
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0167923 A1

Carr.

US 2004O167923A1.

(43) Pub. Date: Aug. 26, 2004

(54)

(76)

(21)

(22)

(63)

(51)
(52)

METHOD AND APPARATUS FOR LONGEST
MATCHING PREFX DETERMINATION INA
COMMUNICATION NETWORK

Inventor: David W. Carr, Nepean (CA)

Correspondence Address:
ROSS D. SNYDER & ASSOCIATES, INC.
115 WILD BASIN RD.
SUTE 107
AUSTIN, TX 78746 (US)

Appl. No.: 10/786,420

Filed: Feb. 24, 2004

Related U.S. Application Data

Continuation of application No. 09/606,859, filed on
Jun. 28, 2000, now Pat. No. 6,697,363.

Publication Classification

(57) ABSTRACT

A method and apparatus for compressing the data associated
with trie cuts (strides), and a method and apparatus for
utilizing Such compressed data to determine forwarding
decisions for data packets in a communication network are
presented. The compression technique presented generates a
pair of bitmaps and a pair of base pointers for each Set of
compressed data. The bitmaps are compared with a portion
of the address to ascertain whether the forwarding decision
is determined within this portion of the trie. Forwarding
decisions are Stored in a leaf table that is accessed via a leaf
table index. The leaf table indeX is generated by combining
a leaf table offset generated from at least one of the bitmaps
with a leaf table base pointer included in the stride block.
Thus, if the forwarding decision is determined within the
stride, the leaf table will be accessed via the leaf table index
to retrieve the forwarding decision. If the forwarding deci
Sion is not completely determined within the Stride, a branch
table is used to determine the location of the Subsequent
Stride to be processed. The branch table is accessed via a
branch table indeX generated by combining the branch table
base pointer of the Stride with a branch table indeX generated
from one or more of the bitmaps included in the stride block.

O O

O O O

D O O O O

O

C.

O C

O

Int. Cl. ... G06F 17/00
U.S. Cl. .. 707/102

50
O

O O

O O O O

O AO (O. O. O. C. C.

O () () C) O (O O. O. O. O. C.

52
51

101 11 1 010001010100011111000111

Seim 54

| 00/000

US 2004/0167923 A1

-,XX000

(LHV XHOIRICI) ’I ?InÃ¡Ã CD ~OOOXXX000

Patent Application Publication Aug. 26, 2004 Sheet 1 of 13

(LXIV HOIRICI) ’Œ œun?IJI

US 2004/0167923 A1

SÍÐAÐI Z9

Patent Application Publication Aug. 26, 2004 Sheet 2 of 13

ºpou 100 YI

Patent Application Publication Aug. 26, 2004 Sheet 3 of 13

US 2004/0167923 A1

#7ç deung

Patent Application Publication Aug. 26, 2004 Sheet 4 of 13

US 2004/0167923 A1 Patent Application Publication Aug. 26, 2004 Sheet 5 of 13

[[[0000|00|00|00|0|0|000 [0][0] {00|| 00010000[[0|00000000000000 I00|00
ZL deuung qõueug

I ? ? ? 000 I I I I I000|0|0|000 [0] [{ { IOI

US 2004/0167923 A1

XOI IOI IOJ KJOuIºui Qu L-qnS XOIO00 JOJ KIOuðu 911 L-qnS

Patent Application Publication Aug. 26, 2004 Sheet 6 of 13

US 2004/0167923 A1

[[6TN*II 9.InÃ¡I

Patent Application Publication Aug. 26, 2004 Sheet 8 of 13

Patent Application Publication Aug. 26, 2004 Sheet 9 of 13 US 2004/0167923 A1

102

Separate the stride block into a
plurality of stride portions

104

Compress the stride results for
the portion to produce a
compressed bitmap and a

compressed list of stride results
106

Generate a leaf bit map, a branch
bitmap, a leaf table section, and a
branch table section from the
compressed bitmap and the
compressed stride results

108

Store the leaf table section in a
leaf table at a location

corresponding to a leaf table
base pointer

1 1 O

Store the branch table section in
a branch table at a location

corresponding to a branch table
base pointer

12 114

Encode the leaf table bitmap and
the branch table bitmap in an

Store a stride record for the
stride portion that includes the
leaf bitmap, the branch bitmap,
the leaf table base pointer, and
the branch table base pointer

extends bitmap and a type
bitmap that also encode format
of subsequent stride blocks

Patent Application Publication Aug. 26, 2004 Sheet 10 of 13 US 2004/0167923 A1

Determination
Block
200

Routing
Table
222

Packets
202 Packet Address

2O3

Forwarding
Decision

242
Output

Circuitry
240

Plurality of
Outputs
246

Figure 14.

Processing
Module
302

Packet Routing
Processor

300

Figure 15.

Patent Application Publication Aug. 26, 2004 Sheet 11 of 13 US 2004/0167923 A1

402

Receive a packet that
includes an address

404

Fetch a first stride block based on a first portion of the
address, wherein the first stride block includes a first
and second bitmap, a leaf table base pointer, and a

branch table base pointer

406

Yes orwarding decision
determined?

414 408

Generate a branch table offset Generate a leaf table offset

416 410

Combine the branch table
offset with the branch table
base pointer to produce a

branch table index

Combine the leaf table offset
with the leaf table base pointer
to produce a leaf table index

418 412

Access the leaf table with the
leaf table index to retrieve the

forwarding decision

Retrieve the subsequent stride
block using the branch table
index and the next portion of

the address

Figure 16.

Patent Application Publication Aug. 26, 2004 Sheet 12 of 13

No

530

Generate sparse
entry bitmap

Mask off unwanted
bits in sparse entry

bitmap

Perform popcount
to determine sparse

offset

Combine sparse
offset with sparse
base pointer to
generate sparse

index

Retrieve subsequent
sparse stride record

Bit set in type
bitmap?

532

534

536

538

Inputs:
Dense record and
address portion

- 502
Select bit using
address portion

Yes

518

Yes

520

Generate dense
entry bitmap

Mask off unwanted
bits in dense entry

bitmap

Perform popcount
to determine dense

offset

Combine dense
offset with dense
base pointer to
generate dense

index

Bit set in
extends bitmap2

-504
No

522

524

526

528 ---

Retrieve subsequent
dense stride record

Figure 17.

Scan left in
leaf bitmap to
find set bit

US 2004/0167923 A1

506

Generate leaf
bitmap

508

Bit set in
leaf bitmap?

5 O

Mask off unwanted
bits in leaf bitmap

Perform popcount
to determine leaf

Offset

Combine leaf offset
and leaf base

pointer to generate
leaf index

Retrieve forwarding
decision using leaf

index

Patent Application Publication Aug. 26, 2004 Sheet 13 of 13 US 2004/0167923 A1

Address 702 Y
12-8

737 --
741

704. 705

Dense

Branch
Table
Base

Pointer
710

Branch Table
Base Pointer

722 707
Dense Block
Base Pointer

726

Bitmaps 732

730-1 U’
Offset 733

Branch Table
Base Pointer

S 734
Sparse Leaf Base
Block Sparse Pointer Offset 744
Pointer Block 740 742
735 Leaf Table

Index
750

Figure 18.

US 2004/0167923 A1

METHOD AND APPARATUS FOR LONGEST
MATCHING PREFX DETERMINATION INA

COMMUNICATION NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of prior applica
tion Ser. No. 09/606,859, filed Jun. 28, 2000.

BACKGROUND OF THE INVENTION

0002 (1) Field of the Invention
0003. The invention relates generally to communications
networks and more particularly to a method and apparatus
for longest matching prefix determination in communica
tions networks.

