发明名称
喷墨打印机的清洗组件

摘要
本发明涉及打印机组件领域，一种喷墨打印机的清洗组件，包括支架、微喷嘴和刮墨组件，微喷嘴滑动安装在支架的两个侧板上，微喷嘴上设有微喷槽，刮墨组件包括刮墨片、刮墨片支撑体和弹簧，刮墨片支撑体两侧各设有1个滑杆，所述支架的两个侧板上各设有2个角度互补的坡面凸起，滑杆在坡面凸起上沿坡面运动到最高点之前，使刮墨片支撑体的卡扣、微喷嘴的卡扣与销孔在一条直线上，从而使刮墨片支撑体翻转，使刮墨片高于或低于微喷嘴的上平面。本发明通过墨槽部分竖直升降结构，微喷嘴和刮墨片水平前后运动结构，对打印机喷嘴进行清洗。简化了结构机构，一目了然，便于安装使用维护；避免喷头在清洗过程中滑动，减少清洗动作，速度更快，效率更高。
1. 一种喷墨打印机的清洗组件，包括支架、微喷垫和刮墨装置，所述微喷垫滑动安装在支架的两个侧板上，微喷垫上设有微喷槽，其特征在于：微喷垫所述刮墨装置包括刮墨片、刮墨片支撑体和弹簧，刮墨片安装在刮墨片支撑体上，刮墨片支撑体与微喷垫通过销柱和销孔转动连接，刮墨片支撑体两侧和微喷垫两侧各设有卡扣，弹簧两端分别勾住刮墨片支撑体的卡扣和同侧微喷垫的卡扣，所述刮墨片支撑体两侧各设有 1 个滑杆；所述支架的两个侧板上各设有 2 个角度互补的坡面凸起，滑杆在坡面凸起上沿坡面运动到最高点之前使刮墨片支撑体的卡扣、微喷垫的卡扣与销孔在一条直线上，从而使刮墨片支撑体翻转，使刮墨片高于或低于微喷垫的上平面；

所述刮墨片支撑体翻转角度为 0 ～ 180 度，不包括 0 和 180 度。

2. 根据权利要求 1 所述的喷墨打印机的清洗组件，其特征在于：所述刮墨片嵌在刮墨片支撑体上。

3. 根据权利要求 1 所述的喷墨打印机的清洗组件，其特征在于：该清洗组件包括所述微喷垫和刮墨装置一个或多个组合。

4. 根据权利要求 1 所述的喷墨打印机的清洗组件，其特征在于：所述刮墨片支撑体通过传动带连接在电机上，由电机控制其水平运动。

5. 根据权利要求 1 所述的喷墨打印机的清洗组件，其特征在于：还包括可以抽吸喷头墨水的墨垫组件，所述墨垫组件安装在支架底板上，沿支架上下运动，墨垫组件在顶端时与喷头底面密封。
喷墨打印机的清洗组件

说明书

技术领域
[0001] 本发明涉及打印机组件领域，尤其是指一种喷墨打印机的清洗组件。

背景技术
[0002] 目前，公知的清洗、保养及维护喷墨打印机喷头的一种主要方法就是采用清洗组件，其工作原理是：在喷墨打印机开始工作前及工作过程中，当喷头上的喷孔出现堵塞现象时，清洗组件开始工作，清洗组件上的机构运动使墨栈和喷头密封，形成一个腔体，外部的液体会开始抽吸墨水，使腔体形成负压，喷孔里的墨水被吸出，这样就疏通喷头上的喷孔里的流道。当喷墨打印机工作完毕，如果在长时间不工作的情况下，为了保持喷头的湿润，以免墨水干涸，隔绝外界空气中灰尘，使喷孔不易堵塞，清洗组件上的机构再次运动将墨栈和喷头密封，墨栈里的海绵体或吸收液体的介质里含有从喷孔里抽吸下来的墨水，而使整个腔体保持潮湿，使喷头表面距离海绵或介质表面很近，使喷头处于湿润环境。申请人已拥有发明专利：喷墨打印机的墨栈结构（专利号：ZL 2007 1 0156707.1）公开了一种抗腐蚀影响能力强，使用方便的墨栈结构。

