
on the Second portion of the address, and 

performing a population count on the masked branch 
bitmap to produce the branch offset. 

20. The packet routing processor of claim 19, wherein the 
type bitmap identifies each Subsequent Stride block as one of 
a sparse Stride block and a dense Stride block. 

21. The packet routing processor of claim 20, wherein 
dense Stride blockS Store Subsequent sparse Stride blockS and 
Subsequent dense Stride blocks in contiguous Sets. 

22. A packet routing circuit, comprising: 
a packet memory receives packets and Stores the packets 

prior to forwarding, wherein each packet includes an 
address, 

output circuitry operably coupled to the packet memory, 
wherein for each packet, the output circuitry receives a 
forwarding decision and forwards the packet to at least 
one of a plurality of outputs based on the forwarding 
decision; 

memory that Stores a forwarding table, wherein the for 
warding table Stores forwarding decisions for the pack 
ets, and 

a determination block operably coupled to the memory 
and the output circuitry, wherein the determination 
block receives the address for each packet and deter 
mines the forwarding decision for the packet, wherein 
the determination block provides the forwarding deci 
Sion for the packet to the output circuitry Such that the 
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packet is forwarded to at least one of the outputs, 
wherein determining the forwarding decision for the 
packet includes: 
fetching a first stride block from the forwarding table 

Stored in the memory based on a first portion of an 
address for a received packet, wherein each Stride 
block includes a first bitmap, a Second bitmap, a leaf 
table base pointer, and a branch table base pointer; 

processing the first Stride block, wherein processing a 
stride block includes: 

determining if a forwarding decision is determined 
based on a Second portion of the address and at 
least one of the first and Second bitmaps of the 
stride block; 

when the forwarding decision is determined based on 
at least one of the first and Second bitmaps: 
generating a leaf table offset from at least one of 

the first and Second bitmaps and the Second 
portion of the address, 

combining the leaf table offset with the leaf table 
base pointer to produce a leaf table index; and 

accessing a leaf table Stored in the memory using 
the leaf table index to retrieve the forwarding 
decision; 

when the forwarding decision is not determined 
based on the Second portion of the address and at 
least one of the first and Second bitmaps, 
generating a branch table offset from the Second 

portion of the address and at least one of the first 
and Second bitmaps, 

combining the branch table offset with the branch 
table base pointer to produce a branch table 
index; 

accessing a branch table Stored in the memory 
using the branch table indeX to retrieve a Sub 
Sequent Stride block, and 

processing the Subsequent Stride block and any addi 
tional Subsequent Stride blockS generated using addi 
tional portions of the address until the forwarding 
decision is retrieved. 

23. The packet routing circuit of claim 22 further com 
prises a cache operably coupled to the memory and the 
determination block, wherein the cache Stores at least a 
portion of the forwarding table. 

24. The packet routing circuit of claim 22, wherein the 
memory Stores a plurality of forwarding tables, wherein a 
particular forwarding table is Selected for use in determining 
the forwarding decision for a particular packet based on at 
least one of a field included in the particular packet and an 
identity of an input port to the packet routing circuit over 
which the particular packet was received. 

25. The packet routing circuit of claim 22, wherein the 
determination block further comprises: 

a processing module; and 
an instruction memory operably coupled to the processing 

module, wherein the instruction memory Stores instruc 
tions that, when executed by the processing module, 



US 2004/0167923 A1 

cause the processing module to perform functions 
necessary to determine the forwarding decision for the 
packet. 

26. The packet routing circuit of claim 22, wherein the 
determination block further comprises a State machine. 

27. The packet routing circuitry of claim 22, wherein the 
packet routing circuitry is included in a router. 

28. The packet routing circuit of claim 27, wherein the 
packets are internet protocol (IP) packets. 

29. The packet routing circuit of claim 22, wherein the 
determination block utilizes population counts to determine 
branch and leaf offsets. 