0004) (2) Description of the Related Art
0005 Data communications networks utilize addresses to
forward packets of information between users. AS data
communication networks continue to evolve, the number of
addresses Supported, the amount of traffic, and the Speed
with which the traffic is traveling are all increasing. AS Such,
routers in Such communications networks must determine
Sources and destinations of endstations associated with
traffic more quickly than in the past.
0006 Routing data packets in Internet Protocol (IP) net
works requires determining the best matching prefix corre
sponding to the Source and destination addresses for the
packet, which may also be referred to as determining a
longest prefix match (LPM) for the addresses. Routers that
forward packets typically include a database that Stores a
number of address prefixes and their associated forwarding
decisions that indicate where the data should be sent next
(next hops). When the router receives a packet it must
determine which of the prefixes in the database is the best
match for the packet.
0007 Binary tries have commonly been used for deter
mining the LPM for data packets. FIG. 1 illustrates a basic
binary trie Structure that includes a Set of binary prefixes.
The example trie illustrated in FIG. 1 corresponds to a
Six-bit address Space that is used to Simplify the discussion.
The shaded circles indicate valid prefixes. The binary trie
illustrated in FIG. 1 contains a default route corresponding
to the root of the trie and a plurality of valid prefixes that
may only be partially specified (e.g. 000XXX), or fully
specified (e.g. 000100). Bits included in the address to be
resolved are used to make branching decisions at each of the
nodes within the trie, where 0 bits cause a branch to the left
and one bits cause a branch to the right. AS is illustrated, the
binary prefix 000XXX is a valid prefix, as is the prefix
000100. Although a packet that has an address that matches
the prefix 000100 would also match the valid prefix
000XXX, the longest matching prefix is 000100, and thus
000100 is the prefix which must be selected for the address.
0008 FIG. 2 illustrates a prior art technique for simpli
fying the basic binary trie illustrated in FIG. 1. FIG. 2
illustrates a Patricia trie that flattens the basic binary trie in
areas where decisions at nodes within the trie Structure
cannot result in more than one possible prefix determination.
In other words, nodes within the trie structure that are
traversed in route to a valid prefix with no further decision

Aug. 26, 2004

making required are compressed out. Such path compression
can reduce the average number of memory accesses required
to determine the LPM for an address to log-N accesses,
where N is the number valid prefixes stored in the trie.
However, in the worst case when a path cannot be com
pressed, Patricia trees may require L memory accesses to
resolve an LPM, where L is equal to the number of bits in
the address, which may be 32 bits in Some applications Such
as IP version 4 and 128 bits for IP version 6. The variability
in the number of memory accesses requires presents prob
lems for high-speed router design. Furthermore, even if all
LPM determinations could be made with log-N memory
accesses, the memory bandwidth requirements would still
make router design impractical when high link rates must be
Supported.

0009. Another trie processing method that attempts to
reduce the time it takes to determine the appropriate prefix
is to create a multi-way branching trie that processes mul
tiple bits of the address in a single Step. This is illustrated in
FIG. 3, where a trie that exists in a 32-bit address space has
been broken into a set of Steps, or Strides. AS is illustrated,
the Strides may be Selected to be of varying bit lengths. Thus,
4-bit strides, 8-bit strides, and even 16-bit strides may be
employed to traverse the trie Structure. For each Stride, a
portion of the address is compared with Sets of bits corre
sponding to that stride to determine if a LPM has been
resolved or if one or more additional strides must be
traversed in order to determine the LPM.

0010. In order to be able to process a number of address
bits in a Stride, prefix expansion must be performed So that
there is a valid prefix for each binary value at the cut depth
for the stride, where the cut depth is determined by the size
of the stride. FIG. 4 shows the root level of a 5-bit portion
of a trie Structure after prefix expansion. The cut depth is the
bottom set of prefixes of the trie structure illustrated in FIG.
4 and is shown Surrounded by a long rectangular box. In
order to have valid prefixes at all of the nodes at the cut level,
new nodes may have to be created at the cut depth in order
to make the trie complete. Values for newly created nodes
are then propagated from parent nodes. Propagation of a
prefix value to a newly created node is illustrated via the
arrows originating from parent nodes. One example is the
labeled parent node that propagates a valid prefix to the three
labeled propagated nodes. AS can be seen, the highest level,
or root node also serves as a parent node to Some of the
nodes at the cut level.

0011 Those nodes in the trie structure of FIG. 4 that
represent a final prefix match and a resolved forwarding
decision are represented by a shaded circle, whereas those
nodes that indicate the next Stride must be accessed in order
to continue towards determination of a forwarding decision
are represented by Shaded Squares. Thus, Shaded circles
represent a point at which the Search for prefix match is
terminated, whereas shaded Squares indicate that the prefix
match must exist at a deeper level in the Overall trie Structure
and therefore the Search is extended.

0012 Because 2 valid prefixes are typically stored to
process an N-bit Stride, larger Strides require a great deal of
memory, which can be a limiting factor in the Stride size
chosen. Smaller Strides require, on average, more memory
accesses to ascertain the forwarding decisions. Thus, there is
a trade-off between the amount of memory required to Store

US 2004/0167923 A1

the data for a trie Structure and the number of memory
accesses required to completely traverse the trie Structure to
the appropriate end prefix.
0013 Therefore, a need exists for a method and apparatus
that reduces the memory required to Store values associated
with Strides in trie Structures Such that prefix matching can
be performed using a minimal number of memory accesses.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0.014 FIG. 1 illustrates a graphical representation of a
prior art binary trie Structure;
0.015 FIG. 2 illustrates a graphical representation of a
prior art Patricia trie Structure;
0016 FIG. 3 illustrates a graphical representation of a
prior art trie Structure broken into a number of Strides,
0017 FIG. 4 illustrates a graphical representation of a
prior art prefix-expanded trie;
0.018 FIG. 5 illustrates compression of the stride results
for a trie cut to a Set of compressed Stride results in
accordance with a particular embodiment of the present
invention;
0.019 FIG. 6 illustrates a graphical representation of a

trie cut associated with a Stride that includes compressed
nodes;
0020 FIG. 7 illustrates the further compression of com
pressed Stride results into a Stride record and corresponding
leaf and branch tables in accordance with a particular
embodiment of the present invention;
0021 FIG. 8 illustrates an alternate form of further
compression of the compressed Stride results into a Stride
record that includes Sub-tries and a corresponding leaf
pointer table in accordance with a particular embodiment of
the present invention;
0022 FIG. 9 illustrates a graphical representation of a

trie cut with compressed nodes that distinguishes between
Subsequent dense and sparse Stride records in accordance
with a particular embodiment of the present invention;
0023 FIG. 10 illustrates a graphical representation of a
sparse Stride record in accordance with a particular embodi
ment of the present invention;
0024 FIG. 11 illustrates a graphical representation of a
dense Stride record in accordance with a particular embodi
ment of the present invention;
0.025 FIG. 12 illustrates a graphical representation of a
dense block in accordance with a particular embodiment of
the present invention;
0026 FIG. 13 illustrates a flow diagram of a method for
compressing Stride data in accordance with a particular
embodiment of the present invention;
0.027 FIG. 14 illustrates a block diagram of a packet
routing circuit in accordance with a particular embodiment
of the present invention;
0028 FIG. 15 illustrates a block diagram of a packet
routing processor in accordance with a particular embodi
ment of the present invention;

Aug. 26, 2004

0029 FIG. 16 illustrates a flow diagram of a method for
packet routing in accordance with a particular embodiment
of the present invention;
0030 FIG. 17 illustrates a flow diagram of a method for
processing a dense Stride record in accordance with a
particular embodiment of the present invention; and
0031 FIG. 18 illustrates a graphical representation of the
determination of a forwarding decision for a particular
address in accordance with a particular embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
INVENTION

0032 Generally, the present invention provides a method
and apparatus for compressing the data associated with trie
cuts (Strides), and a method and apparatus for utilizing Such
compressed data to determine forwarding decisions for data
packets in a communication network. The compression
technique presented generates a pair of bitmaps and a pair of
base pointers for each Set of compressed data. The bitmaps
are compared with a portion of the address to ascertain
whether the forwarding decision is determined within this
portion of the trie. Forwarding decisions are Stored in a leaf
table that is accessed via a leaf table index. The leaf table
indeX is generated by combining a leaf table offset generated
from at least one of the bitmaps with a leaf table base pointer
included in the stride record. Thus, if the forwarding deci
Sion is determined within the stride, the leaf table will be
accessed via the leaf table indeX to retrieve the forwarding
decision. If the forwarding decision is not completely deter
mined within the stride, a branch table is used to determine
the location of the Subsequent Stride to be processed. The
branch table is accessed via a branch table indeX generated
by combining the branch table base pointer of the stride with
a branch table indeX generated from one or more of the
bitmaps included in the Stride record.
0033. The method and apparatus described herein pro
vide techniques for compressing data associated with Stride
records. Techniques are also described for Storing the data in
an efficient manner Such that forwarding decisions can be
determined utilizing a minimal number of memory accesses.
The compression techniques described herein enable the
data associated with large Strides to be Stored in an efficient
manner Such that the memory required to Store the forward
ing or branching decisions for each Stride is greatly reduced
in comparison to prior art Solutions. AS Such, rapid deter
mination of forwarding decisions can be performed in a
System that utilizes memory efficiently Such that large Strides
can be accommodated with a practical amount of memory in
a System that can Support high Speed routing.