[0003] 但是，在墨栈和喷头处于密封状态时的抽吸墨水过程中，喷头喷墨表面会残留一些墨水，这些墨水会阻挡喷头喷孔里墨水的喷射，使得喷孔表面的墨水越积越多，会使喷头出现断墨现象，影响了喷头的打印作业。所以在抽吸墨水过程结束后，还需要一个动作将喷头表面的残留墨水刮除干净，这个动作称作刮墨，就是用橡胶类光滑柔软材料擦拭喷头表面残墨。

[0004] 另外，喷头需要进行闪喷动作，闪喷就是喷头上面喷孔全部开始喷射，并根据闪喷出来的墨水来判别喷孔堵塞情况。同时在喷墨打印作业过程中，喷头也需要一定时间内进行一次闪喷动作，确保喷头的流畅性。为了接收这些闪喷出来的墨水并将其流入到专门接收废墨的废墨瓶里，需要一个专门部件，称作闪喷架，闪喷架是一个放置了类似海绵材料的槽体部件，将闪喷出来的墨水聚在槽体里，然后通过泵抽方式引导到废墨瓶里。

[0005] 对于使用清洗组件的喷墨打印机，清洗组件工作性能的好坏直接决定了喷墨打印机的最终打印质量，并决定了喷头的使用性能及寿命。但是目前使用的墨栈、闪喷及刮墨装置是各自独立的结构，即打印机喷头在清洗时滑动到墨栈上方抽吸墨水后，需要打印机喷头分别滑动到刮墨片和闪喷结构上进行刮墨和闪喷。这样需要喷头部分与清洗组件的协调动作繁多，喷头部分需要数次定位，喷头每次清洗都会占据大量时间。而且需要喷头来回的移动，清洗组件占据机器大量空间，增加了打印机的造价成本。

[0006] 现在大多数国内外品牌喷墨打印机的喷头主要是使用 EPSON 第四代喷头或者第五代喷头及第六代喷头。其中日本 EPSON 公司现在在市场上的主流机型是 EPSON 第五代喷头机型和 EPSON 第六代喷头机型，并且以后将逐步淘汰 EPSON 第五代喷头机型。EPSON 第五代喷头机型和 EPSON 第六代喷头机型上的清洗组件为了精确快速地实现上述这些清洗动作，设计了精密复杂的传动机构，这些传动机构相关的大量部件需要精密的加工技术及塑料模具制造技术，其加工难度以及加工成本很大。
发明内容
[0007] 为了解决现有打印机清洗组件的上述技术问题，本发明提供一种结构简单，使用空间小，而且容易加工的喷墨打印机的清洗组件。不仅可以减少清洗动作的时间，提高喷墨打印机工作效率，也可以小批量生产，降低清洗组件生产成本，并能达到相同的使用效果。
[0008] 本发明所采用的技术方案是；
[0009] 一种喷墨打印机的清洗组件，包括支架、微喷嘴和刮墨组件，所述微喷垫滑动安装在支架的两个侧边板上，微喷嘴上设有微喷嘴，所述刮墨组件包括刮墨片、刮墨片支撑体和弹簧，刮墨片安装在刮墨片支撑体上，刮墨片支撑体与微喷嘴通过销柱和销孔转动连接，刮墨片支撑体两侧和微喷嘴两侧各设有卡扣，弹簧两端分别勾住刮墨片支撑体的卡扣和侧边微喷嘴的卡扣，所述刮墨片支撑体上两侧各设有 1 个滑杆，所述支架的两个侧边板上各设有 2 个角度互补的坡面凸起，滑杆在坡面凸起上沿坡面运动到最高点之前使刮墨片支撑体的卡扣、微喷嘴的卡扣与销孔在一条直线上，从而使刮墨片支撑体翻转，使刮墨片高于或低于微喷嘴的上平面。
[0010] 进一步的，所述刮墨片支撑体翻转角度为 0～180 度，不包括 0 和 180 度。
[0011] 进一步的，所述刮墨片嵌在刮墨片支撑体上。
[0012] 进一步的，该清洗组件包括所述微喷嘴和刮墨装置一个或多个组合。
[0013] 进一步的，所述刮墨片支撑体通过传动带连接在电机上，由电机控制其水平运动。
[0014] 进一步的，还包括可以供吸喷嘴墨水的墨夹组件，所述墨夹组件安装在支架底板上，沿支架上下运动，墨夹组件在顶端与墨夹底面密封。
[0015] 本发明通过墨夹部分竖直升降结构，微喷嘴和刮墨片水平前后运动结构，对打印机喷头进行清洗。本发明的有益效果是：
[0016] 1. 保证原有使用功能的前提下，简化了结构机构，一目了然，便于安装使用维护；
[0017] 2. 避免喷头在清洗过程中滑动，减少清洗动作，速度更快，效率更高。
[0018] 3. 突破了加工制造技术的束缚，大幅降低了加工生产制造的难度及成本；
[0019] 4. 广泛使用的兼容性，只更换墨夹及刮墨片，就能用于其它喷墨喷头的喷墨打印机，如 EPSON 的第四代喷头，第五代喷头，第六代喷头，第七代喷头等喷墨打印机；
[0020] 5. 功能布局合理，只需按照阵列方式增加墨夹部分及刮墨片部分，就能够应用于多数量喷墨喷头机头，可以用于单喷头，双喷头及两个喷头以上的机型。

