发明名称
对苯基苯胺的合成方法

摘要
对苯基苯胺的合成方法，先将联苯、溶剂、超酸及固体酸催化剂投入反应釜中，在0-50℃搅拌2-5小时后加入酯化、酯化反应2-10小时后，再进行氯化，然后向反应釜内通入氯气，氯化反应5-10小时后，再进行氯化，然后向反应釜内通入氯气，氯化反应5-10小时后，再进行氯化，然后向反应釜内通入氯气，氯化反应5-10小时后，再进行氯化，然后向反应釜内通入氯气，氯化反应5-10小时。
1. 对苯基苯腈的合成方法，其特征在于：以联苯为原料，超短固体酸为催化剂，经过酰化、氨化以及分子内脱水合成对苯基苯腈，其产品的结构式为

具体反应步骤如下：
（1）先将联苯、溶剂、超短固体酸催化剂投入反应釜中，其中各组分投料的重量百分比为：联苯投料量占总投料量的10—30％，溶剂占总投料量的65—90％，催化剂占总投料量的1—10％；该三种组分投料之和为100％。
（2）在0—50℃搅拌2—5小时后加入酰化剂、酰氯化反应2—10小时后滤除超短固体酸催化剂，然后向反应釜内通入液氨进行氨化，通氨温度0—50℃，通氨时间5—10小时，氨化结束后向反应釜内加入亚硫酰氯进行腈化反应，氨化温度50—150℃，反应时间6—10小时；
（3）将第2步反应得到的产品先减压蒸馏出溶剂，再减压蒸馏得到产品对苯基苯腈。

2. 根据权利要求1所述的对苯基苯腈的合成方法，其特征在于：超短固体酸催化剂为SO₄²⁻/ZrO₂；SO₄²⁻/TiO₂，中的任意一种或其中不少于一种的混合物。

3. 根据权利要求1所述的对苯基苯腈的合成方法，其特征在于：所述的溶剂为氯甲烷、氯苯或硝基苯。
对苯基苯胺的合成方法

技术领域
[0001] 本发明属于有机中间体合成方法领域，特别涉及到一种合成对苯基苯胺的方法。

背景技术
[0002] 酸催化反应涉及到烃类裂解、重整、环化等石油炼制过程，还涉及到烯烃水合、烯烃聚合、芳烃烷基化、芳烃酰基化、醇酸酯化等石油化工和精细化工过程。可以选择利用催化剂是这一固体超强酸系列重要工业的基础。目前，在这些化工生产过程中应用的酸催化剂主要还是液体酸，虽然其工艺已很成熟，但在生产中却给环境带来了危害，同时也存在着均相催化本身不可避免且无法克服的缺点，如易腐蚀设备，难以连续生产，选择性差，产物与催化剂难分离等原因。
[0003] 固体酸克服了液体酸的缺点，具有容易与液相反应体系分离、不腐蚀设备、后处理简单、很少污染环境、选择性高等特点，可在较高温度范围内使用，扩大了热力学上可能进行的酸催化反应的应用范围。
[0004] 固体超强酸由于其特有的优点和广阔的应用前景，已受到国内外学者广泛关注，成为固体酸催化剂研究中的热点。由于该催化剂具有良好的再生能力和重复使用性，并且原料充足，易购，价格低廉，这就有效地降低了成本和价格，且使用厂家很容易接受。该催化剂可广泛应用于酯化、酯交换、醚化、烷烃裂解、烷烃异构化、烃的齐聚、芳烃歧化、烷基化、酰基化、氧化、水合、醚化、重排等有机催化合成领域。

发明内容
[0005] 本发明的目的在于提供一种替代原有的液体酸催化剂，采用超强固体酸为催化剂制备出高纯度的联苯酰胺，进而合成出高收率高质量的对苯基苯胺的合成方法。本发明反应过程温和，且无腐蚀性，不污染环境。
[0006] 为实现上述目的，本发明的技术方案为：
[0007] 对苯基苯胺的合成方法，其特征在于：以联苯为原料，超强固体酸为催化剂，经过酰化、氨化以及分子内脱水合成对苯基苯胺，其产品的结构式为

![化学结构式]

反应历程为：
[0008]
具体实施步骤如下：

(1) 将聚苯、溶剂、超固态酸催化剂投入反应釜中，其中各组分投料的重量百分比为，聚苯投料量占总投料量的10～30%，溶剂占总投料量的65～90%，催化剂占总投料量的1～10%，该三种组分投料之和为100%。

(2) 在0～50℃搅拌2～5小时后加入酰化剂，酰化反应2～10小时后滤除超固态酸催化剂，然后向反应釜内通入液氨进行氨化，通氨温度0～50℃，通氨时间5～10小时，氨化结束后向反应釜内加入亚酰胺化进行氨化反应，氨化温度50～150℃，反应时间6～10小时；