0034. The invention can be better understood with refer
ence to FIGS. 5-18. FIG. 5 shows the list, or table of stride
results 62 represents the corresponding pointers for each of
the nodes in the extended trie structure of FIG. 4. At the top
of the list, the leaf pointer for 000XXX corresponds to the
left most shaded circle in the cut level of the trie structure of
FIG. 4. The bottom-most entry in the list of stride results 62,
a leaf pointer for 11111X, corresponds to the right most
shaded circle at the cut level of the trie structure of FIG. 4.

0035. As can be seen from the list of stride results 62 in
FIG. 5, there is a fair amount of repetition for certain entries.

US 2004/0167923 A1

For example, the first two entries of the table of stride results
62 are the Same. This is because these entries correspond to
a pair of the propagated nodes that were created and filled
with the leaf pointer corresponding to the parent node.
Similar Sets of repeating pointers can be observed within the
stride results 62.

0.036 By recognizing that compression of the stride
results 62 can be accomplished through a form of run length
encoding, the amount of memory required to Store the results
for this 5-bit stride can be greatly reduced. FIG. 6 illustrates
a compressed trie Structure 50 in which consecutive repeti
tive results are compressed to a Single result. A bitmap 54 is
used to indicate whether or not a result is Stored for a
particular node. For example, the first bit in the bitmap 54 is
a one, thus indicating that results are included in the com
pressed set of results for the first node 52 at the cut level.

0037 AS was seen in the table of stride results 62, the
results for the second node 51 are the same as the result for
the first node 52. As such, the bitmap stores a 0 at the bit
location corresponding to the second node 51. A 0 bit entry
in the bitmap 54 corresponds to a node for which the result
has been compressed and, as Such, the associated pointer is
not immediately available. In order to retrieve this com
pressed pointer, a Search algorithm must Search for the first
non-compressed entry (as represented by a 1 bit) to the left
of the compressed entry in the bitmap 54. The pointer
returned at this entry is identical to that which would have
been Stored for the compressed entry in an uncompressed
format. The closest set bit corresponds to a node for which
valid results are Stored in the Set of compressed Stride results
66 illustrated in FIG. 5. This result is also applicable to the
Subsequent nodes for which a 0 is stored in the bitmap 54.
AS is illustrated, the compressed Stride results 66 greatly
reduce the number of pointers that must be Stored to repre
sent the results for each of the nodes at the cut level in the
expanded trie Structure. The bitmap 54 is used in conjunc
tion with the set of compressed stride results 66 to determine
the appropriate pointer for each of the nodes at the cut level.
0.038. Many modern processors include a single cycle
instruction that Scans a register for the least or most signifi
cant bit set. When combined with masking of portions of the
bitmap 54, Such operations provide an easy means for
determining the next higher bit Set in a particular bitmap
with respect to a bit position Selected by an address.

0039. As stated above, in order to recover the appropriate
pointer, or result, for a node within the cut Section of a Stride,
the bitmap 54 can be used in conjunction with the com
pressed stride results 66. If the compressed stride results 66
are individually Stored in a contiguous fashion within
memory, an appropriate pointer can be determined by cal
culating an offset within the Set of contiguous compressed
results based on the number of set bits in the bitmap 54 to
the left of the desired bit location. Although this may be
accomplished by Sequentially Scanning the bitmap 54 and
counting the number of 1's, more efficient means for cal
culating the number of 1's in a particular set of bits are
commonly available. In many processors, a population count
(popcount) operation may be available which calculates the
number of 1's in a set of bits. Thus, by masking off the lower
section of the bitmap 54 below the selected bit location and
performing a popcount on the remaining Set of bits, an offset
to the table of compressed stride results 66 can be deter

Aug. 26, 2004

mined. In processors that do not Support a specific popcount
operation, a simple linear Set of instructions can be used to
calculate the popcount for a set of bits. One Such set of
instructions is detailed in the GNU C library.

0040 Although the combination of the bitmap 54 and the
set of compressed stride results 66 is illustrated in FIG. 6
reduces the amount of memory required to Store the results
for a particular trie cut, or Stride, two memory accesses are
Still required in order to determine a specific result for a
node. One memory access to retrieve the bitmap 54, and
another to retrieve the appropriate pointer from the list of
compressed stride results 66. FIG. 7 illustrates a refinement
on the data structure of FIG. 6 in which an additional bitmap
is added to the compressed record to indicate which of the
pointers are leaf pointers. By Storing the leaf pointers in a
Separate leaf pointer table and calculating an indeX to this
table when a leaf is determined, the total number of memory
accesses required can be reduced.

0041 FIG. 7 illustrates the compressed stride results 66
being further compressed into a stride block 70 that includes
a branch bitmap 72, a leaf bitmap 74, a leaf base pointer 75
and a set of branches 77 (sub-tries). “Block” is a term that
may be used to describe a portion of the trie Structure that
includes the information for processing a Stride. A Set bit in
the branch bitmap 72 indicates that the node corresponding
to the bit location within the branch bitmap 72 has a result
that corresponds to an entry in the list of branch pointers. A
Set bit within the leaf bitmap 74 indicates that the node to
which the bit location within the leaf bitmap 74 corresponds
has a result which is a leaf pointer Stored in the leaf pointer
table 76. If a leaf pointer needs to be referenced, a popcount
can be used to determine an indeX within the leaf pointer
table 76. This index can be combined with the leaf base
pointer 75, which points to the first entry of the leaf pointer
table 76, in order to access the appropriate entry within the
leaf pointer table 76.

0042. In order to eliminate the list of sub-trie pointers
from the stride block 70, the sub-tires are placed in con
tiguous memory, and the individual Sub-trie pointers are
replaced by a bitmap and a base pointer to the contiguous
memory location. This is illustrated in FIG. 8. The stride
record 80 of FIG. 8 has been reduced to the branch bitmap
72, the leaf bitmap 74, the leaf base pointer 75, and a branch
base pointer 76. The branch base pointer 76 points to a base
entry of a branch table 89 (which also may be referred to as
a next sub-trie block) that stores the branches (sub-tries) for
the particular Stride. AS was the case with the leaf pointer
table 76, the branch table 89 can be accessed through a
combination of the branch base pointer 76 and an offset
generated using the branch bitmap 72. Thus, by masking off
a portion of the branch bitmap 72 and performing a popcount
on the remaining portion, the appropriate offset for the
branch table 89 can be determined.