30. The packet routing circuit of claim 22, wherein the 
determination block utilizes linear operations to determine 
the forwarding decision for each of the packets. 

31. A method for compressing a Stride included in a trie 
Structure, wherein the Stride includes a plurality of nodes, 
comprising: 

Separating the Stride into a plurality of Stride portions, 
wherein each Stride portion includes Stride results for a 
portion of the plurality of nodes, wherein a Stride result 
is one of a leaf pointer and a branch pointer; and 

for each Stride portion: 
compressing the Stride results for the Stride portion 

using run length encoding to produce a compression 
bitmap and a compressed list of Stride results; 

generating a leaf bitmap, a branch bitmap, a leaf table 
Section, and a branch table Section from the com 
pression bitmap and the compressed list of Stride 
results; 

Storing the leaf table Section in a leaf table at a leaf table 
base pointer for the Stride portion; 

Storing the branch table Section in a branch table at a 
branch table base pointer for the Stride portion; and 

Storing a Stride block in memory for the Stride portion, 
wherein the stride block includes the leaf bitmap, the 
branch bitmap, the leaf table base pointer, and the 
branch table base pointer. 

32. The method of claim 31, wherein compressing the 
results for a Stride block further comprises Selecting one of 
a sparse compression format and a dense compression 
format based on a number of compressed Stride results, and 
wherein 

Storing the Stride block in memory further comprises 
Storing the Stride block in the Selected one of the Sparse 
compression format and the dense compression format. 

33. The method of claim 32, wherein the leaf bitmap and 
branch bitmap for each Stride block are encoded in an 
extends bitmap and a type bitmap, wherein the extends 
bitmap and type bitmap for each Stride block encode Sparse 
and dense format distinctions for Stride blockS accessed via 
branch pointers included in the branch table. 

34. The method of claim 33, wherein the sparse compres 
Sion format includes a value array corresponding to values 
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for address bits used to access the Stride block, and wherein 
the dense compression format includes bitmaps correspond 
ing to the address bits, wherein a quantity of memory 
required to Store the Stride block in the Sparse compression 
format is less than a quantity of memory required to Store the 
Stride block in a dense compression format. 

35. A method for packet routing, comprising: 
receiving a packet that includes an address, 
fetching a first stride block, wherein the first stride block 

encodes a first portion of a longest prefix match trie, 
wherein the first stride block is one of a sparse stride 
block and a dense Stride block, wherein sparse Stride 
blocks encode portions of the longest prefix match trie 
that include no more than a first number of nodes, 
wherein dense Stride blockS encode portions of the 
longest prefix match trie that include more than the first 
number of nodes; 

comparing a first portion of the address with a first portion 
of the first stride block to determine if a forwarding 
decision for the packet is resolved by the first stride 
block; 

when the forwarding decision is resolved by the first 
Stride block, determining the forwarding decision for 
the packet; 

when the forwarding decision for the packet is not 
resolved by the first stride block: 
determining a Second Stride block based on the first 

portion of the address and a Second portion of the 
first stride block; and 

processing the Second Stride block and any Subsequent 
stride blocks determined until the forwarding deci 
Sion is determined, wherein processing a Stride block 
includes fetching the Stride block and comparing a 
portion of the address with a portion of the stride 
block to determine one of the forwarding decision 
and a Subsequent Stride block for processing, and 

forwarding the packet based on the forwarding decision. 
36. The method of claim 35, wherein when the first stride 

block is a dense Stride block, comparing a first portion of the 
address with the portion of the first stride block further 
comprises: 

Selecting a Stride record of a plurality of Stride records 
included in the first stride block using a first set of bits 
in the first portion of the address, wherein each Stride 
record of the plurality of Stride records encodes a 
portion of nodes encoded by the first stride block; and 

comparing a Second Set of bits in the first portion of the 
address with a portion of the Stride record to determine 
if the forwarding decision is resolved by the first stride 
block. 