(3) 将第2步反应得到的产品先减压蒸馏出溶剂，再减压蒸馏得到产品对苯基苯胺。

所述的超固态酸催化剂为SO_2^2/ZrO_2，SO_2^2/TiO_2，中的一种或其中不少于一种的混合物。

所述的溶剂为氯甲烷系列，氯苯或硝基苯系列。

本发明的积极效果为：本发明工艺操作简单，反应结束后产品提取容易，催化剂可以反复使用，节约了成本。同时生产周期短，无三废排放不污染环境，设备利用率高，产品收率高，产品质量好。

具体实施方式

下面结合具体实施例，对本发明做进一步的说明。

实施例1

带有搅拌装置、温度计、冷凝器，外部夹套冷却装置的2000升搪瓷反应釜，先检查设备是否完好，体系是否干燥，本反应在绝水条件下进行。向反应釜加入聚苯500升，聚苯60公斤，SO_2^2/ZrO_2 9公斤，开动搅拌，溶解1小时，外冷水降温至20℃，于2小时之内加入氯乙酰氯90公斤，搅拌反应2小时，取样用甲醇稀释后进行液相色谱分析，当联苯酰氯含量≥96%，联苯含量<2%时，停止搅拌，静置2小时分离除去底部固体催化剂，酰氯溶液重新回反应器，搅拌30分钟，外冷水浴，反应温度<15℃，通氨时间5小时，体系pH值≥9时反应终止，液相色谱分析联苯酰氯含量≥93%为氨化终点，停止通氨，缓慢升温至80℃，体系给少量负压去除游离氨气。然后于2小时加入亚酰胺化反应72公斤，同时开启尾气吸收装置吸收放出的酸性气体。加完后，于2小时升温至120℃，反应时间6小时，取样检测，液相色谱
分析对苯基苯胺含量≥90%为硝化终点。终点后先减压蒸出氟苯，再蒸出含量≥99%的对苯基苯胺成品，得到成品 55 公斤。

【0020】 实施例 2

带有搅拌装置、温度计，冷凝器，外部夹套冷热装置的 2000 升搪瓷反应釜，先检验设备是否完好，体系是否干燥，本反应在绝水条件下进行。向反应器加入三氯甲烷 500 升，联苯 100 公斤，SO₄²⁻/ZrO₂35 公斤，开动搅拌，溶解 1 小时，外冷水降温至 20℃，于 2 小时之内加入氯乙酰氯 90 公斤，搅拌反应 5 小时，取样用甲醇稀释后进行液相色谱分析，当联苯酰氯含量≥96%，联苯含量≤2%时，停止搅拌，静置 2 小时分离除去底部固体催化剂，酰氯溶液重新回反应器，搅拌下通入液氨，外冷水浴，反应温度<15℃，通氯时间 7 小时，体系 pH≥9 时反应终止，液相色谱分析联苯酰胺含量≥93%为硝化终点，终点后，停止通氯，缓慢升温至 80℃，体系给少量负压去除游离氨气。然后于 2 小时加入亚硫酰氯 120 公斤，同时开启尾气吸收装置吸收放出的酸性气体，加完后，于 2 小时升温至 120℃，反应时间 8 小时，取样检测，液相色谱分析对苯基苯胺含量≥90%为硝化终点。终点后先减压蒸出氟苯，再蒸出含量≥99%的对苯基苯胺成品，得到成品 99 公斤。

【0021】 实施例 3

带有搅拌装置、温度计，冷凝器，外部夹套冷热装置的 2000 升搪瓷反应釜，先检验设备是否完好，体系是否干燥，本反应在绝水条件下进行。向反应器加入硝基苯 500 升，联苯 150 公斤，SO₄²⁻/TiO₂30 公斤，开动搅拌，溶解 1 小时，外冷水降温至 20℃，于 2 小时之内加入氯乙酰氯 90 公斤，搅拌反应 10 小时，取样用甲醇稀释后进行液相色谱分析，当联苯酰氯含量≥96%，联苯含量≤2%时，停止搅拌，静置 2 小时分离除去底部固体催化剂，酰氯溶液重新回反应器，搅拌下通入液氨，外冷水浴，反应温度<15℃，通氯时间 10 小时，体系 pH≥9 时反应终止，液相色谱分析联苯酰胺含量≥93%为硝化终点，终点后，停止通氯，缓慢升温至 80℃，体系给少量负压去除游离氨气。然后于 2 小时加入亚硫酰氯 120 公斤，同时开启尾气吸收装置吸收放出的酸性气体，加完后，于 2 小时升温至 120℃，取样检测，液相色谱分析对苯基苯胺含量≥90%为硝化终点。终点后先减压蒸出氟苯，再蒸出含量≥99%的对苯基苯胺成品，得到成品 145 公斤。