0043. The stride block 80 in the compressed format
shown in FIG. 8 is compact enough to fit within a cache line
of a cache Structure utilized by a processor for processing the
Stride. AS is known in the art, an entire cache line (group of
words) may be read from the cache in roughly the same time
as is required to read a Single word. This allows the Stride to
be processed in an efficient manner Such that the forwarding
decision for an address can be determined using a minimal
number of memory accesses. Because of the compression

US 2004/0167923 A1

performed, the amount of memory required to Store the data
required to process each Stride is also greatly reduced in
comparison with prior art Solutions.
0044) In order to further optimize the storage of the
results for a particular Stride, a differentiation can be made
between Subsequent blocks, which must be processed in
order to determine the final forwarding decision. Some
Strides of the overall trie Structure may include a Small
number of pointers that can be Stored in a Small amount of
memory. These sparse Sections of the trie can be compressed
into a particular sparse compression format that is more
efficient in terms of processing as it may include the actual
results for leaves rather than pointers to a leaf table. In order
to take advantage of the differentiation between Sparse and
dense blocks, the Stride block that points to a Subsequent
sparse or dense block may include an encoding Such that the
type of compression used for the Subsequent blockS is
known. FIG. 9 illustrates a particular encoding technique
that can be used to accomplish this differentiation. FIG. 9
illustrates a Stride that includes compressed nodes. Each
node at the cut level can have one of four states. These four
States are encoded through the combination of an extends
bitmap 95 and a type bitmap 96 included in the stride record
99. For each node at the cut level, there is a bit within the
extended bitmap 95 and a bit within the type bitmap 96. The
combination of these two bits for each node indicates the
particular State of that node.
004.5 The extends and type bitmaps allow four states to
be encoded for each node, which was not possible using the
leaf and branch bitmaps as described thus far. AS is apparent
to one of ordinary skill in the art, the distinction between the
use of the branch and leaf bitmaps as opposed to type and
extends bitmaps is solely dependent on whether different
encoding of blocks (sparse VS. dense) is employed in the
System. For embodiments that only use one block encoding,
branch and leaf bitmaps provide enough encoded States. For
embodiments that Support Sparse and dense blocks, extends
and type bitmaps provide the necessary number of States to
indicate the type of encoding for Subsequent blockS.
0046) The first node is shown to have state that corre
sponds to a leaf indication 91. Nodes having a State corre
sponding to a leaf indication are shown as Shaded circles. A
leaf indication indicates that a valid entry is included within
the leaf table for this particular node. A combination of the
extends bitmap 95 and the type bitmap 96 will generate the
leaf bitmap 74 described earlier, which can then be manipu
lated to determine an offset for the leaf table. This offset can
then be combined with the leaf base pointer 75 to access the
leaf table and fetch the forwarding decision for the node
from the leaf table. Leaf indications are encoded with a 0 in
the extends bitmap 95 and a 1 in the type bitmap 96. As is
apparent to one of ordinary skill in the art, the particular bit
encodings used in the examples described herein are arbi
trary, and as long as the particular relationships between
different bitmaps are preserved, differing bit values for
various encodings may be utilized.
0047 The second node location is shown to correspond
to an empty indication 94, which is illustrated as an
unshaded circle. Empty indications are encoded with a 0 in
the extends bitmap 95 and a 0 in the type bitmap 96. An
empty indication means that a Search to the left must be
performed to determine the appropriate result for this par
ticular node as it has been compressed.

Aug. 26, 2004

0048. The third node location at the cut level is shown to
correspond to a sparse indication 92. Sparse indications are
indicated by a 1 in the extends bitmap 95 and a 0 in the type
bitmap 96. Asparse indication means that the Search extends
beyond the cut level present in the trie structure 90. It further
indicates that the Subsequent Stride block fetched based on
the indeX generated for this node will be a sparse Stride
block, which, in one embodiment, may process a Stride of 8
address bits. Knowing that the Subsequent block to be
fetched is a sparse block enables the processor to improve
the efficiency with which the Subsequent stride block is
processed. This is because additional information can be
Stored within the Sparse block, as it does not include as many
end results as a dense block. An example sparse Stride block
901 is illustrated in FIG. 10.

0049. The sparse block 901 includes a branch base
pointer that points to the next block in the trie structure. The
leaf base pointer included in the Sparse block Stores a base
address for the leaf table. All leaves for the sparse block are
Stored contiguously from this base address, and can be
accessed by generating an appropriate offset using the type
and extends bitmaps. The Second line of the Sparse block is
shown to include eight values. Each of these values can be
directly compared with the portion of the address that is
being used to resolve this Stride. If an exact match is found,
then there is a pointer associated with that address in either
the branch table or the leaf table. If no match it determined,
a left Search is performed Such that the next highest value in
the array of values is Selected, which is analogous to the Scan
bit operation on a bitmap. Because only eight values are
Stored within the Sparse block, the type and extends bitmaps
are each only 8-bit bitmaps. The use of the type and extends
bitmaps is identical to that of a dense block, and they can be
used to determine offsets to either the branch table or the leaf
table, and the bitmaps can also be used to distinguish
between sparse and dense Subsequent blockS.

0050 Returning to FIG. 9, the sixth bit location within
the cut level of the Stride is shown to correspond to a dense
indication 93. The dense indication 93 is indicated by a 1 in
the extends bitmap 95 and a 1 in the type bitmap 96. A dense
indication 93 indicates that an offset should be generated and
combined with the branch base pointer 76 to reference a
Subsequent stride block that is a dense block. The stride
block 99 of FIG. 9 is a dense Stride block in that it includes
a full extends bitmap and type bitmap for all of the nodes at
the cut level for the Stride. This is in contrast to a Sparse
block that only includes a limited Set of values correspond
ing to a limited Set of nodes, and the appropriate type and
extends bitmaps for those particular values.

0051 AS stated earlier, a block is a portion of the trie
Structure that is used to process a Stride. A block can be
divided into a number of records where a particular record
is Selected by a portion of the address bits used to Step
through the stride. For example, a block for an 8-bit stride
may be divided into eight records where three of the eight
address bits used to process this Stride are used to Select a
Specific one of the records within the block corresponding to
the stride. The remaining five bits could then be used to
process the record Selected, where the Structure of the record
may be similar to the structures described thus far for a 5-bit
block. In other words, each record could be structured as a
block in that it would include bitmaps and base pointers.

US 2004/0167923 A1

FIG. 11 illustrates a dense record 911. The differentiation
between blocks and strides will be further explained with
reference to FIG. 18 below.

0.052 The dense record 911 includes an extends bitmap,
a type bitmap, a number of bits that are reserved for future
use (RFU), a branch table base pointer, a leaf table base
pointer, and may include an indication as to how many of the
blocks in the sub-trie below are sparse blocks. The indica
tion as to how many blockS in the Sub-trie below are sparse
blockS can be used to optimize accesses to the Sub-trie
below.

0.053 Dense blocks are used where the density of point
ers within a stride prohibits the use of the more memory
efficient sparse blocks. One example of a dense block 921
for an 8-bit stride is shown in FIG. 12.

0054) Note that the large bitmaps included in the dense
block above may be difficult for software to manipulate, and
the amount of data that has to be retrieved to proceSS Such
a block is large. In addition, the fields within the block are
not aligned to normal cache line boundaries, and the amount
of contiguous memory that would likely be required for the
leaf table and branch table would place restrictions on the
dynamic allocation of memory in the implementation. How
ever, the representation illustrated above does present the
minimum memory usage for a dense block. In embodiments
that include wide or Separate memory Structures, Such a
dense block Structure may be practical.
0055. In other embodiments where the dense blocks such
as that illustrated above are less practical, dense blockS may
be broken up into records to facilitate both the hardware
implementation of the System and efficient processing by
Software. This was briefly discussed above. For example, a
32 bit microprocessor would most likely prefer to manipu
late 32 bit bitmaps. Thus, for an 8-bit stride, eight stride
records could be used which are indexed using the upper
three bits of the stride. Each of the records would then be
used to process the lower five bits of the stride, where the
bitmaps in a 5-bit dense stride record would be 32-bit
bitmaps.

0056. In order to facilitate fetching of records for a
Subsequent Stride, each record may include an indication of
the number of sparse records included in the following Stride
block. If the Sparse records are Stored contiguously in the
branch table before the dense records, indexing the branch
table is simplified by keeping a count of the number of
sparse records.
0057 FIG. 13 illustrates a flow diagram of one method
for compressing a dense Stride block. At Step 102 the Stride
block is separated into a plurality of Stride portions. This is
analogous to Separating the block into a number of records.
For each stride portion, or record, steps 104-112 are per
formed.