附图说明
[0021] 图 1 为本发明实施例清洗组件整体结构图；
[0022] 图 2 为本发明微喷嘴组件和刮墨组件组合的结构图；
[0023] 图 3 为本发明微喷嘴组件和刮墨组件组合的分解结构图；
[0024] 图 4 和图 5 为本发明微喷嘴和刮墨组件组合的分解结构图；
[0025] 图 6 为本发明刮墨组件安装在微喷嘴上的结构图；
[0026] 图 7 为本发明刮墨片水平状态时微喷嘴和刮墨组件组合的结构图；
[0027] 图 8 为本发明刮墨片翻转中微喷嘴和刮墨组件组合的结构图；
[0028] 图 9 为本发明刮墨片垂直状态时微喷嘴和刮墨组件组合的结构图；
具体实施方式

[0033] 结合附图 1-13，一种喷墨打印机的清洗组件，包括支架 1、微喷嘴 7、刮墨组件和墨线 2，所述微喷嘴 7 上设有微喷嘴槽 7c，微喷嘴 7 固定在安装在滑套 6 的支撑板 5 上（如图 2-3 所示），滑套 6 安装在支架 1 的两个侧板 13、14 上，微喷嘴 7 可沿支架水平滑动，所述刮墨组件包括橡胶制成的刮片 9、刮片 8 支撑体 8 和弹簧 10，刮片 9 通过嵌入刮片支撑体 8 的卡槽 8d 安装在刮片支撑体 8 上，刮片支撑体 8 两侧的销柱 8a 分别与微喷嘴 7 两侧的销孔 7a 连接，刮片支撑体 8 两侧设有卡扣 8b 和微喷嘴 7 两侧设有卡扣 7b，弹簧 10 两端分别勾住刮片支撑体的卡扣 8b 和微喷嘴的卡扣 7b，所述刮墨片支撑体 8 两侧各设有 1 个滑杆 8c；所述支架 1 的两个侧板上各设有 2 个角度互补的坡面凸起 1S、S2，滑杆 8c 在坡面凸起 1S 或 2S 上沿坡面运动到最高点之前使刮片支撑体的卡扣 8b、微喷嘴的卡扣 7b 与销孔 7a 在一条直线上，从而使刮片支撑体 8 翻转，使刮片 9 高于或低于微喷嘴 7 的上平面。

[0034] 如图 4-6 所示，橡胶刮墨片 9 固定在橡胶刮墨片支撑体 8 上，橡胶刮墨片支撑体 8 的销柱 8a 与微喷嘴 7 的销孔 7a 销连接，橡胶刮墨片支撑体 8 以销孔 7a 为轴心转动；