0.058 At step 104, the stride results for the portion are
compressed to produce a compressed bitmap and a com
pressed list of Stride results. This is the compression Step
illustrated in FIG. 6. At step 106, the compressed bitmap
and compressed list of Stride results are further compressed
to produce a leaf bitmap, branch bitmap, leaf table Section
and a branch table Section. This is Similar to the Step shown
in FIG. 7 where the leaf table section corresponds to the set
of leaf pointers included in the leaf pointer table for the

Aug. 26, 2004

Stride portion, and the branch table Section corresponds to
the set of branch pointers for the stride portion. At step 108,
the leaf table Section is Stored in the portion of memory or
the table associated with the leaf pointers for the trie.
Preferably, these leaf pointers are Stored in a contiguous
fashion within the leaf table starting at a leafbase pointer for
the Stride portion Such that they can be accessed through the
combination of a base pointer and offsets combined to
produce indexes to the table.
0059) At step 110, the branch table section is stored in
memory Starting at a location corresponding to a branch base
pointer. Preferably, it is Stored in a contiguous fashion in
memory Such that random access to the entries in the branch
table can be performed using a base pointer and offsets.
0060. At step 110, a stride record is stored in memory for
the stride portion where the stride record includes the leaf
bitmap, the branch bitmap, the leaf table base pointer at
which the leaf table section was stored, and the branch table
base pointer at which the branch table section for the stride
portion was Stored. Storing the Stride record at Step 112 may
include encoding the leaf bitmap and the branch bitmap in
an extends bitmap and a type bitmap as was described with
respect to FIG. 9 above. The extends bitmap and type
bitmap enable the Stride record to encode Sparse and dense
format distinctions for Subsequent Stride blocks that are
accessed via branch pointers included in the branch table.
0061 FIG. 14 illustrates a block diagram of a packet
routing circuit 250 that may be used in conjunction with the
trie compression techniques discussed thus far to perform
packet routing in a communications network. The packet
routing circuit 250 includes memory 220, a determination
block 200, packet memory 230, and output circuitry 240.
Packets 202 received by the packet routing circuit 250 are
stored in the packet memory 230 while a forwarding deci
sion for each packet is determined. The address 203 for each
packet is provided to the determination block 200 that
determines the routing decision 242 for each packet. The
determination block 200 may be implemented as a state
machine, discrete circuitry, or as a packet routing processor
Such as that illustrated in FIG. 15. The determination block
200 is operably coupled to a memory 220 that stores a
forwarding table 222. Preferably, the forwarding table 222 is
Structured in a manner Such that the forwarding decisions for
packets are determined through the use of a compressed trie
Structure. The compressed trie Structure may include a
number of Strides where the block corresponding to each
stride may be broken into a number of records.
0062) When the determination block 200 receives a
packet address, it processes the address to determine a
forwarding decision 242 in a manner Similar to that illus
trated in the flow diagram of FIG. 16, which is described in
additional detail below. In order to facilitate the determina
tion of the forwarding decision 242, a cache 210 may be
included in the packet routing circuit 250. The cache 210,
which is operably coupled to the memory 220 and the
determination block 200, may be used to cache certain
portions of the forwarding table 222 Such that the determi
nation of the forwarding decision 242 can be done in a more
efficient manner that requires fewer accesses to the memory
220.

0063. Once a forwarding decision 242 has been deter
mined by the determination block 200, it is provided to the

US 2004/0167923 A1

output circuitry 240. For each packet, the output circuitry
receives a forwarding decision 242 and forwards the packet
to at least one of the plurality of outputs 246 based on the
forwarding decision.
0.064 Preferably, the packet routing circuit 250 is
included in a router for use in a data communication
network. Such a router may be used in a data communica
tions network that supports IP traffic. The memory 220 may
Store a plurality of forwarding tables, where a particular
forwarding table is Selected for use in determining the
forwarding decision for a particular packet based on either
a field included in the packet or the identity of an input port
over which the packet was received.
0065 FIG. 15 illustrates a packet routing processor 300
that includes a processing module 302 and memory 304. The
packet routing processor preferably executes the method
illustrated in FIG. 16 through the use of Software stored as
a set of operational instructions in the memory 304. The
processing module 302 may include a single processing
entity or a plurality of processing entities. Such a processing
entity may be a microprocessor, a microcontroller, a digital
Signal processor or any device that processes information
based on operational or programming instructions.
0.066 The memory 304 may be a single memory device
or a plurality of memory devices. Such a memory device
may be a read only memory device, random acceSS memory
device, floppy disk, hard drive memory, or any device that
stores digital information. Note that the memory 304 may be
incorporated in the memory 220 included in the packet
routing circuit or may be a separate memory Structure. The
memory 304 Stores programming or operational instructions
that, when executed by the processing module 302, allow the
processing module 302 to perform packet routing functions
such as those illustrated in the flow diagram of FIG. 16.
Note that the packet routing processor 300 may implement
Some of the functions of FIG. 16 through software stored in
the memory 304, whereas other portions may be imple
mented using hardware or circuitry included within the
packet routing processor 300. Thus, in Some embodiments a
mix of hardware and Software may be used to perform the
method illustrated in FIG. 16

0067 FIG. 16 illustrates a flow diagram of a method for
packet routing in a communications network. The method
begins at Step 402 where a packet is received. The packet
includes an address that is used to determine a forwarding
decision for the packet. The forwarding decision is deter
mined based on a compressed trie Structure that may be
Stored in a forwarding table. The compressed trie Structure
is preferably made up of a number of strides where the
blocks that make up a Stride may be divided into a number
of records where the blocks and records are preferably
Structured as indicated above.

0068. At step 404 a first stride block is fetched using a
first portion of the address. AS Stated above, a Stride block
may be broken into a number of records in order to simplify
processing. In one embodiment, the most significant bits of
the address are used to retrieve a Stride record included in a
Stride block, where the most significant bits indeX between
a number of Stride records that make up a dense block within
the trie Structure. Each Stride block includes a first bitmap,
a Second bitmap, a leaf table base pointer, and a branch table
base pointer. Once the stride block has been fetched at step
404, it is processed using steps 406-416.
0069. At step 406, it is determined if the forwarding
decision for the address can be fully determined based on the

Aug. 26, 2004

stride block that has been fetched. This is determined based
on at least one of the first and second bitmaps. The first
bitmap is an extends bitmap and the Second bitmap is a type
bitmap, the extends bitmap alone can be used to determine
if the forwarding decision is fully determined using this
Stride record.

0070 If the forwarding decision is fully determined using
the stride block, the method proceeds to 408 where a leaf
table offset is generated from at least one of the first and
Second bitmaps and the Second portion of the address. The
Second portion of the address is used to Select a specific bit
location within one or more of the bitmaps and a masking
operation followed by a population count is used to deter
mine an offset to the leaf table. The extends bitmap and type
bitmap must be combined to generate the leaf bitmap. This
can be accomplished by performing a bit-wise AND opera
tion of the type bitmap and the bit-wise inverse of the
extends bitmap.
0071 At step 410, the leaf table offset generated at step
408 is combined with the leaf table base pointer to produce
a leaf table index. This leaf table index is then used at step
412 to access the leaf table to retrieve the forwarding
decision for the packet. The leaf table may either directly
Store the forwarding decisions, or may store pointers to a list
of forwarding decisions.
0072) If it determined at step 406 that the forwarding
decision is not fully determined in this stride, the method
proceeds to Step 414 where the Steps necessary to fetch a
Subsequent Stride record or block commence. At step 414 a
branch table offset is generated from the Second portion of
the address and at least one of the first and Second bitmaps.
If Sparse and dense blocks are Supported by the System in
which the method of FIG. 16 is employed, generating the
branch table offset may include generating either a branch
table offset to a Sparse block or to a dense block. The Sparse
and dense distinction and the encodings necessary for dis
tinguishing between sparse and dense blocks were described
with respect to FIG. 9 above. Thus, extend and type bitmaps
are required for distinguishing sparse and dense blockS. The
generation of the branch table offset is performed using
masking and popcount Steps in a similar manner as those
used to generate the leaf table offset.
0073. At step 416, the branch table offset is combined
with a branch table base pointer to produce a branch table
index. The branch table index is then used to retrieve a
Subsequent stride block at step 418. Step 418 may include
retrieving a Subsequent block corresponding to a Stride and
then indexing to a particular record within the Stride. It may
also involve simply fetching a Subsequent Sparse block in its
entirety.

0074. A method that may be used for processing the
dense blocks are illustrated in FIG. 17, which has been
included for added clarity. FIG. 17 illustrates a flow diagram
of a method for processing a dense block or record utilizing
a portion of the address corresponding to the packet. At Step
502 a particular bit within the bitmaps included for the dense
record is selected using the address portion. At step 504 it is
determined if the bit to which the address portion corre
sponds is Set within the extends bitmap. If not, this indicates
that a leaf will be reached during this record, and Steps
506-516 are executed in order to retrieve a forwarding
decision for that leaf.

0075). At step 506 the leaf bitmap is generated by bit-wise
ANDing the type bitmap with the bit-wise inverse of the

US 2004/0167923 A1

extends bitmap. At step 508, it is determined if the bit to
which the address portion corresponds in the leaf bitmap is
set. If it is, the method proceeds to step 510, and if it is not,
the method proceeds to step 509. At step 509, a scan to the
left in the leaf bitmap is performed to find the next set bit.
At step 510, unwanted bits in the leaf bitmap generated at
step 506 are masked off. The unwanted bits are those bits to
the right of the set bit determined at step 506.
0.076. At step 512, a popcount is performed on the
remaining non-masked bits in the leaf bitmap in order to
determine a leaf offset. At step 514, the leaf offset is
combined with the leaf base pointer for the record to
generate a leaf index. This leaf index is then used at step 516
to retrieve the forwarding decision for the packet.
0077. If it is determined at step 504 that the bit in the
extends bitmap corresponding to the portion of the address
is Set, this indicates that a Subsequent block must be fetched
in order to further process the address. AS Such, the method
proceeds to step 518. At step 518 it is determined if the bit
corresponding to the address portion is also Set in the type
bitmap, where the type bitmap indicates whether or not the
Subsequent block to be fetched is sparse or dense. If the bit
is set at 518, a dense block is to be processed, and the
method proceeds to step 520.
0078. At step 520, the dense entry bitmap is generated by
bit-wise ANDing the type and extends bitmaps together.
Unwanted bits in the dense entry bitmap are masked off at
step 522, where those bits to the right of that selected by the
address portion are masked. At Step 524, a popcount is
performed on the remaining non-masked bits in order to
determine a dense offset.

0079 At step 526, the dense offset is combined with a
dense base pointer to generate the dense index. ASSuming
that all sparse blocks are contiguously Stored based on a
branch base pointer, and all dense blocks are Stored imme
diately following the sparse blocks (also contiguously), the
dense base pointer may be determined by adding the size of
the number of Sparse blocks included in the Subsequent
block to the branch base pointer. Thus, Storing the number
of sparse blocks included in a Subsequent Stride as described
earlier can be used to efficiently generate pointers to Sub
Sequent dense Stride blocks. The dense indeX generated at
step 526 can then be used at step 528 to retrieve the
Subsequent dense Stride block. Because the processing Sys
tem already knows that the Subsequent block is a dense
block, it will be fetched and processed in the manner most
efficient for dense blocks.

0080) If at step 518 it is determined that the bit corre
sponding to the address portion is not Set in the type bitmap,
the Subsequent record to be fetched is a Sparse block. AS
Such, a Sparse entry bitmap is generated at Step 530. This is
accomplished by bit-wise ANDing the extends bitmap with
the bit-wise inverse of the type bitmap.
0081. At step 532, unwanted bits in the sparse entry
bitmap are masked off. At Step 534, a popcount is performed
to determine a sparse offset. The Sparse offset is combined
with a sparse base pointer at Step 536 to generate a Sparse
index. Note that if the Sparse records for the Subsequent
Stride are all Stored contiguously prior to the dense records,
the Sparse base pointer will simply be the branch base
pointer for the subsequent stride. At step 538, the subsequent
sparse Stride record is retrieved using the Sparse indeX
generated at step 536.
0082 The methodology for processing a sparse stride
record or block is similar to that for processing a dense

Aug. 26, 2004

record. The exception is that rather than checking the
extends and type bitmaps at a particular bit location corre
sponding to the portion of the address, a comparison must
first be performed with the values included in the sparse
record. If a match is determined, the bit location correspond
ing to that value in the extends and type bitmaps is consulted
to determine if a leaf has been reached or if a Subsequent
sparse or dense record must be fetched. If no match is
determined, the next higher value is Selected, and the bit
location corresponding to that value is referenced in the
bitmaps. AS Stated earlier, this is analogous to performing a
Scan left operation in a dense bit map.
0083 FIG. 18 illustrates a graphical representation of the
determination of a leaf table pointer 750 utilizing an address
702 that is provided as an example to supplement the
discussion above. A first portion of the address 704 is
applied to a block corresponding to the first Stride in the trie
Structure that Stores the potential prefix matches for the
address. The first portion of the address 704 indexes through
this dense block to select the dense record 706. Although the
first stride is shown to process 8 bits of the address 702, in
other embodiments, the first stride may process 16 bits of the
address. Processing the first 16 bits of the address in a single
Stride may allow the average number of memory accesses
required to process an address to be reduced at the cost of
additional memory. Thus, the number of bits processed in
each Stride of a System may be Selected based on both Speed
and memory considerations.
0084. In one embodiment, it is assumed that the first
block of the trie structure is always encoded as a dense
block. AS is apparent to one of ordinary skill in the art, this
block may also be encoded as a sparse block in Some
circumstances, but in embodiments that Support sparse or
dense encoding of the first block, an external variable that
indicates the type of encoding used must be available Such
that processing of the first block is properly performed.
0085. The bitmaps 708 for the dense record 706 are
processed via a function 707, which processes the bitmaps
using a Second portion of the address 705 to generate an
offset 709. Note that this assumes that the address 702 will
require multiple records to determine the forwarding deci
Sion. If the forwarding decision were determined based on
the dense record 706 alone, a leaf in the trie would have been
reached during the first Stride, and no further processing
would be necessary.

0086) The offset 709 is combined with the branch table
base pointer 710 for the dense record 706 to generate a
sparse block pointer 711. The offset 709 was preferably
determined in a manner that included a differentiation
between Subsequent blocks being sparse or dense. Thus, the
processor will know that the next block to be fetched is
sparse, and can be fetched and processed accordingly.

0087. The sparse block pointer 711 is used to retrieve the
sparse block 720. Because the sparse block 720 is sparse, the
Subsequent eight bits of the address that make up address
portion 712 are used in comparison operations with each of
the values included in the array of values of the Sparse block
720. This value comparison generates an offset 724 that is
combined with a branch table base pointer 722 for the sparse
block to generate a Subsequent dense block base pointer 726.
0088. The dense block base pointer 726 points to the
beginning of a dense block which is indexed through by a
Subsequent portion of the address 731. This indexing selects
a particular dense record 730 within the dense block. The

US 2004/0167923 A1

bitmaps 732 for the dense record 730 are provided to the
function 707 along with address bits 737 to produce the
offset 733. The offset 733 is then combined with a branch
table base pointer 734 for the dense record 730 to produce
a sparse block pointer 735 that selects the sparse block 740.
0089. The final eight bits of the address 741 are then used
to compare with the values Stored in the Sparse block to
produce the offset 744. The offset 744 is combined with the
leaf table base pointer 742 of the sparse block 740 to
generate the leaf table index 750. The leaf table index 750
can then be used to access the leaf table and retrieve the
forwarding decision for the packet. It should be noted that
dense and Sparse blocks can be combined in any order when
processing an address. FIG. 18 illustrates one example of
one Such combination.