[0035] 拉伸弹簧 10 两端分别勾住橡胶刮墨片支撑体 8 的卡扣 8b 和微喷嘴 7 的卡扣 7b，微喷嘴 7 的卡扣 7b 与销孔 7a 在同一中心上，当微喷嘴 7 在 Y1 和 Y2 方向上移动时，在弹簧 10 的作用下，橡胶刮墨片支撑体 8 的滑杆 8c 与坡面凸起 1S 或 2S 接触而转动。

[0036] 如图 7-9 所示，刮墨片 9 可以销孔 7a 为轴中心翻转，与微喷嘴 7 在一水平面，或使刮墨片 9 高于微喷嘴 7 的上平面。图 7 为刮墨片 9 处于水平位置；图 9 刮墨片 9 处于垂直位置。刮墨片 9 被限制在工作状态 I 和工作状态 II 之间的角度转动如图 8；在实施例的喷墨打印机清洗组件结构中这个角度为 90 度。本技术领域人员也可以通过限定刮片支撑体 8 与微喷嘴 7 接触的形状或者刮片支撑体 8 和微喷嘴 7 的卡扣 8b、7b 与销孔 7a 之间的距离及角度来调节最大转动角度大小，可以在 0-180 度之间。

[0037] 如图 10 所示，墨累组件 2 通过墨累支撑板 3 和墨累滑套 4 安装在支架底板 11 上；如图 11-13 所示，喷墨打印机清洗组件结构的支架 1 由底板 11，左板 13，右板 12，上板 14，后板 15 组成；

[0038] 如图 1 所示，微喷嘴及刮墨片组件可以在 X1 和 X2 两个方向上的移动，墨累组件可以在 Z1 和 Z2 两个方向上的移动，所述移动有多种传动方式实现，本实施例通过皮带传动。如图 1 和图 11-13 所示，微喷嘴及刮墨片组件通过皮带 P2 传动及轴传动滑杆 H2，滑套 6 实现在 Y1 或 Y2 方向上的移动；墨累组件通过螺杆 L1、螺母 L2 及滑杆 H1、墨累滑套 4 实现在 Z1 或 Z2 方向上的移动。

[0039] 如图 14-15，装载着喷头 11 的小车沿着 X1 或 X2 方向移动进行打印作业。
作业过程中，小车隔一段时间回到清洗组件位置进行清洗，此时清洗组件的工作状态处于T7阶段（图15和图23所示），搅拌组件在最低位，刮墨组件的橡胶刮墨片9处于水平位置。

[0040] 结合附图16-25, 打印过程中，清洗组件需要以下几步步骤来完成一次清洗保养动作：

[0041] 第一步：喷头11由小车带动回到清洗位置。如图15, 喷头11沿着 X2方向回到发明清洗组件结构的微喷嘴7的正上方，此时，清洗组件处于T1状态（如图16); 当打印机系统反馈小车确定回到清洗组件位置时，小车停止移动。

[0042] 第二步，微喷嘴7开始沿着Y2方向移动，到达T8状态前，安装在刮墨片支撑体8上的橡胶刮墨片9一直处于水平位置。

[0043] 第三步：刮墨片9从水平位置翻转到垂直位置。如图17, 在T2状态时，刮墨片支撑体8上的滑杆8c开始与坡面凸起1a上的坡度面S1a滑动接触，当微喷嘴7继续沿着Y2方向移动时，刮墨片支撑体8以微喷嘴7上的7a为轴心沿R2方向转动，如图18, 在T3这个状态下，拉伸弹簧10恰好经过刮墨片支撑体的卡扣8b、微喷嘴的卡扣7b与销孔7a所在的同一直线上，此时，刮墨片支撑体8处于转台起始位置；当微喷嘴7继续沿着Y2方向移动，刮墨片支撑体8沿R2方向只要转动微小角度，在弹簧10的拉力作用下，刮墨片支撑体8瞬间转动到T4状态，如图19。此时，安装在刮墨片支撑体8上的橡胶刮墨片9处于垂直位置。