0090 The present invention provides a means for com
pressing the data associated with Strides in trie Structures in
a manner that improves memory usage and reduces the
average number of memory acceSS required to determine a
forwarding decision for a packet. AS Such, higher speed
networks can be Supported without the need for impracti
cally large memory Structures to Store the trie Structures.
Utilization of the compressed data structures requires only
linear operations, thus reducing the Overall cost and com
plexity of the packet forwarding System.
0.091 In the foregoing specification, the invention has
been described with reference to specific embodiments.
However, one of ordinary skill in the art appreciates that
various modifications and changes can be made without
departing from the Scope of the present invention as Set forth
in the claims below. Accordingly, the Specification and
figures are to be regarded in an illustrative rather than a
restrictive Sense, and all Such modifications are intended to
be included within the Scope of present invention.
0092 Benefits, other advantages, and solutions to prob
lems have been described above with regard to specific
embodiments. However, the benefits, advantages, Solutions
to problems, and any element(s) that may cause any benefit,
advantage, or Solution to occur or become more pronounced
are not to be construed as a critical, required, or essential
feature or element of any or all the claims. AS used herein,
the terms “comprises,”“comprising,” or any other variation
thereof, are intended to cover a non-exclusive inclusion,
Such that a process, method, article, or apparatus that com
prises a list of elements does not include only those elements
but may include other elements not expressly listed or
inherent to Such process, method, article, or apparatus.

What is claimed is:
1. A method for packet routing, comprising:

receiving a packet that includes an address,

fetching a first stride block based on a first portion of the
address, wherein each Stride block includes a first
bitmap, a Second bitmap, a leaf table base pointer, and
a branch table base pointer;

processing the first Stride block, wherein processing a
stride block includes:

determining if a forwarding decision is determined
based on a Second portion of the address and at least
one of the first and second bitmaps of the stride
block;

Aug. 26, 2004

when the forwarding decision is determined based on at
least one of the first and Second bitmaps:
generating a leaf table offset from at least one of the

first and Second bitmaps and the Second portion of
the address,

combining the leaf table offset with the leaf table
base pointer to produce a leaf table index; and

accessing a leaf table using the leaf table indeX to
retrieve the forwarding decision;

when the forwarding decision is not determined based
on the Second portion of the address and at least one
of the first and Second bitmaps,
generating a branch table offset from the Second

portion of the address and at least one of the first
and Second bitmaps,

combining the branch table offset with the branch
table base pointer to produce a branch table index;

accessing a branch table using the branch table index
to retrieve a Subsequent Stride block, and

processing the Subsequent Stride block and any additional
Subsequent Stride blockS generated using additional
portions of the address until the forwarding decision is
retrieved.

2. The method of claim 1, wherein the first bitmap is a leaf
bitmap and the Second bitmap is a branch bitmap, wherein
determining if a forwarding decision is determined further
comprises determining if the forwarding decision is deter
mined based on the Second portion of the address and the
leaf and branch bitmaps, wherein generating the leaf table
offset further comprises generating the leaf table offset from
the Second portion of the address and the leaf bitmap, and
wherein generating the branch table offset further comprises
generating the branch table offset from the Second portion of
the address and the branch bitmap.

3. The method of claim 2, wherein generating the leaf
table offset further comprises:

masking off a portion of the leaf bitmap to produce a
masked leaf bitmap, wherein the portion of the leaf
bitmap that is masked off is determined based on the
Second portion of the address, and

performing a population count on the masked leaf bitmap
to produce the leaf offset.

4. The method of claim 2, wherein generating the branch
table offset further comprises:

masking off a portion of the branch bitmap to produce a
masked branch bitmap, wherein the portion of the
branch bitmap that is masked off is determined based
on the Second portion of the address, and

performing a population count on the masked branch
bitmap to produce the branch offset.

5. The method of claim 1, wherein accessing the leaf table
using the leaf table indeX to retrieve the forwarding decision
further comprises:

accessing the leaf table to retrieve a pointer to the for
warding decision; and

retrieving the forwarding decision using the pointer to the
forwarding decision.

US 2004/0167923 A1

6. The method of claim 1, wherein the first bitmap is an
extends bitmap and the Second bitmap is a type bitmap,
wherein determining if a forwarding decision is determined
further comprises determining if the forwarding decision is
determined based on the Second portion of the address and
the extends bitmap, wherein generating the leaf table offset
further comprises generating the leaf table offset from the
Second portion of the address and the extends and type
bitmaps, and wherein generating the branch table offset
further comprises generating the branch table offset from the
Second portion of the address and the extends and type
bitmaps.

7. The method of claim 6, wherein generating the leaf
table offset further comprises:

combining the extends bitmap and the type bitmap to
generate a leaf bitmap,

masking off a portion of the leaf bitmap to produce a
masked leaf bitmap, wherein the portion of the leaf
bitmap that is masked off is determined based on the
Second portion of the address, and

performing a population count on the masked leaf bitmap
to produce the leaf offset.

8. The method of claim 6, wherein generating the branch
table offset further comprises:

combining the extends bitmap and the type bitmap to
generate a branch bitmap;

masking off a portion of the branch bitmap to produce a
masked branch bitmap, wherein the portion of the
branch bitmap that is masked off is determined based
on the Second portion of the address, and

performing a population count on the masked branch
bitmap to produce the branch offset.

9. The method of claim 8, wherein the type bitmap
identifies each Subsequent Stride block as one of a Sparse
stride block and a dense stride block.

10. The method of claim 9, wherein subsequent stride
blocks for each Stride block are Stored in contiguous Sets.

11. The method of claim 10, wherein sparse blocks are
grouped together and dense blocks are grouped together in
the contiguous Sets.

12. A packet routing processor, comprising:

a processing module, and
memory operably coupled to the processing module,

wherein the memory Stores operating instructions Such
that, when executed by the processing module, the
operating instructions cause the processing module to
perform the functions of:

fetching a first stride block based on a first portion of
an address for a received packet, wherein each Stride
block includes a first bitmap, a Second bitmap, a leaf
table base pointer, and a branch table base pointer;

processing the first Stride block, wherein processing a
stride block includes:

determining if a forwarding decision is determined
based on a Second portion of the address and at
least one of the first and Second bitmaps of the
stride block;

Aug. 26, 2004

when the forwarding decision is determined based on
at least one of the first and Second bitmaps:
generating a leaf table offset from at least one of

the first and Second bitmaps and the Second
portion of the address,

combining the leaf table offset with the leaf table
base pointer to produce a leaf table index; and

accessing a leaf table using the leaf table indeX to
retrieve the forwarding decision;

when the forwarding decision is not determined
based on the Second portion of the address and at
least one of the first and Second bitmaps,
generating a branch table offset from the Second

portion of the address and at least one of the first
and Second bitmaps,

combining the branch table offset with the branch
table base pointer to produce a branch table
index;

accessing a branch table using the branch table
indeX to retrieve a Subsequent Stride block, and

processing the Subsequent Stride block and any addi
tional Subsequent Stride blockS generated using addi
tional portions of the address until the forwarding
decision is retrieved.

13. The packet routing processor of claim 12, wherein the
first bitmap is a leaf bitmap and the Second bitmap is a
branch bitmap, wherein determining if a forwarding deci
Sion is determined further comprises determining if the
forwarding decision is determined based on the Second
portion of the address and the leaf and branch bitmaps,
wherein generating the leaf table offset further comprises
generating the leaf table offset from the Second portion of the
address and the leaf bitmap, and wherein generating the
branch table offset further comprises generating the branch
table offset from the second portion of the address and the
branch bitmap.

14. The packet routing processor of claim 13, wherein
generating the leaf table offset further comprises:

masking off a portion of the leaf bitmap to produce a
masked leaf bitmap, wherein the portion of the leaf
bitmap that is masked off is determined based on the
Second portion of the address, and

performing a population count on the masked leaf bitmap
to produce the leaf offset.

15. The packet routing processor of claim 13, wherein
generating the branch table offset further comprises:

masking off a portion of the branch bitmap to produce a
masked branch bitmap, wherein the portion of the
branch bitmap that is masked off is determined based
on the Second portion of the address, and

performing a population count on the masked branch
bitmap to produce the branch offset.

16. The packet routing processor of claim 12, wherein
accessing the leaf table using the leaf table indeX to retrieve
the forwarding decision further comprises:

accessing the leaf table to retrieve a pointer to the for
warding decision; and

US 2004/0167923 A1

retrieving the forwarding decision using the pointer to the
forwarding decision.

17. The packet routing processor of claim 12, wherein the
first bitmap is an extends bitmap and the Second bitmap is a
type bitmap, wherein determining if a forwarding decision is
determined further comprises determining if the forwarding
decision is determined based on the Second portion of the
address and the extends bitmap, wherein generating the leaf
table offset further comprises generating the leaf table offset
from the Second portion of the address and the extends and
type bitmaps, and wherein generating the branch table offset
further comprises generating the branch table offset from the
Second portion of the address and the extends and type
bitmaps.