[0044] 第四步：微喷嘴7回到起始位置。微喷嘴7继续沿着Y2方向移动，直到传感器C2感应到支撑板5上的感应点5a (如图3, 13), 停止移动，此时的状态为T5, 如图20。

[0045] 第五步：墨块组件2与喷头11的底面11a密封。墨块组件2在最低位开始沿着Z1方向向上移动，当微喷嘴7继续沿着Y2方向移动，到达墨块组件2与小车上的喷头11的底面11a处于密封状态，墨块组件2停止移动；吸墨泵装置开始运行，进行吸吸喷头水墨动作。此时的状态为T6, 如图21。

[0046] 第六步：墨块组件2回到最低起始位置。当吸吸喷头水墨动作完毕，墨块组件2沿着Z2方向向下移动，直到传感器C1感应到墨块支撑板3的感应点3a, 墨块组件2停止移动（如图1）。此时的状态为T7，如图22。

[0047] 第七步：刮墨动作。由于在第五步的吸吸喷头水墨动作过程中，喷头11的底面11a会残留一些墨水，必须刮除干净，才能让喷头11的底面11a上的喷孔顺畅喷射。微喷嘴7开始沿着Y1方向移动，刮墨片9顶部部分与喷头11底部接触, 刮走喷头底部的残留墨水。如图23, 此时为刮墨片9顶部部分与喷头11底部接触（刮墨动作)前的结构示意图, 此时状态为T8; 如图24, 此时为刮墨片9顶部部分与喷头11底部接触（刮墨动作)后的结构示意图, 此时状态为T9。

[0048] 第八步：刮墨片9从垂直位置翻转到水平位置。刮墨片支撑体8上的滑杆8c与坡面凸起S1上的坡度面S1a滑动接触，当微喷嘴7继续沿着Y1方向移动时，刮墨片支撑体8以微喷嘴7上的销孔7a为轴心沿R1方向转动，如图25, 在T10这个状态下，拉伸弹簧10恰好经过刮墨片支撑体的卡扣8b、微喷嘴的卡扣7b与销孔7a所在的同一直线上, 此时，刮墨片支撑体8处于转动起始位置; 当微喷嘴7继续沿着Y1方向移动，刮墨片支撑体8沿R1方向只要转动微小角度，在弹簧10的拉力作用下，刮墨片支撑体8瞬间转动到T1状态，如图16, 此时，安装在刮墨片支撑体8上的橡胶刮墨片9处于水平位置。

[0049] 在实际工作中，因清洗保养方式不同，会分为轻度清洗，中度清洗，重度清洗；此时
可能就需要重复数次上述清洗保养动作，达到使用效果。

[0050]若是打印机一直处于不使用状态，则需要将喷头 11 与墨栈组件 2 密封，以保持喷头湿润。当打印机开始工作前，有时也需要进行一次清洗，此时处于如图 21 所示 T6 状态，外部的泵体抽吸喷孔里的墨水疏通喷头 11 上的喷孔里的流道，然后墨栈 2 下移，微喷垫 7 安动带动刮墨片对喷头 11 刮墨。即按照附图 20-21-77-88-99-10-11 时间状态进行清洗，再进入打印动作。也可以根据需要再根据打印状态中的清洗程序进行多次清洗。

[0051]其中附图 16 的 T1 状态时，可根据需要使喷头喷孔闪喷处理，进行喷头喷孔顺畅维护，闪喷出来的墨水正好喷在微喷垫 7 的微喷槽 7c 里。

[0052]本发明橡胶刮墨片 9 固定在橡胶刮墨片支撑体 8 上以 7a 为轴心转动；在弹簧、带有坡度特征的坡面凸起 S1 和 S2，三者共同作用，实现刮墨翻转动作。微喷垫 7 的卡口 7b 与销孔 7a 在同一中心上，拉伸弹簧 10 恰好经过刮墨片支撑体的卡扣 8b。微喷垫的卡扣 7b 与销孔 7a 所在的同一直线上，刮墨片支撑体 8 处于转动临界点。所以坡面凸起 S1 和 S2 的高度高于转动临界点，但为了提高效率，不应比转动临界点高太多。