18. The packet routing processor of claim 17, wherein
generating the leaf table offset further comprises:

combining the extends bitmap and the type bitmap to
generate a leaf bitmap,

masking off a portion of the leaf bitmap to produce a
masked leaf bitmap, wherein the portion of the leaf
bitmap that is masked off is determined based on the
Second portion of the address, and

performing a population count on the masked leaf bitmap
to produce the leaf offset.

19. The packet routing processor of claim 17, wherein
generating the branch table offset further comprises:

combining the extends bitmap and the type bitmap to
generate a branch bitmap;

masking off a portion of the branch bitmap to produce a
masked branch bitmap, wherein the portion of the
branch bitmap that is masked off is determined based
on the Second portion of the address, and

performing a population count on the masked branch
bitmap to produce the branch offset.

20. The packet routing processor of claim 19, wherein the
type bitmap identifies each Subsequent Stride block as one of
a sparse Stride block and a dense Stride block.

21. The packet routing processor of claim 20, wherein
dense Stride blockS Store Subsequent sparse Stride blockS and
Subsequent dense Stride blocks in contiguous Sets.

22. A packet routing circuit, comprising:
a packet memory receives packets and Stores the packets

prior to forwarding, wherein each packet includes an
address,

output circuitry operably coupled to the packet memory,
wherein for each packet, the output circuitry receives a
forwarding decision and forwards the packet to at least
one of a plurality of outputs based on the forwarding
decision;

memory that Stores a forwarding table, wherein the for
warding table Stores forwarding decisions for the pack
ets, and

a determination block operably coupled to the memory
and the output circuitry, wherein the determination
block receives the address for each packet and deter
mines the forwarding decision for the packet, wherein
the determination block provides the forwarding deci
Sion for the packet to the output circuitry Such that the

Aug. 26, 2004

packet is forwarded to at least one of the outputs,
wherein determining the forwarding decision for the
packet includes:
fetching a first stride block from the forwarding table

Stored in the memory based on a first portion of an
address for a received packet, wherein each Stride
block includes a first bitmap, a Second bitmap, a leaf
table base pointer, and a branch table base pointer;

processing the first Stride block, wherein processing a
stride block includes:

determining if a forwarding decision is determined
based on a Second portion of the address and at
least one of the first and Second bitmaps of the
stride block;

when the forwarding decision is determined based on
at least one of the first and Second bitmaps:
generating a leaf table offset from at least one of

the first and Second bitmaps and the Second
portion of the address,

combining the leaf table offset with the leaf table
base pointer to produce a leaf table index; and

accessing a leaf table Stored in the memory using
the leaf table index to retrieve the forwarding
decision;

when the forwarding decision is not determined
based on the Second portion of the address and at
least one of the first and Second bitmaps,
generating a branch table offset from the Second

portion of the address and at least one of the first
and Second bitmaps,

combining the branch table offset with the branch
table base pointer to produce a branch table
index;

accessing a branch table Stored in the memory
using the branch table indeX to retrieve a Sub
Sequent Stride block, and

processing the Subsequent Stride block and any addi
tional Subsequent Stride blockS generated using addi
tional portions of the address until the forwarding
decision is retrieved.

23. The packet routing circuit of claim 22 further com
prises a cache operably coupled to the memory and the
determination block, wherein the cache Stores at least a
portion of the forwarding table.

24. The packet routing circuit of claim 22, wherein the
memory Stores a plurality of forwarding tables, wherein a
particular forwarding table is Selected for use in determining
the forwarding decision for a particular packet based on at
least one of a field included in the particular packet and an
identity of an input port to the packet routing circuit over
which the particular packet was received.

25. The packet routing circuit of claim 22, wherein the
determination block further comprises:

a processing module; and
an instruction memory operably coupled to the processing

module, wherein the instruction memory Stores instruc
tions that, when executed by the processing module,

US 2004/0167923 A1

cause the processing module to perform functions
necessary to determine the forwarding decision for the
packet.

26. The packet routing circuit of claim 22, wherein the
determination block further comprises a State machine.

27. The packet routing circuitry of claim 22, wherein the
packet routing circuitry is included in a router.

28. The packet routing circuit of claim 27, wherein the
packets are internet protocol (IP) packets.

29. The packet routing circuit of claim 22, wherein the
determination block utilizes population counts to determine
branch and leaf offsets.

30. The packet routing circuit of claim 22, wherein the
determination block utilizes linear operations to determine
the forwarding decision for each of the packets.

31. A method for compressing a Stride included in a trie
Structure, wherein the Stride includes a plurality of nodes,
comprising:

Separating the Stride into a plurality of Stride portions,
wherein each Stride portion includes Stride results for a
portion of the plurality of nodes, wherein a Stride result
is one of a leaf pointer and a branch pointer; and

for each Stride portion:
compressing the Stride results for the Stride portion

using run length encoding to produce a compression
bitmap and a compressed list of Stride results;

generating a leaf bitmap, a branch bitmap, a leaf table
Section, and a branch table Section from the com
pression bitmap and the compressed list of Stride
results;

Storing the leaf table Section in a leaf table at a leaf table
base pointer for the Stride portion;

Storing the branch table Section in a branch table at a
branch table base pointer for the Stride portion; and

Storing a Stride block in memory for the Stride portion,
wherein the stride block includes the leaf bitmap, the
branch bitmap, the leaf table base pointer, and the
branch table base pointer.

32. The method of claim 31, wherein compressing the
results for a Stride block further comprises Selecting one of
a sparse compression format and a dense compression
format based on a number of compressed Stride results, and
wherein

Storing the Stride block in memory further comprises
Storing the Stride block in the Selected one of the Sparse
compression format and the dense compression format.

33. The method of claim 32, wherein the leaf bitmap and
branch bitmap for each Stride block are encoded in an
extends bitmap and a type bitmap, wherein the extends
bitmap and type bitmap for each Stride block encode Sparse
and dense format distinctions for Stride blockS accessed via
branch pointers included in the branch table.

34. The method of claim 33, wherein the sparse compres
Sion format includes a value array corresponding to values

Aug. 26, 2004

for address bits used to access the Stride block, and wherein
the dense compression format includes bitmaps correspond
ing to the address bits, wherein a quantity of memory
required to Store the Stride block in the Sparse compression
format is less than a quantity of memory required to Store the
Stride block in a dense compression format.

35. A method for packet routing, comprising:
receiving a packet that includes an address,
fetching a first stride block, wherein the first stride block

encodes a first portion of a longest prefix match trie,
wherein the first stride block is one of a sparse stride
block and a dense Stride block, wherein sparse Stride
blocks encode portions of the longest prefix match trie
that include no more than a first number of nodes,
wherein dense Stride blockS encode portions of the
longest prefix match trie that include more than the first
number of nodes;

comparing a first portion of the address with a first portion
of the first stride block to determine if a forwarding
decision for the packet is resolved by the first stride
block;

when the forwarding decision is resolved by the first
Stride block, determining the forwarding decision for
the packet;

when the forwarding decision for the packet is not
resolved by the first stride block:
determining a Second Stride block based on the first

portion of the address and a Second portion of the
first stride block; and

processing the Second Stride block and any Subsequent
stride blocks determined until the forwarding deci
Sion is determined, wherein processing a Stride block
includes fetching the Stride block and comparing a
portion of the address with a portion of the stride
block to determine one of the forwarding decision
and a Subsequent Stride block for processing, and

forwarding the packet based on the forwarding decision.
36. The method of claim 35, wherein when the first stride

block is a dense Stride block, comparing a first portion of the
address with the portion of the first stride block further
comprises:

Selecting a Stride record of a plurality of Stride records
included in the first stride block using a first set of bits
in the first portion of the address, wherein each Stride
record of the plurality of Stride records encodes a
portion of nodes encoded by the first stride block; and

comparing a Second Set of bits in the first portion of the
address with a portion of the Stride record to determine
if the forwarding decision is resolved by the first stride
block.

